IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microrepreductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers dainaged/
Couverture endommagéeCovers restorad and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le mailleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvant modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages rismaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées è/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées
Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaire
Only edition availabla/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio cherked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed hare has been reproduced thanks to the generosity of:

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:
The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothéque nationale du Canada

Les images suivantes ont été raproduites avec le olus grand soin, compte tenu de la condition et cu la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la derniére image d ϵ chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent êtra filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

THE

UNIVERSAL ASSISTANT,
 AND
 COMPLETE MECHANIC,

CONTAINING OVER
ONE MILLION INDUSTRIAL FACTS.
 BU8IME38 FORMS, LEGAL ITEM8, ETC., II EVERY OGGUPATION, FROM THE
HOUSEHOLD TO THE MANUFACTORY, BY R. MOORE.

Illustrated with 600 Engravings.
" Let ue have Facts, real, certain, unmistakable Facte, there can to no Sclence without them."-ROBERT DICK.

Price in C.oth Binding, $\$ 3.00$; in Leather Binding, $\$ 4.00$. Free by Mail to any Address in Canada, or Great Britain, by remitting the price to J. S. Roberteon \& Bros., Subscription Book Publishers, Deverell's Block, Whitby, Ont. Parties will save Express charges by ordering single copies sent by Mail, instead of by Express, C.O.D. Agents wanted.

WHITBY, ONT.
J. S. ROBERTSON \& BROS., SUBSCRIPTION BOOK PUBLISHER, DEVERELL'S BLOCK.

Alaska, 723 A.M. Albany, 12 I3 P.M. Atlanta, 1130 A.M. Augusta, Ga., II 39 A.m. Baltimnre, Md., 12 O2 P.ms. Bangor, Mest 1233 P.M. Bath, Me., 1229 P.as. Boston, Mass., 1224 P.Ms. Buffalo. N. Y., II 52 A.M. Camb'ge, Mass., 1224 P.m. 1 Charlest'n, S.C., Ix 43 A.M. Chicago, Ill., 1117 A. Ms. Cincinnati, O., II 30 A.ri. Clevcland, O., Ix 4X A.M. Columbia, S.C., 21 44A.M. Columbus, O., 1136 A.M. Danville, Va., 1150 A.M. Denver, Coi., 1003 A.m. Detroit, Mich:, II 35 A.M. Dubuque, Ia., II O5 A.M. Galveston, Tcx., IO 49 A.M. Halifix, N. S., I2 54 P.M. Hamition, Ont., II 49 A.M. Hannibal, Mo., 1107 A.M. Hartind, Ct., 1217 P.m. Havana, Cuba, 113^{8} A....1. Houston, Tex., 1044 A.M. Indianap's, Ind., 1124 A.M. Jacksonv'c, III., IIO7 A.Mr. Jefin đity Mo., 10.59 A. h. Kalama, W. 7 .. 858 A.M. Kanses City Mo. 1049 A.s: Knoxy'e, Tepn., 1132 A.:1. Laramie. WTT., 1n12A.M. Louisville, Ky., II 26 A.M. Lincoln, Neb., 1041 A.M. Little Rock, Ak., : 0 59 A.M. London, Eng., 508 P.M. Macon, Ga., 1137 A.M.
Memp'siflenn., 1503 A.M. Meridian, Miss., 11 it A.m. Mexico, to 32 A.M.
Milwan'e, Wis., 7x 16 A.M. Minneapolis, so 53 A.M. Mobile, Ala., 1216 A.M.

FOR MEASUREMENT OF TIME SEE PAGE 773.
Table Showing the Time in
Various Parts of the Worid when it is Noon at MASHINGTON, D. C.
 Portsm'th. Va., 1203 P Prov:dc'cc, R.I., 1222 P Qucbec, Can., 1223 P. 6 Quincy, Ill., 1107 A.m. 2 lichmo:2d, Va., II 58 A Romc, Ga., II 32 A.M. St. Jolm, N. B., 1244 P St. Johns, N. F., I 37 P. St. Joscph, Mo., 1050 A. St., Louis, Mo., ir 07 A. St. Paul, Minn.. in 56 A. St. Step'n, N.13., 1239 A. Salt Lake City, 940 A.M. Santa Fc, 10 o4 A.M.
San Francisco, 8.58 A.m. Sault St. Marie, 1 I. 31 A. Savannah, Ga., $1 x 44$ A. Sclma, Ala., Ix 20 A.M. Shreveport, La., 1057 A. Sioux City, la., 1042 A. Terre Haute, in 8 A.m. Toronto, Can., ix 5 I A.M Vincennes, Ind. If 17 A. Vera Cruz, 1043 A.m. Vicksb'g, Miss.. 11 05 A: Wilming' n, NC. 1158 A .

Active Agents furnished with permanent and profitable employment selling

$$
\begin{aligned}
& \text { Mone DNIVERSAI ASSISNANT AND COVPL ENE MEC:ANIC, } \\
& \text { everywhere throughout the United States and Canada. An Agent wanted } \\
& \text { every County. }
\end{aligned}
$$

PREFACE.

This work is issued with the design of supplying very important omissions in the authors antecedent writings and compilations. His most forvid acknowledgments are due for the great encouragement accorded to his previous efforts, and the favorable opinions expressed regarding them. The result has been that, stimulated by the experience of the past, he has in the present work, made special cxertions to present an immense array of rare and most valuable information relating to Commerce and the Industrial Arts. The vital concerns of health, home, domestic felicity, and other all-important interests, have also received due attention, and to make the information more comprehensive and complete, he has quoted largely from his previously published works, wherever he judged it necessary to do so. These extracts include a few items for machinists use, and the diagrams for saw-filing, selected from the "Boston Machinist " and Halley's work "On Saw-filing," by permission of the publishers, John Wiley \& Son, of New York, together
with a few extracts from the "Watchmakers' Manual," by permission of the Publishers, Jesse IIaney \& Co, New York. In addition to the matter above alluded to, many valunble tables are now published for the first time, together with much new and most important matter specially adapted for the use of commercial, manufacturing, and mechanical men in both hemispheres. A past experience of many years devoted to the welcome task of supplying technical information to business men, mechanics, \&c., has qualified the author to judge regarding their wants, and to act intelligently in endeavoring to supply them. His effort has been to act as the harbinger of mechanical improvements, and general progress, and he can say without ostentation, that the present work is the result of prolonged and continuous labor; the best authorities have been consulted, and endeavors have been made to make it plain, easily understood, and commensurate with the exacting requirements of this progressive age.

GENERAL INDEX.

PAas Baking, Cooking and Preserving Receipts ()
Farmers, Stock-owneris; Horse-shoers, Liverymen's, and Veteri- nary Receipts, Bee-keeping, dc 31.
For Lumbermen, Builders, Contractors, Mill-owners, Ship- builders, Ship-owners, Navigators, Quarry'-men, Stope-outtors, Merchants, and Business-men. 74
Natural, Mechanical, and Sceientifio Fracta, dro 117
For Dyers, Bleachers, Hatters, Clothiers, Furriers 134
Medical Department, Maintenance of Health, dc. N............. 147
Grocers, Confectioners and Manufacturers' Department. 201
Tanners, Curriers, Boot, Shoe, and Rnbber Manufacturera, Marble and Ivory Workors, Bookbinders, \&0 240
Painters, Cabinet-makers, Vainishern, Yohshers, "Piano and Organ Manufacturerm, Gildern, Bronzers; Arohitects; Buidietic, Masons, Bricklayers, Plasterers, Kalsominers, Stucco. Wor kers, Chins Decoratorm, Potters, Glani-miakerp, Stainers, \&o. 28
Watchmakers, Jewellers, Gilders, Culorers, Refiners. Gold and Silversmitha, Burnishera, Diamond outtert, Iapidirien, 8woep- smelters, Enamellers, do 807
Fot Engineers, Englne-drivers, Firemen, Dingine Builders, Locomotive Shopg; de 354
Power required for various machines, do $-441-432$
On Water-wheel, Wheel Gearing Hydraulics do. 443-628
Boring, Drilling, and Mining Machinery, Gold and Silver Mining, \&o 448-581
For Blackamiths, Tool-makers; Cutlers, Locksmiths, Saw; Spring; and Safe Manufacturers, do 457
Machinists' Department 446
For Iron; Brass, Bell, Type, and Stereotype Founders, Iron Manufacturers, \&e 490
For Mill-owners; Factories; de 504-559
For Plumbers, Gas, snd Steam Fitters, Bronziag, Lacquering, Brass Finishing, Soldering, do 503
Tinmen's Diagrams, Measurements, Receipts, \&o 522
Facts for Gas Companies and Conanmers, Tables and Illastra- tions 532
Gunsmiths, Engravers, Die-sinkers, Photographers, \&c. 543
For Printers and Publishers, Paper Manufacturers, \&o 545-577 545-577 578-570
Oil Manufacture dro 553
Calculations for Contractors, sc
Warming of Builditgs, Valne of Fuel, The Compsss 560-5 $\mathrm{H1}$
Sugar Refining, Corn Starch, Button M'frs, \&o 565-566
Iron and Brass Tube, Lead Pipe, Cutiery and Needle Manufao- turers 5C7-568-569-570
Gold and Stoel Pen, and Filo Manufacture, de 571-578
PAGE
Portraits and Notioen of Eminent Engineern, de.
583-584-586
Smelting of Metala, do
587
587
Useful Items for Daily Remembranco
Useful Items for Daily Remembranco
597
597
Interent Table at 6 and 7 per cent
Interent Table at 6 and 7 per cent
298-24y
298-24y
Ready Reckoner for Conl, Hay, co., at any rate yer ton
Ready Reckoner for Conl, Hay, co., at any rate yer ton
600-60
600-60
Ready Reckoner for Pounds Yards, Buahels, de., at aight
Ready Reckoner for Pounds Yards, Buahels, de., at aight
605
605
Weights of Cast Iron Pipe from 1 to 22 ins. diam 606
Weights of Brasn, Copper, Steel, Lead, Plate Iron, Fiat Cast Iron, Wrought Iron Fipe, Planting Table, \&o 607
Torsional Strength of Metals, Capacities, Size and Weight of Coppers, Weight of Square and Round Cast Iron 608
Weights of Round, Square, and Flat Cast Iron, Flat Steel, maculders' and Pattern Makers: Tables 609
Strength of Iron Columns, Capacities of Cisterns, Weights of 610 Cortwood, Arithmetical' Signs and their Signification. \ldots......
Ready Reokoner Table for Board, Wages, Rent, \&c., Weight ofLead Pipe, Different Sizes, Capecities of Cribs, Boxes, do....595-611
Diameters, Circumferences and Areas of Circles 612-615
Diameter, dc., of Circles, Contentm of Vesmels in Gallons, Areain Feet616
Scantling and Timber Measurement Tables 617-618
Lumber Measurement at Sight, 1 inch board measure 619
Lumber and Log Measuremont, Net-Proceeds of Logs, \&o 620
Cubical Contents of Round Loogs, Mants, Spark, 121
Cordwood and Bark Measurement at Sight 622
Misoellaneous Tables for Mechanics 623-634
Rulen Tables, \&c., for Engineers and Mill-owners,. \&o. 635-687
Facts, Calculations, \&o., for Agriculturists, do 688-727
Geological Faets, with Diagram 728-735
Age, Origin, and Ultimate Dnration of the Earth 735-74i
Tables, Estimatem, \&c., for Printers and Publishers 746-760
Information Concerning Patents 760-762
Facts Relating to Human Life, Population of the Globe, High- est Mountains, Liongest Rivers, \&o 762-772
Measurement of Time, the Circle, Zones, to 778-775
On Telegraphy, Photography, do 7r6-784
On Hunting and Trapping 785-791
Direotions, Tables, \&c., for Merchants and Book-keepers 791-803
Buainess Forms for Merchants, Mechanics and Farmers 808-885
Special Laws of 49 States, Territories and Provinces 828-923
Facts, Tables and Processes Relating to Metallurgy, Gold and Silver Mining, Treatment of Ores, so 004-85t
Quartz Maohinery, Stamp Battery, \&o. 954-955
Metallurgy of Gold-full details, Illustrated 957-940
Metallurgy of Silver -complete details, 1llustrated 460-981
Demoription of Furnaces used in Roasting Ores 982-991
Blowpipe Assay, Fluxes, Hydrostatic Welghing, Cupellation.: 991-995
To Identlfy and Test Metalio Ores, Chemistry, Geognostic Situation, se.; of Metals995-1008
Dry and-Humid Assay of Ores, Reduotion of Photographio Wastes, ec. 1009-1018
Valnable Processes in Various Traden 1013-1016

BAKING

Notr.-Whe 2ormula may be in any desired : terigls nsed.
Hop Yeast. of good flour ins makra le into à st the hop-water in 4\} qta. stock yea until it drops.

Stock or ish water for about momg 8 lbs . of paste, working it of the liquid to t any remaining l and 6 qts. stock and falls again, a hair sieve and wator might be a
Compresgep y Is obtained by str leries untll a mo bags, and the rea dry It is then will keep a long Vienna Bread.
izrmicit.-Bo in a ferment tub all thoroughly tog to make it milkw allowing it to rise as it is liable to 8

Nore - Good may be made by when about done, put 12 lbs. foar in the hop-water; culbing the potat

BAKING AND COOKING DEPARTMENT.

Note.- The observant tradesmar will notice that the following Zormulæ may be adapted for smaller quantities, or for houmehold uso, in any desired instance, by a proportiouate subdivision of the materiala nsed.

Hop Yeast.-Boil 9 ozs. of hops with 3 pails of wator ; put 9 lba of good flour in a tub, and atrain enough of the hop-water over it to make it into à stiff paste ; beat it up thoroughly ; strain in the rest of the hop-water into the paste ; let it stand antil lakewarm ; then add 4. q ts. stock jeast. It vill rise 1 to 3 inchen, but do not diatarb it until it drops.

Stock or iralt Yeast.-Boll 12 ozs. of yood hope with 4 palle of water for about 5 minutes; then strain off enough of the liquid among 8 lbs. of good sifted flonr in a tub, to render it into a etifif paste, working it up thoroughly withe clean stick; then add the reat of the liquid to the paste; let lt stand till lukewarm, and puiverize any remaining lumps with your fingers. Now add abont 8 lba malt and 6 gts. stock yeast; allow it to work in a warm place till it rises and falls again which will occupy from 8 to 12 hours; strain through a hair sieve and stand in a cool place. In warm weather 4 gals. cold water might be added to the above, previous to stocijing it awray.

Conpressem Xeast,-This yeast, 80 extensively used in Europe, is obtained by straining the common yeast in broweries and distilleries until a moist mass, is obtained, which is then placed in hair bags, and the rest of the water pressed out nutil the mass is nesrly dry. It is then sewed np in stroug lineu bags for transportation. It will keep a long time, and ie very highly esteemed by bakers. See Vienina Bread.

Frrmigat.-Boil 2 pecks of good potatoes, strain, and place them In a ferment tub; add 8 or 9 lbs. flour, and, with a masher, intermis all thoroughly together and turn in, say, 6 or 8 gals. water, or enough to make it milkwarm; add 2 gals. stock yeast, set it in a warm places, allowing it to rise and fall, not letting it stand very long after it falls, as it is liable to sour in warm weather; strain, and all is ready.

Nori-Good yeast for the purpose of renewing your old stock may be made by boiling a peck of clean potetoes in 4 pails of water; when about done, add 12 ozs. hope, and boil the potatoes until softi put 12 lbs. flour into a clean tub; make into a stiff paste with part of the hop-water; next add the whole, including potatoes and hops subbing the potatoes through a course sieve, letting it stand till luke:
warm; then stock away. This is for renewing your old malt or boy yeast when the latter runs out, and not for general use; or it may bo substituted by yeast from another shop.
Setrina Sponae.-lior a quantity of, say, 3 barrels of flour, put it in the trough; sift it ; add 42 pails of ferment, and about $4 \frac{1}{2}$; prater (cold water during warm weather, and warm water during coll); intermix and work it ap amooth, allowing it to rise and tall, whea it is ready. A delay in the process, for the space of 30 ninutes or so, may be effected, If denired; by the addition of a handfal of salt when the sponge is being set. The sponge being ready; 9 lbs. of sait, including the last mentioned, are now weighed, dissolved, and turned Into the sponge, together with 9 pails of water (ot $2 \frac{1}{2}$ gals. to each pail); mix all thoroughly and knead the dough, letting figet a good prool, when it will be ready to mix up into loaves. A good method for warm weather to work flour that is new and soft, is to make yout dough right up, straining in all your ferment, sait and water, witiout setting any sponge. When the dough rises well, work it down, turning up the sides, and allow it to rise once more previons to throwing it out of the trough, adding alum if desired. With flour that works soft and clammy, requiring 9 lbs. of salt to the batch, omit 42 pounds, and substitute 24 lbs . alum, 1 lb . of ainm being equivalent to 2 lbs. salt. Alum assists inferior flour in making winite bread. The rule here laid down is 8 ozs. salt to each pail of water, but a little more might be uscd occasionally with benefit.

London White Bread. -The common proportions used by the Londou bakers, are: Flour, 1 sack; common salt, $4 \frac{1}{2}$ lbs.; ajum, 5 ozs. ; yeast, 4 pts.; warm water for the sponge, about 3 gal. The alum is used for the purpose of whitening the bread, but Liebig has demonstrated that this parpose may be better subserved by tho use of clear lime water in mixing up the dongh.

It in the commendable ambition in the English bakers to impart that peculiar tint so highly prized by connoissenrs, and so successfully produced at Vienta and Paris. At Vienna, it has long been known that if the hearth of an oven be cleaned with a molstened wisp of straw, the crust of bread baked in it immediately after presents a rich yellow tint; the theory is that the aqueons vapor retained in the oren has a beneficial effect.
The proper temperature of the oven is between 2000 and 225° Centigrade, eqnivalent to 424° and 480° Fahr., and may be known by the emission of sparks from a piece of wood rubbed on the oven.
The dough loses about $1-7$ th of its weight if baked in batches, but fully $\frac{1}{8}$ if baked in small loaves and placed in the oven separately. The best bread contains about 11-16ths of its weight of added water, and common bread often much more than 4 . The proportion of water in the London bread has greatly increased of late years owing to the use of the frandulent method of making the dough with rice jelly or moss jelly; in which Iceland moss, Irish moss, or other mosses are used; by boiling 7 lbs , of moss in 10 gals. of water, and using the resultant jelly in making 70 lbs. of flour into dough, which is then fermented and baked in' the usual way. It is safd that flour treated in this way will yield fuliy double its wreight of good bread. According to Heern, 100 lbs. of wheaten flour will yield at least 125 to 126 lbs of bread-some say 135 lbs ; 100 lbs . of ryo meal, 131 lbs. of bread. A \ddagger oz. carbonate of magnesia, added to the flour for a

4-1b. loat,
made from
Paris B from the p; as will mal has risen, 8 day's bakin then added As soon as shortly afte out toucining
Thit She bread, confe water and in ozs. Accor compare fav The fresh pr mash in acti must he repe yeast settles the water ha hydraulic pr tlo, dough-lik is the pressed ruch longer
The mixing lined trongh Then with a ter are poure ature of the r one end of th. portion of the next crumble ozs. to every tion is intermi and left undis flour is incorp
The mase of emooth, tenac indentation w pound massea pieces, each 8 are brought to the lump is re fermentation, being introduc stored to thei volume, to be size of the orig and the baking are touched in which besides brilliancy of tt grateful arc:n

4-lb. loaf, matarially improves the quality of the bread even when made from the very worst seconds flour.

Paris Baker's White Bread.- On 80 lbs. of the dough leff from the previous day'a baking, as much luke-warm water is poured as will make 320 lbs. Hour into a rather thin dough. As soon as thia has risen, 80 lbs. are taken out and reserved in a warm place for next day's baking. One pound of divy yeast dissolved in coarm woater is then added to the remaining portion, and the whole lightly kneaded. As soon as it is sufficientiy "risen," It is then mado Ir to loaves, and shortly aftorwards baked, the loaves being placed in the oven without touching each other, so that they may be "crusted". all ronnd.
Tar Sherets of Vienna Brend.-The proportions of Vienna bread, confessedly inferior to none in the world, are: Flour 100 lbs.; water and milk, 9 gals. $\mathfrak{s a l t}, 6 \mathrm{lbs} 4$. ozs. ; pressed yeast; 18 lbs .12 ozs. According to Prof. Horsford, good fresh middlings flonr will compare favorably with the average Hungarian flour used in Vienna. The fresh pressed yeast is obtained by skimming the froth frou boer mash in active fermentation. This contains the upper yeast, which must he repeatedly washed with cold water until only the pure whits yeast settles clear from the water. This soft, tenacious mass; after the water has been drawn off, is gathered into bags and subjected to hydraulic pressure, until there remains a semi-solid, somewhat brittie, dough-like substance, still containing considerable water. This is the pressed yeast, which will keep for eighty daye in summer, and much longer on ice. For use it should be fresh and sweet.

The mixing is commenced by emptying the flour sacks into a sinclined trongh about $2 \frac{1}{7}$ feet wide and 8 feet long, halt round in form. Then with a pail holdiu nouat S. gals., equal parts u! milk and water are poured, and left to stand until the mixture attains the temperature of the room, between 70° and 80°. Fahr, It is then poured into one end of the trough and mixed, , ith the bare hand with a small portion of the flour to form a thin emulsion. The pressed yeast is next crumbled finely in the hands, and added in the proportion of 31 ozs. to every 3 qts, of liquid, and then 1 oz. of salt in same propurtion is intermingled through the mase.! The trough is now. covered and left undisturbed for in $^{\circ}$ of an hour, and after this the rest of the flour is incorporated with the mass in tho above-namod proportions.
The mass of dough, being allowed to rest for $2 \frac{1}{2}$ honrs, becomes a smooth, tenacious, puffed mass of yellowish color; which yields to indentation without rapture and is elastic. It is now weighed into pound masses, and each lump is cut by machinery into 12 small pieces, each 8 inch in thickness. Of each one of these, the corners are brought together in the centre and pinched to secure them. Then the lump is reversed and placed on a long dough board for further fermentation, until the whole batch is ready for the oven. Before boing introduced into the latter, the rolis are again reversed and restored to their original position, having considerably increased in volume, to be still larther eniarged in the oven to at least twice the size of the original dough. In the oven they do not tonch each other, and the baking occupies about 15 minutes. To glaze the surface they are touched in the process of baking with a sponge dipped in milk, which besides imparting to them a sinooth surface, increases the brilliancy of the slightly reddish cinnamon color and adds to the grateful arna of the crust.

Arrated Bread. -The water used in forming the dough is placed In a ressel capable cf withstanding a high pressure, and carbonic reid gan ty forced into it to the extent 10 or 12 atmospheres. The watel will absorb and retar it whatever may he its density, in quantitiea equal to its own bulk, so long as it is retained in a close vessel under pressure. The flour and salt, of which the dough is to be former, is next placed in another powesful vesse': of a spheroidal form, constructod with a simple kneading apparatus' working from without and operating through a closely packed stuffing-box. Into this ves sel is forced a pressure equivalent to that in the aërated water vessel, then by means of a pipe connecting the two vessels, the aërated water is drawn into the flour and the kneading apparatus is operated at the same fime, the water acting eimply as limpid wator among the flour, forming a pasty mass of the requisite tenacity. The pressure is now withdrawn, and the gas escapes from the water, and in doing 80 , raises the dough in a beantiful and rapid manner, the intermixture being thorough and complete. The mixing vessel may have, say, an internal capacity of 10 bushels; to fll thia with the inflated bread dongh only 3^{\prime} bushels of flour are required. In the intermixture of water with flour the pasty mass measures rather less than half the bnlk of the original dry flour, or about $1 \frac{1}{3}$ bushels instead of 34 ; the expanded dough represents nearly 5 parts gaseous to one solid. The subseguent baking expands it to a much greater extent, making the proportions of gaseous to solid in all abont 10 to 1. It must be selfevident that this bread is very pare, nothing but flour; water, and snlt, being used, and reliable experiments have demonstrated that 118 loaves can be made from the same weight of flour which by fermentation will make only 105 or 106, the loss in the latter being caused by the emission of carbonic acid gas through the dough daring the process of fermentation and mannfacture. In baking this bread, it has been found necessary to have the heat admitted throngh the bottom of the oven, with means of regalating the heat of the top, so that the bread is cooked through the bottom, and the heat subsequently admitted above towards the last, in order to perfect the top crust. These procautions are taken owing to the low temperatare of the dough when placed in the oven, caused by the nse, of cold water in the baking process, and the sudden expansion on rising inducing a temperature of 40° Fahr., lower than ordinary fermented dongh. This in connection with its slow springing until it reaches the boiling point, renders it desirable to delay the formation of the top crust until the last moment.
Another Akrated Bread.-1. Dissolve 1 oz. of sesqni-carbonate of ammonia in water, sufficient to make 7 lbs . of flour into a dough, Which must be formed into loaves, and baked immediately... 2 Divide 3 lbs . flour into two portions: mix up the first with water holding in solution 2 ozs . bicarbonate of soda; then mix the second portion of flour with water, to which 1 oz of muriaitc acid has been added ; knead each mass of the dough thoronghly. When this is done, niix both portions together as rapidly and perfectly as possible. form the mass into loaves and bake immediately. This Dread contains no yeast, and is very wholesome. Note.-Carbonate of magnesia and muriatic acid chomically combined, form common salt.
Hraitet Mrxed Bread.-Boil 3 lbs, of rice to a erift pulp in water ; pare and cool; by steam 6 lbs of your best potstoes, mash your potatiss and ruo them up with rice palp; add tc the whole 6
libn. Hour
It stand a
ANOTH pared and tearned o warm, ad qts. milk $-r$ the potato and let it Freanch bag, giving hours till i flour; add the dough
dust them DYYSPEPS proved hig quarts unb 1 gill of fre teaspoonful For the they are sn minutes' ba additional f loaf require
SOPBRIO buckwheat ficiently co yeast, and enongh to m risen light, t sour while r dissolved in way, using i
Corn-Me a pint of (thi about a half rise and ther
CORN-MEA three pints spoonfuls of tand in a w wheat flour. hours, then rise a few mi

Corn-mea esblespoonful stir it well th of cold water beaten egge, 1 hour in a m night:
Brat Bost lbo. rye meal trough; strain

Ibs. flour, make all luto a dough with water, ferment with yeast, let tt stand a proper length of time, and then place it in the oven to balre
Another bxoelceny Bread.-Kuead 21 lbe. flour with 91 lbe of pared and mashed potatoes, from which the water has been well steamed off previous to mashing : mix together while the potatoes ari warm, adding abcut 3 or 4 spoonfuls of salt. Then add abont 8 qts. milk-warm water, with 9 large spooufuls of yeast gradually to the potatoss and flour ; knead and work it well into a amooth dough, and let it stand 4 hours before putting into the oven.
 bag, giving it enough room for it to swell': boil from three to four hours till it becomes a perfect paste; mix while warm with 7 lbs . flour; adding the usual quantities of yeast, salt, and water. Allow the dough to work a proper timenear the fire, then divide into losves, dust them in, and knead vigorously.
11. Dyapersia Bread.-The following receipt for making bread has proved highly zalutary to persons affllcted with dyspepsia, viz.:- $]$ quarts anbolted wheat meal; 1 quart soft water, warm but not hot; 1 gill of fresh yeast ; 1 gill molaci 3s, or not, as may suit the taste ; 1 teaspoontul of saleratus.
For the suke of the industrious house-wife, and not for bakers, as they are supposed to know already, it may be well to state that 30 minntes' baking will suffice for 1 lb . loaves and cakes ; and 15 minutes additional for every lb . after the first for larger ones. Thus a 1 lb . loaf requires $\frac{1}{3}$ hour, a 2 lb . loaf $\frac{9}{4}$ hour, and a 41 lb . loaf $1 \frac{1}{4}$ hour.

Supheior bread from Buckwheat Misal. -To 2 qts. of sifted buckwheat meal, add hot water enough to wet the same, when sufficiently cooled, add 1 teaspoonful or more of snt, half a pint of yeast, and half a teaspoonful of molasses; then add wheat flour enough to make it into loaves (it should be kneaded well) ; and when risen light, bake or steam it three or more hours. If this should get sour while rising, add a teaspoonful of sugar and a little saleratus, dissolved in water. For bread from Indian meal proceed in the same way, using it instead of buckwheat meal.
Corn-Meal Bread, No. 1.-Talse 2 qte. of corn meal, with about a pint of (thin) bread spongo, and water enough to wet it ; mix in about a half a pint of wheat flour, and a tablespoonfu! of alt ; let it rise and then knead well the sscond time ; bake $1 \frac{1}{2}$ hours.

Corn-Meal. Bread No. 2.-Mix 2 qts. of new com-meal with three pints of warm water; add 1 tablespoonful of salt, 2 tablespoonfuls of augar and one large tablespoonful of hop yeast: let it stand in a warm place fivo hours to rise ; then add $1 \frac{1}{2}$ teacupfuls of wheat flour. and a half pint of warm water. Let it rise again 11 hours, then pour into a pan well greased with sweet lard, and let it rise a few minutes. Then bake in a moderately hot oven, $1 \frac{1}{2}$ hours.

Corn-meal Bread, No 3.-Take 2 qts. of white corn-meal, 1 exblespoonful of lard, 1 piut of hot water; mix the lard in water etir it well that it may get heated thoronghly, and udd one-half pint of cold water. When the mixture is cool enough, add two wellbeaten eggs, and two tablespoonfuls of home-made yeast, Bake 1 bour in a moderately heated oven. If for breakfast make over night.
Bers Boston Bnown Bread.-Take 100 lbs of Indian meal; 50 lbs. rye meal ; and 10 lbs. flour; sift and intermix together in the trongh;strain in four gals. mnlasses; 2 gals. ferment or yeast; dissolvo 1

Ib. zoda and 4 lbs salt in water and add that. Now add waten enough to mix all rather stiff, mixing well and breaking all Jumph Now mix in water enough to form a batter sufficiently thin to remain even on top: allow it to stand 2 or 3 hours after mixing; belore patling it into the pans and oven, then bake from 6 to 10 hours in a alow oven.

Boston, or Soft Crackers.-First sift in 4 barrels es flour into the trongh, add 2 pails of stock-yeast, and about 9 pails of water; mix all into a sponge and allow it to stand until it rises and falls twice. The sponge will require about 6 or 8 hours to become ready, if it sours a little, so much the better. Usually it is set abont noon for the work uext day, and if set warm, for using stock yeast ins'ead of ferment; it will come less rapidly. The sponge being ready; add to it from 8 to 10 pails more water; mix and break the sponge np well, making a stiff dough, and let it stand until next morning. It is requisite that the dough should be sour, to ensure good crackers. When rendy, remove a sample of it sufficient for one ovenful of crackers; inke it to another part of the trough, and add to it from 5 to 6 lbs. of butter or lard, the proportion to be added to be estimated by the dimensions of the plece so separated; soda in solution is now to be added, made by dissolving soda, 11 lb . in cold water, 1 qt ., and the detached piece of dough may be intermixed with 1 pt. of the liquid, representing 8 ozs. of eoda, but the exact quantity required mast be ascertained by the acidity or age of the dough, and the judgment of an experienced practitioner. Mix the soda and butter thoroughly into the dough, and put it through the rollers repeatedly or until smooth. Place a sample of this dough in the oven to determine whether or not it contains the proper quantity of soda. When baked, too much soda will induce a yellow appearance, and more dough withnut soda must be added; a deficiency of soda will be indicated by a sour smell, and in that case more soda must be added. When all is right, the dough is put through the machine, and the succeeding batch of crackers is commenced by selecting another piece of dongh and procecding as above, adding the butter and soda in the required proportion, eaci batch requiring more soda on aocount of the increasing acidity acquired by long exposure to the air. Another way.-Set the sponge on the previous night, and the next day instead of making dough of It , select a portion of the sponge, addiug it to the butter and soda as abore directed, working them well into itt, and adding four enougit to make a stiff dough, and it is ready for the break. When you detach part of the sponge to make the bctch, add water enough to the sponge, and stir it up with more flour, thus continning to renew the spouge as fast as it is used.

Soda Crackers are made by the same process, of the same dough; after using the scraps, add a little more butter, rolling them thinner and cutting them square.

Oysticr Crackers are made of the same dough, using the scrapu aleo. Butter, Sugar, and other crackers are made the same way, adding respectively butter and sugar.

Cream Crackfrs.-Rub together 14 lbs. flour and 1 lb . butter; then add 1 lb . pounded sugar, 48 eggs , and flavor ; mix thoroughly, and work it quite stiff and smooth ; roll out quite thin ;cut them witha catter in the form of a oak leaf; put them into boiling water and boil till they float; remove with a skimmer and dry them on clothey and bake on clean jans without being buttered, in a warm oven.

Cimear Iady Cake.-Break np 2 lbs. butter, mix in 3 lbs. sugar, mbbing well together for 5 or 10 minutes, add 2 pts. whites of eggs, a third at a time, beat all up light, then add 4 lbs, flour, and 10 z. soda, dissolved in 2 pts. milk, and 2 ozs. cream tartar ; internix all well together, bake in pans about $1 \frac{1}{2}$ ins: deep, in loaves that will welgh from 2 to 3 lbs., when baked, take ont of the pans and frost on the under cide. Mark in slices 3 of an inch thick.
Frost Caxks.-Beat 2 lbs. butter and 3 lbe, sugar together until quite light, add 30 eggs, 10 at a time, beating after each addition, then a little ext. lemon, add 3lbs. flour, stir just enough to mix ; put in flat, square pans, greased, and bake in a slow oven, when done, frost on the under side and mark in squares.
Citron Frost Gake is made similar to the above, with the addition of sliced citron when the Hour is added, or preferably put the citron on the batter after it is in the pans. Bake as the last.
Shrewsbury Cake.-Rub 2 lbs. butter, and 2 lbs. of sugar together, add 24 eggs, 6 at a time, beating them in, dissolve and add twice as much soda as will lie on a dime in a littie water, mix in 4 lbs. flour, roll and cut out with any plain or fancy shaped cutter, put on buttered tins, and bake in a moderate oven.

Lemon Cake.-Rub together 6 lbs . of light brown sugar, and 2 lbs. of lard or 'Jutter, add 16 eggs, 12 qts. of milk with 2 ozs. of soda dissolved therein, 2 ozs. ammouia, a few drops extract of lemon for flavor, and flour sufficient to make a stiff batter; drop them either with the hand or with a spoon, into scalloped pans, and sprinkle a few carrants on the top of each, and bake in a moderate oven.
nock Cake, -Rub together 4 lbs sugar, and 8 lbs . of flour, makea hollow in the middle, gud add 6 eggs, $1 \frac{1}{2}$ pts. milk, 1 lb .8 oz of butter, and 2 oz . ummonia, mix all together. roll out and cat out with a plain cutter; rather thick, pnt on paus, and witn a fork scratch the top of each until it is quite rough. Bake in a moderate oven.
COP CAKe.-Break up 2 lbs , butter, add 3 lbs . sugar, and 16 eggs , a third at a time, beat up light, add 5 lbs. flour, 2 pts. milk, and ammonia 2 ozs., make all smooth by thorough mixing. Bake in cmall pans in a moderate oven.
2. Wedding Cake.-Rub 4 lbs, butter and 4 lbs. light brown sugar well together, adding 40 eggs, one quarter at a time, beating well, then add 2 pts. molasses, 2 pts. good brandy, 1 oz , each of mace, nutmeg, cassia, and cloves, all well blended in and mixed with the mass, thea add 5 lbs. flour, 8 lbs. currants, 9 lbs. stoned raisins, and 3 lbs. citron, intermix all thoroughly, put it in pans, spread smooth on top, and it is ready for the oven. These materials will make 4 loaves of 9 libs. each, and will require careful baking for from 4 to 6 hours in a cool oven, otherwise it will be burnt on the outside. To frost this amount of cake beat up the whites of 10 eggs in a bowl, with sufficient pulverized sugar to render the mixture stiff enough to spread on the cake, using a wooden spoon (probably $2 \frac{1}{2}$ lbs. will be required), heat all together for 15 or 20 minutes ; spread it on the cal 3 , after the latter becomes cool, and set it away until the next day, when another cont of the frosting composition must be applied, and the cake set away nntil the day following to await the final ornamenting. *This is offected with the assistance of ornamenting tubes, \&c., together with a frosting compusition of a much stiffer consistence than that previously used. Nors.-Oine-half, or even one-quarter of the aloove quantity of cake will be found amply sufficient for most ocrasious.

Another Wedding Caree.-Use 2 lba. sugar, 3 lbse fiout, 8 nuto. mugs, 18 eggs, 1 oz ellspice, 1 oz. cloves, 31 bs . currants, 2 lbs . citrom. 3 lbs sultana raising a little ammonia, and 1 gill brandy. Procoed with the mixture as directed in the foregoing, and bake in a slow oven.

Cocoani"c Cakes. -To each lb. of grated cocoanuts add 1 lb . of pordered sugar and the whites of 4 eggs, put all in a kettlo and cook on the fire for about 30 minutes, stirring well all the time, and avoid burning, cook to a moft and mushy consistence, turn it out and add to each lb. of cocoanut as previously weighed 2 ozs. of. flour, working it well into the mixture. Now put it in well greased. pans, selecting a smali piece in your hands, rolling it round and layling it on the pans, patting them about 1 inch apart, to allow for spreading, and bake in a cool oven.

Quesen Cakre-Rub together 2 lbs. sugar and 2 lbs. butter, next add 16 eggs, 1 pt. mill, 1 oz . of ammonia, stir all well together, then add the flour; bake in square pans with a few currants on top.

Drop Cake.-Rub together 3 lbs. sugar and $1 \neq$ lbs. of butter, add 13 eggs, in 3 different, lots, 3 pts. of sour milk, $1 \frac{1}{2}$ ozs. soda, $1 \frac{1}{2}$ ozs. of ammonia, favor with ext. lemon, stir all weii sogethier, add flour sufflcient to make a stiff batter, drop on buttered pans, bake in a quick oven.

Molasses Pound Cake. - Mix together 1 gal. molasses, 3 lbs. butter, 8 eggs, 2 gts . water, 8 ozs . of soda, and add sifted flour sufficient to make a stiff batter. Bake in small scrulloped pans, in a cool oven.

Cross Buns.-Work 24 lbs. dough, 2 lbs. sugar, 2 lbs. butter, 12 eggs and a little cinnamon into the dough, and set away to rise; then plach them off in about 2 oz, pieces; mould them up; pin out; put on pans, qud mark them across with a knifo, or cross them. with atrips of dongh.

Gold Cake - Rub together 2 lbs. butter, and $2 \frac{1}{2}$ lbs brown sugar; add the yolks of 30 eggs, a lew at a time, beating all well np; add 1 qt.' milk with 1 oz . soda dissolved in it, stir well up; and add 4 lhe. flour ; l oz. cream tartar ; a little lemon extract ; mix all up lightly, and bake in small pans in a warm oven.

New York Sponge Cakx.- Beat 16 eggs and 2 ibs sugar together adout 5 minutes; next add 2 ozs. ammonia, 1 pt. milk, and flavor; mix all; add the flour, stirring carofully, but sufficient to mix. Bake in little round pans, in a warm oven.

Lady Cakt.-Rub 2 lbs. butter and 4 lbs. sugar together until it is quite light; then add the whites of 60 eggs, one-fourth at a time, beating well; next flavor with a little oil of almonds; stir slightly; then add 2 lbs . four and 1 lb . corn starch, and stir up lightly. Bake in a slow oven and turn over and frost on the under side.

Ground-rice Cakrs.-Rub together 2 libs. butter and 4 lbs. sugar; add 16 eggs; beat up thoroughly; add 2 pts. mllk, 4 oza ammonia, and flavor with lerion; stir all up; add 4 lbs. of rice finur, and mix thoroughly; drop on buttered pans about the size of an egg, and bake.

Cheam Cakzs.-Take 1 qt. water, and 1 lb. dark coarse-grained land; boil together in a kettle, and then stir in 17 ozs. of best quality flour; boil all 4 or 5 minutos, or until it is quite smooth; then turn if out on a board, and scrape the kettle with a knife; now put your paste in the kettle again, with 10 eggs; atir well together until all ia pmooth; then add 18 or 20 more eggs, or until the batter is of the right thickness; next dissolve $\frac{1}{}$ oz, soda in a little water, and mix in thoroughly; drop on pans slightly greased; wash them on tip. with
egg, and b
to bake wil them thror Place on th sigar, 4 ege turn in the fire, and fla
Rock CA making a ca egge, dissol to mix up dough the s
SNow CA then add the flour, 2 l lbs. loaves of th top, and bak
Moss Cak then add 21 b together unt push it thro put on butte a delicate brd
NEw Yor ter; theu add rowroot; mix big as walnu cleau pans in
Ten cakz. 6 lisa. sugar, add milk sanf out, sid cut
fancy Ca 40 eggs in 4 d mix well; the tract of lemor

Raisin Cal sugar; add 18 dissolved sods flour; 1lb. 10 a slow oven in
Pound CA with 1 lb . of p up ilightly; ad the ilour smor
Silver Ca sugar; add the ndd 2 pts. mili a little vanilla
Glygrr Sy ground ginger together; add lbe sugar; tol off with a kni flatten them d
ege, and bake in a quick oven. They will require 164,18 minuten to bake wili a proper heat. When baked, remove from tie fire; aplit them throwgh the ceatre and fill them with the following cream: Place on the fire 1 qt: milk in a kettle, mix 4 oz. flour, 8 oz. whito sigar, 4 egge, and a little salt in another vessel; whia the milk boile, turn in the mixture, stirring briskly; wheu it boils, remove from the fire, and flavor with lemon or vanilla as desired.
Rogk Cakes.- Rub well together 6 llg. flour, and 2 lbs. buttor, making a cavity in the middle; put in 2 lbs sugar, 2 lhm . currants, 8 eggs, dissolved soda, 1 oz., and a little ens. lemonj with milk sufficient to mix up stiff; now take a four-pronged fork and work of pieces of dough the size of walnuts; place on pans, and bake in a cool oven.

SNow Caxks.-Rub 2 lbs. butter and 2 lbs. sugar well together; then add the whites of $24 \mathrm{eggs}, 3$ at a time; beat up well; add 12 ozs flour, $2 \frac{1}{2}$ lbs of arrowroot; add the flavor and mix lightly. Make 6 loaves of this quantity, either round or square; put lemon peal on top, and bake in a cool oven.
Moss Cakr:-Rab 6 lbs. of four and 3 lbs. of butter well together then add 2 lbs. sugar, 8 eggs, and flavor with ess. of lemon; mix well together until smooth and stiff. Now take a piece the size of an egg push it through a sieve, and form it in bunches to resemble moss put on buttered pans, and bake very carefully in a moderate oven to a delicate brown color.
New York lunch Cake.-Rub together 14 lbs. flour, 2 lbs. butter; theu add 3 gts . mill:, 1 oz, soda, 1 oz. tartaric acid, and 8 ozs, arrowroot; mix allquite stiff, break it well, and snap them off about am big is walnuts; pin them out; dock them foll of holes, and bake ou cleau pans in a warm oven.
Tea Cake:-Rub 12 lbs. of flour and 6 lbs. of bntter:together; add 6 lbs. sugar, 24 eggs, 2 ozs. of soda; 4 ozs. cream tartar; flavor and add milk sumfient to make a nice, soft dough; mix up lightly, roll out, and cut with any fancy-shaped cutters, bake in a warm oven:
Fancy Cake.-Rub together 4 ibs. sugar, and 3 lbs. butter; add 40 egge in 4 different lots; add 1 oz. soda dissolved in a little milk; mix well; then stir in 4 los of flour; 1 oz. cream tatar; a little exp tract of lemon; mixing all well together, bake in a moderate oven.
Raisin Cake.-Rub together 1 lb . butter and $1 \frac{1}{2}$ lbs. powdered sugar; add 18 eggs, one third at a time, beating well in; add $\frac{8}{8}$ oz. dissolved soda, stirring well in; add a little ext. lemon; 2 lbs. 2 ozs. of flour; 1 lb .1 oz; sultana raisins; and mix all well together. Bake in a slow oven in pans about 1t inches deep.
Pound Cake.- Ereak up and well mix 1 1b. of fresh butter with 1 lb . of powdered sugar; add 10 eggs, a few at a time, beating up lightly; add 1lb. of flour ; a very little soda; mix all so as to make the four smonth; bake in a slow oven.

Silver Cake.-Rub together 2 lbs . butter and 4 lbs . powdered sugar; add the whites of 30 egge, in 3 lots at a time; beat up well; add 2 pts. milk with 1 oz. soda; 6 lbs. flour, 1 oz . cream tartar; with a little vanilla flavor; mix up lightly and bake as the last.

Glinger Sinaps.-Put 2 qts. molasses; 1 1 lbs. of lard; 3 ons. of ground ginger; 2 ozs. of soda, and 1 pt. water, into a bowl Mix all together; add fiour enongh to make a stiff dough; then work in 2 lbe sugar; toll thin; cut inilong strips in rolls on th.e table; cut them of with a knife or cutter the detired size; put on buttered tins; fatten them down a little with the hand, and bake in a slow oven

Gnvarr Caxe.-Put 12 eggs and 2 pts. cream on the fire in a copper or tin dish; stir until warm; then add 2 lbs. butter; 2 lbs. sugar; 10 ozs: ginger; allow it to stay on a slow fre and continue stirring till the butter is melted; then set off; when cold add 8 lbs. flour; mix na: mooth; roll ont thin, and cut with a circular catter: place on paper, and bate in a hot oven.
Cinnamon Cakts. - Put 12 eggs and 6 dessert spoonfuls of rone water into a bowl; whisk together, and add 2 lbs. fine sugar, and 1 oz: of ground ciunamon and flonr sufficient to make a nice stiff paste; roll them out; cut into any desired shape; and bake them on paper, in a slow oven.

Seed Cakes.- Rub together 1 lb . butter and 2 lbs . flour; then into a hollow in the centre; put 4 lbs. sugar; 2 qts. milk; 4 ozs. caraway seeds, and a little ammonia; mix up, but do not work it much; roll out; cat with a small cutter, and bake in a warm oven:
SPICE CaKk-Mix together 3 lbs. sngar and $1 \frac{1}{2}$ lbs. buttor; add $1 \frac{1}{2}$ pts. milk; 15 eggs, a few at a time; is oz. ammonia; one nutmeg and a half; ${ }^{\text {f }} 1 \mathrm{lb}$. currants; 5 lbs. fiour. Mix ap well and bake in deep, square pans in a slow oven.

New York Fangy Cake.-Rub together 2 lbs . sugar and 1 lb . butter; add 12 eggs a few at a time, beat all up well; add $\frac{2}{3}$ qt. of bour milk; $3 \frac{3}{4}$ lbs. flour; $\frac{8}{3}$ oz. soda; $\frac{2}{3}$ oz. crean tartar, and extract of lemon for thavor. Mix up smooth and bake in scalloped pans.
Machine Jumbles.-Rub together 3 lbs. sugar and 2 lb .4 ozs. butter; add 12 egge a few at a time, beat all up well; 妾 oz: of ammomia; 13. pts. milk; a little ext. lemon, and 5 libs. 4 ozs. of flour; and stir suinciently to mix.

Champagne Biecuits.- Work up 2 lbs. butter in a basin to, thick cream; add 2 lbs. of sugar; 2 lbs. flour; 36 yolks of egge; 1 oz caraway seeds; a little salt; whisk up the whites of the 36 eggs and add them; get a sheet of strong paper; fold it in reversed plaits like it fan, to form trenches about 1 inch deep; fill a biscuit forcer with part of the batter; force out some finger-like biscuits into the trenches about 3 inches long; sifting sugar over them, and bake them of a light-fawn color in a moderate oven.

Cream. Tartar Bigcuit.-Work in 3 lbs. sifted flour with 2 ozs. buttor; add 2 ozs. cream tartar; dish the middle and pour in 1 pt. milk and 1 pt. water, previously adding 1 oz. soda to the milk; mix all up briskly, but dun't make it too stfff. Flatten it oat; cut with a biscuit cutter; place them on buttered tins close together and bake in a quick oven.

Wishington Cake.-Rub together 4 lbs. sngar and 2 lbs. 8 ozs. of butter; 16 eggs; 2 pts. water and 2 ozs. of ammonia; with flour sufficient to make a suitable dough to roll; cut out with a scalloped cutter, and bake in a warm oven.
Brandy Snaps.-Mix up $1 \frac{1}{2}$ pounds flour, $\frac{3}{2} \mathrm{lb}$. lutter, $\frac{1}{2} \mathrm{lb}$ sugar, toz. cloves, and $\frac{1}{2}$ pint molasses." Mix all together and bake.
Washingron Pie.-Rab together 1 lb . butter, and $1 \frac{1}{2}$ lbs powdered sugar, add 1 pt . of eggs, a little at a time, beat np well, add $\frac{1}{4}$ oz. soda dissolved in $\frac{1}{2}$ pt. milk ; flavor with ext. lemon, stir up, and add 3 lbs. flour and 1 Gz . cream tartar; mix together, put on pans one eighth of an inch thick and bake in a quick oven.
Another. - Rub together 2 lbs. lard, 3 lbs. powdered sugar, and add 1 qt. eggs, a little at a time, 1 oz . soda dissclved in 1 qt. milk?

0xs creant
together an
fillivg
apples, 8 lb sticring wel raspberry j a apple filling made by slit with enough a little butte with puff-pa Lemon Pi water sulliei rimming the mixture: pu with $1 \frac{1}{} \mathrm{lbs}$. and fill your Another fil and nutmeg. Another 20
$\ddagger \mathbf{o z}$. tartaric Frosting fo beaten to a st thoroughly, d into a modera Short Pus butter, add 4 all to a smoc butter in the, let it stand 5 I out to the leng half of these that the side paste will be 1 Common Pa lard with salt may be better salt, lard, wat Pastero 0 with 2 lbs. flo pies should ha a strip of puff outside of the

Custard fo ext. lemon inte Filling for, it up and stew to a mush thro milk, 変 oz. giu!

Fithing yoi bcnes and tons Apples, add $4 \frac{1}{2}$ meg, cassia, cl brandy, 1 gill c vessel, omifting
ozs creani-tartar, a little lemon extract and $4 \frac{1}{1}$ lbs: floux mix all together and lake as above.

Fillino yor the Above Pres.-Add to stewed and entrained dried apples, $\frac{8}{2} \mathrm{lb}$. of sugar to each lb . of apples, boil all together for $\frac{1}{4}$ hour ctirring well ; fill with this, or use cranberry jelly or currant jelly or raspberry jam, or the latter intermized with stewel dried apples, or apple filling alone is very good. A good filling for sliced apple pies is made by slicing sour apples, bottom your plates add the aliced apples with enough powdered sugar to sweeten, adding cinnamon, ealt and a little butter, with water nutil the plate is two-thirds full, then cover with puff-paste, and trim it round in proper style with a knife.
Lemon Pies.-Rub together 1 lb , butter and $1 \frac{1}{2} 1 \mathrm{lbs}$. flour with cold watar sulficient to make a good stiff dough to bottom your plates with, rimming them around with puff-paste, and fill with the following mixture : put into a bowl the juice of 3 lemons, the grated rind of 1 with 17 lbs of finely powdered sugar and 9 egga Mix thoroughly, and fill your plates with the mixture; bake in a moderate oven.

Another filling. -3 lemons, 6 eggs , $\frac{3}{4} \mathrm{lb}$. sugar, $\frac{1}{3}$ pt. millk, with salt and nutmeg. Mix as the last.

Another without lemons. -1 lb sugar, $\frac{1}{2} \mathrm{lb}$. flour, 10 eggs , $\frac{1}{2} \mathrm{pt}$. milk, t oz. tartaric acid, a little lemon essence and salt.

Hirosting for LLemon Pies. -4 ozs . pulverized sugar, whites of 6 egga beaten to a stiff froth and the sugar gradually added to it, intemnix thoroughly, cover the pies, top them off with this frosting, run them into a moderate oven and bake them to a nice brown:
Shoit Puff Paste for Pies.-Mix together 4 libs, fiour, $1 \frac{1}{2}$ lbe. batter, add 4 eggs, a little salt and 1 pt . water or a little more, work all to a smooth paste, spread out with the hand, put 1 1 lba. more butter in the middle, fold the dongh over the butter, so as to cover it let it stand 5 minutes, sift flour over the paste and on the slab, roll out to the length of 7 feet and 3 feet wide (for half this quantity one half of these dimensions. will be required). Fold it over and turn : 00 that the sides will face you, repeating the rolling twice, when the paste will be fit for use.
Common Paste for Pies.-Rab together 4 lbs. flour, and 4 lbs. of lard with salt sufficient ; add just water enough to mix the dongh ; it may be better to put flour on the bench, make a set of it, adding the salt, lard, water, and stirring together.

Paste to cover Pies. - Llix togother 11 lbs. of Jard or butter with 2 lbs. flour with sufficient salt and water to mix. Cranberry pies should have strips of puff paste across the top, the edges wet, and a strip of puff paste placed around the rim, keeping this strip tinch outside of the edge of the plate, as it will contract while baking.
Custard for Pies.-Put 12 egge, $\frac{1}{3}$ lb. sugar, $\frac{1}{2}$ oz. salt, and alltle ext. lemon into a bowl, beat well together, add 2 qts. milk and strain:
Filling for Squash Pies.-Thoroughly clean 5 lbs. of squash, slice it up and stew it ; when thoroughly cooked drain off the water, rub to a mush through a strainer, then add 14 lbs. sugar, 6 egge, 2 qts. milk, $\frac{3}{4}$ oz. ginger, a little ext. lemon, and salt sufficient.
Fifling ror Minoe Pies.-Boil 3 lise. of chopped meat, clear of bcries and tough pieces, chop fine; peel, core and chop 9 lbs. of good apples, add $4 \frac{1}{2}$ lbs. brown sugar, $3 \frac{1}{2}$ qts. molasses, 3 ozs. each of nutmeg, cassia, cloves and allspice, 3 lbs. raisins, $1 \frac{1}{2}$ lbs. currants; $1 \frac{1}{2}$ pts. brandy, 1 gill cider, 星 lb. salt. Mix all the ingredients togethor in a vessel, omitting the apples and brandy, intermix well together; then
add them and reduce to the proper consistency with water. Cover with a cloth, tying it down tightly to prevent evaporation and set away' in a cool place for use.

Iof Cream Manufacture-Beat the required quantity of ice very fine in a atont bag or by any other means, and add fine salt in ratio of one part of salt to four parts of ice, mixing thoroughly with a stick. lack the compound neatiy in the freezer around the sylinder to the top, then pat in the cream (which should be cool) you wish to freeze, and, after covering, proceed to turn the crank back and forth alternately 10 or 12 times each way until the cream is sufficiently thick to leat, which will be known by the opposition to the beater, then turn forward quite briskly for a short space in order to impart an even and good appearance to the cream ; make thorough work of the beating, then remove the beater, fill the pail with ice and salt, and set away to harden. It will not do to introduce additional ice or iait, or allow it to grow atiff while beating, or beat it too much, or to retard the freezing process by pouring off water from the melted ice. The right time to beat it is when it is dense enough to rise, or about the thickuess of light latter, if beaten when rigid the product will not be so satisfactory. As the cream expands in freezing, the cylinder shonld be filled $\frac{8}{4}$ full sud no more.

Strawberry and Ratpberry Cream Ice.-1. Pass 3 lbs. of picked strawlorries or raspberries through a coarse hair-sieve, add 11 qts. double cream, 21 lbs. sifted sugar, mix well together, freeze as above, and mould it. If a deep red is desired; it may be imparted by a few dropes of cochineal.
2. Ige crfair, Best Quality:-Beat well together 9 eggs with $1 \frac{1}{2}$ lbss sugar; boil3 qte. good cream, set it off for a short space to cook, then add the sugar and eggs, flavor with vanilla, etc., to suit the taste. Let it cool, place in the freezer and proceed as above:
3 Substitute for cream.-Boil 1 qt . of good milk with $1 \frac{1}{2}$ ozs. of arrowroot, having first brought the milk to the boiling point and mixed the arrowroot smooth with a little cold milk, remove from the fire; add 2 fresh eggs, 8 ozs of powdered sugar, stir well, allow it to cool and flavor previous to puting in the freezer.
4. Chocolate Cream Ice.-Grate $\frac{8}{4} \mathrm{lb}$. of the best French chocolate into $1 \frac{1}{2}$ qts. of hoiling milk, allow it to boil till thick, adding $\frac{8}{4} \mathrm{lb}$. sugar ; add when cool, $1 \frac{1}{2}$ qts. cream, stirring well, and empty into the freezer. The addition of 8 eggs and lemon flavor to the above will greatly improve it.
5. Ginger Ice Cream.-Boll together 1 qt. milk, 1 lb . sugar, $80 z s$. pulverized ginger, and 4 yolks of eggs, until it commeuces to thicken.
6. Orange Cream Ice.-Mix together in a stew-pan, 1 qt. milk or cream, 1 lb . sugar, the juice of 8 oranges, the rinds of 4 oranges rubbed on the sugar, and 4 yolks of egge, until the compound begins to thicken ; stir briskly, and strain, freezing when cool; as above.
7. Pine Apple Cream Ice.-Put on the fire in a copper or tin vessei 11 b . of strained pine apple pulp, 12 ozs. sugar, $1 \frac{1}{2}$ pts. milk or cream, and 3 yolks of eggs ; beat sufficieutiy to thicken, not to boil the cream, atrain the mixture into a vessel and set aside to cool previous to freeaing. See other formulw for ice cream under the Groccrs' Dept.

Cream Tartar Biscuit.-Use 2 qts. flour, 2 teaspoonfuls of soda, 2 ditto cream tartar, 2 pts. milk. Mix, and follow the ditrectons for cream-tartar liscuit given above, and bake in a warm oren.

COOOAN whites of of egg to the size of
Frience made yeast through th and a little into large b Mofrine nour, a lun milk-and added. Le and bake to
bath Ca and a cupr rises, add in, and roll

No. 1 Ca Rab thoron beat well, a pinch off pie

Sugar Ce $\frac{1}{2} \mathrm{lb}$. ; water Naples E Lemon B ounce salera them out abc and bake the

Aberneti of sweet mil mix dough o mould them moderate ove

Savor Bis the weight of grate in tho : grate on som or any flavor Ginger S: brown sugar take 1 gill of dough, and c them in n m
York Bisc raise with so
Trayellei butter, 1 tear a dough. Cu in the salera it till it beco tof an inch tumbler. Ba

Cocoanve Dross.-1 1 lh. grated cocosanut, $\frac{1}{4}$ lb, white angar, the Whites of 6 eggs, cut to a stif froth. You must have enough whites of egg to wet the whole mirture. Drop on buttered plates, in piecem the size of an egg.
Frence Rolls. -1 ounce of butter, 1 lb . of flour, 1 gill of homomade yeast, 1 egg, milk enough to make a dough., Rub the butter through the flour, beat the ogg and stir in, thonindd the yeast mills, and a little salt. Knead the dough ; when it is light; mould it out into large biscuits, and bake them on tins,

MuFFTMs.-A quart of milk, 2 egge, 2 spoonfuls of yeast, 2 lbe. of four, a lump of butter size of an egg-which is to be melted in the milk-and a little solt; the milk is to be warmed, and the lugredients added. Let it rise, and then turn the mixture into buttered pans, and bake to a light brown.

Bati Cakes.-Mix well together, 1 lh . fiomr, $\frac{1}{4}$ lb. butter; 5 egzs and a cupiul of yeast, set the whole before the fire to rise ; after it rises, add $\frac{1 \mathrm{lb}}{}$. whits eagar, and 1 onnce caraway seeds well mixed in, and roll the paste into little cakes, bake them on tins.

No. 1 Crackers.-Butter, 1 cup; salt, 1 teaspoon; flour, 2 qts Rub thoroughly together with the hand, and wet up with water; beat well, and beat in flour to make quite brittle and hard; then pinch off pieces and roll out each cracker by itselt.
Suaar Cracikers.-Flour, 4 lbs; loal ougar and butter, of nach $\frac{1}{2} \mathrm{lb}$. ; water, $1 \frac{1}{2}$ pts. ; make as above.

Naples Biscuit. -White sugar, eggs, and fonr, of each 4 lbo.
Lemon Biscuir.-Take 31 lbs. White sugar, 4 lbs flour, ounce saleratus, $\frac{1}{2}$ lb. suet, a little milk to wet the dough, cut them out about the size of marbles, put them on pans a little greased, and bake them in a hot oven and flavor them with essence of lemon.

Abernetiry Biscuit.-Take 8 llbs of flour, 14 lb . of butter, 1 quart of sweet milk, 12 ounces of sugar, 1 ounce of caraway seeds, 6 egge ; mix dough of the above, break them in pleces of about two ounces, mould them off, roll them out, prick them and bake them in as moderate oven.

Savor Biscurr. -Take of sugar the weight of 14 eggs, of flonr the weight of 6 eggs, beat the yolks and whites of 12 eggs, separate, grate in the rind of a lemon; after being in the oven a fow minutes grate on some sugar. You may add peach-water, or lemon juico, or any flavoring extract.

Ginger Snaps. -Tuke 7 lbs, of flour, 1 qt. of molasses, 1 lb. of brown sugar, 1 lb . butter, 2 ounces ground ginger, and then take 1 gill of water, ${ }^{8}$ of an ounce of saleratus ; mix them all into dough, and cut them out something larger than marbles, and bake them in a moderate oven.

York Biscuit. - 3 lbs. fionr, $\frac{1}{2} \mathrm{lb}$. butter, 昗 lbs. sugar; wet up, and raise with sour milk and saleratus.
 butter, 1 teaspoonful of dissolved saleratus, milk sufficient to form a dough. Cut np the butter in the flour, add the sugar, and put in the saleratus and milk together, so rs to form dough. Knead it till it becomes perfectly smooth and light. Roll it in sheets about $\frac{1}{8}$ of an inch thick, cut the cakes with a cutter or the top of a cumbler. Bake in' a moderate oven.

Bakxiva Powder for Brecuit.-Bicarbonate of aoda 4 lbs., ormam of tartar 8 lbs:; These ingredients should be thoroughly dried and well mixed, and pat up proof against dampnoss. Use about 8 teaspoonfuls to each quart of flour, mix up with cold water or mille, and put it into the oven at once.
Bhoive Brimad for Biscuirs.- Com meal 4 qts, rye flonr 3 qts., Wheat flonr 1 qt., molasses 2 tablespoontuls, yeast 6 tablespoonfuls, soda 2 teaspoonfulm. Mix during the evening for breakfust.

Mince Pres-Meat 1 lb ., suet 3t lbs., currants, raisins and plums 2 lbs , one glass brandy or wine, allspice, cinnamon and cloves to your taste, sugar sufficient to sweeten. Baked in a short crust

Fruit Pies.-For all kinds of fruit pies have your fruit swoetcned; to your taste, and then pnt in a short crust. Bake in m hot oven.

PUupiris Pis-Stew the pumpkin dry, and make it like squad pie, only season rather higher. In the country, where this real Yankee pie is prepared in perfection, ginger is almost always nsed, with other spices. There, too, part cream, instead of milk, is mixed with the pumpkin, which gives a richer flavor.

Limion Pur.- 1 lemon grated, 2 eggs, $\frac{1}{2}$ cup of sugar, 1 cup of molasses, 1 of water, and 3 tablespoonfuls of flour. This makes 3 pies

Lemon Pie with threes orusts.-A layer of crust, a layer of lemon, sliced fine, a little sugar, layer of crust again, and sugar and lemon again, then the apper crust.

Another: Way.-1 cup of sugar, 1 cap sweet milk, 1 egg, 11 lemon the grated peel and juice, 1 tablespoonful of flour; then after baking, the white of an egg beaten, sweetened, and pution the top; then set in the oven and browned.

Cruma Pie.-Mince any cold meat very finely, beason it to taste, and put it into a pie-dish ; have some finely-grated bread crumbs; with a little salt, pepper, and nutraeg, and pour into the dish any nice gravy that may be at hand; then cover it over with a thick layer of the bread crumbs, and put small pleces of butter over the top. Place it in the oven till quito hot.
Wasmington Pre. -1 cup of sugar, third of a cup of butter, half a cup of sweet milk, 1 and a third cup of flonr, 1 ogg , half a teaspoonful of soda, 1 of cream of tartar, lemon finvor. Grease 2 round tins, and put in the above. Bake until dono. Then put it on a dinner plate, spread with nice apple-sauce, or sance of any. kind ; then another layer of cake on top. It is nice. without sauce, but sance improves it.

Fruit Pie.-1 cup of sugar, 1 of water, tablespoonful of flour, teaspoonful of lemon essence (or lemon grated), 1 teaspoonful of cream of tartar, half a teaspoonful of soda, half a cup of dried currants: mix and boil, stirring to prevent the flour from settling.

Chicken Pie.- Take one pair of good young chickens, cnt in small pieces, season with pepper and salt and small strips of salt porly, put in saucepan with water to cover it, boil for half an hour, add fiour and butter to thicken the gravy, have ready a large dish, served with paste, put all in the dish covered with a good rich paste. Bake for half an hour.

Vian Pot Pif,-Take 2 pounds of best veal, cat in small pieces, half pound of salt pork, sliced thin, four guarts of cold
water ; p
hour hat one ounc it boll is fire. Pluse 1 milk onor mising $\frac{1}{2}$ nolasses.
Tapiod and pour another p
bazmd
milk, diss of the mil the dissolv allow it to en, with it $\frac{1}{3}$ an he orange the juice od with the lurandy, wi the extract

Cocoanu of 6 cggs , rose-water, Rice pú atirring wel benten, and
Thand Tn
2 teaspioni
make a batt Baked A
them tender done no wa the crumb whiten of 3 well togethe Ground
heaperd, in 1
add sugar, n
Custard
opice to youx
Winter I
fill it with pl
Baked Po 13 oz., suet potatops, suc
conisistence,
Colligar 1
tity of beef
few clover,

Water; pepper and balt all, pht on the firo; after boiling for 1 hour have 3 potude of light bread dough, pick small pieces, eay one ounce pieces, put in mancepan, with tho veal and pork, and lot it boil for twenty minutes. Serve as so0n as taken from tho fire.

Pluse Puddina.-Ponnd 6 crackern, and noak them oren night in milk onongh to cover them; then add 8 pints of milk, 4 or 5 cggs , mising $\frac{1}{2}$ 1b., splee with nutmeg and sweeten with sagar and nolasses. lako about 2 hours.

TAPIOOA PUDDivo.- Pick and mash a coffee cup full of tapioca, and pour upon it 1 pint boilmg milk; after standing $\frac{1}{2}$ an hour, add another pint of cold mill, with sugar and raisins if $j^{\circ} \boldsymbol{0}$ deutre.
BaxED Pudding.- 5 tablospoonfuls of corn stareh t: 1 quast of milk, dissolvo the starch in a part of the milk heat tho remainder of the milk to nearly boiling, having salted it a littli, then add tho dissolved starch to the milk, boil 3 minntes, stirring' it briskly; nllow it to cool, nnd then thoronghiy mix with it 3 agga, well beaten, with 3 tablespoonfuls of Bugar; flaror to taste and buko it I an hour. This pndding ranke second to none.

Orange Pudding,-Take 1 lb . of butter, 1 lb . of sugar, 10 epge, the juice of 2 oranges, boll tho peel, then pound it fine and mix it with the juice. Add the juice of 1 lomon, n mineglasoful of brandy, wine and rone-water. If you do not hare the fruit add the extracts.

Cocoand Puddrig. To a large grated cocoanut add the whitea of $6 \mathrm{cggs}, \frac{1}{2} \mathrm{lb}$ of sugnr, 6 ounces of butter, $\frac{1}{2}$ a wineglesaful of rose-water, and baked in or out of paste.

Rice rudding.-Take 1 lb . of rice, boiled well with rich milk, ntirring well until it is soft, and then add $\frac{1}{2} 1 \mathrm{~b}$. butter, 12 eggs , well beaten, and spico to your taste, and bake it.
IIARD Times Pudding. $\frac{1}{1}$ plint of molasses or eyrup, $\frac{1}{\frac{1}{2}}$ pint writer, 2 teaspoonfuls of soda, 1 teaspoonful of salt, flour enough to make a batter ; boil in a bing 3 hours. Eat it with eance.
BAKED APPLE PUDDING.-Pare and quarter four large apples, boil them tender with the rlud of a lemon in so little water that when done no water may remain, beat them quite fine in a mortar, add the crumb of a small roll, $\ddagger \mathrm{lb}$. butter inclted, the yolks of \mathbf{E} and whites of 3 egge, juice of $\frac{1}{2}$ lemon, sugar to your taste, beat all well together, all in pante.

Gnound Rice, or Sago Pudding.-Boil a large epoonfil of it, heaped, in 1 pint milk with lemon jeel and clunamon; when cold, add migar, and nutmegs, and 4 eggs well beaten.
Custard Puddino.-Take 1 pint milk, 4 spoonfuls nour, 6 eggs, oplice to your taste nud bake.
Winter Pudding.-Take the crust of baker's loaf of bread, and fill it with plums, boil it in milk and water.
baked Potato Pudding.-Baked potatoes skimmed and mashed, 12 oz., suet 1 oz , cheese, grated fine, 1 oz.; milk 1 gill. Nix tho potatoes, suet, milk, cherse and all together, if not of a proper consistence, add a little water. Bako in an enrthen pot.

COLLEGGR PODDING. - 1 lb . of stalo brend, grated ; the same quantity of bcel suet, chopped very fine ; 1.1b. of currants, it natmeg, a few cloven, a glase of brandy, 2 or 3 eggs, 3 spooufuls of cream or
mill; mix theso woll together, and makg into a pasto in thie shape of eggs. Fry them gently over a clear fire, in ì $\frac{1 b}{}$. of butter; let them be of uice brown color all over. You may add blanched almonds and swcetmonts. Serve them up. with wine.
Family Pudding.- 1 quart of sweot milk, 1 pint of bread crnmbs soaked in the milk, 3 eggs well beaten, 1 teacupful of sugar, liftlo mace, 6 good tart apples, pared, cores dug out, and stand them in the pudding, and steam until the apples are well done. An hour will suffice.

Cottage Puddisa.- 1 cgit, 1 cup of sugat, 1 of sweet milk, 1 teaspooufni of soda, 2 of crenm of tartar, 1 pint of flour, and a Littie salt To bo eaten with unilir and sngar.
Gresey Goonznerries make a nico pudding by etirring a pint of them into a pint of batter, and either baking or bofling.
Lrenox Pudding,-Mielt 6 oz. of batter, pour it over the namo quentity of powdered loaf sugar, stirring it well till cold, then grate the riad of a large lemon, and add it with 8 egge well beatom and the juice of 2 lemons; stir the whole till it is completely mixed together, and bake the padding with a paste round the dish.

Bauces and Creame for Puddinos.-1. Take equal quantities of sugar and molasses, boil thom together, and stir in a little flour. 2: Take the juice of an orange, a cup of sugar and the same of good cream." 3. Good sour cream made very swoet with nugar, with or without seasoning, makes n good samce, 4. Beat 2 eggs woll, then add a cup of stewed apples and a cap of angar.

BeEF Steak with Onons.-Propare a rump eteak by pounding It till quite tender, season with salt, pejper and fresh batter, put in the steak and fry it, when brown on one side tum over, do not let it scorch, when nicely done tako it up, put a little flour over the steak, then add graduaily a cup of hot water, seasoned with more salt and pepper, if necossary ; then put the water over the fire and boil again, and pour over tho steak.
Peel 2 dozen onions, put them on to boil with about 2 quarts of water an hour before the steak is put on to fry. When the stoak is done; cut them up, put them in the frying pail, season well with salt, pepper, and butter, sprinkle with lour, stir all well together, place over tho fire, stir often to prevent scorching ; whin they are a little brown and soft, turn them over tho steak.

Srasoning for Stuffing.-1 1b. of salt, dried nad sifted; half an ounce of ground white pepper; two ounces of dried thyme; 1 oz . of dried marjoram ; and one oz. of nutucg. When this sersoilug is need, parsiey only is required to bo chopped in sufficieut quantity to make the stuffing green. The proportions arei. pound of bread crumbs ; 3 eggs ; $\ddagger \mathbf{1 b}$. of suet ; $\frac{1}{2}$ oz of sersoning ; and the peel of half a lemon, grated.

Liconomical Sour.-Put into a saucepun one-ponnd pieces of stale bread, three large onions sliced, a small cabbage cut fine, a carrot and turnip, and a small liead of celcry (or tho remnins of any cold regetablea), a tablespoonful of salt, a tablespoonful of pepper, a bunch of parsley, a sprig of marjoram and thyme. Put these into two quarts of any weak stoclr; (the liquor in which mutton has been boilod will do,) and let them boll for
two houm milk, boil Veorta yeilow on nummer hours j ad a good fa IPA SO tnruips, 3 fire, let it vegetabler, a slow fre eolro; tak crumbs ; p
Frucasse pieces, put pat, in rauc pan draiue batter, 10 with the c pepper and dish.
BAKED T a dressing salt, butter
STEWED
off the blin and add but Mastied ? colander, pr bitter and
Habied cold ; 1 lb . put in chop add 2 ozs . mako it soft; eorve hot.
Lobster rolk of 2 eg fula of swee well; add ce with hard-bc
Succotabe cob, add 1 q loil in 3 qts. salt to taste. quantity, ser Maccaron trmip, onion through a sif inch long ; p minutes, and y Bowze Cu
two houm ; rub through a fino hair-aloro, add a pint of new. milk, boil up, and serve at once.
Veoxtable Sour.-Tako a whin of a beef, 3 large carrots, 3 large: yeilow onions, 6 tarnips, $\frac{1}{2}$ lb. of rice or barley; paraloy, looke, nummer anvory; put all finto a coup-kettle, and let it boil four hours ; add pepper and salt to tasto; serve altogether. It makes a good family moup.
Ira Sour.-Deef 6 lbs, rrater 6 gta, 6 large carrots, 6 good tnruips, 3 large onions, salt sufficiont, put it on a good slow: fire, let it boil 3 hours, then strain all tho broth from meat and vegetables, and then add 3 lbw . of spllt peas to the broth; wet it on a slow fire for 2 hours, stirring often, so that all the peas will dissolvo ; take 1 lb . fresh sausage meat, fried to a crisp and fried bread crumbe ; put altogethor, add a fow fine herbs, and serve hot.
Facasaere Cuickrins. -Take 2 large young chickens, cut in amall picces, put in cold water for 1 hour to tako all the blood out; then put, in raucepan to parboil for half an hour, then take from sauce. pan dralued well, have ready 1 qt. good freah cream, 2 oz. good batter, 1 oz. of dour, all well nuixed together ; put in saucenan with the chickens ; put on the fite to boil tender; season with pepper and salt; served with toast bread in the bottom of the dish.

BAKED Tosratoes. - Wash the tomatoes, take out tho seed, make a dressing of crumbs of brcad and onious chopped fino; add salt, buttor nud pepper. Bake and eerro hot
Stewed Tomatoes. - Scald the tomatoes with hot wator, tako. off the sling, put thom in an earthen vessel, strain off the water, and add butter, salt and popper to tasto.
Masmed Tunnirs.-Wash turnipe, boil well, take them cp in the colander, press out all the water; mash very fine ; scasou with salt, bntter and sugar, Serve hot with trimminga.
Habhed Meat. - Take 2 lbe. of fat corned beet, well boiled and cold; 1 lb . of well bolled potatoes, cold; 1 large whito onion; put in chopping tray, minco it fine, put all in saucepan together, add 2 ozs. butter; pepper and salt to taste; add boiling wator to make it soft; set it on a slow fire, stirring it often. When well stewed, eorve hot. It mal.es a fine relish for breakfast.
Lobster Salad.-Taike inside of large lobster, minco fine, take yolk of 2 eggs boiled hird and mashed fine; with four tablespoonfula of sweet oil; pepper, salt, vinegar, and mustard to taste; mix vell; add celery or lettuce to tast; ; then when serving, garnish with hard-boiled eggs.
Succotabi.-Take 1 doz. ears of corn, cut the grains from the cob, add 1 qit of Lima beans, and mix with the corn; pnt it on to loil in 3 qts, of water with 1 lb . of pork cut; add black pepper and salt to taste. When the water has boiled away to $\frac{1}{2}$ tho original quantity, serve in a tureen as soup.
Macoaroni Soup - 4 lbs. of lean beef, 4 qts. of water, carrot, tnrnip, onions ; set it for 4 hours till all mix together ; strain it all through a sieve ; have 2 lhse of maccaroni broken into pieces of one inch long; put all into a saucepan together, and let it boil for 10 minutes, and serve it hot.
BOimed Custarn, OL MOcs Carax, -Take 2 tablespoonfuls com
starch, 1 qt. of milk, 2 or $3 \mathrm{cggs}, \frac{1}{2}$ a tenspoonful of salt and a small piece of butter ; heat the milk till nearly boilling and add the starch, proviously dissolved in 1 qt of milk, thon add the oggs, well beaton, with 1 tablespoonfuls of powdered sngar; lot it boil up once or twice, stirring it bristry, and it is done. Flavor with lemon or vanilla, or respberry or to suit your taste.
lamon Cream. - Tako a pint of thick cream and put to it the yolks of two eggs, well beaten, 4 oz: of fine sugar and the thin rind of a lemor, boil it np, then etir till almost cold ; put the jaice of a lemon in a dish or bowl and pour the cream upon it, atirring till quite cold.

Truit Crainas.-Take th oz. of isinglass dissolved in a little water, then put 1 pt. of good cream, sweetened to the taste; boill it. When nearly cold lay some apricot or raspberry jam on the bottom of a glass dish and pour it over. This is most excellent;
raspberry Craam.-Put 6 ozs. of raspberty jam to 1 gt. of cream, pulp it through a lawn sievo, add to it the juice of a lemon and a little sugar, and whisk it till thick. Serve it in a dish or glasses.

To roast fowls the fire must be quick and clear. If smoky it will spoil both their taste and looks. Baste frequently, and keep a white paper pinned on tho breast till it is near done.
Tumker.-A good sized turkey should be roasted 24 hours or. 3 hours-very slowly at first If you wish to make plain staffing; pound a cracker or crumble some bread rery fine, chop some raw snit pork very fine, sift some sage, (and summer cavory, or sweet marjoram, if jou have them in the house, and laney them,) and molid them all together, scasoned with a little pepper. An egg worked in makes the stuffing cut better.

Boiled Tuakey.-Clean the tarkey, fill the crop with stuffing, and sew it up. Put it over the fire in water enough to cover it let it boil slowly-take off all the scum. When this is done; it should ouly simmer till it is done. Put a littlo salt into the water; and dredgo the turkey in flour before boiling.
ROAst Ducks and Geese-Take sage, Trash and pick it, and an onion ; chop them fine, with pepper and salt, and put them in tho belly ; let the goose be clean picked, and wiped dry with a clothe inside and nut ; put it down to the fre, aud roast it brown. Duck are dressed in the same way, For wild duclos, teal; pigcons, and other wild fowls, use only pepper and salt, with gravy in tho dish.

Roast Chricken.-Chickens should bo managed in rousting the same as turkeys. only that they require less time. From an hour to an hour aud a haif is long enough.
Borled Chicken.-A chicken should be boiled tha same as a turkey, only it will take less time-about 35 minutes is sufficient. Use the same stuffing, if auy, and scrve it up with parsley, or egg-sauce.
Beomed Crirgenv. - Slit them down the back and season with pepper and salt; lay them on a clear fire of coals, the inside next the fire till half'deue, then turn and broil to a fine brown color: Broil about 35 minutes.

Boilme Pigeons.-Boil them about 15 minntes by themselres; then boil a piece of hacon ; servo with alices of bacon aud melted butter.

Fism Cad fish in smal place them potatoes, on
Stew over a
Roast B Spilt the me with its own amolice draw and clear. ing.
Brem Bor meat in the slow at first the ecum as rule for boilin Brey Sta cut albout ${ }^{3}$ of and set it or minutes is the
Roast Poi skin in equa pepper and inder the aki into the sind orer with a if turee hours to
The S
in the same n
Roast Veai Lovast before a itdown, besto Iittie four.
Roast ardit lamb must be d od with a qui dredge it with : ton of six poun
To Bori Eac part is complete nese in cold wat Satisage ma and mix with 2 ed sage, and 6 Apphs Cugra sufficient to cove bake it of on h Nisw-Exaian cdder down to $\frac{1}{3}$ (arreet applea duced, and still provent burning, tity of pulverize

Fugh Chowdenr.-Fry a ferv slices of salt pork, dress and cut the fish in small pieces, pare and slice the potatoes and onions, then place them in the kettle, a layer of fish, thon of the friod pork, potatoes, onions, \&c., seasoning each layer with salt and peppor. Stew over a slow fire 30 minutes.

ROAST BEEF.-The sirloint is considered the best for roauting. Spit the meati pepper the top, and baste it woll swhile roasting with its own dripptag and throw on handful of salt. When tho amoke draws to ae fire, it is near enougln; keep the fire bright and clear. From 15 to 20 minutes to the lb. is the rule for roasting.
Behe Boaned.-The round is the best boiling piece. Put the mati in the pot, with water enough to cover it; let it boil very slow at first-this is the great secret of making it tender-tako oif the acum as it rises. From 2 tol 3 hours, according to size, is the rule for boiling.
$]_{\text {IKFF }}$ STEAK. -The insido of the sirloin makes the best ateak; cut about is of an inch thick-lave the gridiron hot, put oni the meat and set it over a good fire of coais-turn them often. From 8 to 10 minutes is the rule for broiling.

ROAsT Ponk.-Take a leg of pork and wash it clenn-cut the skin in equares-make a stuffing of grated bread, sage; onion, pepper and salt, moistened with the yolk of an egg. Put this under the skin of the knuckle, and sprinkle a little powdered anige into the rind where it is cut; rub the whole surface of the skin over with a feather risped in sweet oil 8 lbs . will require about three hours to roast it.
15 FThe She Jlder, Loin, on Chimis, and Sparim-Res aro roasted Io the same manner.
Roast Veal.-Pursue abont the same course as in roasting pork. iwast before a briak fire till it comes to a brown color; then you lay it down, basto it well with good butter, and when near done, with a littie fiour.
ROABT MIUTTON.-The loin, haunch, and arddle of mutton and lamb must be done the same as besf. All other parts must be ronstod with a quick, clear fire; baste it whon you put it down, and dredge it with a little flour, just before you take it up. A leg of mutton at six pounds will require 1 hour to roast before a quick fire.
To Boni Egas. -In 3 minutes an egg will boil soft, in 4 the white part is completely cooiect, in 10, it is fit for a salad. Try their frealsnese in cold water, those that aink the soonest are the freshest.
Sadbage Mrat. -Take 2 libs. lean meat, 1 lb . fat pork, chop fine, and mix with 2 tablespoonfuls bleck pepper, 1 of cloves, 7 of powdered eage, and 6 of salt.

Appis Cosrard. -Take applos, pared, cored, and slightly stewed, suficient to cover the dish, 8 eggs , qt of milk; spice to your taste ; bake it $\frac{1}{\text { of an hour. }}$
NEw-EvaLand Apptiemandces or Buttrin.-Boil 2 bris. of new clider down to $\frac{1}{3}$ a brl. Pare, core, and alice up 3 bughels of apples (aweet applen are preforable), and put them fnto the cider thus roduced, and still kept boilling briskly. Stir tise whole mass constantly, to prevent burning, till of the consistence of soft butter." A small quantity of pulverized allspice, added during the boiling, is an improve.
nent: Boil in a brasa kettlo, and, when done, put it into a wooden firkin, or a small cask, and it will keep for years.
Apple Buttra (Pennsylvania Method).-Boll new ciderdown to $\frac{7}{2}$. Pare, cut, and core equal quantities of sweet and sour apples. Put the sweet apples in a large kettle to soften a little first, as they are the hardest. Add enough boiled cider to cook them. After boiling $\frac{1}{4}$ an hour, stirring often, put in the sour apples, and add more boiled cider, with molasses enough to aweeten moderately. Boll until tender, stirring to prevent burning. Pack in firkins or stone pots for winter use.

Irigii Stew.-Take 4 lbs. good breast of fat mutton, cut in amall piecon; 2 large white onions; 10 large potatoes, well peoled and clicod; put all in saucepan together, with fine herbs, pepper aind salt to suit ; a little sait pork is a good addition ; 1 lb . of flour; \$ lh. good fresh butter, well rabbed together, and let it boil for ore hour, and have it well cooked.

Aprle Dumpeinas- \mathbf{B} eggs, 11 lbe of flour, some bntter to your tasto, anil tablespoonful of yeast, and sufficient milk to make a dough to roll out ; when raised, cut in small pieces, put in the apples, and cook for $\frac{4}{4}$ of an hour ; serve with white sugar or wine sauce.

Boinsd Poúltry.-Take large chickens, well cleaned with cold water; pnt in saucepan with water to cever, boil 1 hour ; served with eauce.
Hasime Tonkey.-Take meat from boiled fowls, chop fine; pat in saucopan, with seasonings to suit taste. Served on toast.

Bownd Maccaroni-Take 2 lbs, break in small pieces, put in warm water to stcep 1 hour, drain off, put in saucepan with 2 qts. fresh cream, with grated cheese ; seasoned with red pepper.

Strabbuiga Potted Meat. - Take 1 l lbs. of the rump of beef, cut into dice, put it in an earthen jar, with $\& \mathrm{lb}$, of butter, tie the jar close up with paper, and set over a pot to boil ; when nearly donc, add cloves, mace, allspice, nutmeg, salt, and cayenne pepper to taste, then boil till tender, aud let it get cold, pound the meat, with 4 anchovies mashed and boned, add $t i \mathrm{lb}$. of oiled butter work it well together with the gravy, warm a little, and add cochineal to, color then press into snall pots, and pour molted mutton suet over the top of each.

Bologna Saucages.-Take equal quantities of bacon fat and lean beef, veal, pork and beef suet; chop them small, season with pepper, salk, \&c., with sweet herbs and sage rnbbed fine. Havo well washed Intestines, fill, and prick them; boil gently for an hour, and lay on straw to dry.
Ricit Sausagiss.-Take 30 lbs . of chopped meat, 8 oz . fine salt, 23 oz. pepper, 2 teacups of sage, and $1 \frac{1}{3}$ cups of siveet marjoram, passed through a fine sieve, or, if preferred, thyme and summer Eavory can be substituted for the litter.
How TO gave your ICE Bill. - Get a quantity of empty harrels or boxes during the coldest time in the winter, and put is fow inclies of water in each; the evening when the cold is most intenso is the beet time to do this. After the water is frozen solid, fill up again, repeat the process nntil the barrels are full of solld ice, then roll them into your cellar, cover them up fith plenty of aawdust or ctravr, anil your ice crop is aftely harvested.
eanarota isinglass and and flour, cake, and pu
WINB JIE the juice of then add win a cotton or fla TO MAKE press, made India molass as that would said to be as molasses.
5^{7} Acid f metnl, and pd vessels should a poison which
Jehlizs.-1 sugar, 1 lb ; lemons, and t mix well, stra IIartshorn Jell boil over a ge sugar, $\frac{1}{2 l}$ lb ; w mix well toget and 2 oz. cloves upon 4 lbs. of 1 tle. Apply Jel sugar, 2 lbs. ; b 4 lbs. ; water, 2 to this syrup, a boil, cool, then rants, and loaf, hours; pat it in a firm jelly. T it in 1 gal. fresh set all on to heal with wine and s
Blaokberry agreeable than not agreeable to but the fruit is is juice in sugar.

Pear Marma put the pears in and set it over cild water ; par cups of water, se fruit fine and sp it in thick, like je secure it as jelly.
Pbesembed C

Cidarlottr Resse.-Take 1 pt. milk, dissolve with lreat, 3 os, isinglass and 1 lb . sugar; add, after it is cool, 1 qt . beaten cream. and flour, suit your tasto and line out somo mond with spongo cake, and put the cream in it and cool.

Wings Jecly. -Take 1 pt water and 3 oz . isinglass, 14 lb . eugar, the juice of 2. lemons, and dissolve that) and let it come to a boil, then add wine, brandy and spice to your taste, and strain it througls a cotton or flannel cloth and put it in moalds to cool.
To Make Apple Molaesiss:-Take new sweet clder just from the press, made from sweet apples, and boil it down as thick as West Indis molasscs It should be boiled in brass, and not burned, as that would injure the flavor. It will keep in the cellar, and if said to be as good, and for many purposes better, than West India. molasses.
. 1 The Acid fruits should twe cooked in bright tin, braes, or bell. metal, and poured out as soon as they are done. Brown earthen vessels should never be used, as they are glazed with white lend, a poison which very roadily unites with an acid:
Jellies.-Lemon Jelly.-Isinglaes, 2 oz. ; water, 1 qt. ; boil ; add sugar, 1 lh. ; clarify; and, when nearly cold, add the juice of: 5 lemons, and the grated yellow rinds of 2 oranges and 2 lemons; mix well, strain off the peel, and put it into glasses or bottles; Ilartshorn Jelly.-Hartshorn, 1 lb . ; water 1 gal. ; peel off 2 lemoons; boil over a gentle fire till sufficiently thick; strain and add loaf sugar, $\frac{1}{3}$ lb. ; whites of 10 eggs beaten to a froth; juice of 6 lemons; mix well together, then bottle. Isinglass Jelly.-Fat 4 ox, isinglais. and 2 oz. cloves into 1 gal . water; boil it down to half a gal. ; strain it upon 4 lbs. of loaf sugar ; add, while cooling a little wine; then botm. tle. Apply Jelly from Cider,-Take of apple juice, strained, 4 lbe.; sugar, 2 libs. ; boil to a jelly, and bottle. Gooseberry Jelly. Sugar, 4 lbs; water, 2 lbs ; boil together; it will be nearly solid when cold; to this syrup, add an equal weight of gooseberry juice ; give it a short boil, cool, then pot it. Currant Jelly.-Take the juice of red cusrants, and loaf sugar, equal quantities; boil and stir gently for three hours; put it into glasses ; and in three days it will concentrate into a firm jelly. Tapioca Jelly.-Wash 8 oz. of tapioca well ; then moak it in 1 gal. fresh water, 8 or 6 hours ; add the peels of 8 lemons, and set all on to heat; ;immer till clears; add the juice of the 8 lemous with wine and sugar to taste; then bottle.

Blackberry JElly.-This preparakion of the blackberry is more agreeable than the jam, as the seeds, though very wholesome, are not agreeable to all. It is made in the same way as currant jelly; but the fruit is $1 s 0$ sweet that it only requires half the weight of tho juice in engar.

Pear Marmarade.-To 6 lbs of small pears, take 4 lbs. of sugar; put the pears into a saucepan, with a lutte cold water ; cover it, and set it over the fire until the fruit is soft, then put them into a-ld water; pare, quarter, and core them; put to them three tencups of water, set them over the fire; roll the sugar fine, mash the fruit fine and smooth, put the sugar to it, stir it well together uutil it is thick; like jelly, then pint it in tumblers, or jars, and, when cold. ecure it as jelly.
Preservid Cirbon,-Pare and cut open tho citron; clean all out
except the rind ; boil till soft. To 1 lb . of citron add 1 lb . of sugar and a lemon to each lb.; put the sugar and lemon together, and boil it till it becomes a syrup, skimming it well ; then put the syrup and citron together, and boil it an hour.
Scotci Marmalade--Take of the juice of Seville oranges 2 pts., yellow honey, 2 lbs. Boil to a proper consistence.
Raspberiny Jam.-Allow a pound of sugar to a pound of fruit, mash the raspberries and put them, with the suggar, into your preserving kettle. Boil it slowly for an hour, skimming it well. Tle it op with braudy paper, All jams are made in the eame manner.
Frenci Honey. -White sugar, $1 \mathrm{lb} ; 6$ 3gge, leaving out the whites of 2 , the juice of 3 or 4 lemons, and the grated rind of 2 , and 4 lb. of butter; stir over a slow fire until it is of the conisistericy of honey.
Almond Blano Marge.-Take four ounce of almonds, alz oz. mugar, boil together with a quart of water, melt in this two ounces of pure isinglass, strain in a small tin mould to stiffen it. When wanted, dip the mould in hot water and turn it out.
Lemón Blano Manae.-Ponr a pint of hot water upon half an ounce of isinglass ; when it is dissolved, add the juice of three lemons, the peel of two lemons grated, six yolks of eggs beaten, add about a good wine-glass of Madeira wine to it ; sweeten to your taste ; let it boil ; then strain it and put it in your moulds.
Molasses Preserves.-Boil 1 qt . of molasses abont ten or fifteen minutes to a thickish consistency, then add 6 eggs well beaten, and a gpoonful of flour. Boil a few minutes longer, stirring constantly; then set off the fire, and flavor with lemon or allspice as desired.
Fruit Extracts, \&c.-Good alcohol, 1 qt ., oil of lemon, 2 oz . Break and bruise the peel of 4 lemons, and add to them alcohol for a few days, then filter. For currants, peaches, raspberries, pine apples, strawberries, blackberries, \&c., take alcohol and water half and half and pour over the fruit, entirely covering it, and let it stand for a few days. For essence of cinnamon, nutmeg, mace, vanilla, \&c., pulverIze either article thoroughly, and put about 2 oz , of the resulting powder to each pint of reduced alcohol, agitate the mixture frequently for 2 weeks, then filter and color as desired.

Measuries for Houskeeepers.

Wheat flour...1 $1 \mathrm{lb} . .$. is 1 quart.	Best brown
Indian meal....... 1"2 0z" 1 quart.	sugar............ 1 lb .3 oz.is 1 qt.
Butter when soft. . 1 ".... ${ }^{\text {s/1 }}$ "	Eggs 10 eggs are 1 lb.
Loaf sugar, broken 1"...." 1	Flour.............. 8 qts. "1 peck.
White sugar, powd 1"10z."1	Flour. 4 ¢ pks. "1 bush.

Liquins.

FARMERS

Rarey's Dir -In training ho laws that gover whenever he ge from whatever 1 hearing, and sm new that he is 1 him with nothin handle hin at w that in a short ti contact with. A stumbling, \&c., i for it, it only add otherwise be ; gi He should never for anything that assists the traine colt with the scen scent of hogs, for attempt to escape namoin, or salt. preparation of opi cannot teach him

FARMERS AND STOCK OWNERS DEPARTMENT.

Rarey's Directions for Bneaking and Training of Horsigs. -In training horses you must remember that there are certain natural laws that govern them. For instance, it is natural for him to kick whenerer he gets badly frightened; it is natural for him to escape from whatever he thinks will do him harm. His faculties of seeing, hearing, and smelling, havo been given him to examine everything new that he is brought in contact with. And so long as you present him with nothing that offends his eyes, nose, or cars, you can then handle him at will, notwithstanding, he may be frightened at first, so that in a sloort time he will not be afraid of any ning he is brought in contact with. . All of the whipping and spurring of horses for shying, stumbling, \&c., is useless and cruel. If he shys, and you whip him for it, it only adds terror, and makes the object larger than it would otherwise be; give him time to examine it without punishing him. He should never be hit with the whip, under any circumstances, or for anything that he does. As to smeliing oil, there is nothing that assists the trainer to tame his horse better. It is better to approach a colt with the scent of honey or cinnamon upon your hand, than the scent of hogs, for horses naturally fear the scent of hogs, and will attempt to escape from it, while they like the scent of honey, cinnamon, or salt. To affecta horse with drugs yon must give him some preparation of opinm, and while he is under the influence of it, you caunot teach him anything more than a man when he is intoxicated
with liquor. Another thing you must remember to treat him kindly, for there you require obedience from any subject, it is better to have it rendered from a sense of love than fear. You should be careful not to chafe the lips of your colt or hurt his mouth in any way; if you do he will dislike to have the bridle on. After he is taught to follow you, then put on the harness, putting your lines through tho shaft straps along the side, and teach him to yield to the reins, turn short to the right and left, teach him to stand still before ho is ever hitched up; you then have control over him. If he gets frightened, the lines should be used as a telegraph, to let him know what you want him to do. No horse is naturally vicious, sut always obeys his trainer as soon as ho comprehends what ne would have him do; you must be firm with him at the samos time, and give him to understand that you are the trainer, and that he is the horse. The best bits to be nsed to hold a horse, to keep his mouth from getting sore, is a straighit bar-bit, $4 \frac{1}{2}$ inches long between the rings ; this operates on both sides of the jaw. while the ordinary snaffle forms a clamp and presses the side of the jaw. The curb or bridoon huits his under jaw so that he will stop before he will give to the rein. To throw a horse, put a rope 12 feet long around his body in a running noose, pass it down to the right fore foot through a ring in a spancil, then buckle up tho left or near fore foot, take a firm hold of your rope, lead him around

notll ho is time drawi him steady, to hold him
Take you mence snap hocks, stopp you; while extended to him as soon get your han to caress hin In this way his head tow away from y fing him, calis some familin If a colt is remembering him his own you must then such a wry th disposed to ru around his un hind feet In falls on his jav him until you

Colts should broke, then yol best unless you keep him from taught to give hitch them up have no contro stand at the wo Cruelty to horses, by the ; vere punishmen frozen bits into tongue and the the mouth and t nerves of the he cees, frequently The whip should ture ; and your 1 yo frozen iron w Rarev's Lind ofl of origanum, well before using cover with a tigh temples and appl

Rarey's Wiza opixits turpentino
nntil he is tired, give him a shovo with your shoulder, at the anme time drawing up the right foot which brings him on his knees, hold him steady, and in a few moments he will lie down. Never attempt to hold him still, for the more he scuffies the better.

Take your colt into a tight room or pen, and with a long whip commence snapping at the colt's hind leg, taking care not to litt above the locks, stopping immediately when the colt turnas his head towards you; while his head is towards yon, approach him with the left hanil extended toward him, holding your whip in the right, ready to snap him as soon as he trims his head from yon. In this way you can soon get your hands apon him. As soon as you have done this, be careful to caress him for his obedience, and smap him for his disobedience. In this way he will soon learn that he is safest in your presence with lils head towards yon, and in a very short time you cannot keep him away from you. Speak kindly and firmly to him; all the time caressing him, calling by name, and saying "Ho, boy," or "Ho, Dina," or some familiar word that he will soon learn.
If a colt is awkivard and careloss at first, yon mast bear with him, remembering that wo too, were awkward when young; allowing him his own way, antil by degrees he will come in. If he is wilful, you mast then change your course of treatment, by confining him in such a way that lie is powerloss for harm until he submits. If he is disposed to run, use my pole check on him ; if to kick, fasten a ropo around his under jaw, pass it through the collar and attach it to his hind feet; In this way one kick will cure him, as the force of the blow falls on his jaw. It he should be stubborn, lay him down and confine him until you sabdue him, without punishing him with the whip.

Colts should be broke without blind-bridles; after they are well broke, then you may put on blinds. Bridles without blinds are the best unless you want to speed your horse, then it will be necessary to keep him from seeing the whip. Colts should be well handled and taught to give readily to the rein before they are hitched np. If you hitch them up the first thing and they become frightened; then you have no control over them ; but if you teach them to start, etop, and stand at the word before they are hitched, then yon can govern them.

Cruelty to Horses-Besides the cruel punishment inficted uyou horses, by the careless and heartless driver, he is subjected to sovere punishment in the winter season, by being compolled to tako frozen bits into his month in cold weather, tearing the skin from tho tougue and the roof of his mouth; producing a heavy inflammation in the mouth and throat ; he gets poor, hidebound, and the sympathetic nerves of the head take up the inflammation, carry it to the head and eyes, frequently producing blindness, and a hundred other diseases. The whip should be used as an instrument of pleasure instead of torture ; and your bits should be wound with flamnel or leather ; so that uo frozen iron will come in contact with his mouth, lips or tongue.

Rarey's Lindment.-Sulphuric ether, 4 ozs. ; hartshorn, 4 ozs., oil of origanum, 4 ozs. ; alcohol, 4 ozs. ; sweet oil, 4 ozs.: Shake well befors using. For sprains on horses, \&c, apply by rubbing and cover with a tight flannol bandage. For headache, rub a little on the temples and apply a-bandage wet with the liniment to the forchend.
Rarex's Wizard Oil.-Oil of origanam, 6 ozs. ; alcohol, Goza; opirits turpentino, 1 oz . $;$ camphor, 1 oz . Shake well before using.

Rarey's Dirictions for Shoeing Horses.-"There are very fow blacksmiths that ever once think what a complicated piece of machinery the foot of a horse is, and by one careless blow they frequently stop the working of this machine. The majority of smiths, as soon as they pick up a horse's foot, go to work paring the heel, from the fact that it is the most convenient part of the foot, and thereby destroy the heel and braces of the foot, causing, in many instances, contracted heels. The heels of a horse should be well kept upand tho toe down. By lowering the heels you throw the entire weight of your horse upon the back tendou of the legs, and thereby produce lameness from overtaxing a very important set of tendons. By keeping up the hecl you throw the weight upon the wall of the foot. .In this position you prevent stumbling, clicking, \&c. Next the shoer commences to pare away the sole, thins it down until he can feel it spring with his thumb. Ask him why he does this, and he gives you no reason, except from custom; next comes the bars or braces of the foot, they are smoothed down ; next in his ruinous course, comes the frogs of the feet they are subjected to the same cutting and smoothing process. All the cutting, paring, and smoothing of the soles, bars, or frogs is a decided injury to the horse as well as to the owner. All the corns in the land are produced ly this process of paring. The frogs have been placed in the foot by nature to expand the wall of the foot, and as soon as you commence to cut it, the oily substance commences to leak out, it drys up, becomes hard, losing its nily substance, makes the wall hard and dry, inducing it to crack. The nerves of the feet are very sensitive, and smiths should be very careful not to prick the foot, as it requires quite a time to relieve them. The foot is a very complicated piece of machinery, and if you keep a horse well shod and his foot in good condition, you can then geuerally manage tho balance. The feet suffer from being kept too dry. Horses that stand on board floors should have their feet wet every day, or there should le a vat five inches deep, five feet long, and three wide, filled with water and clay, in which each horse can stand for one hour per week; unless his feet are feverigh, then he should be kept in it an hour per day, or until the fever subsides. Another sonrce of injury to horses' feet; is the habit of patronizing cheap blacksmiths. If a mian can
drive an when in not havir mation, 1 formed in sufferers. or there source of refusing t rolls, and quires this
Under tl the floor 0 should be ls and no ma the soles, b frogs to all pared. So that there manufactus frog and the pressure, an irog and' he with one of cure contrac them up bet contracted f : intting them, from the ho horses by cro As soon as th mences whip it, so that he natural for ho the nervous sy taught to stan lrought to the and the smith for for 10 ma had horse. 'T nail holes, and and filing but of the foot. T there will be nd with the heel 0 turning the ins Eerfere, that Spreail the hee] keep the toes fu ahort. For sped the insido of the coms, put onas! tirefrog, pare th
drive a nail, ho then sets up a sign as a farrior or a veterinary surgeon, when in fact he knows nothing of the aiastomy of the horse's foot; not having spent any tine or money in acquiring the necessary information, he can afford to shoe a fow shillings cheaper than a well-informed man, but the patrons of such cheap shoeing are generally the sufferers. All horse-shoers shonld be well stalled veterinary surgeons, or there should be a skilful surgcon attached to every shop. Another source of poor shoeing and injury is the loss of clasticity of the frog, refusing to perform its proper functions ; the heel contracts, the foct rolls, and you have a sore horse for ten or twelve months, for it requires this long to relieve a horse's suffering from being badly shod.

Under the circumstances, the first thing that toaches the road or the floor of the stall, should be the frog, and the wall of the foot should be kept cat so as not to prevent it from touching at every step; and no man that owns a horse should ever allow a blacksmith to cut the soles, bars, or frogs of his horse's feet. Nature has adaptod the frogs to all description of roads, climates, and weather, without being pared. So many horses have been ruined by this process of paring, that there are now several establishments in this country that manufacture India rubber pads, thinking thereby to supply the wasted frog and the elasticity of the natural foot. The frog is insensible to pressure, and you may place the whole welght of your horse on the Irog and he will suffer no inconvenience, as may be seen from shoeing with one of my corn shoes ; besides, this is the only reliable way to cure contracted feet; by throwing the weight upon the frog, you force them up betiveen the walls; it acts as a wodge, and soon relieves the contracted feet. Smiths should never have their shoes hot when intting them, as the application of hot iron extracts the oily substunce from the hoof. The amount of cruel punishment inflicted on horses by cross-grain blacksmiths, is nuother source of poor shoeing. As soon as the horse does not stand the smith gets angry and conmences whipping and jerking the animal, which only adds terror to it, so that he soon refuses to go to the shop if he can avoid it; it is natural for horses to dislike to be shod, because the hammering shocks the nervous system, until they aro accustomed to it. He should be taught to stand, and his fcet well handled at home, before he is ever brought to the shop by the owner. You then sare the horse pounding, and the smith an immense amount of labor thiat he never gets any pay for for no man ever thinks of paying anything extra for shoeing a luad horse. The wall of the foot should never be msped above the nail holes, and as little below the clenches as possible ; all the rasping and filing but tends to thin and weaken the wall by cutting the fibers of the foot. The nails should be connter sunk into the shoe; so that there will be no chance for the clenches to rise. No horse interferes with the heel or toe; it is always the side of the foot. The habit of turning the inside of the shoe under causes a number of horses to interfere, that would not if they were shod straight in the inside. Epreal the heels as wide as possible ; set the onteide a little nnder ; keep the toes full. For clicking horses, raise the heels high, cut the toes chort. For speedy cuts, place your toe norks a quarter of an inch to the insido of the centre of your shoe; keep the heels wide apart. For coms, put on ashoe with a prong, for the main rim, 80 as to cover the entire frog, pare the wall lower than the frog, so as his entire weight will bo
thrown on the frog. Hare the inner cork not quite so sharp as the outer one, so that if he steps upon tho other foot it will not cut it ; make the shoes as light as possible consistent with good servico, as they are ordinarily mado just about is too heary."

To Prevent Honseb Kickina in the Stal. - Fasten a short trace-chain about 2 feet long, by a strap to eoch hind foot. A wetter way is to have the stalls made wide enough so that the horse can turn in them easily. Close them with a dooror bars, and turn the animal loose. After a while he will forget the habit, and staud tied without further trouble.

To Cure Broken Legs.-Instend of summarily shoo ng the horse, in the greater number of fractures it is only necessary to partially sling the horse by means of a broad piece of sail, or other strong cloth placed under the animal's belly, furnished with 2 breechings and 2 breast girths, and by means of ropes and pulleys attached to a cross beam above, he is elevated, or lowered, as may be required. By the adoption of this plan every facility is allowed for the satisfactory treatment of fractures.

Lascras.-This consists in a swelling of the first bar of the upper palate. It is cured by rubbing the swelling 2 or 3 times a day with $\frac{1}{3}$ oz. of alum and the same quautity of double refined sugar mixed with a little honey.

Gravel.-Stecp $\frac{1}{2} \mathrm{lb}$. of hops in a quart of water and give it as hot as the horse can stand it.
Halter Pullina. A new way to prevent horses pulling at tho halter, is to put a very small rope under the horso's tail bringing the ends forrard, crossing them on the back, and tying them on the breast. Put the halter strap through the ring, and tie the rope in front of the horse. When the horse pulls, he will, of course, find himsclf in rather an uncomfortable position, and discontinue the effort to free himself.
IItde BoUnd.-To recruit a hide bound horse, give nitrate potassa (or saltpetre) 4 oz ., crude antimony 1 oz ., sulphir 3 oz . Nitrnte of pntassa and intimony should be finely pulverized, then add the sulphur, and mix the whole well together. Dose, a tablespoonful of this mixture in a bran mash daily.
To Prevent Horses from Jumpina.-Pass a good stout surcingle around hie body; put on his halter, and have tho halter strap long enough to go from his head, between his fore legs, then through the surcingle, and back to one of his hind legs. Procure a thill strap, and buckle around the leg between the foot and joint, fasten the halter strap in this-shorteror longer, as the obstiuacy of the case may require. It is also nseful to keep colts from running where there is likely to be danger from the result ; if the thill strap should cause any eoreness on the leg, it may be wound with a woollen cloth, and it would be well to change it from one leg to another occasionally.

Bra Lex.-To cure, ise the "Blistering Liniment" with regularity every third hour until it blisters. In 3 days wash the leg with linseed oil. In 6 days wash it clean with sonp aud water. Repeat every 6 days until the swelling goes down. If there should be any callous left, apply spavin ointmeut.

Sore Breasts.-This generally occurs in the spring, at the commencement of plowing. At times the fault is in having poor old
collars, often, thi differenc seemed to a thoroug breasts of that they your team pull it a naked hap

The Chrec protest again tards the hor and while tra every sense mend it. Mr Cruelty to A_{1} in the interes of the check carded every reason why it extensive hors with Mr. Ang the check rein man's head ba while bound in Feeding H feed their hors and not allowi suffer from ov should be well the morning, a the horse has a can go 20 or 25 horses while ts may be stated t water is the be
collars, and not having the collar well fitted to the horso's breant; and often, the hames are either too tight or too loose. There is a great difference in horses about getting chafed or galied, and at times it has seemed to be impossible to keep their breasts from getting sore ; but a thorough application of strong alum water or white oak bark to tho breasts of the animal, 3 days before going to work, toughen them so that they will not get sore. Another excellent planis, when you let your team rest for 11 few moments during work, to ralse the collar and pull it a little forward, and rub tho breast thoroughly with your naked hand.

The Check Retn on Horsies.-We desire to register an earnest protest against this barbarous appendage to horses harness. It rotards the horse's progress in every position both while he is at work, and while travelling on a journey. It is both useless and cruel in every sense of the word, without any compensating qualities to recommend it. Mr. Angell, of the "Boston Society for the Prevention of Cruelty to Animals,' who has travelled over a great part of Enrope in the interests of humanity to our dumb servants, says, that the use of the check rein is confined to America alone, being deservedly discarded every where both in England and on the Continent. The reason why it is so discarded, was very graphically explained by an extenslive horse owner in Glasgow, as he remarked, in conversation with Mr. Angell, that "We canna get the wark oot o' the horse wi" the check rein." To check rein a horse, is equivalent to trassing a man's head backward towards his back or heels, and compelling him, while bound in this position, to do duty with a loaded wheelbarrow.

Feeding Horses on the Road.-Many persons, in travelling, feed their horses too mnch, and too often, continually stuffing them, and not allowing them to rest and digest their food ; of course they suffer from over-fulness, and carrying unnecessary weight. Horses ghould be well fed in the evening, and must not be stuffed too full in the morning, and the travelling should be moderate on starting wheu the horse has a full stomach. If a horse starts in good condition, he can go 20 or 25 miles without feeding. The provender required by horses while travelling or engaged in ordinary farm work, per day, may be stated thus: Hay 20 llos., oats 3 gals, water 4 gals. Muddy water is the best for horses. Beeves require 20 lbs, of hay and 6
gals. of water per day. Quantity will rary in every caso according to the size, condition, breed, \&c., together with the kind of work in which they are employed.
ircir.-To cure a horse affected with itch, first reduce his daily allowance of food, putting him on low diet and then give hinn a tenapoonful of a mixture of equal parts of sulphur and aitimony, and at the end of a week or 10 days the sores will hare disappeared and the horse will be covered with a fine coat of new halr.

Stoppage of Urine.--Symptoms: Frequeut nttempts to urinate, looking round nt his sides, lying down, rolling and stretching. To cure take $\frac{1}{2} \mathrm{lb}$. of hops, 3 drs. oll of camphor; grind and mix. Make this into 3 pills. Givo 1 every day, with a drench made of a smail spoonful of saitpetre and 2 oz. of water. This will cure as a general thlug.

To Cure Balky Honses.-One methed to cure a balky horse is to take him from the carriage, whirl him rnpidly around till ho is giddy. It requires two men to accomplish this,-one at the horse's cail. Don't let him step out. Hold him to tho smalle at possible circle. 1 dose will often cure him, 2 doses are flual with the worst horse that ever refused to stir. Another plan is to fill his mouth with tho dirt or grarel from the road, and he will nt once go, the philosoply of this Teing that it gires him something elso to think about.

Dr. Cole's Kina of Orls.- -1 oz. green copperas ; 2 oz . white ritriol ; 2 oz . common salt; $\mathbf{2} \mathrm{oz}$. linseed oil ; 8 oz . molasses. Boil over a slow fire fifteen minutes in a plat of uriue; when almost cold, add 1 oz . of oil of ritriol and 4 oz . of spirits of turpentino. Apply to wounds with a fenther. A very powerful liniment.

SLoan's Honse Ointment. -4 oz. resin ; 4 oz. bees-wax ; lard, 8 oz ; honey, 2 oz . Mix slowly and gently, bring to a looll; then add less than 1 pint spirits turpentine; theu remove aud stir till cool. Unsurpassed for horse flesh, cracked hoofs, human flesh, \&c.

Mexioan Mustang Liniment.-Petroleum, olivo oll, and carbonate of ammonia, each equal parts, and mix.

Mrrciant's Garaling Oil.-Take $2 \frac{1}{2}$ gais. linsced oil ; 21 gals. spirits turpentine ; 1 gal. western petroleum ; 8 oz . liquor potass. ; sap green, 1 oz ; mix all togetier, and it is ready for uso.

Arabian Condition Powdres.-Ground ginger, 1 lb; sulphnret of antimony, $1 \mathrm{lb} . ;$ powdered sulplur, 1 lb ; saltpetro, 1 lb . Mlix all together, and administer in a mash, in such quautities as may be roquired. The best condition powder in existence.

Blistrering Liniment.-1 part Spanish flies, finely powdered; 3 of lard; and 1 of yellow resin. Mix the lard and resin together, and add the flies when the other ingredients legin to cool. To render it more active, add 1 pint spirits turpentine.

Medicated Food fois Honses asin Ca:mle.-Take linseed cake and pulverize or grind it up in the shape of meal, and to every 60 lbs. of this ingredient, add 10 lbs . Indias meal; 2 lbs. sulphurot of antimony; 2 lbs . ground ginger, 14 ibs . of saltpetre, and 2 lbs . powdered sulphur. Nix the whole thoroughly together, put in neat boxes or packages for sale or otherwise as desired, and you will have an article equal in value to "Thorley's Food," or almost any other preparation that can be got up for the purpose of fattening stock or curing disease in every case when food or medicine can bo of any use whatover. This aiciele can be fed in tuy desired quantity, beginning
with a for grain, and dose and Iotion add sulpht For Sti common sa 1 oz . of w gunpowder water, and cations kno
Hoof-Bo oil, 8 oz. To Touc turn brine
Scratch
soap-suds of and afterwa Covar. Sprinkle hul with his gra mash of sca honoy. Ads of heaves, p vender, and

Srlit or cach side of clinch tight. soon grow to

Como Cun raw cotton, when it begit
To Cure I then administ

Founder hall an hour, with wet woo application, ta linseed oil. I
Cctre for bran, 1 gal. ; sassaírns tea, water for half
Risg-bone fies, of each 2 red precipitate verize all, and scorching or bones, cut off once in 48 hot Wash well pre place with a This has remor
with a fow tablespoonfuls at a timo, for a horso, miring it with his grain, and in the same proportlou to smaller animals, vepeating tho dose and increasing the quautity as the case may seem to require.

Lotion ron Manoz.-boll 2oz. tobacco in 1 guart water ; strain ; add sulphur and soft sanp, each 2 oz .

For Sthains and Swibhingis.-Strong vinegar saturnted with common salt, used warm, is good for strains and reducing swellings. 1 oz . of white vitrinl ; 1 oz. of green copperas ; 2 teasjponfuls of gunpowder, all pulrorized together, and dissolved iu 1 quart of noft water, and usod cold, rubbiug in thoronghly, is ono of the best applications lanown for reducing swollings.
Hoof-Bound Wasir.-Spirits turpentino. 4 oz ; tar, 4 oz ; whale oil, 8 oz . MLx, and apply to tho hoofs often.

To Toughen Hoors.- Wash them frequently in strong brine, and turn brine upon the bottoms, and soak Ω few minutes cach time.

Scratches.-Cut off tho hair closo, and wash tho legs in strong soap-snds or urino, or wash with warm vinegar saturated with salt, and afterwards dress over with a small quantity of hog's lard.

Cougr.-Quit feeding musty hay, and feed roots and laxative food. Sprinkle human urine on his loddor, or cut up cedar boughs and mix with his grain ; or boil a small quantity of flax-sced, and mix it in a mash of scalded bran, adding a fow ounces of sugar, molasses, or honoy. Administer lukewarm. If there should be any appearance of heaves, put a spoonful of ground ginger onco por day in his provender, and allow him to drink freoly of limo water.

Spirt or Broken Hoof.-Let tho blacksmith bore tivo holes on each side of the crack or split ; passlong nails through the holes and clinch tight. After anointing with tho hoof-bound liquid, it will soon grow together.

Colio Cure.-Bleed freely at the horse's mouth ; then take $\frac{f}{2} \mathrm{lb}$. raw cotton, wrap it around a coal of fire, so as to excludo tho sir ; when it begins to smoke, hold it under his nose till he bocomes ensy.

To Cure Distemper.-Tako 14 gals. of blood from the neck voin; then administer sassafras oil, $1 \frac{1}{3}$ oz. Curo, speedy and certain.

Founder outed in 24 Hours.-Boil or steam stout oat-straw for half an hour, then wrap it around the horse's leg quite hot, cover up with wet woollen rags to keep in the steam; in six hours reuew the application, take 1 gal. of blood from the neck vein, aud give 1 quart linscód oil. IIo may be worked noxt day.

Cure for Stacgers.-Give a mess tivice a weelc, composed of bran, 1 gal. ; sulphur, 1 tablespoonful ; saltpetre, 1 spoonful ; boiling sassafras tea, 1 quart ; assafootida, 1 B oz. Keep the horse from cold water for half a day nfterwards.

Ring-done and Spavin Cure,-Venice turpentino and Spanish files, of each 2 oz ; euphorbium and aqua-ammonia, of each 1 oz .; red precipitate, $\frac{1}{2}$ oz. . corrosive sublimate, $\frac{7020}{}$; lard, $1 \frac{1}{2} \mathrm{lbs}$. Pulverize all, and put into the lard; simmer slowly over coals, not scorching or burning; and pour off, free of sediment. For ringbonce, cut of the hair, and rub the ointment well into the lumps once in 48 hours. For spavins, once in 24 hours for 3 mornings. Wash well provious to each application with suds, rubbing ovor tho placo with a smooth stick, to squeeze out a thick, yellow matter. This has removed very large ring-lones.

Avother Cume.-Take swect oil, 4 oz ; spirits turpentine, 2 oz ; oil of stong, 1 oz . Mix, and apply three times per day. If the horse is over four year old, or in any case when this is not sufficient, in addition to it, you will fit a bar of lead just above it, wiring the euds together, so it constantly wears upon tho enlargement; and the two together will curo nine cases out of every ten, in six weeks.

Cure for Bone Spavins- $\$ 300$ Recipe.-Corrosive sublimato, quicissilver, and iodine, of each 1 oz. Rub the quicksilver and iodine together ; then add the sublimate, and lastly the lard, rubbing them thoroughly. Shave off the hair the size of the bone enlargement; grease all around it, but not where the hair is shaved off, this prevents the action of the medicine, except on the spavin. Then rub in as much of the paste as will lie on a 3 -cent piece, each morning, for 3 or 4 mornings. In from 7 to 8 days, the whole spavin will como out; then wash the wound with suds for an hour or so, to remove tho poisonous effects of the paste; afterwards heal up the sore with any good healing salve, or Sloan's Horse Ointment, as per recipo above, keeping the sore covered while it is healing up.

Anotier very Valuable Recipe For Ring-bone.-Pulverized cantharides, oils of spike, origanum, amber, cedar, Barbadoes tar, and British oil, of each 2 oz. ; oil of wormwood, 1 oz .; epirits turpentine, 4 oz. ; common potash, $\frac{1}{2}$ oz. ; nitric acid, 6 oz . ; sulphuric acid, 4 oz. ; lard, 3 lbs . Melt the lard, and slowly add tho acids ; stir well, and add the other articles, stirring till cold ; clip off the hair, and apply by rubbing and heating in. In about 3 days, or when it is done running, wash off with soap-surs, and apply again. In old cases, it may take 3 or 4 weeks; but, in cecent cases, 2 or 3 applications have cured.

גNother.-l'ulverized cantharides, oils of origanum and amber, and spirits turpentins, of each 1 oz . ; olive oil, $\frac{1}{2} \mathrm{oz}$. ; sulphuric acid, 3 drams ; put all, except the acid, into alcohol ; stir the mixture, add the acid slowly, and continue to stir till the mixture ceases to smoke; then bottle for use. Apply to ring-bone or spavin with a sponge tied on the end of a stick, as long as it is absorbed into the parts; tiventyfour hours after, grease well with lard; and in twenty-four hours more, wash off well with soap-suds. One application is generally sufficient for spavins, but may need two ; ring-bones, always two or three applications, thre3 or four days apart, which prevents loss of hair. This will stop all lameness, but does not remove the lump.

Splint and Spavin Liniment. Oil of origanum, 6 oz ; gum camphor, 2 oz . ; mercurial ointment, 2 oz . ; iodine ointment, 1 oz. ; melt by putting all into a wide-mouthed bottle, and setting it in a kettle of hot water. Apply it to bone spavins or splints, twice daily, for four or five days, and a cure is guaranteed.

Poll Evil and Fistula.-Common potash dissolved in $\frac{1}{2}$ nint of water, 1 lb . ; add $\frac{1}{2} \mathrm{oz}$. belladonna extract, and 1 oz . gum are bit dislved in a little water; work all into a paste with wheat flcur, and i. ttile up tight. Directions: wash the sores well with Castile soapsuds; then apply tallow all around them. Next, press the above paste to the bottom of all the orifices; repeat every two days till the calleris fibrous base around the poll evil or fistula is completely destroyed ; put a piece of oil-cloth over the sores, and afterirards heal up with Sloan's Horse Ointment,

DIAGRAM OF A SOUND HORSE.

POINTS IN A HORSE.

1. Forehand.
2. Forehead.
3. Face.
4. Nose.
5. Wings of the nose.
6. Muzzlo.
7. Jaw.
8. Throat.
9. Windpipe, or Throttle.
io. Polnt of the Shoulder.
10. Chin.
11. Curb of the Chin.
12. Outer corner of the Eye.
13. Inner cormer of tho Eye.
14. Foretop.
15. Neck.
16. Breast.
17. Shoulder.
18. Withers.
19. Arm.
20. Fore-arm.
21. Fore-legs.
22. Kinee.
23. Cannon-bones.
24. Nape.
25. Crest.
26. Midule-hand.
27. Back.
28. Back-hand.
29. Loin.
30. Hip.
31. Croup, or Rump.
32. Dock.
33. Elbow.
34. Girth,
35. Barrel (the Ribe).
36. Flank.
37. Quarter.
38. Thigh.
39. Stifle.
40. Hamstring.
41. Point of the Hock.
42. Hocks.
43. Fetlocks.
44. Small Pastorms.
45. Large Pasterns.
46. Crown of the Hoof.
47. Hoof.
48. Heels.
49. Head.
50. Mane, or Mane Hais

Comparative Value of Foon for Horses. - 100 lbs . of good ray Is equivalent in value to 59 lbs . of oats, 57 lbs . of corn, 275 of carrots, 84 lbs. of rye or barley, 105 lbs. of wheat bran, 400 lbs. of green clover, 275 ibs. of green corn, 374 lbs. of wheat straw, 442 lbs. of rye straw, 400 lbs. of dried corn stalks, 45 lbs. of wheat, 59 lbs. of corn, 62 lbs . of sun-flower seeds, 69 lbs . of linseed cake, 195 lbs . of oat etrav, $105 \mathrm{l}: \mathrm{s}$. of wheat bran; 1 lb . of oil cake is equal to 14 lbs cab bage.

DIAGRAM SHOWING DISEASES OF THE HORSE.
The above diagram; copied from a circular issued by L. W. Warner \& Co., manufacturers of Dr. Herrick's Horse Medicines at 67 Murray St., N. Y., is, notwithstanding its lugubrious appearance, of the utmost value to owners of horses ; for, taken in comnection with the following references descriptive of the various numbers, indications, ke., it will prove of great utility in identifying and locating diseases in many doubtful cases.

1. Glanders.
2. Sore Throat.
3. $\{$ Discharge from the Nostrils.
4. $\{$ Membrane.
5. Glandular Swellings.
6. Tumors caused by Collar.
7. Caries and Diseases of the Jaw.
8. Capped Elbow or Tumos
9. Wind Galls.
10. Fistula Parotid Duct.
11. Mallenders and Sallenders.
12. Diseases of the Eyc.
13. Splint. 30. Capped Knee.
14. Scars on Forehead and over the Eyes.
15. Broken Knees and Open Joint.
16. Clap of the Back Sinews.
17. Ringbone.
18. Scars from old Fontanels and 34 . Aclite and Chronic Founderer. Brain Diseases. 9. Poll Evil.
19. Prurigo, or Manc Scab.
20. Fistulons Withers.
21. Saddle Galls, Sitfasts, \&e.
22. Fistulous Tail. 14. Rat Tail.
23. Falling of the Fundament.
24. Quittor.
25. Tread on the Coronet and Overreaches.
26. Luxation of Patella, or Whirl Pone Displaced.
27. Hernia or Rupture.
28. Broken Ribs. 19. Farcy.
29. Sores from Constant Bleeding.
30. Bridlo Swellings.
31. Sand, Toe, Cow and Quarter Cracks.
32. Fistula and Inflammation of 14. Swelt or Sprang sinewo. Parotid Gand.
of 44. Scratches.
33. Phlebltis, or inflamed Jugular 46. Curb. 47. Swollen Legs. Veln.

To TA dium anc some of the windy the cumil he likes, a can then e the anima Best \boldsymbol{R} paiba, 402 to mako it ing for a w Cure fic new milk, rery strong to operate a the bots to carries ther Liniment 8 oz. ; camp 1 oz . oil of iron, and a
For Loos til root, pow stirred into pints of milk Scours As bark burnt in 3 pint of it w daily. This in most instar
Evglish S. ammonia, and amber, each, Colio Cur 3 ox. ; laudan putting it into not obtained in best powdered
For Person tea ; children o Liniment f pulverized salt Invaluablo for Shoeing lio that he would 1 canse the loss o as follows:-As to the hoof, wit) then drove the 1 the nails, and fil remarked, a clin

To Tame Ifonses.-Tako finely-grated horso castor, oils of rhodium and cumin; licep them in separato bottles well corked; put some of tho oil of cumin on your liand, and approach the horse on the wiudy side. He will then move toward you. Then rub some of the cumin on his nose, give lim a little of the castor on anything he likes, and get eight or ten drops oli of rhodium on his tongue. You can then get lim to do anything you like. Be kind and attentive to the animal, and jour coutrol is certain.

Best Realedy for Heaves.-Balsam of fir and balsam of copaiba, 4 oz. each, nud mir with calcined magnesia suffleiently thick to make it into balls ; and give a middling-sized ball night and morning for a week or ten days.

Cume for Bots in Honses. - Give the horso, first, 2 quarts of new mikk, and 1 quart molasses; 15 minutes afterwards, give 2 quarts very strong sage tea; 30 minutes after the tea, give 3 piuts (or enough to operate as physic), of curriers' oil. The molasses and milk cause tho bots to let go their hold, the tea puckers them up, and the oil carries them completely away. Cure, certain, in the worst cases.

Liniment for Swaeny. - Alcohol and spirits turpenting, of each 8 oz ; camphor-gum, pulverized cantharides, and capsicum, of each 1 oz . ; oil of spike, 3 oz . ; mir. Bathe this liniment in with a hot iron, and a cure is sure to follow.

For Looseness on Scourina in Horses of Cattle.-Tormentil root, powdored. Dose for a horse or cow, 1 to $1 \frac{1}{2} \mathrm{oz}$. It may be stirred into 1 pint of milk, and given; or it may le steeped in $1 \frac{1}{2}$ pints of mille, then given from threo to six times daily, until cured.

Scours and Pin-Woras in IIorses and Cattle.-Whito ash bark burnt into ashes, and made into a rather strong lye; then mix $\frac{1}{2}$ pint of it with 1 pint warm water, and give all two or three times daily. This will certainly carry off the worms, which are tho cause, in most instances, of scours and looseuess.

Enolish Stable Liniment, very strona.-Oil of spike, aquaammonia, and oil of turpentine, each 2 oz . ; sweet oil, and ofl of amber, each, $1 \frac{1}{2} \mathrm{oz}$. ; oil of origanum, 1 oz . Nix.

Conig Cure for Horses and Persons.-Spirits turpentine, 3 ox. ; laudanum, 1 ox. ; mix ; and for a horse give all for a dose, by putting it into a bottlo with half a pint of warm water. If relief is not obtained in an hour, ropeat the dose, adding half an ounce of the best powdered aloes, well dissolved. Cure, certnin.

For Persons, a dose would be from 1 to 2 teaspoonfuls in warm tea; children or woak persons, less.

Liniment for firty cents fer ahllon.-Best rinegar, 2 qts.; pulverized saltpetre, $\frac{1}{2}$ lb. ; mix, and set in a cool placo till dissolved. Invaluable for old swellings, sprains, bruises, \&c.

Shoeing llonses.-A smith who shod for the hant, and who said that he would have to shut up shop if a shoe was lost, as it might causo the loss of a liorse wortfi a thousand pounds, fastened the shoo as follows:-As he drove the nails, ho merely bent the points down to the hoof, without twisting them off, as tho usual practice is ; he then drove tho nails home, and clinched them. Ho thon twisted off the nails, and filed them lightly to smooth thom, thus having, as he remarked, a clinch and a rivet to hold the nails.

IIonse Arn-Make a slow fire of old shoes, rags, herbs, \&e.

When fired a little, smother so as to make a great snok , and steam, then set a barrel without heads, orer tho firv, and hold the horso's head down in the barrel, and smoke him well. This will soon produce a copious ruming at the nose, and he will be so well pleased that he will voluntarily hold his head in the smoke. Continue this half an hour or more daily, meanwhile gire him potatoes and warm bran mashes, and gently physic if thero be mucli costiveness which the laxative food will not remove. If he has fever, treat him for it.

Saddee and Harness Galls, \&ec.-White lead and linseed oil, mixed as for paint, is umrivalled for healing saddlo, harness, or collar galls and bruises. Try it, applying with a brush. It soon forms an air-tight coating and soothes the pain, powerfully assisting nature.
Grease Heel.-Ley made from wood-ashes, and boil white-oak bark in it till it is quite strong, both in lye and bark-ooze; when it is cold, it is fit for use. Wash off the horse's legs with Castile soap; when dry, apply the abovo ley with a swab fastened on a long stick to keep out of his reach, as the smart caused by the application might mako him let fly without mach warning; but it is a sure cure, only it brings off the hair. To restore the hair after the cure is effected, nuke and apply a salve by stewing elder bark in old bacon; then form the salve by adding a little resin, uccording to the amount of oil when stewed, or $\frac{1}{2} \mathrm{lb}$. resin to each pound of oil.
Valuable Remiedy for Hlaves.-Calcined magnesla, balsam of fir, balsam copaiba, of each 1 oz ; spirits turpentinc, 2 oz.; put thein all into 1 pint best clder vinegar; givo for a dose, 1 tablespoonful in his feed, onco n day for a week; then every otherday for 2 or 3 months. Wet his hay with brine, and also his other feed. Ifo will congh more at first, but looser and looser till cured.
To Distinguisif and Cure Distemprer.-Wct ap bran with rather strong lye; if not too strong, the horse will eat it greedily. If they have the distemper, a free discharge from the nostrils, and a consoqlient cure, will be the result, if continued a fow days; but if only a cold, with swellings of the glands, no change will be discovered.

Remedy for Founder.- Draw abotit 1 gal. blood from the neck; then drench the horse with linsced oil, 1 qt . ; now rub the fore-legs long and well with water as hot as can be borme without scalding.

Physic-Ball for Honses.-Barbadoes alocs, from 4 to 5 or 6 drams (according to size and strength of the horse); tartrate of potassa, 1 dram; ginger and Castile soap, each 2 drams; oil of aniso, or peppermint, 20 drops; puiverize and make all into one ball, with thick gum solution. Feed by giving scalded bran instead of oats, for two days before giving the physic, and during its operation.

Pifysic for Cattie.-Take half only of thedosenbove for a horse, and add it to glauber-salts, $8 \mathrm{oz}$. ; dissolve all in gruel, 1 quart, and give as a drench.

Moof-ail In Smerp.-Muriatic acid and butter of antimony, of each 2 oz . white vitriol, pulverized, 1 oz. ; mix. Lift tho foot, and drop a little of it on the bottom, only once or twice a weck. It kills the old hoof, and a new one soon takes its place.

Superphosphate of Lime, the greatest Agricuditurat, Discovery of the Age.-Take a large puncheon, large tub, or barrel, and put into it 200 lbs . water; add, very slowly and cantiously, 100 lbs . of pure sulphuric acid; jou must bo very careful, while handling this

article, n

 blacken tact; and Into this less they into comb and comp over ocea pleted, du form of bc bulk of dr. with n wo retaining t casy of uni siz or cigh they will d mill, four ${ }^{\circ}$ fertilizer in cheapestra For top-dre beans, turn the soll; for with the see SUPERji'H has got an phosphate in barrel oontai generated qu ner; and, if twenty-fourtightly cover
Fertilize guano to ea receipt, and tobaceo that stead 30 los.
Home-mid prodigality o the exercise of secure one of contains pho animals' bond carbonic acid manageable a a large, tight so that it can Provido plent charcoal, dry dry, in barrels on the bottom throw in a lib posit. If a fer suppress unpl
article, not to let it touch your skin or clothing, as it will instantly blacken tho skin, and destroy the clothing, wherever it comes in contact; and, when mixed with water, it engenders a very intenso heat. Into this mirture throw 200 lbs . of bones, no matter how old or usoless they may bo.' The sulphuric acid instantiy attacks and enters into combinatiou with the bones, reducing them to a pasty consistence, and completely dissolving them. Kcep under cover, and turn them over occasionally, whilo tho process is going on; and, when completed, dump out the whole contents on tho barm floor or on a platform of boards, and thoroughly work into the mass four times its bulk of dry bog-earth or dry road-dust; mix and pulverize completely with a wooden shovel. The bog-earth acts as an absorbent or drier, retaining the fertilizing properties of the compound, and rendering it easy of uniform distribution. If whole bones are used, it will take six or eight weeks to dissolve 'hem; If they are broken with an axe, they will dissolvo in about threo weeks; if they are ground in a bone mill, four days will be sufficient.? This manaro is the most powerful fertilizer in existenco; and, when made by these directions, it is the cheapest as one ton is equal to thirty-two tons of barn-yard mannre. For top-dressing grass, lauds, uso 300 lbs. per acre; for corn, potatoes, beans, turnips, \&c.," apply 450 lbs. per acre in the drill, mixing with the soil; for wheat, ryc, oats, or barley, 400 lbs . per acre, harrow in with tho seed; for buckwheat, 300 lbs . per acre.

- Supelifhospilate in Twenty-fouir Hours.-Any farmer who has got an apparatns for steaming food for cattle can mako superphosphate in quick style by admitting steam from the boiler into the barrel containing the water, acid, and ground bones. The heat thus gencrated quickens the dissolution of the bones in a wonderful manucr; and, if the process is properly conducted, it will not tako over twenty-four hours in any case. It is indispensable that the barrel be tightly covered to retain the steam.
Fertilizer for Tobacco.-Add 40 lbs. of the best Peruvian guano to each 100 lbs . of the superphosphate made by the above receipt, and you will have one of the most powerfui fertilizers for tobacco that can be made. If you do not have Peruvian guano, use instead 30 lbs . of hen manure to each 100 lbs . of superphosphate.
Home-slide Poudrette.-Few fertilizers are wasted with the prodigality of extravaganco which attends tho use of night soil, while the exercise of a little care and attention is all that is required to secure one of the most powerful fertilizers in existence. Night soil contains phosphate of llme, which is essential to the growth of animals' bones, and which is not supplicd from the atmosphere liko carbonic acid and ammonia. In order to receive the droppings in a manageablo and inoffensive state, the vault should be provided with a large, tight box made of matched plank, placed to slide on scantling, so that it can bo drawn out, by attaching a horse, whenever required. Provide plenty of dry, black loam from the woods or swamps; refuse charcoal, dry peat, or alluvial deposits answer first-rate. Keep them dry, in harrels or boxes on the spot, under coser; spread a thick layer on the bottom of the receiving lox, and at intervals of a few days throw in a liberal supply of these absorbents on the accumulating doposit. If a few handfuls of plaster are thrown in occasionally, it will suppress unpleasent odors and increase the valuo of the manure.

Tho emptying of slops and dish water in the box should be s' cictly prohlbited. Wheu the box is filled, you can remove it, and convert it into pondretto. For this purpose it must bo worked over with an additional quantity of muck, or other absorbent, in such proportions that it will form, with what has been previously added, about threequarters of the entire compound. The working should bo done under a shed, and the whole kept perfectly dry. It should be shovelled over and mixed soveral times at intervals, and finally screoned, and mado as uniform throughout as possible; the finer it is nulverized, and the drier it is kept, the better.
Home-made Guano of Unequalled Excellence.-Savo all your fowl manure from sun and rain. To prepare it for use, spread a layer of dry swamp muck (the blacker it is tho better) on your barn noor, and dump on it the whole of your fowl manure; beat it into n fine powder with tho back of your spade; this dono, add lard woorl ashess and plaster of Parls, so that tho compound slall be composed of the following proportions: dried muck, 4 bushels; fowl minure, 2 bushels; ashes, 1 Wishel; plaster, 1 I bushels. Mix thoroughly, and spare no dahor; " \because this matter, tho elbow-greaso expended will be well paid for. $\quad .$. 'efore planting, moisten the heap with water, or, better still $w . \therefore$ cover well over with old mats, and let it lio till wanted for uso. Apply it to beans, corn, or potatoes, at the rato of a handful to a hill; aud mix with the soil beforo dropping the seed. This will be fucnd tha bent evbstitute for guano ever invented, and may be deptaded v. fo aidging great crops of turnips, corn, potatoes, \&c.

To Dissolve Larga Bones for Mlanurf without Expense.Tako any old flour barral, and put into tho bottom a larer of hardwood ashes; put a layer of boues on the top of the ashes, and add another layer of ashes, filling tho spaco between tho bones with them; then add lones and ashes alternately, finishing off with a thick laycr of ashes. When your barrel is filled, pour on water (urine is better,) just sufficient to kcep thom wet, but do rot on any account suffer it to leach one drop; for that would be like leaching your dungheap. In the course of timo they will heat, and eventually soften down so that you can crumble them with your finger. When sufficiently softened, dump them out of the barrel on a heap of dry loam, and pulverize and crumble them up till they are completely amalgamated into one homogeneous mass with the loam, so that it can be easily handled and distributed when required. Yon may rely on it, this manuro will learo its mark, and show good results wherover used.
Substitute for Superrhospiate.-If you have inch bone ground in a bone-mill, and cannot afford to purchase sulphuric acid to work it up into superphosphate of lime, you can reduce your bones into a fine impalpable powder by simply using three barrels of loamy soll to every barrel of inch bones; mix them together. The boncs will soon begin to heat and ferment, and continue so for some timo; they will then cool off. You will then proceed to chop down and pulverize and work the mass thoroughly ; it will begin to rehcat and ferment and cool down again ; and you will continue working it orer till the contents aro brought to the proper state of fineness, when you will have a fertilizer of astonishing porrer. It is only a year or two since a statement appeared in the "Country Gentleman," of the
experime method,

How Farst.the woods one foot t the loam day, but 1 it with th sinple me the qualit poorer by of the ing estimated.

Josiah Q atables the
The amoun fertility of crop had in arranged st and aiternc quarters. lour cows. \&c., which months, to crop is his 3 cords of 1 Boston, sucl estimate, he mado as val
Twenty 1
If you have lorse,-do \mathbf{n} to the woods distance onl of muck or quick-lime, to make, wi loads ; and worth \$20 fi tionate quant twenty good too great a re Fish Conrr Fish Refush matter and 1 similar to fles being water ; terrestrial an fivhes will ac animals; 100 400 lbs of fis effect is due
experiments of a Mr. Haskell with a manure prepared after this method, who found it even superior to saperphosphato of lime.
llow to double thi usual Quantity of Manume on a Farsi- - Provide a good supply of black swamp monld or loam from the woods, within easy reach of your stable, and place a layer of this, one foot thick, under each horso, with litter as usual, on the top of the loam or mould. Remove the droppings of the animals overy day, but let the loam remain for two weeks; theu remove it, mixing it with tho other manure, and replace with fresh mould. By this simple means, any farmer can donble not only the quantity but also the quality of his manure, and never feel himself ono penny the poorer by the trouble or expense incurred, while the fertilizing value of the ingredionts absorbed and saved by the loam can scarcely be estimated.

Josiah Quincy, jun., has been very successful in keeping cattle in stables the year through, and feeding them by means of soiling. The amount of manure thus made had cuabled him to improve the fertility of a poor farm of 100 acres, so that in twenty years the hay crop had increased from 20 to 300 tons. The cattle are kept in a wellarranged stable, and are let out into the yard an hour ortivo moming and aiternoon ; but they generally appear glad to return to their guarters. By this process, one acre enables him to support three on four cows. Thoy are fed on grass, green oats, corn fodder, barley, \&c., which are sown at intervals through the spring and sumnei months, to be cut as required ; but he remarks that his most valuable crop is his manure crop. Each cow produces 3f cords of solld, and 3 cords of liquid manure, or $6 \frac{1}{2}$ cords in all. Five to eight miles frums Boston, such manure is worth five to eight dollars a cord. From this estimate, he has come to the concluslon that a cow's manura may be mado as valuable as her milk.
'I'wenty Dollars' Worth of Manure for almost Notifino. If you have any dead animal, -say, for instanco, the body of a horso,-do not suffer it to pollute the atmosplere by drawing it awny to the woods or any other out of the way place, but remove it a short distance only, from your premises, and put down four or five loads of muck or sods, placo the carcass thercon, and sprinkle it over with quick-lime, and cover over immediately with sods or monld sufflicient to make, with what had been previously added, 20 good wagonloads; and you will have within tivelve months a pile of maure worth $\$ 20$ for any crop you choose to put it upon. Use a proportionate quantity of mould for smaller animals, but never less than twenty good wagon-loads for a horse ; and, if any dogs manifest too great a regard for the enclosed carcass, shoot them on the spot.

Fish Conipost, Substitute for Bone-Dust, Manure from Fisir Refuse, \&C.-The fish owes its fertilizing value to the animal matter and bone-earth which it contaius. The former is precisely similar to flesh or blood, consisting of 25 per cent. of fibrin, the rest being water; and their bones are similar in composition to those of terrestrial animals. As fertilizing agents, therofore, the bodics of fishes will nct nearly in the same way as the bodies and blood of animals; 100 llbs ., in decaying, produce $2 \frac{1}{2}$ lbs. of ammonia. Hence 400 lbs . of fish rotted in compost are enough for an acre. The great effect is due to the ammoniacal portion; for it renders the herbage
dark-green, and starts it very rapidly. Ono of the best composts is mado as follows : Dried bor-earth, loam, or peat, seven barrels; hardivood ashes, troo barrols; flish, ono barrel ; slaked lime, one bushel. Place a thick layer of the bog-earth on the bottom ; on tho top of this put a layor of the flsh, then a sprinkling of lime, then a a layer of ashes $;$ on top of tho ashes put a thick layer of bog-earth, loan, or peat ; then another thin layer of fish, lime, and ashes, and so on till your materinls are worked in; then top off with a thick layer of the absorbents, to retuin the dertilizing gases. The decomposition of the fish will proceed very rapidly, and a very rich compost will be the result. It should be shovelled over and over and thoroughly intermixed and pulverized. Put this on so as to have 400 lbs . of fish to the acre. It may be applied with tho greatest benefit to com, turnips, potatoes, beans, \&c., in the drill, and broad cast on the grass.

Superphosphate can Le made from pogy-chum, or the refuse of othcr fish, after the oil is expressed, by dissolving in sulphuric acid, and afterwards mixing with dry loam, precisely as directed for making superphosphate with bones. Whale-oil or the oil of any fish, when made into a compost with loam, and a littlo lime or wood ashes, ylelds a very powerful manure, merely mixed with absorbent earth and applied at the end of the month. Impure whale-oil, at the rato of 40 gallons per acre, has produced a crop of 234 tons of turnips per acre; while on the same soil, and during the same soason, it took 40 bushels of bone-dust to produce only 22 tons per acre.

Ashes from Soll by Spontanequs Combustion.-Make your mound 21 feet long by $10 \frac{1}{3}$ feet wide. To fire, use 72 bushels of limo. Fint a layer of dry sods or parings on which a quantity of limo is spread, mixing sods with it; then a covering of eight inches of sods, on which the other half of the lime is spread, and covered a foot thick, the height of the mound being about a yard. In twenty-four hours it will take fire. The lime should $: 9$ fresh from tho kiln. It is better to suffer it to ignite itself than to effect it by the operation of water. When the fire is fairly kindled, fresh sods must be applied; but get a good body of ashes in the first place. I think it may be fairly supposed that the lime adds full its worth to tho quality of the ashes, and, when limestone can be got, I would advise the burning a small quantity in the mounds, which would bo a great improvement to the ashes, and would help to keep the fire in.

Substitute for Barn-manure.-Dissolve a bushel of sait in water enough to slack 5 or 6 bushels of lime. The best rule for preparing the compost heap is, 1 bushel of this lime to 1 load of swamp-muck, intimately inixed ; though 3 bushels to 5 loads makes a very good manure. In laying up the heap, let the layer of muck and lime be thin, so that decomposition may be more rapid and complete. When lime cannot be got, use unleached ashes,-3 or 4 bushels to a cord of muck. In a month or six weeks, overhanl and work over the heap, when it will be ready for use. Sprinkle tho salt water on the lime as the heap goes up.

Shiemp-Dipping Comiposition.-Water, 1 gal.; benzine, 8 onnces; cayeune pepper, 2 ounces. Mix ; make what quantity you requiro, using these proportions. Dip your sheep and lambs in the composition, and it will make short work of the vernin.

Oat of Wmeat Stray made equal to Ilat.-Bring 10 gallons
water to a 3 gallons of empty the w and let it \mathbf{r} .t will be re "on straw, a iquid froin as fat on it, g

Death fol boiling water for vermin, or Remedy coal oil, and p ive; or, clear little holes an feet each way wood on the g in large numb mornings and

Grafting suffcient to soi
To Cultiva situation, wher sun ; burn over best), rake it w and after a sho quarter-dollar, and weed out c foot-stalks, as tl vell advanced,for seed, which of tobacco is ku The plants shoul of sunshine, an withered, gather corer to cure ano

To Preserive bin with Jime, a with lime as befo to 40 bushels of 1 toes, and effectua An old veteran fought the potatc the latter part of noon. When six nicely. Now for and i part fine sa this compound as ripe, take them ol cellar, and keep th Packing Fruit size, soft paper,
bottom, then eacl
water to a boiling heat ; tako it off the fire, and add to it at on. 0 3 gallons of linsced unground ; let it romain till it gets cold ; ther empty the whole into a cask containing it gallons of cold water, and let it remain for forty-cight hours. At tho end of that time, .t will be reduced into a thin jelly, like arrowroot. Spread out $\frac{1}{2}$ 'son straw, and sprinkle it over regularly with the whole of theiquid from the casl. The stock will eat it up as clean, and keep as fat on it, quantity for quantity, as they would do on hay.
deatif for Vermin on Plants or Animals.-Pour a gallon of boiling water on one pound tobacco leaves, strain it in twenty minutes; for vermin, on animals or plants, this decoction is certaip death.
Remedy for Cunculio in Fruit Trees.-Sawdust saturatea in coal oil, and placed at the roots of tho treo, will be a sure preventive; or, clear a circle around the treo from all rabbish; fill up all little holes and smooth off the ground for a distance of at least 3 fcet each way from the tree, then place chips or small pieces of wood on the ground within the circlo ; the curculio will take refuge in large numbers below tho chips, and you can pass around in thio mornings and kill them off.

Grafting Wax.-Resin, 1 lb .; bees-wax, 1 lb .; with tallow or ard sufficient to soften untilit can bo readily applied with thehand; melt.

To Cultivate Tobacco.-To raiso tobacco, select a sheltered situation, where the young plauts can receive the full force of tho sun ; burn over the surface of the ground early in spring (new land is best), rake it well, and sow the sceds : have a dry, mellow, rich soil, and after a slower, when the plants have got leaves the size of a quarter-dollar, trausplant as you would cabbage plants, $3 \frac{1}{2}$ feet apart, and weed out carefully afterwards. Break off the suckers from the foot-stalks, as they appear ; also tho tops of the plants when they aro well advanced,-ssay about three feet high,-except those designed for seed, which should be the largest and best plants. Tho ripeness of tobaceo is kuown by small dusky spots appearing on the leaves. The plants should theu be cut near the roots, ou the morning of a day of sunshine, and should lio singly to wither. When sufficiently withored, gather them carefully togother, and hang them up under corer to cure and prepare for market.

To Preselive Potatoes frome Rot.-Dust over tho floor of tha bin with limo, and putit in about 6 or 7 inches of potatoes, and dust with lime as before, then more potatoes, using about 1 bushel of lime to 40 bushels of potatoes. The lime improves the flavor of the potitoes, and effectually kills the fungi which causes the rot.

An old veteran farmer, with 63 years' experienco, has successfully fought the potato rotin the ground, as follows: Ho plants them in the latter part of April, or beginning of May, and in the old of the moon. When six inches high they are plastered and dressed out nicely. Now for the secret. When blossoming, take 2 parts plaster, and 1 part fine salt, mix well together, and put 1 large spoonful of this compound as near the centre of each hill as possible. When ripe, take them out of the ground, have them dry when put in the cellar, and keep them in a dry, cool place.

Packing Fruits for Long Distances.-Take a box of tho propel size, soft paper, and sweet bran. Placo a layer of bran on the bottom, then each bunch of grapes is held by the hand over a
shect of the paper ; the four comers of the paper are brought op to the stalk and nicely secured; then laid on its side in the box. and so on until the first layer is finished. Then dust on a layer of bran, giving the box a gentle shake as yon proceed. Begin the sccond layer as the first, and so on until the whole is full. The bloom of the fruit is thus preserved as fresh, at the end of a journey of 000 miles, as if they were newly taken from the tree. Nover fails to preserve grapes, peaches, apricots, and other fruit.

Thorlex's Condimental Food.-The following is a formula to make 1 ton of the food: take of Indian meal 900 lbs., locust beans finely ground 600 lbs ., best linsced cake 300 lbs ., powdered turmeric and gulphur of each 40 lbs., saltpetre 20 lbs , licorico 27 lbs , ginger 3 lbs ., anise-seed, 4 lbs ., coriander and gentian of each 10 lbs ., cream of tartar 2 lbs., carlonate of soda and levigated antimony each 6 lbs., common salt 30 lbs., Pernvian bark 4 lbs., fenugreek 22 lbs., mix thoroughly.

Cure for Swelled Bags in Cows.-An excellent remedy for swe.'!ed bags in cows, caused by cold, ete., is gun camphor $\frac{1}{2}$ oz., to swect oil 2 ozs. ; pulvorize the gum, and dissolvo over a slow fire.

To Inclease the Flow of Milie in Cows.-Gire your cows three times a day, water slightly warn, slightly salted, in which bran has been stirred at tho rate of 1 qt . to 2 gals. of water. You will find if you have not tried this daily practice, that tho cow will give 25 per cent. nore milk, and she will become so much attached to the diet that sho will refuse to drink clear water unless very thirsty, but this mess she will drink at almost any time, and ask for more. The amount of this drink necessary is an ordinary water-pail fuil each time, morning, noon, aud night. Aroid giviug cows "slops," as they aro no more fit for the animal than the himman.

Home-made Stump Machne.-Take 3 pieces of common joints, put them together in form liko a common harrow, letting the tapering ends lap loy each other some G inches, making a place for the chain to rest in. Cut off tho roots at any distanco yon pleaso from the stump, place tho machino at ono side of the stump, tapering end up; hitch the chain on the opposite sido and pass it over the machino ; then hitcli a good yoko of oxen thercto, and you will see the stump rise. Another method is as follows: in tho fall of the year bore a 1-inch hole 18 inches deep into the centre of the stump, and put in 1 oz ., of aaltpetro, filling up with water, and plugging the hole up. In tho spring take out the plug, putin half a gill of kerosene and set fre to it. It will burn out the st:ump, to the farthest root. Here is another plan: in the fall, with an inch anger, bore a hole in the centre of the stump 10 inches deep, and put into it a $\frac{1}{2} \mathrm{ll}$. of vitriol, and cork tho hole up very tight. In tho spring tho whole stump and roots extending all through their ramifications will be found so rotten that they can be casily eradicated.

To Sprout Onions.-Pour hot water on the seed, let it remain 2 or 3 seconds, and they will immediately sprout, and come up much earlicr.

To Renew Old Onchards.-Early in tho spring, plough the entire orchard, and enrich the whole soil with a good dressing of compost of manure, swamp-muck, and lime; scrape off the old barlk with a deck-scraper, or a sharp hoe ; apply half a bushel of lime, and the same of ground charcoal round each tree. Then apply diluted soft soap, or strong soap-suds, on the trunks and
limbe, as 1 bloom, thr and ou wll To' Desti two white night) or d and filled t oming I he 00 more ; th light, being about 200."
To Kekp milk a small
To Make rain-water, a clean, tight c of good yeas fistoen days a molasser, and The paper is
Mr. Culle ox. of the bep 3 a pound of convert these must first be g stirred in ; afte
To Improve after the sheep over with oil, o wash them with much finer, but be depended up or vermin that against maggots
To Maresine of linseed oil, all together, an

To Prevent made, it lias be tributed by a ma the ravages of soon as the tur which they were bcfore it is ased, operation unnece
Conorina for should be, Span general in this co for sale in almos of real Spanish a weight. If a cor be taken for but the cheese is, the
limbs, as high as a man can reach. When the trees aro in full bloom, throw over them a gond pioportion of fine slaked lime, and you will reap abundant fruits from your labors.
To' Destrox The Motif on Miller-Dr. Waterman eays, "I took two white dishes (becruse white attracts theis attention in the night) or deep plates, and placed them on the top of the hives, and filled them about half-full of sweetened vinegar. Tho next onning I had about 50 millers caught; the second night I caught 50 inore ; the third ulght, being cold, I $4 \cdot 1$ not get any, the fouth light, being very warm, I caught about 400; the filth night I got about 200 ."

To Keep Mink Sifeet, and Sweeten Sour Milk.-Put into the milk a sinall quantity of carbonate of magnesia.

To Make Cheap and Good Vinegar.-To eight galions of clear rain-water, add 6 quarts of molasses; turn the unixture into a clean, tight cask, shake it well two or threo times, and ndd 1 pt. of good yeast. Place the cask in a warm place, and in ten or fifteen days add a sheet of common wrapping-paper, smeared with molasses, and torn into narrow strips; and you will have good vinogar. The prper is necessary to form thie " mother," or life of the liquor.

Mr. Culley's Red Salve, to cure the Rot in Sifer.-Mix 4 ox. of the best honey, 2 oz. of burnt alum reduced to porrder, and $\frac{1}{3}$ a pound of Armenian bolo, with as much train or fish oil as will convert these ingredients into the consistence of a salve. The honey must first be gradually dissolved, when the Armenian bolo must bo stirred in ; afterwards the alum and train-oil are to be added.

To Improve they Wool of Silefe, by Smearing.-Immediately after the sheep are shorn, soak the roots of tho wool that remains all over with oil, or butter, and brimstono; and, 3 or 4 days afterward, Trash them with salt and water. The wool of next season will not be mach finer, but the quantity will be in greater abundance. It may be depended upon, that the sheep will not be troubled with the scab or vermin that year. Salt water is a safo and effectual remedy against maggots.
To Mark Srieep without Injury to the Wool.--To 30 gpoonfuls of linseed oil, add 2 oz . of litharge, 1 oz . of lampllacis; boil :ull together, and mark the sheep therewith.

To Prevent the Fly in Turnips.-From experiments lately made, it has been ascertained that line sown by hand, or distributed by a machine, is an infallible protection to turnips against the ravages of this destructive insect. It should be applied as soon as the turnips come up, and in the same daily rotation in which they were sorn. Tho lime should be slaked immediately before it is used, if the air be not sufliciently moist to render that operation unnecessary.

Colorina for Cherse.- Tho coloring for cheeso is, or at lenst should be, Spanisli annatto; but, as soon as colnring becanio general in this country, a color of an adulterated kind was exposed for sale in almost every shop. The weight of a guinea and a half of real Spanish annatto is sufficient for a cheese of fifty pounds weight. If a considereble part of the cranm of tho night's milk be taken for butter, more coloring will bo requisito. The lenner the cheese is, the more coloring it requires. The manner of using
annatto is to tio up in a linen rag the quantity deemed anffeient, and pat it into $\frac{1}{3}$ pt. of warm water over night. Thls infuslon ts put into the tub of milk in the morning with tho sennet infusion; dipping the rag into the milk, and rubbing it against the palm of tho haud as long as any color runs out. The yolk of eggr will color butter.
Tife Gheat Sechets for Trapping Foxes and other Game.-Mask-rat musk and sknnk musk mixed. Can be procured at the druggists, or from the animals themselves. To be spread on the bait of any trap. This receipt has been sold as high as $\$ 75$. Another, costing $\$ 50$, for minks, \&c.-Unslaked llme, $\frac{1}{2} \mathrm{lb}$. sal-ammoniac, 3 oz ., or muriate of ammonia, 3 oz . Mix, and pulverize. Keep in a covered vesscl a fow days until n thorough admixture trikes place. Sprinkle on tho bait, or on the ground around the trap. keep in a corked bottlo.
Food ron Singina Brads.-Blanched sweet almonds, pulverized, $\frac{1}{2 l b}$; pea meal, 1 lb . ; saffron, 3 grs . ; yolks of 2 hard boiled egga. Ficduce all to a powder by rubbling throngh a sieve. Place the mi:.ture in a frying pan over a fire, and add 2 oz . butter and 2 oz . lioney. Slightly cook for a fow minntes, stirring well, then set of to cool, and preserve in a closely corked bottle.

Diucir Butteu from Lattle Milk.-Take 4 ozs. pulverized alum, $\frac{1}{2}$ oz. pulverized gum-arabic, 50 grs . of pepsin ; placo it in a bottlo for use ns required. Λ teaspoonful of this mixture added to 1 pt . of new milk will, upon churning, make! J. of butter. Agents are selling this secret for $\begin{gathered}\text { §u } \\ \text {. }\end{gathered}$

Composition for Driving out Rats, fatc.-Feep on hand a quantity of chloride of lime. The whole secret consists in scattering it dry all aromid their haunts and into their holes, and they will leare at once, or a fiberal decoction of coal tir placed in the entrance of their holes will do as well.

How to form Springs.-The finest springs can bo made by boring, which is performed by forcing an iron rod into the earth by its own reight, turning it round, and forcing it up and down by a springpole contrivamee. Tho watcr will sometimes spout up several feet aioove the surface. Iron pipes are put down in the hole after the water is found. Depressed sltuations, having a southern exposure, rith rising ground towards the north, aro the best situations in the United States or the Canadas to find water.
To Burn Lime wiriout a Kiln.- Make a pyramidal pilo of large limestones, with an arched furuace next tho ground for putting in the fuel, leaving a narrow rent or funucl at the top; now cover the wholo pile with earth or turf, in the way that charcoal heaps are covered, and put in the fire. The heat will be more completely diffused through the pile, if the aperture in the top is partially closed. Produces a superior article of lime.
Eye Water for Horses and Cattrif.--Alcohol, 1 tablespoonful; extract of lead, 1 teaspoonful ; rain water, t pint.
To Degtroy Moss on Thees.-Paint them with white-wash made of quick lime and wood ashes.
To l'motect Fruit-thees from attack of Mice, etc.-Tar, 1 part ; tallow, 3 parts ; mix. Apply hot to the bark of the tree with a paint brush.

Points of the head light nostrils thems head, oyes pro on ; neek rath thrown back, thin and smal rinntly large to ay for t a obliquel well-shaped he not too much the collar at thi spread into the hind-legs bent what round, bn and tail of shon inches long, bro or fetlock join nearer you apps perfection.
Trie Epizoot hacking cough, cold legs, with masal membrane colored, and th col ${ }^{-}$and the m $a^{r} \quad$, the anim I. 'owing pr 1. ; tarpent together, and ap tartarized anitirn gether, and give talis may be om the mucous men from the epiglo assumes a decide the disease at on fll the strength is usual mess of on Repeat till all sy mixed with the o
Age of Hons teeth, or grinders called gatherers. tween 2 and 3 yea and 2 below. Aft side of those for horse's teeth; wh of age, the horse his tushes appear. white, small and s.

Points or a Good Horse.-He shonld be alout 15. hands high the head light and clean made, wide between the nostrils, and the nostrils themselves large, transparent and open; broad in the forehead, eyes prominent, clear and eparkling ; ears small and neatly set on ; neek rather short and well set up; large arm or shoulder, well thrown back, and high ; withers arched and high; legs fine, flat, thin and small-boned ; body. round and rathor light, though suffriantly large to afford substance when it is needed ; full chest, afford-
ay for the lungs ; back sloort, with the hind-quarters set on
u' obliquely. A good draught horse should have a rather large, well-shaped head, a elean, long ear, full eye, neck rather long, but not too much arched; strong withers, lying well forward to catch the collar at the proper angle for dranght, and broad shoulders, well spread into the back, lack very straight, ribs long and well rounded, hiud-legs bent at the hoek, fore-legs forward, hind-quarters somewhat round, but not sufficiently to make them look short ; the mane and tail of slort, but not coarse hair, and with a fetlock abput two inches long, lroad knees, long hoeks, short shanks, and hard ankles or fetlock joints, and round hoofs, well opened behind, and the nearer you approach this description the nearer the horse will be to perfection.
The Epizootic.-The carly symptoms of the discase are a light, hacking congh, with a general dulness, and an indisposition to move; cold legs, with a watery discharge from the nostrils. At first, the nasal membrune is pale, but, as the disease advances, becomes hifhly colored, and the mucous discharge changes to a greenish yellow col - and the pulse becorres more rapid. As soon as the symptoms $a^{r} \quad ;$ the animal should be kept warm in the stable, by blanketing. I lowing prescriptions are recommended : No. 1 -Linserd oil, 11_{2}; turpentine, $1 \frac{1}{2}$ ozs. ; liquor ammonia fort., 1 oz. Mix all together, and apply to the throat. No. 2-Nitrate potash, 1H ozs.; tirtarized antimony, $1 \frac{1}{2}$ ozs.; digitalis, $1 \frac{1}{2}$ ozs. Pulyerize all together, and give one night and moming. If not rery bad, the digitalis may be omitted. The disease consists of an inflammation of the mucous membrane lining the throat, which gradually extends from the epiglottis downwards till it reaches the lungs, when if assumes a decidedly dangerous character. The following will arress the disease at once, if taken in time: Boil a handful of smart-weed till ull the strength is obtained, and ponr the liquid boiling-hot over thr usual mess of oats, and, when all is cold, feed them to the horso. Repeat till all symptoms disappear. Cure certain. Ground gingei mixed with the oats, has also proved effectual.
Age of Horses.-By Teeth.-A horse has 40 teeth, 24 double teeth, or grinders, 4 tushes, or single file teeth, and 12 front teeth, called gatherers. As a general thing, mares have no tushes. Between 2 and 3 years old, the colt sheds his four middlo tecth, 2 above and 2 below. After 3 years old, 2 other teeth are shed, 1 on each side of those formerly clanged; he now has 8 colt's teeth and 8 horse's teeth; when 4 years of age he cuts 4 new teeth. At 5 years of age, the horse sheds his remaining colt's teeth 4 in number, when his tushes appear. At 6 years of age his tushes are up, appeartng white, small and sharp, while a small circle of young growing teetb
are observable. The month is now complete. At 8 years of are the teeth have filled up, the horse is aged and his mouth is said to be full.

By Eyelid.-After a horse is 9 years old, a wrinkle comes on the eyelid at tho upper corner of the lower lid, and every year thereafter he has one well defined wrinklo for each year over 9 . If, for instance, a horse has three of these wrinkles, he is 12 ; if 4 , he is 13 . Add the number of wrinkles to 9 , and you will invariably judge correctly of a horse's age.

Those who manage horses should bo careful never to inflict any unnecessary pain, for it is culy by the law of kindness that a horse can be trained and managed. No man ever yet struck a horse, but he made the horse the worse for it. Patience and kinduess will accomplish in every instance what whipping will fail to do. Horses having a vicious disposition are invariably made so from cruel treatment. Horses are designed to work, and daily labor for them is as much a necessity to their existence as to that of man's. It is not the hard drawing and ponderous loads that wear out horses and make them poor, balky and worthless; but it is the hard driving, the worry by rough and inhuman drivers, that nses up more horse flesh, fat and muscle than all the laber st team performs. Another great reason why there are so few really sound animals is because of their being put to work too soon. Horses are not developed until they are 5, 6 or 7 years old, and they should do very little work until they reach that perlod. When a horse is worked hard its food should chiefly be oats; If not worked hard its food should chiefly be hay; because oats supply more nourishment and flesh making material than any other focd; hay not so much.

Abtificial Rubber from Milkweed.-The juice or sap is expresfed from the milk-weed by running it between fron rollers and then allowing it to ferment or evaporate to the consistency of thin molasses. It may then be slowly boiled to reduce it to a thick mass which may be treated in the usnal way of manufacturing the genuine rubber. See Boot, Shoe and Rubber Mfanufr's Dep't.

To Prcisle Meat in One Day.-Get a tub nẹarly full of rain or river water, and put two pieces of thin wood across it and set the beel on them at about the distance of 1 inch from the water. Heap as much salt as will stand on the beef and let it remain 24 hours, then take off the beef and boil it and you w:ll find it is completely impregnated by the salt, the water having drawn it through the meat.

Baron Liebig's Great Fentilizer.-Dry peat, 20 busheis, unleached ashes, 3 busheis, tine bone dust, 3 bushels, calcined plaster: 3 bushels, nitrate of soda, 40 lbs., sulphate of ammonia, 33 lbs., sulphato of soda, 40 lbs. Mix numbers 1, 2 and 3 together, then mix pumbers 5,6 and 7 in 5 buckets of water. When dissolved, add the liquid to the first, socend, and third articles. When mixed, add the fourth article. This is a cheap and efficient fertilizer, and this quantity applied to one or two acres of turnips, bects, oats, corn, wheat, grapes, \&c., will bring abundant returns.

Anothei Cheap Fertilizer.-Ammonia, 60 lbs.; nitrate of soda, 40 lbs ; ground bone, 250 lbs ; plaster, 250 lbs ; salt $\frac{1}{2}$ bushel; wood ashes, 3 bushels; stable manure, 20 bushels. Use tho above quantity on 6 acres. Labor included, it will cost abont $\$ 15$, in some piacea less, und is equivalent in value to some fertilizers which cost \$5() or $\AA i 0$ storling \mathfrak{j} er ton.

To Prote tember this hatched and through the protection, 8 r on a board, a sion. The ta bealth.

Thriesifing by with 6 inch cylind lutions 140 per mi $B 20$ bushels per da of 5 horse power ther of 6 horse p Another of 7 horse Another of 8 horse Another of 10) hors 9 owt. The econd

To Protect Shefe from the Gad Fey.-In August and Seplember this fly lays its eggs in the nostrils of sheep, where they are hatched and the worms crawl into the head, and very frequently eat through the brain. In this way many sheep are destroyed. As a protection, smirch their noses with tar. Lay some tar in a trough or on a board, and strew fine sait on it. The sheep will finish the operafion. The tar will yrotect them, and what they cat will promote their bealth.

Thriesining by Steam Power.-A 4 horse power Portable Engine with 6 inch cylinder ; pressure of steam 45 lbs. per square inch, revolutions 140 per minute, has threshed, under favorable surroundings, B20 bushels per day of 10 hours, coal consumed 3 cwt. Another engine of 5 horse power threshed 400 bushels, coal consumed, 4 cwt . Another of 6 horse power, threshed 480 bushcis, coal consumed 5 ewt. Another of 7 horse power, threshed 560 bushels, coal consumed 6 cwt , Another of 8 horse power, threshed 640 bushels, coal consumed 7 cwt Another of 1() horse power threshed 800 bushels par day, coal consumed 9 swt. The economy of these performances is evident at a glance.
and even if much less work than the above were effected, it is evident that such an engive as the one represented above, would, if mounted on wheels, prove a most valuable acquisition to any neighborhood composed of thrifty farmers, who might, by an equitable arrangement, become both the owners and beneficiaries of the same. Many portio

ble englnes are known to be performing excellent eervice, not only in threahing grain, but in chaffling straw, hay, \&c., food for cattle, cutting wood for fnel, and sawing logs into boards. Among other late inventions, we have one as novel as it is meritorious, consisting of a self-propellting engine, capable of moving itsclf from one beality or farm to
another, toge of horses. A sented in the Excelsior bago, 1 lb ; he pioughina T Horse in of Land Co AND 18 Mn

B'ath or Furtow alice.	spacatrin led in Pr ing an
Inches.	Miles.
7	141
8	121
9	
10	9
11	9
12	
13	71

Rapid RULE number of pound point three place of coal at \$14 per Proc

To Measuré G it occupies in cubi point off one place

Example: A bc 5 ft deep, how d bushela.

Proce
Or,

Nite.-Correctne extra bushel.
Quantiti of S : OR LeNGTH OF DRi 60 ft. drill; carrot, onion, 1 oz. to 100 f to 200 ft. drill; radis? turnip, 1 oz. to 150 ft th 150 hills; corm, 1 o melon, 1 oz. to 30 hi
another, together with the necessary fuel and water, without the aid of horses. An excellent view of this most aseful invention is preo sented in the cut.
Excelsior Axle Greaser-Tallow, 8 lbs. ; palin oil, 10 lbs. ; plume bago, 1 lb .; heat and mix well.
Pyoughing Table.-Showing thei distance tratellem by a Horse in Plowing an Acre of Land; and the quantity of Land Cultivated per Day, Computed at ther rate of 10 and 18 Mnes per day of 9 Hours.

B'atis or Furtow alice.	space travel- Ing an Acre.	Extent Ploughed per Day.		$\begin{aligned} & \begin{array}{l} \text { Byth of } \\ \text { Furrow } \\ \text { alice. } \end{array} \end{aligned}$	Space travelled in Ploughing an Acre.	Extent Ploughed per Day.	
Inches.	Milces.	18 ariles.	16 Miles	Inches.	Mifices.	18 Miles.	16 Nilea.
7	14 1-2	$11-4$	$11-8$	12	7	2 1-2	2 1-4
8	12 1-2	11 1-2	$11-4$	15	$61-2$	$23-4$	2 2-5
9	11	13 3-5	1 1-2	16	61 1-6	2 9-10	$23-5$
10	9-10	145	$13-5$	17	5 3-4	$3.1-10$	$23-4$
11	9		13 -4	18	$51-2$	$31-4$	2 9-10
12		$21-5$	19016	19	$51-4$	3 1-2	3 1-10
13	71 -2	21.3	2 1-11	20	$49-10$	$31-5$	$31-4$

Rapid Role to Reckon Cost of Hay, Coal, \&oc.-Multiply the number of pounds by half the price per ton, and remove the decimal point three places to the left. Example: What is the cost of 764 lb. of coal at $\$ 14$ per ton $?$ Ans. : $\$ 5.348$.

Process:

$$
14 \div 2=\frac{764}{7}
$$

To Mrasure Grann.-RuLe.-Level the grain; ascertain the space it occuples in cubic feet; multiply the number of cubic feet by 8 , and point off one place to the left.
Example: A box level full of grain 20 ft . long, 10 ft . wide, and 5 ft . deep, how many bushels dues the box contain? Ans.: 800 bushela.

> Process: $\quad 20 \times 10 \times 5=1000 \times 8 \div 10=800$ Or, $\quad \cdots \quad 1000 \mathrm{ft}$

8

800.0

Nite.-Correctness requires the addition to every 300 bushels of i extra bushel.

Quantity of Seed reguired for a Given Number of IIlles or hengriz of Drinc.-Asparngus, 1 oz . to 60 feet drill; beet, 1 oz . to 50 ft . drill; carrot, 1 oz . to 180 ft . drill; endive, 1 oz . to 150 ft . drill; onion, 1 oz. to 100 ft drill; parsley, 1 oz. to 150 ft . drill; parsilp, 1 oz. to 200 ft . drill; radish 1 oz . to 100 ft . drill; spinach, 1 oz . to 100 ft . drill, turnip, 1 oz. to 150 ft drill; peas, 1 qt . to 100 ft drill; dwarf bears, 1 qt . to 150 hills; corm, 1 gt . to 200 hills; cucumber, 1 oz . to 50 hills; watermelon, 1 oz . to 30 hills; muskmelon, 1 oz . to $60 \mathrm{hills} ;$ pumpkin, 1 oz . to

40 hills; eariy squash. 1 oz . to 50 hills; marrow squash, L cz. to 16 hills cabbage, 1 oz . to 3000 plants; cauliflower, 1 oz. to 3000 plants; celery, 1 oz to 4000 plauts; egg plant, 1 oz . to 2000 plants; lettuce, 1 oz to 4000 plants, pepper, 1 oz . to 2000 plants; tomato, 1 oz . to 2000 plants.

Quantity of Seed required per Acre, and Actual weiait of each to the Bushel. -Wheat, broadcast, 13 to 2 bushels; ditto, in drills, $1 \frac{1}{2}$ bushels, weight per bushel, 60 llis; rye, broadcaet, 1 I bushels, weight 56 libs. ; oats, broadcast, 2 bushels, weight 33 lbs.; timothy, broadcast, 2 gals., 45 lbs. per bushel; red clover, broadcast, 3 to 4 gals., 60 lbs. per bushel; white clover, luroadcast, 8 lbs., 50 lbs. per bushel; lucerne, broadcast, $10 \mathrm{lbs} ., 54$ lbs. per bushel; herd or red top, broadcast, 1 to $1 \frac{1}{2}$ bushels, 14 lbs. per bushel; bluegrass, broadcast, 1 to $1 \frac{1}{2}$ bushels, 14 libs. per bushel; millet, broadcast, $\frac{8}{7}$ to 1 bushel, 45 lbs . per bushel; Hungarian, broadcast, $\frac{8}{4}$ to 1 bushel, 50 lbs. per bushel; com in hills, 1 to 12 gals., 56 lbs. per bushel; tur nips and ruta baga, 1 lb ., 50 lbs. per buskel; onion sets, 28 lbs . per bushel.
Tine Vitality of Seeds may be tested by placing almost any of the larger seeds or grains on a hot pan or griddle; when the vitality is perfect the grain will pop, or crack open with more or less noise. Where the vitality is defective, or lost, it remains immovable in the vossel. A celebrated botanist's recipe for improving and fertilizing all kinds of seed, consists in the preparation of a solution of lime, nitre, and pigeon's dung in water, and therein stecping the seed. Tested on whent, the produce of some of these grains was reported at C0, 70 and 80 stems, many of the ears 5 inches long, and 50 corns each, and none less than 40 . The same botanist (Millar) produced 500 plants from 1 grain, and 576,840 grains, weighing 47 lbs. Grains of wheat in different countries yield from 6, 10, 16, and even 30 to 1: Cape wheat 80 to 1 . liarley yields from 50 to 120 . Oats increase from 100 to 1000 . Wheat and millet seed germinate in one day, barley in 7, cabbage in 10, almond and chestnut and peaches require 12 months, and rose and filbert 24 . A field of whent buried under an avalanche for 25 years, proceeded on its growth, \&c., as soon as the suow had melted. A bulbous root found in the hand of a mummy, above 2000 yenrs old, lately produced a plant. Potatoes planted below 3 feet do not vegetate; at $\frac{1}{2}$ foot they grow quickest, and at 2, are retarded 2 or 3 months.
Conipound for Reviving Exhausted Orchards.-Sulphate of potash, 30 lbs ; sulphate of magnesia, 15 lbs . ; salt, 35 lbs ; plaster of Paris, 15 lbs. ; chloride of magnesia, 5 lbs. All to be well powdered and mingled with barn manure, and then dug in around the roots at the rate of 10 to 20 lbs . to a tree. This compound is assumed to restore those elements to the soil of which it hats been exhausted during many years of fruit bearing, and the secret has been sold to hundredis ut extortionate prices.

Aizfificial Manure.-The composition of Dr. Jeannel's artificial manure for pot plants, as detailed to the Central Horticultaral Society of France, is as follows:-Nitrate of ammonia, 400 grammem (a gramme $=15$ grains); phosphate of ammonia, 200 grammes; nitrate of potash, 200 grammes; hydrochlorate of aminonia, 50 grammes; sulphate of lime, 60 grammes; and sulphate of iron, 40 grammes. One gramme or 15 grains of this mixture is dissolved in a litre of water, and used once or twice a week.

Equivalent 1 lb . guavo equ: 21 horse, 14 hu
Sehd Oats. threshing floor . barn. Take a co the wind, towar ence will enable circlo at a near which fall farth together as fast
Sied Wheat seeds of weeds, 1 or suitable fanni liest ripened kerI and then dustit tive.
To Produce t when the trees st sential elements a wood ashes at the renewal of the pi ments, viz., 40 pe check the cracking trees and vegetabj is a most powerfu soot and sweet mil
SALT AND ITS U life as it is co anim at the rate of 2 cy results on all kind acity shown by ani To Kill the 1 poor flour or fine w binches in diamete handle in the centr the reception of ti which to sift the co and bore a hole in and fit a plug to se hills while the vine The Striped Bug By sifting charcoal 2nd. Use a solution and sprinkle the pl Place any old rags i refuge and spin in t ligg water. Caterpill potaraium, sprinkle - Make a very strc standing 48 hours i On the appearance hand-forcing pump, otroy all fallen fruit.

Equivalent Fertilizina Properties of Various Manurms.1 lb . guave equals 38 lbs . cow manure, 33 farm yard do., 22 swine do. 21 horse, 14 human.
Seed Oats.- Place your oats in a heap at the leeward end of the threshing floor on a day when a gentle breeze is blowing through the Larn. Take a common. wooden flour-sconp and throw the oats against the wind, towards the other end of the floor. A few minutes' experience will enable you to throw them so that they will fall in a semfcircle at a nearly uniform distance from where you stand, the oats which fall farthest are the best for seed, and are to be carefully swept together as fast as they accumulate in sufficient quantities.
SEED Wheat should not only be thoroughly cleaned from the seeds of weeds, but small grains should be taken out with a separator or suitable fanning mill, leaving only the largest, plumpest, and earliest ripened kernels. To prevent smut, soak the seed whent in brire, and then dustit with unslacked lime; this will prove a perfect preventive.
To Produce the Pear in Pemfection.-Pears are liable to crack when the trees stand in soil deficient in lime and potash. These essential elements are restored to exhausted soil by the application of wood ashes at the rate of 400 bushels to the acre, which ensures the renewal of the proper proportions necessary to supply the requirements, viz., 40 per cent. of potash and 30 yer cent. of lime. This will check the cracking of the fruit. Tested. Applied to the roots of the trees and vegetables, 12 qts. of soot milxed with 1 hogshead of water, is a most powerful stimulant of growth and production. A paint of soot and sweet milk applied to fruit trees will keep rabbits off.
Salt AND ITs Uses.-Salt appears to be as necessary for 'vegetable life as it is in animal life. Applied in combination with other manures at the rate of 2 cwt . to the acre, it never fails to produce wonderful results on all kinds of grain and vegetable productions, and the voracity shown by animals for salted hay is well known.
To Kill the Potato Bug.-Mix 1 lb . Paris green with 10 lbs. poor flour or fine whiting. To use, take a circular piece of wood 4 or 5 inches in diameter (it may be cutout of a 2 inch plank), insert a mop handle in the centre, tack on an old tin can with one end removed for the reception of the block, punch the other end with holes throngh which to sift the compound on the hills as you pass along the rows, and bore a hole in the wooden end for the reception of the mixture, and fit a plug to secure it. The compound should be sifted on the hills while the vines are wet with dew or raln.

The Striped Bug on Cucumbers and Melons may be destroyed, 1st, By sifting charcoal dust over the plants 3 or 4 times in succession. 2ad. Use a solution of 1 peck of henhouse manure to $1 \frac{1}{2}$ gals. water, and sprinkle the plants freely with it after sunset, C'hinch-bugs.Place any old rags in the crotches of the trees. The worms will take refuge and spin in the old rugs, when the latter may bo thrown in boiling water. Caterpillars.-Use a solution of 1 part in 500 of sulphide of potasaium, sprinkle on the tree by means of a hand syringe. Curculio. - Make a very strong solution of water and gas tar, so that after otanding 48 hours it will be powerfuland dark colored like creosote On the appearance of the curculio, drench the tree 'horoughly with a hand-forcing pump, repeating it every 3 days for 2 weeks, and de atroy all fallen fruit.

To Relieve Choked Cattle.-In choking, the accumulation of gas (chiefly sulphuretted hydrogen) is the cause of the animal's death. This gas can be decomposed by forcing a stroug solution of salt and water down the animal's throat ; or, force the beast to jump over the bars of a gate or fence. When she touches the ground os the opposite side, the obstruction will be ejected. Another way is to use four or five feet of 怒-inch rubber hose, and push the obstruction down.

Farrow Cows.- Feed them liberally, and they will give rich milk, though perhaps but little of it. Let them have three or four quarts of meal per day through the winter and spring, and do not stop giving it when the grass comes. As soon as it dries them up, they will be fit for the butcher.

To Cook Food for Cattle.-To Cook Hay.-Cut it, wet it well, put it in an upright tank or cask, with a false bottom and tight cover, press it down firmly, and pass tho steam in under the false cover. To Cook Corm.-Soak as many barrels, half full, as you wish to cook from 15 to 24 hours ; turn on steam and cook until done, and the barrels will be full. To Make Mush.-Fill as many barrels, half full of water, as you wish to make barrels of mush; bring the water nearly to a boil by passing the steam to the bottom; stir into each barrel from $1 \frac{1}{3}$ to $1 \frac{8}{4}$ bushels of meal until well mixed; then cook until done, when the barrels should be full. To Cook Vegetables.Fill the barrels full, and, if no other cover is at hand, chop the top fius with a shovel; then cover them up with meal or provender, and cook until done; have holes in the bottom of the barrels to carry co condensed steam.

To Famern Sheer.-Sheep will fatten readily on good clover-hay alone, if the hay has been cut in full bloom, so as to retain all its juices before they are turned into woody fibre, and of a good green color. A sheep of, say 120 lbs . live-weight, will consume 21 lbs . of clover-hay per week, and increase in weight 2 lbs. Allowing that it would ordinarily take 14 libs, to keep it in good stationary condition, an expenditure of 7 lbs . of hay extra, will produce $1 \frac{1}{2} \mathrm{lbs}$. of mutton, worth in the spring 10 cents, - perhaps more, - so that the hay is literally realizing to the farmer at the rate of $\$ 30$ or more to the ton. No other stock, we think, will give a return for the trouble of fattening like this. To fatten sheep more rapidly, the daily addition of a small quantity of oats to their feed will produce good effects. Keep their quarters dry, well-ventilated, and abundantly littered with clean straw, with freedom of access to good water, and an occasional taste of salt. The health of sheep during the grazing season will be promoted by giving the shcep tar at the rate of a gill a day for every 20 sheep; and, if given piue boughs once or twice a week, they will create appetite, prevent disease, and lncrease their health. The best sheep to keep, both for wool and mutton, is the American Merino.

Hay Racks for Sheer.-The cheapest and best rack for sheep can bo made of 8 boards, 4 long and 4 short ones, nailed to 4 posts, forming an enclosure 12 or more feet long, as the case may be, and 32 inches wide. The bottom board should be at least 10 inches wide, and the top one need not be over 4, with a space between of from 6 to 8 inches, depending eomewhat, upon the slze of the sheep that are to eat, with their heads through this aperture.
buzz-saw, 3 inchos tacked on the sides to leave än $\frac{1}{10}$. ral ished by nailing an the clamp above.
on the inside, acros extend down the ed to fit. The clamp i and the $1 \frac{1}{8}$ in. fly ho
above it.
The stationary sid ins. long and 15 ins.

Construction of Bee Hives. Few departments of economy and use are more productive of utility, profit, and real pleasure than the intelligent management of the honey bee, but perhaps no other subject is less understood by the enormous masses of the vast population who in every grade of society, might be benefited by a correct knowledge of the subject. In order to manage bees with profit it is necessary to discard the old method of suffocation with sulphur, the old barrels, hollow logs, straw hives, boxes, \&c., of the past, and keep abreast with the new discoveries of the age. All that is required for success is to plan well, and always work in harmony with, and never against, the heaven derived instincts which guide tho marvellous operation of this wonderful insect. Forcmost among the appliances which benefit man and facilitate the labors of the bees we would mention tho American Movablo Comb Hive, cuts of which are presented herewith.

Directions for making the American Hive. -The bottom board is 134 inches wide, 18 inches long and 14 inches thíck. The frunt and back are 144 inches wide and $19 \frac{1}{2}$ inclies long. The 8×10 observation door in the back, is cut out with a buzz-saw, 3 inches from the bottom, and thin strips $\frac{3}{4}$ in. wide are tacked on the sides and top of the opening even with the outer edgo to leave an 1 in . rabbet on the insido for the glass. The door is finished by nailing an inch clamp on end and side, beveled and hung to the clamp above. Both front and back have a rabbet for the frames on the inside, across the top $4 \frac{1}{\mathrm{in}}$. wide and $\frac{\pi}{8} \mathrm{in}$. deep, and the same extend down the edge $\frac{1}{4} \mathrm{in}$. wide, against which the moveable sido is to fit. The clamp is nailed on the front $7 \frac{1}{\mathrm{in}} \mathrm{in}$. up from the !ottom, and the $1 \frac{1}{\mathrm{~s}} \mathrm{in}$. fly holes are bored 3 ins . from centro to centro just above it.

The stationary side with the 14 in . clamp on the upper end is $19 \frac{1}{3}$ ins. long and 15 ins. wide. A part of the front is cut off 3 ins. from
the bottom, to within 1 gin . of the edge next to the movable sido, and the last surface is left beveling out to make the entrance block C, easy of removal, which is $12{ }^{3}$ ins. long, to the bevcled point, and 2 ins. wide, and beveled each side and between the $1 \frac{13}{}$ pillars, $1 \frac{1}{4}$ ins. upon the outside, and $\frac{s i n}{3} \mathrm{in}$. upon the inside, and the edges rounded off to leave a beepassage $\frac{3}{8}$ of an in . high. - (See entrance blockin the first cut.)
The block is held in place by the base of the same button that holds the entrance slide, 13 . The entrance slide B is 18 ins. wide, 15 ins. long, and $\frac{\pi}{f}$ in. thick, having 2 notches $\frac{3}{8}$ in. high and 1 in . long, cut to fit the pillars, C , when closing the hive.
Λ movable side to fit over the open part of the hive, (as shown wide open in cut) secured by clamps, is 164 ins. long, and 14 ins. wide at the top and $\frac{1}{8}$ less at the bottom to make it easy to remove.

Before nalling the body of the hive together, nail a clamp 3 ins. side and 123 ins. long on the under side of the bottom board, crosswise to prevent it from warping. Uso wrought nails and drive them through upon a heavy iron to clinch them, and nail the clamps on the front and back in the same manncr. Fasten the bottom board in a vice and nail the back on the bevelied end just even with tho Jower part of the observation door, and use two or three, long brad nails near the edge next to the moveable side. Next nail on the stationary side firmly to the back and bottom board, especially at the front edge, then to the front having the movable side in place. Nail the clamp on the upper end of the stationary side, nailing through tho ends into the front and back. Next, nail the strip under th:o bottom board next the moveable side, which is 14 ins. long by 21 ins. wide at tho back end, aud runs to a point at the other end. Nail tho $1 \frac{1}{8} \mathrm{in}$. clamps on the ends of the movable side, when the two hooks and metallic buttons are screwed on the edge of the front and back after painting. When finished the movable side is $\frac{1}{4}$ in. shorter than the front and back, to avoid killing bees that may be on the stand when closing the hive. The adjustablo bevelled strips rest upon the frame rabbets next the stationary side and holds the frames over against the movable side. -.

- There are nine of the movable comb frames, and all are made alike. The bees pass up into the honey boxes through slots or mortises. Each of the tivo slots in the projecting edge of tho top bars, 13 $\frac{1}{3} \mathrm{in}$. wide and 2 ins. long. The side bars are 7 -16th of an inch thick, 12 in. long and $\frac{7}{8}$ wide being sawed from lumber that thickness. The top bars lack $\frac{1}{\text { in }}$. of 14 in . in length, and lack $1-1 G$ th of an inch of 13 ins . in width.- Thoy are sawed 7-I6th of an inch thick from a plank which should be exactly the right thickness for their width.
WThe Improved Comb Guide, which the bees invariably follow, is constructed in a manner that secures straight combs. A groovo is made in the centre of the lower side of the top bar, into which is inserted a thin strip of wood having its lower edge coated with beeswax. *The projecting nalls in tho side bars to keep the frames apart should have large heads and be driven through a hole in an iron or hard piece of wood, $9-16$ th of an inch thick. Tho frames areheld from the walls of the hive by a triangular strip across the front, $5-16$ th inthick, and the one on the back is not nailed on until the glass isin, when It is dressed to give tho frames $\frac{1}{8}$ in. piay between the trian? gular strips.

Tho tops a and about $\frac{1}{8} i$ bottoms of al four corner p 5 and side gla strip of tin th way over the The end pie and 109 ins. w wire cloth or. the upper edg

The roof bo: upper edge be A $1 \frac{1}{2}$ inch hall In painting, and paint thes the live hangis from the floor, small round wi buttons, giving closely.

By consalting reader will find paints of every admirably adap pensive stylc.
The lumber y sides aro dressed In the cut, the b convenient aligh bees daring the C, a large openin carly spring, and slido, B. held in tracted, if necess ly guarding a w closed entirely by tho pillars. By at the back of the ney, obscrving pr Treak stocls, trans tating the bees, a added at will. N Another hive of another, the $A \mathrm{me}$ Climax is made in boxes (or frame) on cleats, secured far enough beyon lower without cry the labors of the b at their outer ends and when not in u board of tho unpe

Tho tops and bottons of the 12 small honey boxes are $4 \frac{1}{8} \times 6.1$ ins. and about $\frac{1}{8}$ in. thick. A slot $1 \frac{1}{2} \times 3$ ins. is cat across tho tops and bottoms of all except the tops of six of the first set of boxes. The four corner posts aro $\$ \mathrm{in}$. square and 5 ins. long. The end glass $4 x$ 5 and side glass 5×0 ins. are held in place by in two prong narrow strip of tin through the corner of the posts and the prongs bent each way over the glass.
The end pieces of the caps are $15 \neq$ ins long, $8 \$$ ins. wide at theends and 103 ins. wide in the centre, each having a 11 in . hole, covered with wire cloth on the inside. The side pieces are 17 ins. long and 81 wide tho upper edge sawed beveling to fit the roof boards.
The roof boards are 20.4 ins. long; and each 11 ins. wide, with the upper edge beveled to fit, and the lower edge levelcd to ctand plumb. A $1 \frac{1}{d}$ inch half round is nailed on the top to cover the joint.
In painting, give the hives one coat of white and when dry, putty and paint the second coat ; and while the paint is fresh, cloud, with the live hanging upon a board projecting from the shop wall, 6 feet from the floor, by passing beseath it a lighted coal oil lamp with a small round wicls. When the paint is dry serow on the hooks and buttons, giving each a tap that it may fit the movable side more closely.
By consulting tho Painters Department, beginning at page 152, the rcader will fiud an immense number of formula for compounding paints of every description at the lowest cost. Many of these will bo admirably adapted for painting bee-hives in a beautiful and incxpensive style.

The lumber used should be thoronghly seasoned, and, after both sides aro dressed, it should be, for the body of tho hive, 䂞 in. thick. In the cut, the bottom board, projects in front of tho hive, malking a convenient alighting board, and being inclined, is kept clean by tho bees during the working season, By removing the entrauco block, C, a large opening is made for brushing out litter in tho winter or carly spring, and for hiving new swarms. By tho use of the small slido, B. held in place by the same button, the entrance can be contracted, if necessary, to the admission of a single bee, thus effectually guarding a weak swarm from robbery, and the entranco may bo closed entirely by making notches d, d, in the slide correspond with the pillars. By means of the movable side and the observation door at the back of the hive every facility is furnished for obtaining honey, obscrving progress, removing or adding frames to strengthen weak stock, transferring, \&c., \&c., without injuring the combs or irritating the bees, and the honey boxes on tho top may be removed or added at will.

* Another hive of intrinsic excellence is called tho Climax, and still another, the American, with Climax improvements, see cuts. The Climax is made in two parts. The upper part, which contains the boxes (or frame) is prorided with common trank rollers, and rests on cleats, secured to the lower parts of the hivo. These clents extend far enough beyond the hive to allow the upper to roll off from the lower without crushing, disturbing or in any way interfering with the labors of the bees. The strips forming the track, havo drop legs at their outer ends, and aro hinged just outsido tho body of tho hivo, and when not in use, fold up snugly against the hivo. The bottom board of tho upycr part answers overy perpose of a honcy becrd.

It is provided with two siots to admit the bees ; each slot is provided with a zine strip on the under-side, comnected by a wire with a han-

THE CLIMAX BEE HIVE

AMERICAN BEE HIVE WITH CLIMAX IMPROVEMEXT.
dle on the ontside. By this simple contrivance, all commanication between the two parts of the hive may be instantly cut off, and dividing or any other operation performed without difficulty.

The bottom board of the lower part is made of plank 14 ins. thick; and is beveled from the centre to each end, and projects far enough in front and rear to form alighting boards. Aiong the summit of the bottom board is nailed a triangular strip notched on the npper edge. Corresponding notches are made in the centre of the lower cdges of the bottom bars of the frames. Then notches are cut bevelling, so that the frames are easily inserted or withdrawn, bat when in place, aro immovable, and will not shake or jostle, no matter how the hive is turned. Then there is a central rest for the frames, which renders them entirely independent of each other, and of the walls of the hive. The well known propensity of bees to glve every thing to-
gether that the same time a fr frames, is affo sides, and tho removing the el surplus honey is and 2 ins. wide and sides close each end. A st each side and tul place. Twelve fr top, and another the best shape fo being less than h Another impor the Honey Extra chine made of

interior arrangement the comb and honey od by the rapid rotar.
 te honey, is then retu his operation may be theen years, if require

ON BEE REEPING.

gether that they can is thus anticipated and prevented, while at the frames, is afford passage all around, between, above and below the sides, and the lottom boe lower part has two eutrances on opposite removing the entrance block, cinting each way is easily kept clean. By surplus honey in the comb, twentyplete ventilation is effected, and for and 2 ins. wide are used. Six of these frames rumesabove, each 6×6 and sides close fitting, and a pane of glass are placed together, top each end. A strip of tough paper, about 2 ins 56 inches, placed at place. Twe and turned around on the glass, which wide, is then glued to top, and eive frames thus mado into two which holds them firmly in the best shother tier, above this, furnish room foxes, just cover the being less thane for market or home use, the co for 50 lbs of honey, in Another important that of the common glass boxes the Honey Frportant auxiliary to the apicultures. chino made of chine made of metal, or other suitabith. This is a geared ma-

honey extractors.
the comb and honey from the ving the movable frames containing
al by the rapid rotary motion of y motion of the frame causes the honey to fly

every direction against the in
own into the vessel beneath inner side of the machine, and flow honey, is then returned to the frame and perfect comb, minne his operation may be repeated with the be again filled with honey. teen years, if required and the value of the comb for twelve os 5
gined when it is known that cach pound of tie comb, so far as the labor of the bees is concerned, is equivalent or equal to the collection of twenty pounds of honey. The knife represented herewith is used for uncapping honey for extracting.

As the itility of the preceding remarks will be greatly enhanced by addituual informatlon regarding bees, we herewith append the folluwing excellent representations of the tenants of the hive, together with practical instructions for profitable management.

The Italian bees are becoming great favorites wherover they have been introduced, and are rapidly supplanting tho black bees. They are credited with being very industrious workers, making three flights for every two made by the black bees, and storing much more than double the houey, besides being moro prolific, as is evideuced by their more frequent swarmiug. Besides, the Italian bee is very hardy, working earlier and later in the season and gathering honey from sources not frequented by the common bee.
Userul Hints for Beginners.-1. Work quietly; svoid sudden jars; never fight your bees, and always keep cool. 2. If you get stung, remove the sting, squeeze ont all the poison you can, and apply hartshorm. 3. Use plenty of smoke; a roll of dry rags or decayed wood makes the best ; blow in the entrance and at the top ot frames. If you are timid, use rubber gloves on your hands, and, a veil over the face and head; the veil must be long enough to allow the vest or coat to be put on over it. 4. When pasture first become plenty in the spring is a good time to transfer bees. Always wor among the hives during the middle of the day, when the bees ar busy. 5. Stocks without eggs or young brood in Junc, must b queenless and should be supplied with a queen or queen cell, or the will dwindlo away and perish either by roblers or moth. 6 . Whe symptoms of robbing occur, use the utmost caution. Contract th cntrance of weak hives, and allow no comb, honey, sugar or syru to be around. Avoid opening hives as much as possible. 7. Av 14 excess of drone comb by the presence of a queen in swar combs are to be constructed. As swarms having young q dom swarm that year, less drone comb is built in swarm
young queens. 8. Quiet is essentially necessary to the well-i ing an apiary. Do not place it near Mills, Steam Works, or Manuf tories of any kind. If possible have it in ricw from the windows
the family natural talen in business, with an unde kceping. . 10. the lower par When they are or two boxes a ring' combs al

brood. Put brood which they were in bers cannot possibly gather but littlo hon tion by robbere, the shonld always be m_{2} dividing early in the ning about the entra that hli men entray ling each other, ald receive atter, fossible have the so nd the have unning alar as a clocls-for nd lay or nail on a a
tho family room, ns much extra troublo may bo nooided. 9. As natural talent or busloess tact, is requisite, with education to success in business, so a careful turn of mind and a love for the business, with an understanding of the subjoct, is necessary to success in beckeeping. 10. Put on honey boxes paitly filled with comb as soon as the lower part of the hive is well filied with honey and bees, and when they are gathering icmey plentifully; commence with only one or two boxes at a time ou the most populous stocks. 11. In transferring combs always give those tho preferenco that contain worker

DRONE AND WORIER COMRE.
brood. Put brood comb near the centre of the hive in tho order in which they were in the box hire. Do your transferring where robbers cannot possibly be attracted. 12. Avoid weak awarms, as they gather but littlo honey, hreed slowly, and are in danger of destruclion by robbers; the moth, or severity of winter. Weak swarms should always lie united in the fall, and should never be made by dividing early in the scason. 13. Whenever you notice the bees running about the entrance in the evening in a disturbed condition, mark that his 1 notice it the next evening. If the bees run about m lling each other, it is a sign they have lost their queen and uld receive attention. 14. In establishing an apiary, select a entle slope t the south-east; face the hives in the same direction, if rossible havo unning water near; shade and protection from wind nd the heat of the sun are important. Set every hive as perpendicular as a clock-for a stand, take two short pieces of 4×6 scantling nd lay or nail on a board. 10. To make queen cages, cut wire cloth

3x4 inches; pull out two or three transverso wires from one of the 3 inch edges, und insert tho projecting ends thus left in the corresponding meshes of the other three inch edge, and fasten them; stop one end with a cork or wood. When you wish to introduco a gueen, puther in the cage and stop the other end with wax. 16. Λ few inches of drono comb is amply abundant for any hive, as drones consume a great deal of honey and gather nove. The movable framo hive rendere any preventive operation very casy : tho cut will enable the beginner to identify the drone by the large cells. 17. In the Northern States and British Provinces, experiments demonstrated that bees wintered in the open air have consumed about 45 lbs, of honey per hive, while bees wintered in the cellar

COMB SHOWING BROOD AND QUEEN CELL.
during the same period cost umed on an arerage only 5 lbs each In another case 6 hives wintered out of doors lost an average of $29 \frac{1}{2} \mathrm{lbs}$, in weight each, during 3 months, while 20 hives in the cellar lost only $5^{3} \mathrm{lbs}$, each, during the same time. Do not place them in tho cellar until the severe weather begins; glve them pienty of upward ventilation in order to pass off the vapor senerated frum the bees; place the lives in rows on shelves, keep then in a clean dark place,
but not in a dan to bees, and kee if a dry absorbe placed in the up ficathy emanatic especially, this is it absorbs the eff shonld always be and extra protect When eggs are d workers, in 3 day and fed, until ab are sealed up in t bee emerges in fro In 21 days from th and queencell but the royal form with to 5 days aifter emer the air, for fertiliz: except when she go to ensuro fertility deposit 3000 eggs p colony of conimon the cage in the cen In 36 hours release to crawl down amo a good and cheap fc 4 lbs, added to wate 22. Another. Take measure, to one part ere: y quart of the m tartar ; dissolve the cupty comb with the syrup to drain thro return the frames to or a dish of propers fill the dish with the to prevent the bees bee bread or natural rye, use other flour. in which bees are be
stove pipe by means 25. In hiving bees, us inside of your hive a will render them so h
Surplus Honey common hives, and n will obtais che greate atterdiys to the follo and lige, but not ov the sinanges of the we Induced to commenc combs to the under si
but not in a damp or badly ventilated cellar, for that is certain death to bees, and keep wire cloth ticked over the entranco to each hive; if a dry absorbent material such as cut straw or shavings, can be placed in the upper part of tho hive to receive and absorb tho unficathy emanations from the bees, all the better; in out door wintering especially, this is a most desirable plan, as it retains the heat while it absorbs the eftluvia. 18. Bees wintered on their summer stands should always be allowed from 30 to 50 lbs , of honey to each colony and extra protection around the hive if the cold is very intense. 19. When eggs are deposited by the queen in the cells prepared by the workers, in 3 days they hatch into small worms which are mutured and fed, until about the eighth day the larvo become ny mplis, and are sealed up in their cells to reappear as perfect bees. The queen bee emerges in from 10 to 17 days, the drone in 24 , and the workere in 21 days from the egg. The cut illustrates a comb showing brood and queenicell but the artist has not succecded very well in representing the royal form with which nature has endowed her majesty. In from3 to 5 days after emerging, the queen leaves the hive to meet the drones in the air, for fertilization. She never leaves the hive at any other times except when she goes with aswarm, and one copulation is all suffcient to ensure fertility for life. Under favorable circumstances she will deposit 3000 eggs per day. 20. In introducing an Italian queen to a colony of conimon bees, enclose her in a wire cloth cage and insert the cage in the centre of a comb where the becs will eluster upon it. In 36 hours release the queen, smear her with honey, and allow her to crawl down among the bees. 21. When bees areshout of honey a good and cheap food may be provided hy using good coffee sugar, 4 lbs , added to water, 1 qt ., bring to a boil, skim and allow it to cool. 22. Another. Take of the best ouality of brown sugar, two parts by measure, to one part of pure soft water ; boil and skim it ; then to eve: y quart of the mixture, add one even teaspoonful of the best crean tartar ; dissolve the cream tartar before putting it in. Remeve the empty comb with the frame from the hive fill them by allowing the syrup to drain through a proper strainer into the cells, and then return the frames to the hive. With box hives, use come good feeder or a dish of proper size to set under the cap on the top of the hive ; fill the dish with the syrup, and throw on fine shavings or cut straw, to prevent the bees from falling into it. 23. The lest substitute for bee bread or natural pollen is rye flour unbolted. In the absence of ryc, use other flour. 24. The damp air may be drawn from a cellar in which bees are being wintered by comecting the cellar and your stove pipe by means of a 2 inch tin pipe passing up through the floor. 25. In hiving bees, use diluted honey or white sugar syrup, damp the inside of your hive and gently sprinkle the bees with the liquid; it will render them so happy that you may handle them as you please.
Surplus Honey Stomed in Boxfs. -"Tlicfe having bees in common hlves, and who wish their surplus honey etored in boxes,
will obtais die greatest amount and avoid many disappointments by will obtaia ille greatest amount and avoid many disappointments by
attendry to the following conditions : 1. The boxes should be tight and rge , but not over four or five inches high, and protected from the shanges of the weather by an outer cap. ?. The bees should be induced to commence in them by attaching, r.ces of clean empty combs to the under side of the top, and placing the boxes directly
over the breeding apartment, with large openings under each box to admit the bees. 3. Early in the season select a few populous stocks, giving a box to each, and when the bees have commenced in them, give boxes to the next strongest, being careful not to give too much room until a start has been made. 4. Keep the hives cool by shading from the sun, and if the bees cluster outside, when flowers are plenty, ventilate by cularging the entrances and giving more room in the boxes if needed. After a populous stock lias nearly filled itz boxes it will often take long enough time to finish them, to have half filled empty ones, besides the difficulty so often experienced in getting the bees to commence in the boxes after those first filled aro removed, which objections are both overcome in the American hive, described in the article on hives." Dee-Keepers' Text $1300 k$.
Hatciing and Fertilization of Queens.-"In about eight days after the old queen leaves with the first swarm, the most advanced sealed queen is ready to emerge. During this time the old stock is without a hatched queen, the young queen immediately upon leaving her cell, if not restrained by the workers, commences the work of destruction upon her yet imprisoned sisters. Sho accomplishes this loy biting open the side of each cell near its base, and dispatching tho unfortunate inmate with her sting. She is yet incompetent for tho maternal duty, and must leave the hive to meet the drones in the air for the purpose of fertilization. This once accomplished, the workers, awaiting her safo return, greet her with a reverence and affection never shown before. They hasten to prepare the cells to receivo her tiny eggs, and seem to realize that on her existence the perpetuation of the family depends. There is also a perceptible change in tho queen's form, her abdomen being a little swollen and somowhat lengthened, but not as much as at tho height of the breeding seatson. She now remains the fruitful mother of the prosperous and happy colony." Bee-Keepers' Text Book.
To Prevent new Swarms from leaytna their Hives. "Natural swarms occasionaily refuse to stay after laving been hived, usually in consequence of heat or strong odor about the hive. In nucleus swarining this seldom or never happens, because the bees are never without a comb containing brood and honey ; and they will not leave voluntarily. Therefore when hiving a swarm in a moveable comb hive, go to any stock that can spare a comb containing brood and honoy. Brush back the bees, being careful not to remove the queen or any queen-cells with eomb, and place it in the hive that is to receive the new swarm. It will not only prevent the bees from decamping but will greatly encourage them, and should bad weather confine them to the hive they will be secure from starvation. If the swarin is put in a common hive, place over them a box of honey taken from the purent stock." Bee-Keepers' Text Book.
The Nucleus Systear of Swarming.-" The introduction of a mature fertile queen to a colony two weeks sooner than when they sto:rm naturally is an advantaqe sufficient to pay for the extra troubic. The time gained in breeding is equivalent to a swarm. M. Quinby.
In swarming bees on this system, we first rear a queen in a small cluster nuchius of vees, allowing the nucleus hive to remain in its jlace until the gueen beromes fertile, when wo swarm the bees by
simply causin swarning, the go on scarcely law, that bees, exact spot of t other populous trance and ope ped brood, but looking this ov with its adherin containing houe

swarm. Besides, the now wait until the t was formed, when w out all the queen-ce
 hive. In transferrin press or dent them, o fear of destroying th move but one at a tim to its place in the hiv tion. When practicab to the cell, and upon make an opening a sure to cluster upo sert it ns shown in in the fard, nuxcleus cell from it, and add a
simply causing the two hives to exchange places. Unlike natural go on scarcely interrueen remains in the parent stock and its labors law, that bees, after lued. The system is based upon the well known exact spot of their old habitation. upon the flowers, will return to the other populous stock by blowing a ferm a nucleus from an Italian or trance and opening the hive ; select a fraiffs of smoke into the enped brood, but especially plenty of egrame ond comb containing caplooking this over carefully, lest the old quad young larva. After with its adhering bees in the empty hive, queen be removed, place it containing honey, which will afford protection toxt to it anothercomb
 for the bees will return to the many of the old bees nucletus hive at least a stock, give the and set it on a new a quart of bees rods distant. New stand two or threo that but one or two bees can entrance so same time, and set a feed pass at the frames, or a sponge filled pan on the ened water will supply the young bees go to ty their wants until location. In place of work in their new from the purent of the combs removed frames with a full one between emply frames aro put neer between. If the stock will incrense all the centre, the old queen will fill tho new come faster, as the fast as it is built. new comb with eggs as two combs stimnt. The removal of the activity by glving them bees to great and detaches just bees enough to work, their clustering id bees enough to prevent The nucleus will construct the entrance. and rear a queen as-well queen-cells swarm. Besides, the queen is casily found amon as well as a whole now wait until the tenth or eleventh dand among so few bees. Wo was formed, when we open it, and with cay, from the time the nucleus out all the queen-cells but one and uso therp thin bladed knife, cut taler nucleus, by attaching one of them to immediately in forming hive. In tran old stock, as before described, and pi comb and been press or denttlerring queen-cells great care must hed in an empty fear of destroyim, or expose them long to the hot on taken not to move but one at a the royal occupants. The begim or cool air for to its place in at a time, returning the frame froginners should retion. When the hive until the royal cell is adjum which it is taken to the cell, and upable have about an incin squared in its new locamake an, and upon taking the comb or brood from comb attached sure to cluster among the eggs and larvo wom the old stock, sert it as shown in it and keep it warm, were bees will bo If the first uucleus figure, leaving an open and carefully inin tho yard, and meus was formed from the only inaco below it. cell from it, and add ore queen-cells are wanted, remly Italian stock fromit, and add another comb of eggs and brood frovery queenparens
tock. Bur when no more qucen-cells are needed, leave one to hatch, and as by this time the brood will all be capped over, the bees will bo liable to follow the young queen on her excursions to meet the drones. To prevent this, exchange one of the combs for one containing eggs and young larvo. When forming the other nucleus, young queens will return unless lost by birds or other casualties, to which all queens are once exposed. Such loss is easily ascertained among so fow beos, and we have only to insert another queen-cell, adding a comb containing eggs and brood and repeat the trial. Should the parent stock be very populous it may be swarmed by taking a queen from the nucleus belonging to a less populous stock, and another queen reared there.

When and how to Swarm the Bees.-Every populons stock, from which a nucleus has been formed, should be swarmed, if the weather is farorable, as soon as the queen in the nurleus has become fertile. This is, usually, in from six to ten days aftei inserting the queen-cell, and is readily determined oy examining the combs for eggs. We now, unless the yield of honey is very abundant, confine the young queen in a gauze wire cage. Having flled up the nucleus hives with empty frames, exchange the places of the two hives, bringing the entrance of the nucleus hive where the old stock has stood, and where the mass of the old bees will return from the fields, thus throwing out of the old stock swarms of workers into the nuclens hive while the old bees from the nucleus will enter the old hive and minister to the wants of the numerous brood of the parent stock. The bees must not be swarm. ed between the hatching and the fertilization of the queen, and should they be swarmed when the houey harvest has received a check from a storm or drought, the bees thiss empty ot boney and consequently more quarrelsome, being suddenly thrown into the presence of a strange queen (although of the same scent) are inclined to sting her. To prevent this she is caged for thirty-six hours, when the bees from the old stock will mostly have joined the nucleus colony and she may be safely liberated. But, if she was taken from another nucleus, wo sometimes let her remain caged a day longer, or smear her well with warm honey, and drop her in among the bees. They immediately commence licking up the honey, and forget to sting her. If from any cause the stocks are swarmed when the bees are working but little, and after three or four days the nucleus swarm be foind deficient in bees, it may be atreugthened by exchanging some of its empty frames for frames of capped brood from the parent stock, or should the flowers yield bountifully within a week, the location of the two hives may again be exchanged. The bees will not quarrel as they are of the came scent. Unless a nucleus has been formed several weeks, or when honey is scarce, it is sometimes necessary to treat both stocks, especially the old one, to tobacco smoke. This precaution, however, is only for the inexperienced, since, in the midst of the swarming season, when the flowers are in profusion; little protection is needed either for the queen or the operator.

Hens Made to Proteor Bems.-A bee raiser has patented an invention for the protection of bees from the attacks of the honey moth, which enters the hives at night, and rifles the stores. The idea arose out of his familiarity with the daily routine, not of bees ouly, but of hens. Hens, he observed, retire to rest early; but bees seck repos Garlier still; no sooner are they sunk into slumber, than the moth steals into their abode and devours the produce of their toil. He has
now built a sta betake themse nipht. The he take their place to work, which the day dawns, of their weight to the bees in ti

Explanation op in various stages fro brood capped at e, commenced at from a cell from which th cells destroyed ; C moth or miller; F fe To Kill Bee Mot pan of grease ou w hives after dark : the When they wlil be de
Many persons are to thousands of dolla that the late Mr. Quit from this cource alon by bees compared wi ras but as 1 compare son, engaged in bee-la ern appliances for the
now built a stand of hives with a hen house connected. The bees first betake themselves to their dwelling and settle themselves for the night. The hens then come home to roost on their perch, and as they take their places upon jt, their weight sets some simple mechanicism to work, which at once shuts down the doors of all the hives. Whens the day dawns, however, the hens leave their roost, and the romovas of their weight from the perch raises the hive doors, and gives egreas to the bees in time for their morning's work.
1

Explanation of the above Cots.-The cnt A represents brood in various stages from eggs and larvo in the lower part of the comb to brood capped at e, and just emerging at f; n, is a queen-cell just commenced at from larvæ; b, a perfect queen-cell capped over; a, a cell from which the queen has just emerged. B represents queencells destroyed; C unimpregnated queen; D fertile queen; E male moth or miller; F female miller.
To Klle Bee Motris.-Bee moths can easily be killed by setting a pan of grease on which is placed a floating lighted wick, near the hives after dark: the light will attract the mothis in large numbers, When they will be destroyed by falling into the grease.
Many persons are deriving substantial yearly i:ncomes amounting to thousands of dollars from bee-keeping, and it is credibly reported that the late Mr. Quimby left property valued at $\$ 100,000$, all derived from this source alone. Mr. Quimby wrote that the honey gathered by bees compared with what was lost for the lack of bees to gather it, ras but as 1 compared with 1,000, so that it scems as if a careful person, engaged in bee-keeping, and thoronghly equipped with all modernappliances for the business, possesses, as old honest Sam Johnson
once expressed himself regarding a different subject, "The potentiality of growing rich beyond the dreams of avarico," and what is of still greater importance, the pleasure derived from the business is ab most ineffable in comparison with the satisfaction úf being rich.

Limited space forbids the further consideration of this attractive subject in this place, and the author would conclude ky expressing his sincere obligations to the editor of the "Bee-Keeper's Magazine" for according permission to make extracts from the varied conteuts of an excellent littie manual called the "Bee-Keeper's Text Book," and other reliable sources of information. For the benefit of parties desiring further light on this fascinating topic, he would state that the "Bee-Keeper's Magazine" will fill the entire bill of their requirements. It is a first rate illustrated monthly journal of 32 octavo pages, devoted exclusively to Bee-Culture, edited by Albert J. King, containing monthly contributions from Mrs. E. S. Tupper, and other eminent writers and bee-keepers in both Europe and America. A large space is devoted to Beginners, giving uselnl information, just when $i t$ is needed, throughout the year. Terms $\$ 1.50$ per year. The proprietors will send the Magazine four months on trial, and include a 64 page pamphlet (price 50 cents), containing a beautiful life-like chromo of Honey-Plants and Italian Bees in their natural colors; Prize Lssay by Mrs. Tupper ; Queen Rearing by M. Quimby; instructions for beginners, \&cc., all for 50 cents. Address, King \&'Slocum, 61 Hudson street, New York.

Food for Mocking Brrds.-Mix well together corn meal, pea meal (made by drying split peas in an oven and then grinding them in a mill), each one part, moss meal, prepared from the moss seed imported from Germany, $\frac{1}{2}$ part, add sufficient melted lard not to make it too fat or greasy, and sweeten with molasses.. Fry the mixture in a frying-pan for $\frac{1}{3}$ an hour, stirring it all the time, to avoid burning. Mocking, and other birds of like nature, will leave all other food for this.

FOR LUMBERMEN, BUILDERS, CONTRACTORS, MILL OWNERS, SHIP BUILDERS, SHIP OWNERS, NAVIGATORS, QUARRYMEN, STONE CUTTERS, MERCHANTS, AND BUSINESS MEN GENERALLY.

To Prevent wood from Crackina.-Place the wood in a bath of fused.paraffine heated to 212° Fahr. and allow it to remain as long as bubbles of air are given off. Then allow the paraffine to cool down to its point of congelation, and remove the wood and wipe off tho adhering wax : wood treated in this way is not likely to crack.

To Bend Wood.-Wood enclosed in a close chamber and subnitted to the action of stemm for a limited time will be rendered so pliant that it may be bent in almost any direction. The same process will also eliminate the sap from the wood and promote rapid seasouing.

Firic Ploofina for Wood.-Alum, 3 parts; greon vitriol, 1 part; make a strong hot solution with water, make anotice weak solution with green vitriol in which pipe clay has been mixed to the consistence of a paint. Apply two coats of the first, dry, and then finish with one coat of the last.

LUMI
Many of the hone erı States, Canada a stand the uses of th many a forest wand habitation as the coll by the substantial mo joyed under the hosp be, however numerot say they are not few il known or unknown, or pleasure, in the lut

LUMBERMAYS SHANTY OR CAMP.

Many of the honest farmers and sturdy lumbermen of the Northern States, Canada and New Brunswick, will be at no loss to understand the uses of the humble mansion represented in the cut, and many a forest wanderer and weary hunter will identlfy the modest habitation as the counterpart of another where ho has been refreshed by the substantial meal, and invigorated by the peaceful slumber enjoyed under the hospitable roof. However poor the lumberman mas be, however numerous his trials and privations, and we are sorry to say they are not few in number, this we will say, that whether you are known or unknown, rich or poor, whether you are bent on business or pleasure, in the lumber camp you are always made to feel at home;
the "best in the house" is at your service, and hospitality is dispensed with a princely generosity. Undor such circumstances it it wisdom to accept and folly to refuse the proffered beneficence, and many can attest that they have enjoyed these kind offices to exhausted humanity with a relish (thanks to the pure oxygen so bountifully supplied to their lunge by a forest atmosphere), known to but few in the dwellings of the wealthy, or in the sumptuous and costly hotel of the crowded city, with their bountiful and costly bills of fare, em. bracing the best in the market.

> CUTTING LCGS IN THE WESTERN YINE FORESTS.

The usual time for commencing lumbering operations in New Brunswick and mary parts of Canada, is in the fall, soonl after th

operators, many o consisting of hay, tinues with very ${ }^{\text {i }}$ confessed that lum in the minds of $t h$ scientific agricultux ment in that resped ness which very fel of the farming wor sequence compared the necessity arising and for family uses
In selecting the si central position witl fimber adapted to th sequence tbat it sho porting, or "portag

LOADING PINE LOGS IN THE WESTERN FORESTS.

operators, many of whom are farmers, hare safely housed their crops, consisting of hay, oats, buckrreat, potatoes, \&c., and the worls continues with very little intermission until towards spring. It must be confessed that lumbering pursuits are not well calculated to produce, in the minds of those whe follow them, a very strong bias towards scientific agriculture, the tendency being rather to produce derangement in that respect, but there seems to be a fascination in the business which very few who enter upon it seem able to resist, and much of the farming work is considered by many as only of secondary consequence compared with lumbering, being stimulated principally by the necessity arising for agricultural products in the lumber camps, and for family uses at home.

In selecting tho site for a camp, the principal object is to obtain a central position within easy reach of water, and an ample supply of limber adapted to the wants of the market. It is also of great consequence that it shoud be easily accessible for the purpose of transporting, or "portaging," as it is termed, the substantial supplies re

BREAKING A JAM.

quired by the men and horses engaged in tho work, and convenient to a suitable " landing," usualiy on or near a stream, where the logs are unloaded to await the breaking up of the ice, and the spring floods, which are to convey them to their destination. The work is systematically conducted, every man from the boss to the cook having his post, but the labor is very severe, and taxes the utmost energies of both man and beast, somo of the loads draisn by the latter being of enormous bulk and weight. This kind of toil continues during the fallard winter months, only to give place in the spring to another form of labor, which is, if possible, still more arduous, and is certainly more dangerous; that of "driving" the lumber down streain. The driving operations are commenced by rolling the logs into the stream on the breaking up of the ice and guiding them down the current, tho poor fellows being often up to the waist in cold water, and whona "jam," or lock of the timber takes place in the stream, owing to ob structions or barriers of any kind, the danger of "breaking" iti positively fearful, many having been killed outright, by the suddec "shoot" taken by the liberated timber as it rushes forward, impeliee by the surging floods in the rear.

In lumberi ranges from Brunswiek m birch timber, hauling of sp In gettíng out largest availal in before bein the density of water, and for induce floatatic ber of light sp States and Can chantable timb any, box, lignu warm climat Timber grown tion of cedar, w as that grown o composed of los seleeted from th and are usually way, than timbe Anes adjacent to sheltered situatic but not so prome dark, green color a soumd, liealthy number, decaying eased bark, indic: condition for long in January or Feb worked up as soo desired dimension
The nature of illustrated in the best style from ex Western forests, a setting out lumbe them into lengths, on or near the str them to market. summer to float swollen by spring river.
Many ingenious her from mountain nia to run on the from high eleratio the flume, and at t the water, and whi arrangement, this flume, and it runs know!: was, durin

In lumbering districts the season of active work for cutting timbes ranges from November until towards the middie of March; in New Brunswick much of the work performed in yetting out, or hewing birch timber, is done during the summer months, but the cutting and hauling of spruce logs is the principal object of winter operations. In getting out birch timber, the tree is felled and hewn square to the largest available dimensions, and allowed to remain till sloighing seta in before being hauled to the stream for transportation. Owing to the density of birch timber much of it is lost by submergence in tho water, and for the purpose of rendering it more buoyant it is usual to induce floatation by forming comections with spruce logs or other timber of light specific gravity. The rigorous climate of the Northern States and Canada is most favorable for the growth of hardy merchantable timber, such as pine, spruce, \&c., but is inimical to mahog. any, box, lignumvite and other dense tropical wouds which requiro a warm climate.

Timber grown in humid, swampy or wet localities, with, the exception or cedar, willow, poplar, \&cc., is not so firm, sound, and durable as that grown on dry and elevated situations, where the zoil is largely composed of loam interspersed with sand, gravel and stoues. Trees seiected from the midst of the forest possess greater elegance of form and are usually straighter, less knotty; and more merchantable every way, than timber exposed to the ravages of storms, \&c., on the confines adjacent to the clearings, or on hill sides and exposed places, sheltered situatious being the most favorable for the growth of timber, but not so promotive of hardness as unprotected localities. A dense, dark, green coior in the leaves of trees during June and July indicates a soma, healthy growth, while the sere and yeliow leaves, scanty in number, decaying branches, with spotted, streaked, loosened and diseased bark, indicates defective timber. To secure timber in its best coudition for long endurance, it should be cut during mid-winter, say in January or February, and during Jnly in summer, and should be worked up as soon as possible by sawing, splitting or herving, into the desired dimensions.
The nature of the various departments of the work is very' well illustrated in the cuts presented herewith, which are engraved in the best style from exceedingly fine photographs of actual scenes in the Western forests, and therefore truthfully depict the various stages of cetting out lumber, from the cutting down of the great trees, sawing them into lengths, hauling them out, and finally "landing"' the logs on or near the stream, in readiness for the spring freshet to drive them to market. Though many of these streams are too shallow in summer to float an Indian in the lightest bark canoe, yet, when swollen by spring freshets, each one becomes a wide and deep river.

Many ingenions contrivances have been constructed to precure timler from monntains. A novel locomotive has been miade in Califoruia to run on the long flumes that are used to float lumber down fron high elevations. The wheele fit on the edge of the sides of the flume, and at the ends of the car are paddle wheels dipping intc the water, and which are turned by the swift current. By a simpie arrangement, this power is made to propel the locomotive up the fume, and it runs back itself. Alpuach, in Switzerland, as is well known: was, during war time widely noted for its famous slide, of

UNLOADING LOGS ON THE LANDING.

wooden trough, containing a stream of water, in which the timber was launched with terrific velocity from the forests on Mount Pilatus into Lake Lacerne, a distance of 8 miles.

Spruce forests possess a wonderful recuperative power, it being well known that they may be stripped of merchantable timber durIng any given year, and ten years subsequently, if nothing happens, another harvest will be ready for the axe. The great bane of all furests is fre, and the loss resulting from this one cause is simply incalculable. While it is crue that many forest fires are accidental, it cannot bo denied that the majority are purposely set ; and, while such atrocious wiekedness camot be too severely denounced, it is equall. true that owing to the privacy of the act, and consequent want of proof, the offender too frennently escapes the retribution which his enormities deserve. The recent forest fires in Michigan, Wisconsin, and other places, proved terribly"destructive, and the so-called "greai Miramichi fire" will be memorable for generations to come, on account of the terrible destruction of human life and property of every kind effected by it. Many of the old settlers on the Miramichi have a vivid remembrance of that awful calamity, and can recount many
harrowing breadth osce one sheet stroved eve earth, rend
A most ai ago, as relat fire, undoub forent trees a sumed ; flam Seasoning By plling a of from two son in water both flat, squ quickly, let h ning water, subsequent ex Fell your tree them to lie un liaust nearly month to six weather. 4th. perfectly by b out of the wo 5th. Kiln-dryin ble to check, cr cautiously cond at all : for thls cess has been ating the sap fr ration of the wo ride of mercury impregnation of pressure of 150 ride to 10 gals. effected as in square inch, water. 10th. B to an end-ways sote oil intervixe See full descripti this work. 12 th. withdrawing the and forcing in as per square inch if tion of carbonate In preserving a creosote, etc., it is pletely withdrawn ensue. Wood tre etc., and is greatly Dr. Feuchtwange
harrowing narratires of suffering, consternation, death and haipbreadth escapes during that terrible time, when the sky appeared as one sheet of flame, emitting a universal rain of tre, which destroved everything in its course, even burning the soll from the earth, rendering thousauds of ncres a barren desert to this dny.

A most singular case of forest-destruction occurred many years ago, as related by the Allemaine Zeitung, in which a subterraneato fire, undonbtedly of volcanic origin, burnt the roots of 250 ucres of forest trees at Magland, in Switzerland, wisch, falling, were also cousumed ; flames also, issued near Lausanne.

Seasoning and Preserving Timber.-This may be effected-1st. By piling and completely ventilating under cover for a period of from two to five years, for thorough seasouing. 2nd. By immer sion in water for a lew weekr. This improves ail kinds of timber. both flat, square and round. If a man wishes to season green boarda quickly, let him throw them Into water, - all the better if it is running water, - and the sap will be withdrawn very rapidly : a short subsequent exposuro to the air wil be all that is necessary. 3rd. Fell your trees during June and July, while in full leaf, and allow them to lie until every leaf has fallen; it is said the leaves will exhanst neariy all the sap from the tree, leaving it dry in from one month to six weeks, according to the dryness or wetness of the wenther. 4th. Small pleces of non-resinous wood can be seasoned perfectly by boiling four or flve hours; the process faking the sap ont of the wood, which shrinks nearly one-tenth in the operation. bth. Kiln-drying, is adapted only for boards and small timber ; it is liable to check, crack, and otherwise injure the wood, unless the process is cautiously conducted. Black walnut cannot bo seasoned in this way at all : for this wood nse Process No. 1. Oth. Steaming.-This process has been adopted by some, and has proved successful in eliminating the sap from the wood. 7th. Kyanizing consists in the saturiration of the wood with corroslve sublimate, - solution, 1 lb . of chloride of mercury in 4 gals. water. 8th. Burnettizing.-By this process, impregnation of the wood is effected oy submitting it to an end-wnys pressure of 150 lbs to the square inch,-solution, 1 lb . of the chloride to 10 gals. water. 9th. Boucheri's Process.-Impregnation is effected as in the last instance, using a pressure of 15 lbs. to the square inch, -solution, 1 lb . sulphate of copper to $12 \frac{1}{2}$ gals. of water. 10th. Bethol's Process,-As abovo, by submitting the wood to an end-ways pressure of 150 to 200 lbs. per square inch, with creosote oil intermixed with bituminous matter. 11th. Robbins' Process.See full description of this process in the Mechanical Department of this work. 12th. Samuel Wood's Process, consists in vaporizing and withdrawing the sap from the wood, as described in Robbins' Process, and forcing in a solution of sulphate of iron at a pressure of 175 lbs, per square inch for thirty minutes; then finishing with another solution of carbonate of lime.

In preserving and scasoning wood by impregnation with conl tar, creosote, etc., It is essential that the juices of the wood should be completely withdrawn and the albumen coagulated, otherwise decay will ensue. Wood treated in this way repels decay, the nttacks of worms, ete., nnd is greatly increased in strength and resilience.
Dr. Feuchtwanger's process for preserving wood consists in stenm
'ng the timber, and injecting a solntion of silicate of soda for eight acurs; afterwards, soak wood for the same period in lime-water.

Ceorge Woods, the celebrated organ manuiacturer, in Cambridgeport, near Boston, has also discovered and patented a very valuabic method of seasoning timber.

Lumber is, improved by repiling, and the erifting of its position nf proper intervals. Violent currents of heated air cause cracks, etc., in the lumber during natural seasoning ; a moderate temperature is the best in every respect. The proportion of water in different moods varies from 26 to 50 per cent. A beam of greem oak weighing 972 lbs. lost 342 lios. uy seasoning.

The iest results are attained by piling the lumber under shelter in. properiy arranged pilee, elevated on blocks at least 2 feet from tho ground, each kind of timber by itself, with 1 inch slats interposed between the boards at short distances, to keep tham straight, and permit the air to circiatate freely, while square and round loge should be atripped of bark and raised from the ground.

The best timber, is that which hap been allowed to cttain full maturity previous to being felled. The age of a tree is easily determined by the number of concentric rings displayed on the stump. Spruce and fir matures very rapidly, pine more slowly, and oak matures in from 75 to 200 years. White oak is said to be favorably influenced by the vicinity of sea water; the growth of many other trees is repressed by it. In Nova Scotia the great valley extending from Comwallis to Digby, is noted for the enormous quantity and excellent quality of the fruit produced, while on the other side of the mountain fronting the Bay of Fundy, the propagation of fruit trees has proved an entire fallure, and no man could form any conception of the prodigious extent of tho New Brunswick forests from a steamer's deck, while sailing nlong the treeless, rock-bound coasi of that Province.
The best timber in a tree is always the jart near the ground. The quality of the wood may be frequently determined by a healthy, fresh, and uniform appearance, free from white or yellow spots, bleading to a deeper shade near the heart. Yellow stains indirate the existence of dry rot, caused by the fermentation of the albumen in the wood; and the sapwond, belug liable to early decay on account of the putrefactive decomposition of the vegetable juices, should be removed. The loss to lr:mbermen from this cause, when they are obliged to "hang up," or abandon their drives, owing to tho insufflciency of water in thestream to float them to their destination, is very greit, and in the event of fallure to drive them down with the ensulng fall or spring floods, often proves ruinous.

The excellence of timber is liable to be impaired by many causes, anong others, 1. Wind-shakes or circular chinks, or rents, involving the separation of the annular layers of wood from each other; a very bad imperfection. 2. Brash-vooud, caused by deterioration or decay in the timber, induced wy ago, imparting a brittle crumbling grain to the wood, together with a reddish and porous appearance. 3. Thoisted wood is very unsafo for long stretches, on acconnt of its liability to break auddenly, owing to the screw like formation of the grain. 4. Splits, chesks, and cracks, if greatiy expanded and enlarged, almost ruln the timber for any useful purpose except the most common kind; the same is true concerning, b. Knotty timber, which though it mas
be subst importar sists of t felled; ras various k to alterme perfect ve spots, and ufmber. and insect contained the rarage Nokber o aETHER

Wor

$$
\begin{aligned}
& \text { Alder, dry. } \\
& \text { Ash, i" } \\
& \text { Apple, " } \\
& \text { Bay, }
\end{aligned}
$$ Beech. Birch, commo Box. Bullot-rood. Butternut, dry Corlr,

Cherry, Chestinut, Ebony, moan " Elma, dry.
Fir, white. Fir, Now Engla Fir, Norway Fir, RIga.
Gum, blue, dr
Hackmatack, "،
Hazel,
Hemlock,
Homlock, "
Holl shell b
Junf, dry.
Lance wood, dry.
COMPARATIVI
THEIR
Teak
Englinh Oak
Abh
4/lm
be substantial is not well adapted for fine work, but subserves many important uses, such as roofing, fencligg, \&ac. 6. Belted timber, consists of trees which were dead and parilally decayed previous to being felled; rsually very bad. 7. Cominon rot.-Timber and lumber of various kinds, are liable to be affected in this way, whenever exposed to alternate humidity and dryness. it may also be induced by imperfect ventilation in sheds, and manifests itself by yeilow decaying spots, and a silphur colored dust in the apertures nod crevf ves of the timber. 8. Perforated timber.-This mischief is caused by worms and insecta which infest timber and exist on the albumen, sugar, \&o contained in it. Submerged timber is affected in a similar manner by the ravages of the Teredo navilis, a genus of testaceons mollusks.
Nugber of Cubio Feet of Tmaber in a Ton (Avoirdupoib), toGETEEB WITA THE WAIGBIE IN LBB. PLE CUBIO FOOT.

Woods.	$\left\|\begin{array}{c} \text { Lbs. } \\ \text { per } \\ \text { Cuble } \\ \text { Foot. } \end{array}\right\|$	Cabio Freet por 10n.	Woods:	$\left\|\begin{array}{c} \text { nos. } \\ \text { per } \\ \text { Cuble } \\ \text { Foot. } \end{array}\right\|$	Cubio Feet per Tón.
Ader, dry.	50.812	44.80 42.414	Larch, dxy.		30.8
Ash, "	43.14		Lignum Vitao.	83.312	26.866
Apple, "	49.862	45.18	Logwood.	57.062	30.225
Byy, "	$\left\|\begin{array}{c} 43.001 \\ 61.375 \end{array}\right\|$	45.001	Mahogany.	36.4	64. 33.714
Beeah.	43.8		Maple, dry.	46.876	47.68
4	83.25		Oak, Canadian.	64.5	41.101
Birch, common.	43.8 46.8		" Englivh.	58.25	38.450
" American black.	46.8		" live, sessoned.	66.75	33.658
Box.	62.6	80.40	" " Ereen.	78.78	
Bulletrood.	68.		" White upland.	43.312	82.09
Cedar, is	23.62	63.866	Plum,	49.062	47.47
Cork, 6	15.	149.333	Poplar.	26.31	
Cherry, "1	44.487			41.25	52.303
Chesthut, " ${ }^{\text {Ebony, moan of } 2 \text { sots, }}$	38. 120		"1 red, "1	36.878	60.745
Ebony, mean of 2 sotes	79.4		${ }_{6}{ }^{(1)}$ white, ${ }^{\prime \prime}$	34.625	64.69\%
Elsa, dry.	41.037	03.25	" Well scamoned.	20.662	75.773
Fir, white.	35.625 $35.5 i$	0	" yellow. dry.	33.812 28.812	60.218
Fir, New England, dry.	34.4		Poplar, mean ol 2 sorts	28.5	
Fir, Norway Epruce ${ }^{\text {P }}$	32.		Rusewood, dry.	45.5	
Fir, RIga,	43.9		Satinwood, "	55.312	
Gum, blue, dry.	c2.687		Spruce, ${ }^{\text {Tramarack, }}$	31.25 23.837	71.68
Hackmatack, "	37.10 83.75	60.3	Teak, African cak.	23.837 46.9	
Homlock, "	23.		Walnut, dry	41.0	53.48
Heksory, pig nut. shell bs	$\left\|\begin{array}{l} 49.5 \\ 43.125 \end{array}\right\|$	45.252	Willow black, dry.	31.25	71.68 61.263
Molly, dry.	47.8		Willow.	$\left\|\begin{array}{l} 36.1662 \\ 30.375 \end{array}\right\|$	61.263
Juniper, ${ }^{\prime \prime}$	35.375				
Lance wood, dry.	48.				

COMPARATIVE VALUE OF DIFFERENT WOODS, FXIIIEITIEG THEIR CRUSHING STRENGTII AND STIFFNESS.

Teak	6558	Beech	3079	Walnut	2374
Englth Oak	4074	Quebec Oak	2927	Yellow pino	2109
Adh	3571	Maliogany	2571	Sycamore	183
gim	3468	Spruco	25:2	Cedar	70

LOGS ON THE LANDING ATVAITING THE SPBING FILESHETB,

Aar, \&c., of Trees.-An oak tree in 3 years grows 2 ft. $10 \frac{1}{2}$ ins. A larch 3 ft .71 ins.; at 70 years it is full grown: and a tree of 79 years was 102 ft . high, and 12 ft . girth, containing 253 cubic ft . Another of 80 years was 90 ft . and 17 ft , and 300 cubic feet. An elm tree in 3 years grows 8 ft .3 in . A boech, 1 ft .8 in . A poplar, 6 ft . A willow, Ift. 3 in . An elm is full grown in 150 vears and it lives 500 or 600 . Ash is full grown in 100, and oak in 200 The mahogany is full grown in 200 years to a vast size. A Polish oak, 40 ft . round had 600 circles. An oak in Dorsetshire in 1755, was 68 ft . round; 2 near Cranborne Lodge are 38 and 36 ft . Thero are yews from 10 to 20 ft diam., whose age is from 1000 to 2000 years. A lime in the Crisons is 51 ft . round, and about 600 years old. An elm in the Pays de Vand is 18 ft . dian, and 360 years old. The African baobab is the patriarch of living organizations; one specimen ly its circles is estimated at 5 T00 years old by Adamson and Humboldt. The tru: is is bnt 12 or 15 ft . to the branches, and often 75 ft . round. A cypress in Mexico is 120 ft . round and is estimated by De Candolle to be older than Adainson's baobab. The cypress of Wontezuma is 41 feet round. Strabo wrote of a cypress in Persia, as being 2500 years old. The largest tree in Mexico is 127 ft round, and 120 high, with branches of 30 ft . A chestnut tree on Mount Etna is 106 ft . rompd close to the ground, and 5 of its branches resemble great trees. Do Candolle says there are oaks in

France 150 sears old. old. That at Braburr the same. ft. in diam. ported from high, witho thick and th from 150 to watered tro which grow penetrable b in girth from America is d
T) sisile Sti

Weigit o
Lance
Lonust
Mahogany
Box.....
African Oak.
Bay...........
Toak..........
Cedar:
Aph
Onir, zerached
Elm..........
Sycamore
Willow
Christiana Mea Spanish Mahog

Buying ani scantling are g foot of board Rourd timber or sowing is es is estimated to
sawn, is also so
ton, but as usu cubin feet.
Pine and spr taking the dian end ; they are under 4 ins. bei
The soundne: middle of one o The blow will be may io if tl:3 y set in, the sound a tree will alway

Bertish Cari from Memel, Kie copreyient for si

France 1500 years old. The Wallace onk, near Paisley, is nearly 800 years old. The yew trees at Fountain's Abbey are about 1200 years old. That at Crowhurst, 1500. That at Fortingal, above 2000. That at Braburn, 2500 to 3000 . Ivys reach 500 or 600 years. The larch the same. The lime 600 or 700 years. The trunk of a walnut tree, 12 ft . in diam., hollowed out, and furnished as a sitting-ruom, was lm ported from America and exhibited in London. The trunk was 80 ft . high, without a branch, and the entire height 150 ft., the bark 12 ins. thick and the branches from 3 to 4 ft . in diam. The Califomia pine is from 150 to 200 ft . high and from 20 to 60 ft in diam. The forests in watered tropical countries are formed of trees from 100 to 200 ft high, which grow to the water's edge of rivers, presenting a solid and impenetrable barrier of trunks 10 or 12 ft . in diam. The dragon tree is in girth fronn 40 to 100 ft and 50 or 60 feet high; and a misosa in South Amprica is described, whose head is 600 ft . round.
Th isile Strengti of different kinds of Wood, ghowing tirs Weigut on Power requined to teak asunder i Square Inci.

Buying and Seliling Timber.-Inch boards, plank, joists and scantiling are generaily sold by board measure, the dimensions of one foot of board measure being 1 ft . long, 1 ft . wide and 1 in . thick. Round timher is sold by the cuble foot, and when squared by hewing or sowing is estimated to lose one-fifth, hence at ton of round timber is estimated to coutain only 40 cubic feet. Squaro timber, hewn or sawn, is also sold by the culic foot and rated at 50 cubic feet to the ton, but as usually surveyed, a ton of timber coutains 5092 -100ths cubic feet.
Pine and spruce spars, from 10 to $4 \frac{1}{2} \mathrm{in}$. diam. are estimated by taking the diameter, minus the bark, at of their length at the large end ; they are generally buaght and sold by the inch diameter, all under 4 ins. being considered poles.

The soundness of timber may be tested by applying the ear to the middle of one of the end's, while another party strikes the other end. The blow will be cleariy and distinctly heard, however long the beam may be, if the 3 wood is sound and of goud quality, but if decay has set in, the sound will be muffled and indistinct. The toughest part of a tree will always be found on the side next the north.

Bhytish Carpentry.-The fir timber in generai use is imported fiom Memel, Kiga, Dantzic, and Sweden. Memel timber is the most cor vejient for size, Riga the best in quaity, Dantzic the strongest,
and Swedish the toughest. Riga timber can always be depended upon; red pine may be used whenever durability and strength are objects ; and Quebec yellow pine for light dry purposes. Doals are from Norway, Sweden, Prussia, Russia and New Brnnswink. Foz framing, the best deals are the Norway, particularly the Christinna battens; for pannelling, the Christiana white deals; for ground floors, Stockholm and Gefle yellows; for upper tloors, Dram and Christiana whites; Archangel and Onega planks for warehouse floors and staircases, and for best floors, \&c., Petersburg, Onega a.7d Christiana battens

100 Superficial ft. make i square of boarding, flooring, \&sc.
120 deals are denominated one hundred.
60 cubic ft. oí timber equal 1 load. Also,
600 superficial tt. of inch boards equal 1 load.
Battens are from 61 to 7 ins . In breadth, deals, $8 \frac{1}{2}$ to 10 ins , and ylanks 11 to 12 ins.
$12 t$ 12-feet boards to 1 square of rough boarding or flooring.
12 " edges shot.
13 " wrought and laid fclding.
$13 \frac{1}{2}$ " " " straight joint.
14 " " $"$ ploughed and tongued.
17 12-ft. battens to 1 squaro of wrought folding door.
18 " yellow to a straight joint floor.
The duration of well seasoned wood, when kept dry, is very great, an beams still exist which are known to be ncarly 1100 years old. Pilem driven by the Romans, and used in the formation of bridges prior to the Christian era, have beeu examined of late, aud found to be perfectly sound after an immercion of nearly 2000 years.

- Rjgsian Way uf Stopping Holes in Sumps.-In that conntry, there has lately been iavented and successfulls applied, a ready means for stopping holes made in ships by collision or otherwise. It consists of a plaster made of two rectangular sheets of canvas sewed together, bordered with a rope, and containing a water-proof inaterial. A sounding-line has to be passed under the keel, and brought up on the other side : then the plaster can be lowered to the hole, and made fast. Several cases are cited in which this invention has been employed with advantage; and a large number of Russian ships ato yow furnished with such plasters. It is proposed that inen be specially trained and ready for the manouvring of the appaatus.
To Raige the Body of a Drowned Person.--lin a recent failure to recover the body of a drowned person in New Jersey, a FrenchCanadian undertook the job, and procceded as follows : Having supplied himself with some glasa gallon-jars, and a quantity of unblaked lime, he went in a boat to the place where the inan was seen to go down. Oue of the jars was filled half full of lime, then filled up with water, and tightly corked. It was then dropped into the water, and soon afier exploded at the bottom of the river, with a loud report. After the third trial, pach time at a different place, the body rose to the surface, and was secured.

Tu Get Rid of Rats, \&o.-Get a piece of lead pipe and ure it as a funuel to introduce rboui $1 \frac{3}{2}$ ozs. of sulphide of pitassium into any outside holes tenanted by rats; not to be used in dweliings. To get Mid of Mice, use tartar emetic mingled with any favorita food; they will eat, sicken, and take their leave.

Hidral and boiled Evalne ing oil, spr large stone STONA C lime, 1 par Giose.glue which glue in 2 g Cheap possible qu drying by b ingredients
Fram and
402 of linse thlcknesa, ar very hard, b then fit for u Primpared lead, dry, 40 ring dissolve bath. Add t Lastly, pour i To Makr G shellic, 10 pas cast into moui Polishing of sulphate of it in a screw appears of ad On Saw-MI - Experience be done only favor of the mi invention and cipal difficulty to decide whose appears to clain able fentures, t cision seems to the saws are ar able kind (circit made but part diagram. By t which the \log re distance nearer t with an overplus another lever, a made to impel t after the board; machines, aro ma credited with hav

Hrdratuio Cement.-Powdered clay, 3 lbs.; oxide of iron, 1 lb ; and boiled oil to form a stiff paste.
Enanerers' Cement.-Equal parts of red and whitelead, with drying oil, spread on tow or canvas. An admirable composition for uniting large stones in cisterns.

STONE CmazNT River.-Sand, 20 parts; litharge, 2 parts; quick-: lime, 1 part: mix with linseed oil.

GLus.-Powdered chalk added to common glue strengthens it. A. glue which will resist the action of water is made by boiling 1 lb . of glue in 2 gts of skimmed milk.

Cifap Watmrproof Glue.-Melt common give wich the smallest possible quantity of water; add, by degrees, linseed oil, rendered drying by boiling it with litharge. While the oil is being added, the ingredients must be well stirred, to incorporate them thoroughly.
Flez AND WATERPROOF Glute-Mix a handful of quick-lime wif 4 oz of linseed oil; thoroughly lixiviate the mixtare; boil it to a gool thickness, and spread it on thin plates in the slade: it will become very hard, but can be dissolved over a fire, like commou glue, and ts then fit for use.

Prepared Liquid Glut.- Take of best white gine, 16 oz.; whitolead, dry, 4 oz; rain-water, 2 pts.; alcolool, 4 oz . With constant stirring dissolve the glue and lead in the water, by means of a waterbath. Add tine alcohol, and continne the heat for ai few minutes. Lastiy, pour into bottles, while it is still hot.

To Mares Grindsiones from Connon Sand.-River sand 33 lbs.; shellac, 10 parts; powdered glass, 2 justs; melt in an iron 10t, and cast into moulds.

Polishing Powder for Specula.--Precipitato a dilate soludon of sulphate of fron by ammonia in excess; wash tho previpitate; press it in a screw press till nearly dry; then expose it to heat until it appears of n dull red color in tho dark.

On Saw-Mills.-To Get the Most Lumber from Saw-Loas. - Experience lias abundantly proved to cur satisfaction that this can be done only by the use of the circular saw. Some parties are in favor of the mulay saw. Human ingenuity has been so prolific in tho invention and construction of this kind of machinery, that the principal diffculty with the intending purchaser seems to bo an jaability to decide whose machine is really the best. Every buider or inventor appears to claim for his machine such a perfect constellation of valuable features, that a certain amount of liesitation in cominy, to adocision seems to be inevitable. In the stationary form of saw milis, the saws are arranged either single or in gangs. Sonie oi tie pornable kind (circular eaw mills) havo an upper saw to complete the cut mado but martially through large logs by the lower saw. See diagram. By the single movement of a lever, the head-blecks on which the log rests, are simultaneously mored up, moving the \log a distance nenrer the saw, ndequate to the thickness of board desired, with an overplus the width of the cut made by tho saw. By moving another lever, a pinion meshing into a rack beneatio the log-carriage is made to impel th:e \log against the saw, and run the \log backwards after the board is cut. These movements, on the best constructed machines, aro nade with surprising veiocity, some of them being accredited with having cut over 60,000 fect of lumber in one day.

The performance of a 36 horse-power ateam engine attached to a modern saw-mill, is equivalent to that of 75 saw-pits requiring the labor of 150 men.

Coscparative Resilience of Various Kinds of Timber, Ash benga 1, Fir '4, Elm '54, Pitch Pine 57, Teak -59, Oak '63, Spruce '64, Yollow Pine '64, Cedar '66, Chestnut 73 Jarch -84, Beech '86. By resilience is understood the quality of springing back, or toughness.

Percentage of Increase in Sthength of Differeent Woons by Seasonina.-White piue, 9 per cent., Elm 12'3 per ceut., Oak $26 \cdot 6$ per cent., Ash 44.7 per cent., Beech 61.9 per cent.
TRANSVERSE STRENGTH OF WOODS, SHOWING TIIEIR BREAKING WEIGHT FOR A THICKNESS OF ONE INCH SQUARE AND ONE FOOT IN LENGTH, WITII WEIGHT SUSPENDED FROM ONE END.

Brfaking Value WEIOITT. FOR UBE.		Breaking Value WEIGIIT. FOR USE	
Lbs.		L.bs.	
Locust...................29x	80	Oak Canadian 116	38
IIIckory. 250	65	" live American. . 245	68
Oak, IIve American. . 243	55	\% English. 140	35
"6 white " . 2330	60	Deal Chriatiana...... 137	46
6 African 208	60	I'lne pitch............ 136	45
Teak................... 206	60	13eech........... . . . 130	32
Maple................ 202		Pine whiteA merican. 130	45
Oak, English, best. .. 188	45	EIm.................. 125	30
Ath 168	85	Pine Norway 1012	40
Pine, Amertcan. 60	50	Oak Dantzio..... . 122	8
Birch 160	40	Whito wood. 116	38
Chestnut 100	53	Jliga Fir............... 84	30
		Pinc, white.......... ${ }^{\text {g }}$	30

Occasic tudes of These tim who, in 1 finally obl saw-mill, sawyers, dead certa

Occasionally we listen to a great deal of rant regarding the beatitudes of "the good old times," during the lives of our lorefathers. These times proved very disastrous to the enterprising Dutchman, who, in 1663 started the first saw-mill in England, which he was finally obliged to abandon, and fly to save his life. Ir 1767 another saw-mill, at Lime-house, near London, was demolished by a mob of sawrers, who considered that thoir business would be ruined to a dead certainty if things were allowed to go on.

Tho old m ripping loge brance of m dowawards pit below, w ejes. We h able us to dis

Haying tri would ngain formanufact of opinion, le the best macl true. When If you have b soon find out the manageme of running it, and quantity d tooth saws, an vantages, and upper part of t facture, spread thickest part of dispense in a g ed tooth saws y fully swaged a as six or seven being cut. In of the teeth abs from perfect tru it is termed, or log. Some pres cnough so as to of the die belon slightly curved scarcely so mu ruuning machi rapid work witl these tuo points your mill, the 1 large saws are the circumferen sufficiently stro pecially during the log before case came to in: sustained a sei cauting over on to break off the near the saw, al saw in the colla expense of repal that you handle

Tho old method of manufacturing lumber and dinension stuff by ripping logs lengthways on the sawpit, is still fresh in the remem. brance of many. One man mounted the \log and pushed the saw downwards and pulled it upwards, assisted by another man in tho pit below, with a veil over his face to keep the sawdust out of his eses. We hail with gratitude the modern improvements which enable us to dispense with every such form of labor.

Having tried the up and down saw and the circnlar saw also, wo would again repeatour conviction that the last mentioned is the best formanufacturing lumber, and should any personact on this expression of opinion, let them in the first place bovery careful to pet, it possible, the bert machine, bring it to the mill, and set it perfectly level and true. When you get it in operation, see that you handle it carefully. If yon have been used to runniug the ap and down saw ouly, you wili soon find out that your former experience avails almost nothing in the management of the rotary machine; but when you get the hang of running it, the compensation in the way of convenience, rapidity, and quantity of work, is immense. Some prefer to use the inserted tooth saws, and will use no other. They seem to possess many advantages, and are entirely safe. A late invention of sprcading tho upper pait of the tooth towards the point during the process of maunfacture, spreading it out so as to make the point of the tooth tho thickest part of the circumference of the saw, euables the sawyer to dispense in a great measure with the use of the swage. Those inserted tooth saws which do not possess this improvement must be carcfully swaged and filed at least twice per day, and somelimes as often as six or seven times per day, depending upon the kind of lumber being cut. In filing or swaging the saw, be careful to form the point of the teeth absolutely square, and even across, the slightest devlation from perfect truth in this respect being apt to cause the sar ; torun, as it is termed, or vary from its proper course while passing throngh the log. Some prefer to form the point of the tooth a little hooking, just cnough so as to be barely perceptible, and in swaging to use that part of the die belonging to the swage, which gives the tooth of the saiv a slightly curved or rainbow form, something in this shape or scarcely so much curved. Ono snwyer of 20 years experienco in running machinery, informed us that he never did better or more rapid work with his mill than when he kept his save exactly right ou these two points just stated. If jou can run a No. 7 gauge saw on your mill, the loss resulting from sawdust will be very sllght, and as large saws nre generally thickest at the centre, tapering off towards the circumference, this size or No. 6 will, as a geueral rule, be found sufficiently strong for most purposes. Make sure at all times, especially during frosty weather, that the dogs have a secure hold of the log before the saw enters it. It is only a few days ago that Ω case came to any knowledge of a firm near Fredericton, N.B., having sustained a sovere loss by $\AA \log$ (insufficiently secured of course) cauting over on the saw as it was passing through it. The effect was to break off the saw from the mandril, twist off tho nut at the end near the saw, and break away the two iron pins used for securing the saw in the collar, causing a stoppage of the mill, and the consequent expense of repair and delay. When you get the mill in operntion; see that you handlo it carefully, and maintain uncensing watchfolness
over it while in operation. Give it plenty of poveer; if you don'f, you may as well shut up shop at once; yood altendance, aud with a good machine, the attendants will not have mach time to play thomselves, I can assuro you. Keep all the parts well oiled-that has a great deal to do with tho smooth and successful running of the inachine; and, by the way, I wonld remark that saw-mills are not the only things in this world that run all tho better for being oilod. If that cind, loving, gentle, and affectionate spirit of which ofl is the symbol, pervaded the hearts and the minds of our race, and found universal expression in overy thought, word, and deed during our daily intercourse with ench other, it would be a very difforent world from what it is-better for oursolves, and better for our neighbors. Let us all carry on this branch of the oil business as extonsively as possible, and wo shall soon sce a brotherhood "dwelling together in unity." In order to facilitato calculations regarding the volocity of saws, herevrith is appended a reliablo table to serve as a guide in ascertaining tho proper speed for ruming :-

TABLE OF SPEED FOR CIROUTAR SAWS.
30 inches in diameter, 1000 revolutions per minuto

38	${ }_{6}$	6	950
40	6	*	900
42	6	*	870
44	16	${ }^{6}$	840
46	16	*	800
48	6	6	760
60	16	16	725
62	6	6	700
84	61	6	675
66	6	16	650
58	6	6	625
00	4	16	600
62	16	16	675
64	6	"	500
60	6	16	645
68	6	6	630
70	"	16	515
72	1	6	000
74	6	16	485
76	${ }^{1}$	*	475
lo n	chi		1400

The march of improvement in the mannfacturo of shingle machines has been truly wonderful, and they can now bo procured from tho manufacturer, of almost any capacity and power, at very reasonable rates. Shinglo machines are now in use, which cut out over 30,000 shingles per day, carrying two or more bolts. Some of them possess very complex machinery and are positively dangerous to operate unless continual vigilanco is maintnined. Ono gentieman well known to the writer, was crippled for life by having his hand terribly lacerated during an unguarded momeint by one of theso machines. As a rulo the less gearing and the more simplicity there is about the me-
chanism
from it. In the wisest pol knots, san able stuff the machi? exchequer stock one to say not edging shis cuables the by trimmin can be done use a mode
luives, givl Velociti peripliery, 6 Saucs, 20 in etrokes per 6000 fect. cott. 1 Ifould Mrachine C'ut lutions; dfac diam., 1200 r pine per hour lect per hour, quantity requi Adzing soft w poft wood, 33 Tool Cutters, Filina SÁ possible order rapidly and o a straight edge part of an inch teeth to cutal nllow the blade the kerf must motion. Tho is a twenticth the long tooth should, that the jumping along, longer than thi nlthough theiry in order, it will terwards sharp ical skill is nece with a filo will s ntterly useless, set with much ca If the teeth are:
chanism of a shingle machino tho mose satisfaction will be dorived from it
In the manufacture of shingles, as well as in anything elso, it in tho wiacst policy to uso the best materinls. Get good rift, free from knota, sand, bark, \&ec., and you will inevitably get good merchantable stuff, with less wasto and more pleasure overy way, both with the machinery in the first place, and the satisfactory state of your exchequer in tho last. It is all the better if you can lay in a good stock one year ahead, as it cuts much easicr when properly seasoned, to say nothing of the saving in weight during transportation. In edging shingles, many profer the sav to the revolving knives, as it cuables the operator in many cases to get a shingle of extra quality by trimming a poor shingle down and selocting the best part. This can be done by a smart hand with marvellous rapidity, fut still, to use a modern plirase, many persons can't seo it, and so they use the kuives, giving what they conceivo to bo good reasons for so dolng.

Velocities of Wood Womeina Mincminery.-Circular Sazes at periphery, 6000 to 7000 ft . per minute, 13 and Saws, 2500 feet ; Gan! Sauts, 20 inch stroko, 120 strokes per minnto; Scroll Saros, 300 strokes perminute; Planing Machine Cutters at periphory, 4000 to $\mathbf{C 0 0 0}$ feet. Work under plaining machino 1-20th of an inch for each eut. Droulding Mfachine Cutters, 3500 to 4000 feet; S'quaring-up Machine Cutters, 7000 to 8000 feet; Wood Carving Drills, 8000 rero-
 diam., 1200 revolutions; Gang Saus, require for 45 superficial fect of pine per hour, 1 horse-power. C'ivcular Sazes requiro 75 superficial fect per hour, 1 horse-power. In oak or hard wood yths of the abovo quantity require 1 horse-power; Sharpening Anyles of Dfachine Cutters. Adzing soft wood ncross the grain, 30°; Planing Ifachinos ordinary moft wood, 35°; Gauges and Ploughing Dfachines, 400; Ilardicood Tool Cutters, 50° to 530 .
Filina Saws.-The grand secret' of putting any save in the best possible order, consists in filing the tecth at a given anglo to cut rapidly, and of a uniform length so that the points will all toncla a stralght edged rule vithout showing a variation of tho hundredth part of an inch. Besides this, thero should be just set enough in tho teeth to cut a kerf as narrow as it can bo mado, and at tho samo timo nllow the blade to work freely without pinching. - On the contrary, the kerl must not be so wide ns to permit tho blado to rattlo when lin motion. The very points of the tecth do the cutting, If one tooth is a twentieth of nn inch longer than tro or three on each side of it, the long tooth will bo required to do so much moro cutting than it should, that the sawing camnot be done well, hence tho saw goes jumping along, working hard and cutting slowly; if one tooth is longer than those on either side of it, tho short teeth do not cut although their points mny bo shanp. * When putting a cross-cut satr in order, it will pay well to dress tho points with an old file, and afterwards sharpen them with a fine whetstono; much mechanical skill is necessary to put asaw in prime order; one careless thrust with a filo will shorten the point of a tooth so much that it will bo ntterly useless, so far as cutting is concerned; tho teeth should bo set with much care, and tho filing done with the greatest accuracy. If the teeth are uncren at tho points, a large flat file shonld bo secured

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation
to a block of wood in such a manner that the very points only may be jointed, so that the cutting edge of the same may be in a straight line, or circle, if it is a circular saw; every tooth should cut a little as the saw is worked. The teeth of a hand saw for all kinds of work should be filed fleaming, or at an angle on the front edge, while tho back edges may be filed flen ming or square across the blade. Tho best way to file a circular saw for cutting wood across the grain, is to dress every fifth tooth square across, and apart one twentieth of an inch shorter than the others, which should be filed fleaming at an augle of about forty degrees.

As regards such saws as are used for cutting up large logs into lumber it is of the utmost importance to have them filed at such an anglo as will ensure the largesi amount of work with the least expendituro of power. The following diagrams will help to iliustrate our meaning. Fig. 1 shows the shape of tecth which nearly all experienced

Fig. 1.
mill-men caisider as that standard form which combines the greatest amount of strength and capacity for rapid work, with the minimum of driving power while doing the work.
Figure No. 2 represents a passable form of teeth which are capable of doing a good deal of work, but their great weakness lies in their slender points. Look out for "breakers" when teeth of this description are passing through dry spruce or hemlock knots.

Fia. 2.

Fig. No. 3 ill wood rasps whi think what an a a"jigger" like

Fig. 4, at a, is proper-angle, tha filed. The diagra clucidation here. towards the circu of a circular saw. horizon, and the meridian, where t is 45°; look up a 1 radiating line whio and this is the gul applied to a straig
Many good auth set with the instru lien thereof the t swago or upset to operate without b handled, and the s to every emergenc be quite safe to sa this description wi ufacturer, howeve the subject, some rectly the reverse.
To Repalr Fra this is to drill a sm effectually prevent saws very neatly r fracture, both cian level with the surf. tho crack as to limpe
To Mend Brok the broken odges 1

Fig. No. 3 illustrates the appearance of one of those intolerable wood rasps which are altogether too common in saw-mills. Only think what an appalling waste of valuable power is required to drive a "jigger" like this through a large log!

Fig. 3.
Fig. 4, at a, is intended to show the method of ascertaining the proper-angle, that of sixty degrees, at which such saws should bo filed. The diagram being self-explanatory requires but little further elucidation here. A quarter circle with lines radiating from the centre towards the circumference is represented near the verge of the segment of a circular saw. The lower part corresponds with the level of the horizon, and the higher part at 90° corresponds with the zenith or meridian, where the sun appears at noonday. Exactly half-way up is 45°; look up a little higher and you will find 60°, indicated by tho radiating line which runs parallel with the angle of the tooth of the saw and this is the guide you must follow in filing. The same rule is seer applied to a straight mill saw at b.
Many good authorities contend that mill saws should in no case no set with the instrument commonly used for that purpose, but that in lien thereof the teeth should be spread out at the points with the swage or upset to a sufficient extent to permit the body of the saw to operate without binding. Both instruments require to be skilfully, handled, and the swage, when used in this way, has proved itself equal to every emergency without the risk of breaking the teeth. It would be quite safe to say that the saw-set should only be used on saws of this description with the most extreme 3 caution and care. Every manufacturer, however, has his own opinion, and consequent practice on the subject, some contending that one way is right and the other directly the reverse.
To Repair Fractured Circular Saws.-The best way to do this is to drill a small round hole at the termination of the crack, which effectually prevents its further extension. I have seen some circular saws very neatly repaired by riveting thin clamps to each side of the fracture, both clamps and rivets being countersunk so they will be level with the surface of the saw, and placed in such a position across the crack as to impart the greatest possible strength to the weakest place.
To Mend Broken Cross-cut Saws.-In the first place scarf off the broken dodges in such a manner that when lapped over each other
they will be about the same thickness as the rest of the plate, and rivet them together loosely with iron rivets inserted through holes which must be punched for that purpose ; the ends must be united

with groat accuracy so that the teeth, \&c., of the saw may range truly. Now place the saw in the fire, then a flux of powdered borax and sal ammoniac is flowed all over it after having it raised to the proper heat. See-page 270 for preparing and using the composition. Ketury the saw to the fire and when it is raised to the proper welding
heat, place it With the ham When the job found as stron Canada who to of his business.
Quantity 4 Crievs in thi fumished for th mill on the Gati affording a basis plies required fo These calculatio: and are based o

Quantity of O_{a}
IIa
$\begin{array}{ll}" & \text { Flo } \\ " & \text { Por } \\ " & \text { Bee } \\ " & \text { Be } \\ " & \text { Fish } \\ " & \text { Onic } \\ \because & \text { Pota }\end{array}$
Total daily conso Quantity of Tea large, but it must b and more hay will 1 making inquiry wi used by our lumbe answer returned wa it was eutirely omi exhibity the compara Irom actual conaump
Hess Perk, $\$ 20$.
24...
\qquad
1 Barrel Mess avera $"$ Prime Mess art pure broken uaghly mired ; place 2 contact, and hold then long tho seam, cover

MACHINISTS, ENGINEERS', \&C.. RECEIPTS.

 heat, place it on the anril and unite the joint as mpldly as possible When the job is well doneful not to heat so hot as to injure thossible found as strong as the rest of the part properly tempered, it will bol. of lis business. me that this class of worle was the one blacksmith in Quantiry and Cost of Chews in the woods. - Supplies for Horses and Lumbering furnished for this work by the following figures have been kindly mill on the Gatineau, near Ottawn, plies required for ior calculating the quanta, and are most valuable as These calculations aro and horses engaged in this quality of the sapand are based on actual result of long experieuce in th industry. Quantity of Oats actual consumption. " Inay for each spau of horses, 51 lbs. per day.

> Total daily consumption per man Qnantity of Tea used The diup allo.
The dity allowance
large, but it must bere of oats for each span lbs, per month. and more hay will be renembered that the labor horses may appear making inquiry with rquired if any part of the is extremely severe, used by our lumbering frience to the item of mols is withheld. On answer returned wering friends in New Brunswicasses, so largely it was entirely omitted from the the heavy cost of the Maine, the exhibits the comparative from the list of supplies the commodity, from actual conpumption :- value of Mess and Prime Po following
 24............................... 1808 23................................... 17 35 22................................. 1662

Mess PorR:

16................................. 1224
14.............................. 11 61
13................................ $10{ }_{05}^{10}$
12....................................... 93
11....................................... 8 89
$\frac{1}{\text { To }}$ Mre Prime Mess 24 lbs. greaso, 6 lbs bones, when co. 640 part - pure Broken Saws.-Pure sil 13 " when cooked. cughly mired ; plase 2 parts; all to be filed, 19 parts ; pure copper, 1 contact, and hold the saw level on the anto powder, and thorlong tho seam, covering ; now pat a small lin, broken edges in ${ }^{\text {a }}$ larger bulk of powdered char-
coal ; now with a spirit lamp and a jewellers' blow-pipe hold the coal dust in place, and blow sufficient to melt the solder mixture; then with a hammer set the joint smooth, and file away any superfluous solder, and you will be surprised at its strength; the theat will not injure the temper of the saw.

Velocity of Wheels, Pulleys, Drums, \&C.-When wheels are applied to communicate motion from one part of a machine to another, their teeth act alternately on each other ; consequentiy, if one 'wheel contains 60 teeth, and another 20 teeth, the one containing 20 teeth will make 3 revolutions while the other makes but $1 ;$ and it drums or pulleys are taken in place of wheels, the effect will be the same ; because their circumferences, describing equal spaces, render their revolutions unequal; from this the rule is derived namely:-

Multiply the velocity of the driver by the number of teeth it contains, and divide by the relocity of the driven. The quotient will be the number of teeth it ought to contain ; or, multiply the velocity of the driver by its diameter, and divide by the velocity of the driven.

Example 1. If a wheel that contains 75 teeth makes 18 revolutions per minute, required the number of teeth in another, to work into and make 24 revolutions in the same time. According to rule, Jou multiply 16 by 75 , and divide the product, which is 1200 , by 24_{1} and you have the answer, 50 teeth.

Example 2. Suppose a drum, 30 inches in diameter, to make 20 revolitions per minute, required the diameter of another to maka 60 revolutions per minute. According to rule, you multiply 20 by 30 ; and divide the product, which is 600 , by 60 , aud you have the answer, 10 inches.

Example 3. A wheel 64 inches in diameter, and making 42 rerolutions per minute, is to give motion to a shaft at the rate of 77 revolutions in the same time; find the diameter of a wheel suitable for that purpose. According to rule, multiply 42 by 64 , and divide the product, which is 2688, by 77, and you wili have for the answer 35 inches nearly.
77)2688(31 10-12

231
378
30870
Example 4. Suppose a pulley 32 inches diameter to mako 26 revolutions; find the diameter of another to make 12 revolutions in the same time.
According to rule, $26 \times 32 \div 12=691$ -
26 and 12) 832. This will be seen to bo 603
$832 \quad \overline{694}-12=\frac{3}{3}$

832
Example 5. Find the number of revolutions per minute made by a wheel or pulley 20 inches in diameter, when driven by another 48 inches in diameter, and making 45 revolutions in the same time. According to rule, $48 \times 45 \div 20=108$. That is, 48 multiplied by $45=$ 2160, divided by 20 , gives the answer, 108 revolutions.

Const construct horizonta placed on rraming o ment of t In Trussea consists es lorizontal strengthen Fig. 1. s? Lottom of t for the sake collar beam

large one wonl In roofs of principal, whic Irom sariginy, the head of the
part of the liin part of the lin

exerted on any direction of their compression, and shows a sketch of plate, the tie beam templates of woand
Whese the span

Constrection of Trussed construction, the roof covering is Roors.-In roofs of the ordinary horizontal purlins, which rest on is laid upon rafters supported by framing of the walls at regular distanight trusses or frames of timber, ment of the rafters and purlins the stability of the other. Upon tho In Trussed Roofs, exert purlins being subordinate roof, the arrange. consists essentially of a pr no side thrust on the matlers of detail. horizontal tie beam, and in of principal rafters or the strengthened by hiny, and in largo roofs theso aro principals, and a Fig. 1. shows a very simpen posts and struts. aro comected and lottom of the feet of the principal truss in whints. (See figs. 2 . ar 13 .) for the sake of obtaining principhal, which is often done is above the collar beam. The feet of bothit. The tio in this case small roofs

Fig. 1.

large one would bo very like y

 In roofs of large very likely to throw principal, extrat strength of principal, whicher span the tio berow out the walls. from sarging, or are tenoned into and is plated to below the feet of the the head of the or bending by its own weight it. To keep the heam part of the king pincipals by a king post of wont, it is suspended from principal immediately affords abutments for sturts on. The lower
direction of their length, the thers in the truss, bnt they all act in the compression, and the king post and the and struts being subjected to shows a sketch of a king truss. Thd the tie beam to tension. Fig. 2 plate, the tie beans resting eith The common rafters but on a pole temnlates of wood and stone.

Where the span is conside. a wall principal rafters rest on on the collar, The purlins rest rafters but ar, and the common ning along thainst a ridgo runThis kind of the top of the roof. to very small suspans, ons suited a cross strain on tinat as there is principal below that part of tho is rendered harmless in a which span by the
points by suspension pieces called queen posts (fig 3), from the bottom of which spring additional struts; and, by extending this

Fig. 3.
principle ad infinitum, we might construct a roof of any span were it not that a practical limit is imposed by the nature of the materials. Sometimes roofs are constructed without king posts, the queen posts being kept apart by a straining piece. This construction is shown in

Fig. 4.
ing. 4, which shows the design of the old roof (now destroyed) of the church of St. Paul, outside the walls, at Rome. - This truss is interesting from its early date, haring been erected about 400 years ago: the trusses are in pairs, a king post being keyed in, between each pair to support the beams in the centre.

Of late years iron has been much used as àmaterial for the trusses of roofs. the tic heams and suspending pieces being formed of light rods, and the principals and struts of rolled T or angle iron, to which sockets are riveted to receive the purlins.
-Durable Instlation for Electric Wires.-Tin the wires and then cover with pure rulbber.

The following equare inch of : finch diameter, in the first colur dry. The samp 2 months longer anthor, to illustr

Kind of Wood
Alder,
Bay,
Box,
Beech,
Birch,
English Birch,
Cedar,
Deal, Christiana
Red Deal,
White Deal,
Hornbeam,
EDder,
E1m,
Fir (Memel),
Fir (Spruce),
Larch,
Mahogany, Lignum Vita, Oak (Quebec), Oak (English) Pine (Pitch), Pine (Red), Poplar
Plam (Dry), Sycamore, Teak, Walnut, Willow,
It was also found t different materials, t wronght iron was 1,? Deal 78.5.

Beams of timber, are stronger than wh Anit-Fouling Co gether into an impaly tin : mix thoroughly ply to the shipg bo
Fater," under Painte

The following tabulated form shows the results of Mx. Hodgkincon's experiments on the crushing strengths of different woods per equare inch of section. The samples crushed were short cylinders 1 frich diameter, and 2 inches long, flat at the ends. The results given in the first column are those obtained when the wood was moderately dry. The samples noted in the second column were kept seasoning 2 months longer than the first. The third column is appended by the anthor, to illustrate the resilience or toughness of certain woods.

Kind of Wood.	Crushing strength per square inch of section.	Length in feet of a rod 1 Inch equare that wonld break by fts own weight.
Alder,	6831 to 6960	
Ash,	8683 to 9363	22,080
Bay,	7518 to 7518	
Beech,	7733 to 7363	38,940
Birch,	10300	
English Birch,	3297 to 6402	
Cedar, ${ }^{\text {D }}$,	5674 to 5863	
Red Deal,		65,600
White Deal,	6781 to 77293	
Hornbeam,	$\begin{array}{ll} 7451 \\ & 7000 \\ 9973 \end{array}$	
Elder,	7451 to 9973	39,050
Fir (Memel),	6409 to 6819	40,600
Fir (Spruce),	6499 to 6819	
Mahogany,	8198 to $\mathbf{8 1 9 8}$	22100
Lignum Vitse,	- 9900	
Oak (Quebec),	4231 to 6982	
Oats (English),	6484 to 10058	32,900
Pine (Pitch),	6790 to 6790	
Pine (Red), Poplar	8395 3107 to 78182	
Plim (${ }^{\text {dry }}$),	8241 to 10493	
Sycamore,	\%911 to $12101 .$.	35,800
Teak,	8241 to 12101 .	- 36,049
Willow,	2898 to 6128	

It was also found that in pillars of the samo dimensions, but o: different materials, taking the strength of cast iron at 1,000, that of wrought iron was 1,745, cast steel 2,518, Dantric Oak 108.8, and Red Deal 78.5.
Beams of timber, when laid with their concentric layers vertical, are stronger than when laid horizontal, in the proportion of 8 to 7.

Anit-Fouling Composition for Ships.-Melt, mix and grind together into an impalpable powder, 1 part copper, 4 of zinc and 1 of tin : mix thoronghly with red lead or Torbay mineral red, and apply to the shipes bottom. (See "Marine Paint for Metals in \&alt Water," under Painters' Department.)

Measdrement and Calculations of the Tonnage or Vegerly AND SEIPS OF THE URITED STATES, UNDER THE AOT OF CONGREA

 OF May 6, 1864.The tonnage deck, in vessels having 3 or more decks to the hull, thal be the second deck from below, in all other oases the upper deck of the hull is to be the tonnagerleck. The length from the forepart of the outey planking, on the side of the stem, to the after part of the main stern post of screw ateamers, and to the after part of the muldier-post of all other vessels, measured on the top of the tonnage deck, shall be accounted the vessel's length. The breaulth of the broadest part on the outside of the vessel is accounted the vessel's breadth of beam. A measure from the under side of tonnage deok plank, amidships, to the ceiling of the hold (average thickness), shall be accounted the depth of hold. If the vessel has a third deck, then the helght frorn the top of the tonnage deck plank to the under side of the upper deck plank shall be accounted as the height under the spar-deck. All measurements to be taken in feet and fractions of feet; and all fractions of feet shall be expressed in decimals. The Regiater ton nage of a vessel is her entire internal cubical capacity in tons of 100 cubio feet each, to be determined as follows: Lengths. Measure the length of the vessel in astraight line along the upper side of the tonnage deck from the inside of the inner plank (average thickness) at the side of the stem to the inside of the plank on the stern timbers (average thickness), deducting from this length what is due to the rake of the bow in the thick. ness of the deck, and what is due to the rake of the stern timber in onethird of tho round of tho beam; divide the length so taken into the number of equal parts required by the following table, according to the class in such table to which the ressel belongs:

Table of Clabses.
Class 1. Vessels of which the tonnage length according to the above mesaurement is 50 feet or under, into 6 equal parts.
2. Over 50 feet and not ovor 100 , feet into 8 equal parts.
3. Over 109 feat and not over 150 feet, into 10 equal parts.
4. Over 150 feet and not over 200 feet, into 12 equal parts.
5. Over 200 feet and not over 250 feet, into 14 equal parts.
6. Over 250 feet, into 16 equal parts.

The extent of the areas is found by measurement and calculation, and if there be a break or poop or any other permanent closed in space on the upper decks, or on the spar deck, available for cargo, os stores, or for the berthing or accomodation of passengers or crew the tonnage of auch space shall be computed. If a vessel has a third deck, or spar deak, the tonnage between it and the tonnage deck is also computed.

In ascertaining the tonnage of open vessels, the upper edge of the upper atrake is to form the boundary line of measurement, and the depth shall We taken from an athwartshipline, extending from the upper edge of sald strake at each division of the length.
The register of the ressel must express the number of the deokn, the tonnage under the tonnage deck, that of the between decks, above the tonnage deck; also that of the poop or other enclosed spaces above the deck, each separately. In every registered U. S. ship or vessel the number denoting the total registered tonuage shall be deeply carved or otherwise permanently marked on her main beam, and shall be so continued, and if at any time cease to be so continued such vesmel shall no longer be recognized as a registered U. S. vessel.
By a subsequent Act, approved Feby. 28, 1865, the preceding Act was se construed that " no part of any ship or vessel shall be admeasured or rog. istered for tonnage that is used for cabins or staterooms, and constructed entirely above the first deck which is not a deck to the hull."

Cabpenters' Meaburement for a Single-Deok Vessel.- Rule. Muitiply the length of keel, the breadth of beam and the depth of hold ogether, and divide by 95.

COR A DOI tho breadth 0 .

The British ment In 1854, regulate the : dilierence bel method, whicl 1. Vessels of Into
2. Orer 80 an
3. "120،
4. " 180 "

Divide the le and the forepai most, middle, a these thrce poll under side of th case of a break of the deck. FC measure the ins the upper deck the upper deck ship depth, from Then, to twice th for the sum of t lower breadths, 3 midship, and the for sum of the bre Multiply togeth tons or regith at tons or register. upper deck, mea such part thereo? three measuremen Will be the numbe For Open Vesse the lower strake.
Fior Steam Vesse
from the total tony
To determine th the foremost to the midship depth of
breadtia at 4 of the 1
Selp-Actina N North America to ing water from h performing that d rigged out a spar, other was fastened end which project but corked down, butt, the other en retiring of the wa butt, the piston can the aid of the crew,

For 4 Double Deok Vesser.-Rule. Multiply as above, taking hals the breadth of beam for the depth of the hold, and divide by 96. British Measonement.
The Britigh modo for measuring vessels, authorized by Act of Parile ment in 1854, has been uubstantialy copied into the above noted Aot to, regulate the admeasurement of tonnage in the United Stater, the malis difierence being a reduced number of areas or sections by the Britiab mothod, which stands as follows.

1. Vessels of which the tonnage length is 50 foet or unier are divided into
2. Over 50 and nut over 120 feet, into

b. " 1820 ft, into 220 " 10 " "

Divide the length of the upper deck between the after part of the stem and the forepart of the stern-post into 6 equal parts, and note the foromost, middle, and aftermost points of division. Measure the deptha at these thrce points in feet and tenths of a foot, also the depths from the under side of the upper deok to the ceiling at the timber otrake; or, in case of a break in the uppor deck, from a line strotched in continuation of the deck. For the breadth, divids each depth into 5 equal parts, and measure the inside breadths at the following points, viz. : at 2 and 8 from the upper deck of the foremost and aftermost depthe, and at 4 and 8 from the upper deck of the midship depth. Take the length, at half the midship depth, from the afterpart of stem to the forepart of the stern-post. Then, to twice the midsilip depth, add the foremost and aftermost depthe for the sum of the depths; and add together the foremost upper and lower breadths, 3 times the upper breadth with the lower breadth at the midship, and the upper, and twice the lower breadth at the after division for sum of the breaulths.
Multiply together the sum of the depths, the sum of the breadths, and the length, and divide the product by 3500 , which will give the number of tons or register. If the vessel has a poop or half deck, or a break in the upper deck, measure the inside mean length, breadth and height of such part thereof as may be included within the bulkhead ; multiply theso three measurements together, and divide the product by 92.4. The quotient will be the number of tons to be added to the result, as above ascertained.
For Open Vessels.-The depths are to be taken from tho upper edge of the lower strake.
For Steam Vessels.-The tonnage due to the engine room is deducted from the total tonnage computed by the above rule.
To determine this, measure the inside length of the ongine-room from the foremost to the aftermost bulkhead; then maltiply this length by the midship depth of the vessel and the product by the inside midehip breadth at 4 of the depth from the deck, and divide the final product by 924.

Self-Acting Naumical Pump.-Captain Leslie, in a voyage from North America to Stockholm, adopted an excellent mode of emptying water from his ship's hold when the crew were disabled froin performing that duty. About ten or twelve feet above the pump, he rigged out a spar, one end of which projected overboard, while the other was fastened as a lever to the machinery of the pamp. To the end which projected overboard was suspended a water-batt half full, but corked down, so that when the coming wave raised the waterbutt, the other end depressed the piston of the pump; but, at the retiring of the wave, this was reversed ; for, by the weight of the butt, the piston came up again, and with it the water. Thus, without tie aid of the crew, the ship's hold was cleared of witer in a few hours

104

ENGLISH FREIGHT TABLE.

GOODS PROPORTIONED IN STOWAQE.

The tollowing Table in from "Rarrison's Preighters' Guide," Lox dom Eition, 188. The 1st column ehows the Quantitios, in Numbers and Docimal parts ; the 2d column the character, or kind of Goode; the $3 d$ column the Grose Weight of the Goods in Tons and Decimal parti of a ton $;$ and the 4th column the number of Cublo Feet required fos stowing the same. [850 Cubic Heet equal 21.2 Tons, or 1 Keel.]

Quantities in Numbers \& Decimals.	Articles of Frolght.	Tons Weight	Cub.
097.	Quarters of Wheat, 61.2 lbs, per Bushel, equal	21.2	850
88.	do. Tares, Beans, \& Peas 63 do. do.	20.	do
108.	do. Rye, ${ }^{\text {57 }}$ do. do.	21.	do.
116.	do. Barley, $\mathrm{B2} 2_{\text {do. }}^{\text {do. }}$ do.	21.	do.
125.	do. Oats,................ 37 do. do.	16.5	do.
10.	Tons Clean Hemp and Flax, do.		do.
9.107	do. Ontahot do. do.................do. do. do. Half-clean do.	${ }^{9.107}$	do.
8.825	do. Codilla do. do....................do.	8.825	do.
4.444	do. Wool,di. ${ }^{\text {do }}$	4.444	do
5.257	do. Wool, compressei, do.	5.257	
${ }_{17 .}{ }^{\text {72727 }}$	do. Drted Skins,d. ${ }^{\text {do. }}$. do. Tallow,	7.2727	do.
17.	do. Ashes,	17.	do.
17.	do. Hides (Salted)		
17.		18.5	do.
17.	$\begin{array}{lll}\text { do. } & \text { de } & \text { (Ni American do.),...... } \\ \text { do. } & \text { do } & \text { (Birch do. } \\ \text { do. }\end{array}$	${ }^{13.5}$	do.
14.923	do. Masts (round),................................do	17.6	do.
$\begin{aligned} & 8.1815 \\ & 4.857 \end{aligned}$	$\begin{array}{llllll}\text { Stand. Hnnd. Deals, } \\ \text { do. } \\ \text { do } & 120 & 12 & 11 & 11 & \text { dottens, } \\ 120 & 12 & 7 & 2\end{array}$	${ }_{17.78}^{17 .}$	$\begin{aligned} & \text { do. } \\ & \text { do. } \end{aligned}$
${ }^{2.275}$			
1.300 1.200	do. Odessa do. do.............. do. Quebec do. do.............		
0.840	do. Baltio Stares rough		
1 0.708		15.25	de.
1.054	do. 1200 pieces 76 inches by $31 / 2$. .		
8.885	do. West rndia, do. do....i.........		
10.	1200 pieces 42 inches by $11 / 4$. .	6.	
8.	Tons Bonew (calcined), in Bulk,do	8.	do.
${ }_{12 .} 12$.	do. do. do. do.		da.

- Wheat Is the standard, 8 imperial bushels of Wheat equal 1 Quaster and 1 English Quarter equal $81 / 4$ United States bushel. 1 The Stares arerage 6 inches in breadth.

Qrantitien Numbera Decimale

9 in 1
100.
100.
100.
138.
140.
160.
8.333
2.166 4.75
7.
9.7
17.
20.
40.
230.
17.
8.
4.800
10.
$11{ }^{8 .}$
156.

120
180
14
20.
${ }_{16}$
150
40.
80.
60.
60.
100.
200.

ENGLISH FREIGHT TABLE.
Guantitios in

Articles of Froight.
9341
100.
100.
100.
100.
130°.
140.
100.

8.333

2.166

4.75
7.

9.7

8.
9.
10.
11.
12.
13.
14.
15.

ENGLISH FREIGHT TABLE.

Duantitios in Sumbers \& Decimals.	Articles of Freight.	Tons Weight.	Cab Feet
80.	Crts. Bottles (Glass) 102/9 cubic ft. oach, equal	10.	850
28.	do. Earthenware, small size, do.	10.	do.
22.	do. do. mixed sorts or middling size, do.	9.	do.
16.		7.	${ }_{\text {do. }}$
7000.	Fire Bricks,in Bulk, $8 /$	21.	638
8000.	Common do., also Tiles,.do. do.	21.	do.
26.		21.	425
17.	Tons Potatoes, do. do. do.	17.	du.
20.	do. Oll Cake,.........................dido. do.	20.	do.
21.	do. Slates, . do. ${ }^{\text {d/3 }}$	21.	B67
300.	Pigs of Lead............................do. $1 / 3$	22.	283
- 8.	Wagons of Coal, 83 cwt . each,do. do.	21.200	850

* The Contents of each Wagon of Coals is 126 Cubic Feet, 8 Wagons 1008 Feet, but when stowed in bulk on board a ship, from the spreading out and pressuro, become closer packed, and are proved, from practice, to tow in the space of 850 Cublo Feet.
NOTF. - As wheat is the standard equally for weight and measurement, it will be necessary to explain how it is so. The imperial corn bushei is 2218.192 cubic inclies : this multiplied by 776 (the number of bushels in 97 grs. of wheat), and divided by 1728 (the cubic inches in one foov); gives 096 cubie feet ; but, when stowed in bulk on board a ship, is reduced in measurement nearly 15 per cent., viz., to 850 cuble feot; 1st, about 8 per cent. by the shipstowing it in spaces where no measurement goods can be stowed, and the immense pressure on the lower parts of the cargo ; and 2d, about 7 per cont. difference between the bushel being filled in the customary way, and what it can be made actually to hold ; this, by several trials of wheat, 61 lbs. to the bushel, average neariy 5 pints, or 5 -64ths, making, in all, about 15 per cont. as above. This seeming paradox, which I have taken some pains to clear up, although weil known to exist in practice, by me and every one acquainted with the stowage of goods, applies to oveiy sort of grain, and in fact, to every thing in bulk, according to its welght asd elasticity ; and 97 qrs, of wheat, is equal to 850 cuble feet.

TREENAILS.-5333 pleces of 0 inches equal 1 load of timber ; 4000 do. 12 do. do.; 3200 do. 15 do. do. ; 2660 do. do. 18 do. do. ; 2285 do. 21 do. do.; 2000 do. 21 do. do. ; 1777 do. 27 do. do.; 1600 do. 30 do. do. $; 1454$ do. 33 do do. 1333 do. 36 do. du.; 1142 do, 42 do. do.
FIR AND OAK PLANK, - 1200 pieces of $1 / 2$ inch equal 1 load of timber; 600 do. 1 do. do. ; 400 do. $11 / 3$ do. do.; 300 do. 2 do. do. ; $240 \mathrm{dog} 21 / \frac{\mathrm{do}}{} \mathbf{d o}$ do. 200 do. 3 do. do. ; 150 do. 4 do. dn, ; 120 do. 5 do. do. 100 do. 6 do. do.
FREIGHT TABLE.-The foregoing Tabie gives about 100 different dejcriptions of goods, proportioned in stowage.
HULL.-If 97 Quarters of wheat equal a keel (21.2 tons or 850 cubio ft.) then how many quartors of Bariey, or how many tons of Hemp, Wool, or Cotton, or barrels of Flour can be stowed in a vessel whose carrying capar city is 294 tons?
EXAMPLE. -294 tons mnltiplied by 40 (the number of cuble feet in a ton) equals 11.760 cuble feet, which dinided by 850 and the quotient muldiplied by 140 (the number of barrels which cau be stowed in 850 cublc feet, as atated in the table) gives 1936 barrels of Flour, as the quantity which such ressel can carry.

LIGHTNING CALCULATOR FOR MERCHANTS, SEAMEN, CONtractors, \&c., glowing the Solid Contents or Cubic Feet cf 'Ifmber, Stones, Boxes, Bales, Barrels, Casks, Hogsheads, \&c., according to their several lengths, breadths and'thicknesses. Condensed jrom Biunl's E'x. peditious Measurer.

EXAMPLE.-Required the cubic contents of a Box, Stone, Bale or Package, 6 feet long, 36 ins. thick or deep, and 46 ins. broad; turn to 36 inches thick, among the running titles over the tables, and opposite 6 ft and under 46 ins. (indicated by B, denoting breadth), you will tind the an swer 69, the number of cublc feet.
If there ehould be a package exceeding the extent of the tables in lengtin, breadth or thickness, its solid contents may, however, easily bo found by halving the dimension so exceeding, and doubling the solid content; or, double any suitable number, add any two together, or subtract, as may be required.
Sizes in feet and inches may be determined by applying the scale for inches under each table, adding or deductiug as may be required.
In measuring casks and hogeheads, it is customary to dedict one-fifth on account of the bulge. Thus supposing the square or solid contents of a cask should be bythe table 20 cuble ft., the 5th off would leave it but 16 ft .

 \begin{tabular}{|l|}
\hline in.

\hline-

\hline

\hline

\hline

\hline

\hline 1

3

6

15 \& B \& 16

\hline 1 \& 7 \& 1

3 \& 2 \& 3

4 \& 8 \& 5

6 \& 3 \& 6

7 \& 10 \& 8

9 \& 5 \& 10

\hline 0 \& 2 \& 0

0 \& 3 \& 0

0 \& 6 \& 0

0 \& 8 \& 0 \& 1
\end{tabular}

Lengt					16 B						
ft. in.	12 B	13 B	14 B	15 B	16 B	17 B	18 B	19 B	20 B	21 B	22 B
1 -		1			1					1	10
2	20	22	24	26	28	210.	30	32	34	36	38
3	30	3	36	39	40	43	46	49	50	5	56
4	4	44	48	50	54	58	60	64	68	70	7
5	5	55	510	63	68	7	7	711	8	8	9
6		6	70	76	80	86	90	06	100	10	11
1	0 1	01	01	01	01	01	02	02	0	2	01
2	0 2	0	0	0	0	0	0	0	0	0	0
3	03	03	04	0	04	0	0	0	0.5	015	04
6	06	0	0	0		0	0			011	015
rengtr					3 Inc	ches	Hick,	$-\mathrm{By}$			
fi. ${ }^{\text {in }}$	13 B	14 B	15 B	16 B	17 B	18 B	19 B	20 B	21 B	22 B	23 B
1		13				18		110			21
2 -	24	$2-6$	20	211	31	33	3	37	310	40	42
3	36		4	44	47	411	52		58	60	63
4		51	$5 \quad 5$	59	f 2	0 O	610	7.3	77	711	84
5	510	6.4	69	7	78	8	87	90	96	911	10
6		77	82	88	93	98	104	1010	115	1111	12
1	01	01	0	0					0	02	03
2	02	03	03	03	03	0	03	04	04	04	0
3	04	0	04	0 4	0 -	0 5	05	0 O	06	06	06
6	07	08	08	0	09		010				10

Length ft.in.	14 B	15 B	16 B	17 B	$18 \mathrm{~B}$	19 B	20		22	23	
									22	2	
1		$1 \begin{array}{ll}1 & 6\end{array}$	17	18	19	110	111		22	23	24
2		211	31		36	38	311	4	43	46	б 10
$3-$		45	48		515	5	510	6	65	68	70
4		Б 10	6	67	$7 \quad 0$	7		8	8	811	94
5	610		79	$8 \quad 3$	8	93	$9 \quad 9$	$10 \quad 3$	108	112	118
6	82		94	911	106	1111	118	12	1210	135	$14{ }^{\circ} 0$
1					02			2	02	2	
2	0	0	0	0	0	0	0	0	0	0	
3			05	0 O 6	$0 \quad 5$	0	06	- 6	0	07	07
6			09	010			10	1	1	1	
Length					1 nc	ches	Thick,	- $\mathrm{By}^{\text {y }}$			
ft. \|in.	15 B	16 B	17 B	18 B	19 B	20 B	21 B	22 B	23 B	24 B	25 B
$\begin{aligned} & 1 \\ & 2 \end{aligned}$		$\begin{array}{ll}1 & 8 \\ 3 & 4\end{array}$	$\begin{array}{ll}1 & 9 \\ 3 & 7\end{array}$	$\begin{array}{ll}1 & 11 \\ 3 & 9\end{array}$	$\begin{array}{ll} 2 & 0 \\ 4 & 0 \end{array}$	$\left.\begin{array}{ll} 2 & 1 \\ 4 & 2 \end{array} \right\rvert\,$	$\begin{array}{ll}2 & 2 \\ 4 & 5\end{array}$	$\begin{array}{ll}2 & 4 \\ 4 & 7\end{array}$	$\begin{array}{lll}2 & 5 \\ 4 & 10\end{array}$	2	$\begin{array}{ll}2 & 7 \\ 5 & 3\end{array}$
3	48	50	54	58	511	6	67	611	7.2	76	710
4		6.8	71	76	$\bigcirc 11$	84	$8 \quad 9$	92	97	10	105
5	710	8.4	810	9 ¢	911	105	1011	$11 \quad 6$	12 0	$12 \quad 6$	13
6	95	100	$10 \quad 8$	113	1111	12	132	$13 \quad 9$	14	$15 \quad 0$	168
- 1	2	0		02	02	2	2	2	02	0 O	03
2	0	03	04	04	04	04	04	0	0 5	0	0 5
3	0	0	05	0 O	06	06	0	0	0	0	08
6	0	010	011		1	1	12	2	12	13	13

$\begin{aligned} & C \theta 1 g^{2} \\ & f l . \mid E n . \end{aligned}$	24 B	125 B	26 B	27 B	$28 \mathrm{~B}$	29 B	30 B	-3118	32 B	33 B		34 B
1 -	40	2		46	48	410	50	52	δ	σ	6	
2	80	8	88	9	,	98	10	104	10	110		11
3	120	12	130	136	14	14	150	156	16	16	1	17
4	160	168	174	18 0	188	19	20 0	208	21	22	2	22
6	200	2010	21.8	226	234	242	250	2510	26	27	2	28
6	240	250	20	270	28	290	30 0	310	32	33	3	340
-1	0	04	4	0 B	08				5	0.6		6
2		0	9	9	-	010	010	010	011	011		011
		1		12	1	13	13	14	1	15		15
	2	2	2	23	2	2		27	2	2		210
Length					5 Inc	¢	Thick,	By				
ft. in.	25 B	26 B	$23^{3} \mathrm{~B}$	28 B	29 B	30 B	31 B	32 B	33 B	34 B		3518
1	44	6		410	50	53		5	б	511		61
2	88	9	9 5	99	10		10	11	11	1110		122
3	130	137	141	14	151	158	162	16	$17 \quad 2$	17	1	183
4	174	18	189	19 B	$20 \quad 2$	2010	216	22	2211	23	2	24
5	218	22	23 ¢	24	25	26.1	2611	$27 \quad 9$	288	29	3	308
6	28	271	282	29		313	$32 \quad 4$	33	34	35		36. 6
1	04	0 5										6
2		09	0	010	010	010	011	011	011			10
3		12			13	$1 \begin{array}{ll}1 & 4\end{array}$	14		15			17
	2	23				2		2	210	211		30
Length					Inc	ches	hek,	By				
ft. in.	26 B	27 B	28 B	29 B	30 B	31 B	32 B	33 B	34 B	35 B		36 B
1		411	5	5		8.7		6	62	$6{ }^{4} 4$		66
2	$9 \quad 5$	98	101	10	1010	112	117	1111	12	12		13
3	14	148	152	158	16 31	1610	17	1711	18 5	19 O		19
4	189	196	20	2011	218	22 ¢	231	2310	247	$25 \quad 3$		6
5	236	$24 \quad 5$	25	$26 \cdot 2$	27 12	28 0	2811	2910	308	317		32 6
6	282	293	304	31	326	33	348	$35 \quad 9$	3610	3711		39
									06			
		010	010	010	011	011		10	1	1		11
		13	13	14	14	15		16	1			
	14				29	210	211	30	,	31		33
Length					Inch		chick,					
ft.in.	27 B	28 B	29 B	30 B	31 B	32 B	33 B	348	35 B	36 B		7 B
1					510				67			611
2	10	$10 \quad 6$	1011	113	1181	120	12 ह	120	132	13.6		310
8	152	1501	164	1611	$17 \quad 51$	18	187	192	198	20		010
4	120	21.02	219	226	$23 \quad 31$	240	249	25 0	263	27		79
6	254	$26 \quad 32$	27	$28 \quad 212$	2913	300	3011	3111	3210	33		48
6	30	3163	328	33 913	31113	36	$37 \quad 2$	$38 \quad 3$	59 5	406		18
									07			
2	010	011	0 Iil	011	10	10		$1 \begin{array}{ll}1 & 1\end{array}$	11	12		
3	13	14	14	15	18	16	17	17	1.8	18		
6	26	28	29	210	211	31	31	3	$\begin{array}{ll}3 & 3\end{array}$	3		

Length
 cength
111! oronceson | 2
Cengin

$\begin{aligned} & \text { fougin } \\ & \text { N. \|in. } \end{aligned}$	32 B	33	[34	351		B	37 B		$8 \mathbf{B}$		B		0 B		1 B		
2	${ }_{14}^{7} \quad 1$	148	151	157	18	${ }_{0}$	8 16 5		11	17			$\begin{array}{ll} 8 & 11 \\ 7 & 9 \end{array}$				18
3	21.4	220	228	234	24		248		4	20	0	26		27	4		88
41	285	29	303	311	132		3211	33		34	48				6		17
		368	379	3811	40		411	42	3	43	4	44		45	5		4
8 -			454	488	48		494	50		52			3				6
			08		0												
		1	1		1		1										
		110			2		2										
-6				311	4												

cengthy
ת. 12.

36
8
16
24
33
41
49
0
1
2
4

38 B
8
17
26
34
43
52
0
1

39 B
8
17
26
26
35
44
53
0
1
2
4
---:
11
10
9
8
8
9
3
3
6
:---:
9
18
27
36
45
65
0
1
2
4
:---:
4
6
8
10
0
9
9
4
7
7
:---:
9
18
28
37
47
56
0
1
2
4
---:
10
2
7
0
6
9
4
4
8

42 B			
9	8		
19	3		
28	11		
38	6		
48	2		
57	9		
0	10		
1	8		
2	10		
4			8
:---			
3			
1			
6			
2			
2			
9			
6		43	L
:---:	:---:	:---:	
9	11		
19	\vdots		
29	\vdots		
39	5		
49	3		
59	2		
0	10		
1	8		
2	5		
8	0		

feuf
1
1
2
3
4
5
6
$=$
$=$
$=$

II

 $\left|\begin{array}{cc}34 & 8 \\ -8 & 0 \\ 16 & 1 \\ 24 & 1 \\ 32 & 1 \\ 40 & 2 \\ 48 & 2 \\ \hline 0 & 8 \\ 1 & 4 \\ 2 & 0 \\ 4 & 0\end{array}\right|$| 35 |
| :---: |
| 8 |
| 16 |
| 24 |
| 33 |
| 41 |
| 49 |
| 0 |
| 1 |
| 2 | | 35 | B |
| ---: | ---: |
| 8 | 3 |
| 16 | 6 |
| 24 | 10 |
| 33 | 1 |
| 41 | 4 |
| 49 | 7 |
| 0 | 8 |
| 1 | 5 |
| 2 | 1 |
| 4 | 2 |

8
8
6
34
42
42
51
0
1
2
4
4

39 B
9
18
27
36
$4 B$
55
0
1
2
4

35 B	
8	
17	
25	
34	
42	
51	
0	
1	
2	
4	

36
8
17
9
26
35
43
43
62

37	B
9	0
18	0
37	0
36	0
45	0
5	0
0	9
1	6
2	3
4	6

 $\left|\begin{array}{cc}41 & B \\ \hline 10 & 0 \\ 19 & 11 \\ 29 & 11 \\ 3 & 10 \\ 49 & 10 \\ 49 & 10 \\ 10 & 10 \\ \hline 0 & 10 \\ 7 & 1 \\ 5 & 8 \\ 0 & 5 \\ 0\end{array}\right|$

$40 \mathrm{~B},-\mathrm{By}$

40 B
98
18
28
37
47
56
0
1
2
4

18
28
37
47
56
0
1
2
4
:---:
19
29
38
48
68
0
1
2
4

42	B
10	3
20	6
30	8
40	10
51	1
81	3
0	10
1	8
2	7
5	1

8	42		
4	9		
4	19		
1	29		
9	39		
5	49		
1	69		
10	0		
7	1		
5	2		
10	5		911
:---			
9			
9			
1			
2			
5			
5		9	
---:			
8			
7			
6			
10			
8			
6			
6			
0		43	3
---:	---:	---:	
10	8		
20	11		
31	4		
41	10		
52	3		
62	9		
0	10		
1	1		
2	9		
5	3		44
:---			
10			
21			
32			
42			
63			
64			
0			
1			
2			
5			

Length								31			
						41 B			48	45	48
1 -	90	93	9	98		10				11	11
2	180	18 6	190	196	200	20 6	210	216	220	22	23
3 -	270	279	286	293	30	30	316	32	330	33 g	34
4 -	360	370	380	39 0\|	40 0	41	420	430	$44 \quad 0$	450	46
5 -	430	463	47 B	489	50	513	52 6	53.	550	50	57
6	540	55	570	68 6	60	61.6	630	646	660	67	co
1 2 3 6			010	010	010	010	011	011	011		
	16	17	17	18	18	10	19	110	110	111	111
		2	2	25	26	2	28	28	29	210	211
	4	4	4	411		5			6		59
Lengthfl. in.							13 B				
	37 B	38 B		40 B	41 B	42 B	43 B	44 B	45 B	46 B	47 B
123 $\underline{=}$	9	9	100	10	106	1010	11	11	11	1110	121
	190	13 6	201	20		217	221	227	$23 \quad 2$	238	24
	286	294	30	3010	317	32 ¢	332	3311	348	356	36
	380	391	401	411	422	432	442	453	463	47	48
	17	4810	501	1515	828	540	853	566	5710	591	605
	57	587	1602	618	63	649	664	6710	696	7011	726
	010	010	010	010	011	011	011	011	10		0
		18	1	19	19	110	110	111	111	20	0
		$2 \quad 5$	2	2	2	2	2.9	210	211	211	0
		411	5				5	58	59	611	60
Eerght ft. in.					Inc	hes	hick,	By			
	38 B	39 B	40 B	41 B	42 B	43 B	44 B	453	46 B	47 B	48 B
123156	10	104	107	1010			117	1111	122	12.5	12
	201	207	211	1218	22	228	23 3	$23 \quad 9$	24		255
	30	3011	318	326	33	34	3110	35	36	$\begin{array}{ll}37 & 3\end{array}$	380
	40	412	423	433		45 b	465	476	487	497	50
	50	516	529	54 1'5		56	88	598	608	620	63
	60	61 9	634	G1 11	66	68	69	713	7210	746	700
$\begin{aligned} & -1 \begin{array}{l} 1 \\ 2 \\ 3 \\ 6 \end{array}, ~ \end{aligned}$	010	010	011	011	011	011					1
	18		1	110	110	111	111	20		2	22
	26	27	2	28		210	211	30	3	$3{ }^{3} 1$	31
	5	$5 \quad 21$	δ	$5 \quad 8$	5	88	510	511	6	62	63

Mr. Moorsom's formula to Approxinate register Tonifab UNDER ANY PROPOSKD DIMENBIONS. -To shipbullders who niay wish to know, before the construction of an intended design, the approximate register tonnage under any proposed principal dimensions, tho following formula (which has recoived the approbation of Messrs. Martin and Ritchio, the two chlel surveyors at Lloyd's, who, from their great experience and intelligence, are authorities on the subject) will be found uselul, as it gives the ionnage, ou an average, generally epeaking, within about $21 / 2$ per cent.
Let \bar{L} represent the inside length on upper deck from plank at bow to plank at stern.
" \mathbf{B} represent the inside inain breadth from ceiling tc celling.
"D represent the insido miduhip depth from upper deck to colling al timber strake.
Then the register tonnage of any ship will bo equal to $\frac{\mathrm{L} \times \mathrm{B} \times \mathrm{D}}{100}$ multiplied by the decimal factor opposite the class in the following table to which sho belongs:

Steam Vessels Ships of two Docks.. . 6 and Clippors. Tachte. Ships of three Decks... 68 6 \{ Vessels above 60 tons....................................... 5 \{Vessels, small... .45
Cost of Englisii Mercilantmen per ton.-1. Tonnage, 650. Material, wood; ôate, 1865. Wood in hull, masts and spars, $\$ 41$; yellow metal, iron-bolts and labor, $\$ 10.30$; joiner work and labor. $\$.15$; labor on hull, $\$ 20$; boats, etc.-outfit, $\$ 12.30$; rope and sails, $\$ 8$; anchors, chains and tinks, $\$ 4.25$; yellow metal sheathing, \$4. Total, $\$ 105$. 2. Iron Merchantman, of 500 Tons: Cost, $\$ 88$ per ton. 3. Iron-Passenger Ship, or Steamer, 800 Tons: Cost, $\$ 125$ per ton. 4. Another Iron-Steamer, or Ship, of 1500 Tons: Cost, $\$ 147$ per ton. 5. Another Iron-Passenger Steamer, of 1500 Tons : Cost, $\$ 122$ per ton, as follows: Material for hull, $\$ 29.50$; labor $\$ 14.50$; rent, machinery, tools, etc., $\$ 14.50$; fittings and launching, $\$ 14.25$; wood, work, $\$ 12.25$; equipment, $\$ 17$; cabins and fitting, $\$ 20$. Total, as above, $\$ 122$.
In the case of steam vessels, the vessel built of iron is more buoyant than the vessel built of wood by about 16 per cent. of the weight of the wood hull, or nearly 9 per cent. of the weight of the cargo. In the case of sailing vessels, the irou hull is still more buoyant than the wood hull by about $14.9+8.33$ per cent. $=23.2$ per cent., or about 23 per cent. of the weight of the wood hull, or 13 per cent. of the weight of the cargo.
To Find the Meridian.-Take a plece of board, or any siminar material, and describe on it a number of concentric circles. Place this in the sun, over the centre of a plammet. Observe the short. est shadow from the plummet; the sun will then be on the merid. ian; draw a line to the centre of the circle, and that will be the true meridian line. Thls will do to mark the apparent time, or to correct the compass for variation.
Captain Boyton's New Devices to Save Lipe from the Piers, and to Throw a Line from a Ship.-The following are Captain Boyton's statements, as extracted from the New York Sun: "My invention is simply this: Here is a wooden bobbin, to which 60 feet of the strougest Nanilla line is attached by one end, and a four-prouged steel grappling hron fits in tho hollow part of the
mood. TI a pound. of persons cent. If could hold which floal attempted effort to sa in. I psopc the right to can make th
"My othe a lee-shore, her, the eff means of a wind coming Now, here is under the tal strong line a ship is driven able to establ The captain rocket to the by its own for to land. In a the air, the ro brilliant red lig men, who fix and the crew sa life-preserver. with the arm a pressed air with Natus Comparative

Hops. Wheat.	
Oats.	
Peas.	
BoansPlums........	

One acre will milk, 300 lbs. but from 16 bushels o

Paris Green, fo be made as follo Water, in a stone lbs. pearlash in 4
required in the pro use with a sprinkle

sCIENIIFIC FACTS, ETC.

wrod. The whole is enclosed in a leather case, and dces not we a pound. If every policemax on duty had one of these, the savi. of persons from drowning in the rivers would be lessened 80 por cent. If the person in the water accidentally fell in, the offices conld hold the grappling iron in his hand, and throw the bobbin which floata, out to the struggling person. If the case was one of attempted suicide, or where the person was too drunk to make any effort to savo himself, he could throw out the grapple, and haul him in. I propose to give the police force of this city and Philadelphia the right to manufacture these for themselves ; and, I suppose, they can make them for fifty cents a piece.
"My other invention is equaliy simple: When a ship is driven on a lee-shore, and her back is being broken by the sea heating against her, the efforts of the coast-guard to throw a rope in board by means of a rocket or mortar frequently fail, owing ziliser to the wind coming into the shore blowing the rocket back or io one side. Now, here is a box, four feet by three, which can be cjastly placed under the talule in the cabin of any vessel. It contzins a long, fine, gtrong line attached to a rocket, of peculiar construction. The ship is driven on shore, and the coast-guard men are there, unable to establish communication between the vessel and the land. The captain brings this box on deck, opens it, and adjusts the rocket to the angle of the box-cover, and fires it off. The rocket by its own force, and that of the wind blowing in shore, is carried to land. In addition to the tail of fire shown by it passing through the air, the rocket on falling on the ground bursts, and burns a brilliant red light for ten minutes. This is seen by the coast-guard men, who fix the cable to the line, and it is thus hauled aboard, and the crew saved." A common felt-hat may be made use of as a life-preserver. Place the hat upon the water rim downwards, and with the arm around it, pressing it slightiy to the breast, the compressed air within will sustain a man for hours.

Naturat, Mechanical, and Scientific Facts.

Comparative Yield of Various Vegetables. Productions in Pounds Weight Per Acre.

	Lbers.		$\left\lvert\, \begin{gathered} \text { Lbs. } \\ \text { per ac. } \end{gathered}\right.$		per ac.
Hops	442	Che	2000	Apples	
Whea		Onio			
Barley			4000	Cinque-foil grass	$\begin{aligned} & 07200 \\ & 0 \\ & 0 \end{aligned}$
Oats.	1840	Pear	5000	Vetches, Green..	
Peas	${ }_{2}^{1920}$		7 6800		
Plums	2000	Potatoe	7500	Mangel Wurzel	122000

One acre will produce 224 lbs. mutton, 186 lbs. beef, 2900 lbs milk, 300 lbs. butter, and 200 lbs. cheese. A fair crop of potatoes, from 16 bushels of seed, is 340 bushels.

Paris Green, for potato bugs, and other enemies of the farmer, may be made as follows: Dissolve 2 lbs. sulphate of copper in 1 gal. hot water, in a stone jar. In another jar put 1 lb of white arsenic and 2 lbs. pearlash in 44 lbs. hot water, and stir till dissolved. Mix when required in the proportion of 1 part of the former to 5 of the latter, and use with a sprinkler. It is certain death to vermin.

The average growth of trees during 12 years, as determined by a conimittee of the lllinois Hortlcultural Soclety, when planted in belts and groves, is as follows: White maple, 1 ft . diam. and 30 ft . high; Ash-leal maple, 1 ft . diam. and 20 ft . high; White willow, $11 / \mathrm{ft}$. diam. and 40 ft . high; Yellow willow, $11 / 2 \mathrm{ft}$. diam. and 35 ft . high; Lombardy poplar, 10 ins . diam. and 40 ft . high; Blue and White Ash, 10 ins. diam. and 20 ft. high; Chestnut, 10 ins. diam. and 20 ft . high; Black Walnut and Butternut, 10 ins. diam. and 20 ft . high; Elm, 10 ins. diam. and 20 ft high; Birch (varicties), 10 ins . diam. and 25 ft . high; Larch, 8 ins diam. and 24 ft . high. The different varieties of overgreens will make an average growth of 18 to 20 ins. In height annually. The longevity of various trees, as estimated by Mr. Don. Secretary and Librarian of the Linnecan Society, are as follows: The Dragon's blood tree, 4,000 years; Baobab tree, of Senegal, 5,150 years; Decldious Cyprese, 6,000; Ash, 400; Yew, 3,000; Oak, 1,(000; Cedar of Lebanon, 3,000; Juniper, 380 ; Ilime, 583; Olive, 2,500 ; Apple tree, 80 to 175; Penr tree, 260 ; Orange, 1,500; Orlental plane, 1,200; Scotch fir, 90 to 120; Larch, 270; olive, 2,500 ; Ivy, 600; Balm of Gilead, 30 to 50 ; Brazil vlne palm, 150; 13razil cabbare palni, 600 to 700; Date palm, 200 to 300; Cocoa nut palm, 330 ; Oriental plane, 1,200. 1 lb. of catechu is equivalent for tanning purposes to 7 to 8 lbs. of oak bark. Terra japonica is minosa catechin.

Relative Hardness of Woods.-Taking shell bark hickory as the highest standard of our forest trees, and calling that 100, other trees will compare with it for hardness as follows:-

Shell bark Hicko	100 Red Oak,	69 Wild Cherry,	55
Pignut Hickory,	96 White Beech.	65 Yellow Pine,	54
White Oak,	84 Black Walnut,	65 Chestnut,	5
White Ash,	77 Black Birch,	62 Yellow Poplar,	51
Dogwood,	75 Yellow Oak,	60 Butternut,	$4{ }^{43}$
Scrib Oals,	73 Hard Maple,	60. White Birch,	43
White Hazel,	72 White Elm,	88 White Pine,	30
Apple Tree,	70 Red Cedar,	66	

Timber intended for posts, is rendered almost rroof against rot by thorough seasoning, charring, and immersion in hot coal tar.

The slido of Alpnach, extending from Mount Pilatus to Lake Lucerne, a distance of 8 miles, is composed of 25,000 trees, stripped of their bark, and laid at an inclination of 10° to 18°. Trcess placed in the slide rush from the mountain into the lake in 6 minutes.

The Alps comprise about 180 mountains, from 4000 to 15,732 feet high, the latter being the height of Mont Blanc, the highest spot in Europe. The summit is a sharp ridge, like the roof of a house, consisting of nearly vertical granite rocks. The ascent requires 2 days, ; or 8 guides are required, and each guide is paid 100 francs (e4). It was ascended by 2 natives, Jacques Belmat and Dr. Packard, Aug. 8, 1786, at 6 a.m. They staid up 30 minutes, with the thermometer at 14° lelow the ireezing point. The provisions froze in their pockets; their faces were frostbitten, lips swollen, and their slght much weakened, but they soon recovered on their descent. De Saussure records in his ascent, August 2, 1760, that the color of the sky was deep blue; the stars were visible in the shade; the barometer sunk to 16.08 inched (belng 27.08 in Geneva); the thermometer was $263 / 2^{\circ}$, in the sun, 29° (being 87° at Gencva). The thin air works the blood into a high fever
you foel as make your ascended in the guides, there, she m higher than is incest peri barriers, pr the ice, the he may be of talking The view frc the limit of oranges, and the chestnut and 9700 ft ; On the An Mexico, lat.
ft.; on Moui nees, 8400 ft . ceases to grc ft ; the Ash spot on the gl Peru, 16,000 Himalayas, is world.

Lauterbru hardly shines of which is th drizzling spra sun or by mo bows dancing mountain, it s In Canada, Niagara (the the American mite Valley Yosemite are 3 is 2000 feet.

The Perio or 11 months months ; buffa 9 months ; sle weeks ; she wd 42, hens 21, du 11, parrots 40.

Ages of Rhinoceros, 20 Jaguars, and I years ; Deer, 20 Monkeys and bit, 7 ; Swine, 10 ; Cow, 20 : Geese, 80 ; Hen
you feel as If you hardly touched the ground, and you can scarcely make jourself heard. A Frenchwoman, Mademoiselle d'Angevillo, ascended in September, 1840 being dragged up the last 1200 feet by the guides, and crying out, "If I die, carry me to the top." When there, she made them lift her up, that she might boast she had been higher than any man in Europe. The ascent of these awful solltudea is most perilons, owing to the narrow paths, tromendous ravines, icy barriers, proclpices, etc. In many places every step has to be cut in the ice, the party being tied to ench other by ropes, so that if one slips he may be held up by the rest, and silence is enforced, lest the woise of talking should dislodge the avalanches of the Aiguille du Midi. The view from the mountain is inexpressibly grand. On the Alps, the limit of the vine is an elevation of 1600 feet; below 1000 foet, figs, oranges, and olives, are produced. The limit of the oak is 3800 ft ., of the chestnut 2800 ft ., of the pine 6500 feet, of heaths and furzo to 8700 and 9700 ft . ; and perpettial snow exists at an elevation of 8200 feet.
On the Andes, in lat. 2°, the limit of perpetual snow is $14,760 \mathrm{ft}$ In Mexico, lat. 190, the 11 mit 'is $13,800 \mathrm{ft}$.; on the penk of Tenerife, 11,454 ft .; on Mount Etna, 9000 ft ; on Caucasus, 9900 ft ; on the I'yrenees, 8400 ft . ; in Lapland, 3100 ft ; in Iceland, 2890 ft . The walnut ceases to grow at an elevation of 3600 ft . ; the yollow pine at 6200 ft . ; the Ash at 4800 ft . ; and the Fir at 6700 ft . The loftiest inhabited spot on the globe is the Port Honse of Ancomarca, on the Anden, in leru, 16,000 feet above the level of the sea. The 14th peak of the Himalayas, in Asia, 25,659 feet high, is the loftiest mountain in thin world.

Lauterbrunnen is a deep part of an Alpine pass, where the suin hardly shines in winter. It abounds with falls, the most remarkable of which is the Staubbach, which falls over the Balm precipice in a drizzling spray from a height of 925 feet; best viowed in the morning sun or by moonlight. In general it is like a gauze veil, with rainbows dancing up and down it, and when clouds hide the top of the mountain, it seems as if poured out of the sky.

In Canada, the falls of Montmorenci are 250 feet high, the falls of Niagara (the Horse Shoe Falls) are 158 feet high and 2000 feet wide, the American Falls are 164 feet high and 900 feet wide. The Yosemite Valley Falls are 2600 feet ligh, and the Ribbon Falls of the Yosemite are 33cu feet high. The water-fall of the Arve, in Bararia, is 2000 feet.

The Periods of Gestation are the samo in the horse and ass, or 11 months each; Lemel, 12 months ; olophant, 2 years ; lion, 5 months ; buffalo, 12 months; in the human female, 9 months ; cow, 9 months ; sheep, 5 months; dog, 9 weeks ; cat, 8 weeks ; sow, 16 weeks ; she woll, from 90 to 95 days. The goose sits 30 days, swaus 42 , hens 21, ducks 30, peahous and turkeys 23 , canaries 14, pigeons 14, parrots 40.

Ages of Antmats, \&c.-Elechant, 100 years and upwards; Rhinoceros, 20; Camel, 100 ; Lion, 25 to 70 ; Tigers, Leopards, Jaguars, and Hyenas (in conflinement), about 25 years Beaver, 00 years ; Deer, 20 ; Wolf, 20 ; Fox, 14 to 16 ; Llamas, 15 ; Chamois, 25 ; Monkeys and Baboony, 16 to 18 years; Hare, 8 ; Squirrel, 7 ; Rabbit, 7 ; Swine, 25 ; Stag, under 50 ; Horse, 30 ; Ass, 30 ; Sheep, under 10 ; Cow, 20; Ox, 30 ; Swaus, Parrots and Rrvens, 200 ; Eaglo, 100 ; Geese, 80 ; Hens and Pigeons, 10 to 16 ; Hawks, 30 to 40 ; Crane, 34 :

Blackblrd, 10 to 12 ; Peacock, 20 ; Pelican, 40 to 50 ; Thrusl, 8 to 10 , Wren, 2 to 3 ; Nightingale, 15 ; Blackcap, 15 ; Linnet, 14 to 23 ; Goldfinch, 20 to 24 ; ledbreast, 10 to 12 ; Skylark, 10 to 30 ; Titlark, 5 to 6 ; Chaffinch, 20 to 24 ; Starling, 10 to 12; Carp, 70 to 150 ; Pike, 30 to 40 ; Salmon, 16 ; Cudfish, 14 to 17 ; Eel, 10 ; Crocodile, 100 ; Tortoise, 100 to 200 ; Whale, estimated, 1,000 ; Queen Bees live 4 years; Drunes, 4 months ; Worker Bees, 6 months.

Tie melody of singing birds ranks as follows : The nightingale first, then the linnet, titlark, sky lark, and wood lark. The mocking bird has the greatest powers of imitation ; the robin and goldfinch are superior in vigorous notes. Gardner's notation of the music of birds affords conclusive proof that most of the best ldeas of the great composers were derived from these melodious warblers. One well known bird in the Canadian woods takes great delight in calling out, Whip poor Will, Whip poor Will; the red-eyed fly-catcher seems to say, Tom Kelly ! Whip / Tom Kelly !

The condor of Peru has spread wings 40 feet, feathers 20 feet, quills 8 inches round.

In Eugland, a quarter of wheat, comprising 8 bushels, yields 14 bushels $2 \frac{1}{2}$ pecks, divided into seven distinct kinds of flour, as follows : Fine flour, 5 bushels 3 pecks ; bran, 3 bushels ; tweuty-penny, 3 bushels ; seconds, 2 pecks; pollard, 2 bushels ; fine middlings, 1 peck ; coarse ditto, 1 peck.

Fourteen pounds of oats produce 8 lbs , of oatmeal.
In America, 1 bushel of buckwheat, or 50 lbs., will produce 25 lbs. of buckwheat meal; more may be obtained, but the quality will be Impaired.

A 20 -inch Harrison light vertical burr-mill will grind 64 bushels of corn per hour. Revolutions per minute, 1300 ; 20 horse power will drive two such run of stones.

In Fingland, 2 bushels of seed will produce 18 of wheat in fair crops.

The anclent Greek phalanx comprised 8000 meu, forming a square battalion, with spears crossing each other, and shields united.

The Roman legion was composed of 6000 men, comprising 10 cohorts of 600 men each, with 300 horsemen.

The ancienc battering ram was of massive timber, 60 to 100 feet long, fitted with an irou head. It was erected under shelter to protect the 60 or 100 men required to work it. The largest was equal in force to a $36-1 \mathrm{l}$. shot from a cannon.

Pile Driving on Sandy Soils.-The greatest force will not effect a penetration exceeding 15 feet.
Various Sizes of Type.-It requires 205 lines of Diamond type to make 12 inches ; of Pearl, 178 ; of Ruby, 166 ; of Nonpareil, 143 ; of Minion, 128 ; of Brevier, 112 $\frac{1}{2}$; of Bourgeois, 1021 ; of Long Primer, 89 ; of Small Pica, 83 ; of Pica, 71 $\frac{1}{2}$; of English, 64.

To supply a population estimated at over $40,000,000$, there were in existence in the United States and Territories during July, 1876; tho euormous number of 8129 newspapers and periodicals, embracing 738 daily, 70 tri-weekly, 121 semi-weekly, 6235 wcekly, 33 b-wreekly, 105 semi-monthly, 714 monthly, 13 bi-monthly, and 67 quarterly publications. Of these, the New York Sun has the largest circulation, haviug circulated $46,799,769$ copies during the year ending March, 1876 ; weight of white paper consumed, $3,426,610$ pounds. Its daily
circulation is it requires t a weekly ox ponderous Bi per minnte. copies per hol coples at oue type plates wl

Wire repes inch diam. for rope, made of provided with more or less, a grooved, cast ir transmitted pov well cashioned tion of a durab last from 3 to 5
In paper maki revolutions per pump and access 13 yards of pape per day of 24 hoo
paper making ma paper making ins. in diameter, silver buckets, is engine which it st The St. Goth finished, 9.3 miles Coathepres Ru shooting, the leng be not lese than 4 c
Proportions of nitre, 75; charcoa charcoal, 14, sulph 90 lbs, ball 344.51 of solid iron plates ed with more pow A 32 pounder with 200 brick, or 12 ins. or 200 feet.
Cannon balls go are less; the rang direction of the eas axis, is at the rate
The air's reatstas diameter, 2.78 ing .
resisted by a force
Estimated The
1000 Horse Powza
Brick-layers asce
There are 484 bric act
A power of 250 to
circulation is over 138,000 , weekly 85,000 . To supply this demand it requires the combined results of the labor and brains of 249 men , a weekly expenditure of about $\$ 16,000$, and the services of seven ponderous Bullnck printing presscs, having a capacity of 1400 copies per minute. Another press, of double size, with a capacity of 50,000 copies per hour, has been ordered. Each press prints two completn copies at one impression, not from type, bnt from cylindrical stereotype plates which revolve with the press cylinder.

Wire repes for the transmission of power vary in size from of to inch diam. for f. un 3 to 300 horse power; to promote flealbility, the rope, made of iron, steel, or copper wire, as may be preferred, is provided with a core of hemp, and the speed is 1 mile per minute, more or less, as desired. Tie rope should run on a well-balanced, grooved, cast iron wheel, of from 4 to 15 feet diam., according as the trausmitted power ranges from 3 to 300 horse; the groove should be well cushioned with soft material, as leather or rubber, for the formation of a durable bed for the rope. With good care the rope will last from 3 to 5 years.

In paper making, 10 cylinders for preparing the pulp, making 200 revolutions per minute, 1 paper making machine, cutting machines, pump aud accessories, consumed 50 horse power. The machine made 13 yards of paper-per minute, and the produce was 1 ton of paper per day of 24 fiours. In another instance, 28 pulping cylinders and 3 paper making machines produced 2 to 3 tons of paper per day of 24 tnire, and consumed 113 horse-power. A Leffel Turbine Wheel, 10 ins. in diameter, strongly built of fine brass and steel, with German silver buckets, is ncis performing the work of a 120 horse power engine which it superseded; it has a head or 228 feet.

The St. Gotkird Tunnel, under the Helvitic Alps, will be, when finished, 9.3 miles long, and will cost $289,000,000$ francs.

Coathupes Rule for Lengih of Gun Barrels. For the best shooting, the length of the barrel, measured from the vent hole, should be not lese than 43 times the diameter of its bore, nor more than 47.

Proportions of Guapowder as mada by the English Government, is, nitre, 75 ; ${ }^{\text {i }}$ charcoal, 15 ; sulphur, 10. That of the French, nirre, 77 charcoal, 14, sulphur, 9. A 13 irch Armstrong gun, with a charge of 90 lbs., ball 344.5 lbs., velocity 1760 ft. per second, penetrated 11 iuches of solid iron plates at a range of 200 ft . No field plece should be loaded with more powder thnn a fifth or sixth of the weight of its ball. A 32 pounder with a charge of 8 lbs . will penetrate 15.25 ins . of hard brick; or 12 ins. of iarid freestone, or $3 \cdot 5$ ins. of granite, at a range of 200 feet.
Cannon balls go furthest at an elevation of 30°, and less as the balls are less; the range is furthest when fired from west to east in the direction of the earth's motion, which for the diurnal rotation on ita axis, is at the rate of 1037 miles per hour, and in its orbit, 66,092 miles.
The air's resistance is such, than a cannon ball of 3 lbs . weiglit, diametor, 2.78 ins. moving with a velocity of 1800 ft . per second, it resisted by a force equal to 156 lbs.
Estimated Thrust of Screw Profeller witi engines of 1000 Horse Power, 20,000 lbs.

Brick-layers ascend ladders with loads of 90 lbs., 1 foot per seound. There are 484 bricks in a cubic yard, and 4356 in a rod.
A power of 250 tons is necessary to start a ressel weighing 3000 tons
orer greased slides on a marine railway, when in motion, 180 tons inly is required.

A modern dredging machine, 123 ft long, beam 26 ft ., breadth cver all, 11 ft , will raise 180 tons of mud and clay per hour, 11 foot from water-line.
In tanning, 4 lbs. of oak bark make 1 lb . of leather.
Flame is quenched in air containing 3 per cent. of caxbonic acid ; the same per centage is fatal to animal life.
100 parts of onk make nearly 23 of charcoal; beech, 21; deal, 19; apple, 23.7; elm 23; ash, 25; birch, 24 ; maple, 22.8; willow, 18; poplar, 20 ; red pine, 22.10 ; white pine, 23 . The charcoal used in gunpowder is made from willow, alder, and a few other woods. The charred timber found in the ruins of Herculaneum has under. gone no change in 1800 years.
Four volumes of nitrogen, and onc of oxygen compose atmospheric air in all localities on the globe.
Air extracted from pure water, nnder an air pump, contains 34.8 per cent. of oxygen. Fish breathe this air, respiring about 35 times per minute. The oxyhydrogen lime light may be seen from mountains at the distance of 200 miles round.
Lightning is reflected 150 to 200 miles.
1005 cubic feet of 13 candle gas is equivalent to over 7 gals. of sperm oil; 52.9 lbs of tallow candles; and over 44 lbs of sperm candles.
The time occupied by gas in travelling from a gas well (in Pennsylvania) through 32 miles of pipe was 22 minutes, pressure at the well was 55 lbs . per inch. pressure at discharge 49 lbs.
The flight of wild ducks is estimated at 90 miles per hour, that of the swift at 200 miles, carrier pigeons 38 miles, swallows 60 miles, migratory birds have crossed the Mediterranean at a speed of 120 miles per hour.
Were it not for dry rot, ships would last on the average abont 30 years, as it is their average duration, when built of ordinary timber, is 7, 8 and 9 years.
Calomel is composed of 50 grs . of mercury and 102 of chlorine gas.
Carbon is the base of organic structures, and Silica of mineral.
At birth, the beats of the pulse are from 165 to 104, and the inspirations of breath, from 70 to 23. From 15 to 20, the pulsations are from 90 to 57 , the inspirations, from 24 to 16, from 29 to 50 , the pulsations are 112 to 06 , the inspirations, 23 to 11. In usual states it is 4 to 1. The acticn of the heart distributes 2 ozs . of blood from 70 to 80 times in a minute.

Daniell makes the heat in a conmmon parlor fire 11410. Sollds become incandescent in the dark, at 600° or 700°, but not in daylight $t i l l 800^{\circ}$ or $1000{ }^{\circ}$.

Sea water is seldom below 40°, springs about 45°; and pools and small rivers are as the atmosphere. The lowest heat for fermentation is 57.5 , the highest $77^{\circ} .^{\circ}$ The lowest for drying herbs, etc., 77° und the highest 122°.

The mean heat of the human body is 988° and of the skin 90° Tea and coffee are usually drank at 1100.

The explosion of nitro-glycerine is so sndden that it acts against the air as against a solid body, thus forming a deop chasm in the earth.
Decrimal
dways tent
third is thor
and 24 hun
1-10, 01 is
ignifcation
Value
Iron Age,
kinds of me
been taken f
the initials in
assumed as

Vanadium, cry
Rubldium, wir Calcium, elect Tantalum, pur Cerium, fused Iithium globul Lithium, wire. Erbium, fused. Didgmium, fuse Strontium, elec Indium, pure... Ruthenium, pur Columbium, fus Bartum, electroi
Thallium........
Osmium
Pallidium
Iridium.
Urarium............
Gold
Titantum, fused.
Tellurium, fused Chromium, fused Platinum, fused. Manganese, fused Molybdenum.... Magnesium, wire
Potassium, globu! Silver.............
Aluminum, bar Cobalt, cubes.... Nickel, cubes. Cadmiume.......... Sodium
Bismuth, crude.
Mercury.........
Antimony.
Copper
Arento
Zine.
Lrou.

Demmal Notation, \&o. The first figure to the right of the point if a ways tenths, the second figure from the point is always huniredths, the third is thousandths, \&e., thus 4.5 , is' 4 units and 5 tenths; 9.24 is 9 unita and 24 hundreths; or 8.610 is 8 units and 610 thousandths. Again, 1 is 1-10, 01 is 1-100, and .001 is 1-1000. The Arithmetical Signs and their uignification can be formed by consulting the Tabular part of this work.

Value of Metals. - The following table, transcribed from the Iron Age, may be considered as showing the value of 44 different kinds of metal during July, 1876. The prices of the rarer metals hav* been taken from Trommsdorff's and Schuehardt's last price list, and the initials indicate the authorities consulted. The avordupois lb . is assumed as being equal to 453 grammes, and the mark to 24c. gold:-

Metal.	Value in gold per lb. Avord.	Price In gold per gramme.	Author ity.
Vanadium, cryst. fused	\$4,792.40	\$10.80	S
Rubldum, wire.	3,261.60	7.20	S
Calcium, electrolytic	2,466.20	6. 40	S
Tantalum, pure.....	2,446.20	6.40	\mathbf{S}
Cerium, fused globules.	2,446.20	0.40	S
Ilithium globules......	2,228.76	4.92	S
Lithlum, wire..	2,935.44	6.48	\mathbf{S}
Erblum, fused	1,671.57	3.96	\mathbf{S}
Didgmium, fused.	1,630.08	3.60	S
Strontium, electrolytic	1,576.44	3.48	S
Indiunt, pure........	1,522.08	3.36	T
Ruthenium, pure	1,304.64	2.88	'1'
Columblum, fuse	1,250.28	2.76	S
Rhodium.	1,032.84	2.28	T
Barium, electrolytic	924.12	2.04	\mathbf{S}
Thallum...........	738.39	1.63	T
Osmium.	652.32	1.44	T
Palladium	498.30	1.10	2
Iridum..	466.59	1.03	T
Urarium	434.88	96	\boldsymbol{T}
Gold...	299.72		-
Titanium, fused	239.80	52	.
'rellurlum, fused	196.20	43	.
Chromium, fused	196.20	43	-.
Platinum, fused.	122.31	27	
Manganese, fuse	108.72	24	T
Molybdenum.	14.34	12	T
Magnesium, wire and tap	45.30	10	T
Potassium, globules.	22.65	05	T
Silver.........	18.60		
Aluminum, bar	16.30	036	S
Cobalt, cubes.	- 12.68	028	S
Nickel, cubed	3.80	008	T
Cadmium.	3.26	007	T
Sodium..	3.26	007	T
Bisnuth, crude.	1.95	0043	S
Mercury...	1.00		$\ddot{9}$
Antimony.	36	...	T
Tin.	25		
Copper.	22		Prices
Arsenic.	15		Pincen from fen
Zinc.. Lead.	10	1rom
Iron.	11/2		quatis

Arsenical Soap for the Skins of Wild Animals.-The elcing must be well scraped and divested of all fat, and well rubbed with the following scap. Liino, 1 oz.; camphor, 1 oz.; arsenic, 1 oz. ; alum, 1 oz. Mix all thoroughly with 1 lb . of yellow soap. This will prove a good preservative.
Positive Cure for Foot Rot in Sheer.-This is caused by exposure to bad weather, more especially to wet pasturage, etc. When lame, pass them through a trough coutaining a warm solution of arsenic, of nearly the following strength: 4 ozs. arsenic, 4 ozs. of eoda ash or potash, 1 gal. of water. Boil till dissolved; keep it about three inches deep, so as to cover the foot as the sheep walk through; the trough should be about 20 feet long, and just wide enough to admit one sheep walking after the other.

A 74 gun ship consumes 2000 tons or trees, the produce of 57 acres for a century.

The decpest coal mine in England is, or was, at Killingworth, near Newcastle, and the mean annual temperature, at 400 yards below the surface, is 77°, and at 300 yards, 70°, while at the surface it is but 480 , being 10 of increase for every 15 yards. This explains the origin of hot springs, for, at 3300 yards, the heat would be equal to boiling water, taking 20 yards to a degree. The heat of the Bath waters is 116°, hence they would appear to rise 1,320 yards.

Peron relates, that at the depth of 2144 feet in the sea, the thermometer falls to 45°, when it is 86° at the surface.

Swemberg and Fourier calculate the temperature of the celestial spaces at 50 deg. centigrade below freezing.

In Northern Siberia, the ground is frozen permanently to the depth of 660 feet, and only thaws to the extent of 3 or 4 feet in summer. Below 660 fect internal heat begins.

River water contains about 30 grs . of solid matter in every cubic foot. Fresh water springs of great size abound under the sea. Perhaps the most remarkable springs exist in California, where they aro noted for producing sulphuric acid, ink, and other remarkable products.

St. Winifred's Well, in England, evolves 120 tons of water per minute, furnishing abundant water power to drive 11 mills within little more than a inile.

The Nile has a fall of 6 ins. in 1000 miles. The rise of ths river commences in June, continuing until the middle of August, attaining an elevation of from 24 to 26 ft and flowing the valley of Egypt, 12 miles wide. In 1829 it rose to 26 cubits, by which 30,000 persons were drowned. It is a terrible climate to live in, owing to the fester iug heat, and detestable exhalations from the mud, etc., left on the retiring of the Nile, which adds about 4 inches to the soil in a century, and enroaches on the sea 16 feet every year. Bricks have been found at a depth of 60 feet, showing the vast antiquity of the coumtry. In productiveness oi soil it is excelled by no cricer in the world.

Belzoni considered the tract between the first and second cataracts of the Nile, as the hottest on the globe, owing to there being no rain. The natives do not credit the phenomenon of water falling from above. Hence it is, that all monuments are so nicely preserved Buckingham found a building left unfinished about 4000 years ago and the chalk marks on the stones were still perfect.

Pompey's Pillar is 92 ft . high, and $27 \frac{1}{2}$ round at the base.

The Frenc 210 tons, from architectural seen anywhere Listern count uumber, that

Babel, now used as an obs posed of 8 squa the same dimen

The Coliseun was in its longe braced $5 \frac{1}{2}$ acres,

Eight aquedu millions of cubic 100 feet high, s which 37 were or never have been to its own level.

The Temple broad, with 127 c 220 years in build Solomon's Ten length, the breadt or 54 feet. The po The largest of the sides, and its 1 ia number ; many The Temple of fut out of the solid high, 25 ft over thy
3 ft .
Sesostris erected
relf and his wife, 5
In the 'Temple of long, 24 ft. thick, an squared, sculptured enormous columns diameter. Sesostri
mountains of Arabia
The engineering a of these immenss vresent day.
During modern tirr ased as the pedestal 8t. I't tersburg, was t miles in a vast caisso of timber furnished w were placed spheres spheres the frame wi working at capstans n
In 1716, while yet b transport (on rolling n mountains, 2 galleys,

210 tons, from Thebes and carried it to P 保 95 ft . high, weighing srchitectural ruins at Thebes is one of this. The display of costly seen anywhere iu the world. The ruins the most astonishing to be liastern countries, are so vast in theirs and costly buildings, in old number, that it would require volumes proportions and so many in Babel, now called Birs Nimroumes to describe them. nsed as an observatory, and as a templt at Babylon by Belns, was posed of 8 square towers, one over temple of the Sun. It was comthe same dimensions on each side the other, in all 670 ft . high, and The Coliseum at Rome built, on the ground.
was in its longest diamcter 615 by Vespasiau for 100,000 spectators, braced $5 \frac{1}{2}$ acres, and was 120 feet high, and in the shortest 510 , emEight aqueducts supplied reet high.
millions of cubic feet daily. ancient Rome with water, delivering 40 100 feet high, so as to furnish the Claudia was 47 miles long, and which 37 were on 7000 arches, 70 feet high. Martia was 41 miles, of never have been built had the llomans known the vast erections would to its own level.

The Temple of Diana at broac, with 127 columns, 60 feet 220 years in building. 60 feet high, to support the roof. It was Solomon's Temple length, the breadth, 20 cubits. C. 1014, was 60 cubits, or 107 feet in or 54 feet. The porch was 36 feet 36 feet, and the height, 30 cubits, The largest of the Egyptian reet long and lo reet wide. the sides, and its base covers 11 pyramids is 843 fect high, 693 feet on in number' ; many stones are orer 30 . The layers of stones are 209 The Temple of Ypsambul, in Nubia is long, 4 broad, and 3 thick. cut out of the solid rock. Belzoni foum, is enormonsly massive, and high, 25 ft over the shoulders, with a face it 4 immense figures 65 ft .
3 ft .
Sesostris erected in the. of 7 ft . and the ears over relf and his wife, 50 ft . high, and of his chis, immense statues or himIn the 'temple of the Sun, at Banis children, 28 ft . iong, 24 ft . thick, and 16 broad, at Baalbec, are stones more than 60 ft . squared, sculptured, and tran, each embracing 23,000 cubic feet, cut, enormous columns are each 72 prted fronn neighboring quarries. Six diameter. Sesostris is credited with, composed of 3 stones, 7 ft . in mountains of Arabia, a rock 32 feet wide having trpasported from the The engineering appliances used by the and 24 y ft. long. of these immense masses are but imperfectly in the movement uresent day.

During modern times, a bir used as the pedestal of the equestrin granite weighing 1217 tons, now St. I'stersburg, was transported 4 miles by miles in a vast caisson by water. The railway over a railway and 13 of timber furnished with hard metal grooves pay consisted of two lines were placed spheres of hard brass about 6 ; between these grooves working at frame with its massive load was eqs. diameter. On these In 1716, capstans with treble-purchase block transport while yet but 28, the illustrions Swa.
mourtaing 2 rolling macinines of his own inventionborg contrived to mourtains, 2 galleys, 5 large boats, and 1 invention), over valleys and

Iderfjol (which divides Swoden from Norway on the South', a distance of 14 miles; by which means, Charles XII. was able to carry on his plans, and, under cover of the galleys and boats, to transport on pontoons, his heavy artillery to the very walls of Fredericksinall.
As an exponent of the laws of friction, it may be stated thiat a square stone, weighing 1080 lbs . which required a force of 758 lbs . to drag it aiong the floor of a quarry, ronghly chiselled, required ouly a ferce of 23 llss. to movo it when mounted on a platform and rollers over a plank door.
Water is the absolute master, former, and secondary agent of the power of motion in every thing terrestrina. It is the irresistible power which elaborates everything, and the waters contain more organized beings than the land.
Rivers hold in suspension 100th of their volume (more or less) of mud, so that if 36 cubic miles of water (the estimated quantity) flow dally into the sea, 0.36 cubic miles of soil are daily displaced. The Rhine carries to the sea every day 145.980 cubic feet of mud. The Po carries out the land 228 ft . per annum, consequently Adria, which 2500 years ago, was on the sen, is now over 20 miles from it.
The enormous anount of alluvium deposited by the Mississippl is nlmost incalculable, and renders necessury the extensive engineering operations, which are now (1876) being prosecuted in order to remnve the impediments to uavigation.
Frendi Mrasuris with the Engitisi Equivalents. Measures of Lengte. - Myrimeter, equiralent to 10,000 meters, or to 6 miles, 1 furlong, $281 / 2$ poles. Kilomettr, 1,000 meters, or to $3,250 \mathrm{ft}$. and 10 ins . Hectometer, 100 meters, 328 ft . and 1 inch . Decameter, 10 meters, equal to 32 and $4-5$-5hs ft . Meter, the unit of the French measure of length, equal to 39.36 inches. Decimeter, $1-10$ of a meter, equal to 3.97 inches. Centimeter, $1-100$ of a mater, or 33371 inch(nearly 2 -б́ths inch). Afillimeter, 1-1000th of a meter, or 0394 inch.
Surfade Measures.-Myriare, 100,000 square meters, equal to 248 acres, 3 roods, and 20 poles. Hectare, 10,000 square meters, equal to 11.960 Englisl square yards, or to 2.471 acres. Are, 100 square meters, or 119.6 square yards. Centare, 1 square meter, or 1550 square inches.

Measures of Volume.-Kiloliter or Steere, the unit of measure for solld bodles, 1,000 liters, or 1 cuble meter, equal to 35.3171 cublic ft., or to 1.308 cubio yards, or to 264.17 gallons. Hectoliter, 10011 ters, or $1-10$ th cubic meter, equal to 2 bush., and 8.35 pecks, or 26.417 gals. Decaliter, 10 liters, or 10 cuhic decimeters, equal ta 610.28 cubic inches, or to 9.08 qts., or to 2 and 1-5 Imperisl gals. Liter, 1 cubic decimeter, a unit of capacity, equal to a little less than an English quart, or precisely .908 qt. Deciliter, $1-10$ thi liter, or 1 cuble decimoter, 6.1022 cubic inches, equal to 0.176 pint, or 845 gill. Centilliter, 1-100th 11 ter, or 10 cubic decimeters, equal to .6102 cubic inch, or .338 fluid oz. Milliliter, $1-1000$ th liter, or 1 cuble centimeter, equal to 001 oublo inch, or .27 fluid drm.
Mensures of Weiart.-Millier or Tonneas, $1,000,000$ grains, or 1 cubie meter of water at its maximum density, equal to 2201.6 lbs. avoirdupois. Quintal, 100,000 grains, or 1 hectoliter of water, equal to 220.46 lbs , avoindupois. Afyrigram, or 10,000 grains, or 10 lttera of water equal to 22.046 lbs . avoirdupois. Kilogram or Kilo, 1000 grains, or 1 Yiter of wator, equal to 2 lbs 3 ozs. 65 drs . (2.208 lbs .) avoirdupois, Irectogram, 100 grains, or 1 deciliter of water, equal to 3.5277 ozs. avoirdupois. Gram, the unit of weight, being the weight of 1 cubic centimeter of water, or about $151 / 2$ grains troy. Decigram, $1-10$ grain, or 1.10 of a cublo centimeter of water, equal to 1.6432 grains troy. Ceertigram, 100 th gram, or 10 cubto millimeters of water, or equal to 1.543 grains troy. Mrilligram, $\geqslant 1000 \mathrm{gram}$, or 1 cuble millimeter of wa' er, equal to .0154 grains troy.

For surface m ARE.

 NUMBER OI Materials.Hoft, 457 ; Stee 417 Lead, 3•1 13.318; Paving Stone, $14 \cdot 22$; $21 \cdot 284^{\prime}$ and $24 \cdot 95$ ditto, from $89 \cdot 6$ 89°; Clay, $158 \cdot 6$ Earth with Grav $12 \cdot 44$; Iee, $38 \cdot 58$ $35 \cdot 84$; Salt Wat Wetart of V Foot.-Pure Go Pure Silver, 651 Brase, $524 \cdot 8$; B1 Bronze, 513•4; C Copper, Wire, 450.4; Gun Meta $658 \cdot 75$; Tin, $455 \cdot 7$ 60°, Fluid, $848 ;$ me Steel, Soft, 489.6; stone, 155.3; Mar Firebriek, 137.5; T of seren sorts, 18 nary Soil, 124; Mv of Parls, 73.5; Plu nel Coal, from 77 Soft Wocd, 18; Por Sea Water, 77:5; Vj 320, 57•5; Sulphur, Lime, $171 \cdot 60$; quartLard, 59:20; Whale
WEIGHT OF A
Hammered Gold, Hammered Silver, Sheet Iron, 270 ; Ro Sheet Copper, 323 Zine, 245
Sundry Commer each. A pack of wo 308 lbs. In Scotland is $151 / 2$ London cha of straw; 36 trusses salt, 56 lbs ; of forei and of pork, 320 lbs . In the North. A me of last is 10 quarters walt. A hundred of s
SUNDRY MEASORE of which 48 are an ing an inch, called a digi
meh is divided into 1 cloth measure, is $21 /$ pan 9 ing. (See Table English Statute mile and 11 Irilsh to 1934 yds .

For surface measurement, the square dekameter is used under the term of Are.
Number of Cubio Feet ma Ton (Avoirdupois) of Dmpahmyy Materials.-Cast Iron, $4 \cdot 08$; Wronght Iron, 4.59 ; Bar Iron, 4.69 ; Btool, soft, $4 \cdot 57$; Steel, Hard, $4 \cdot 59$; Copper, Sheet, $4 \cdot 62$; Copper, Cast, 4.04 ; Brace, 4.17 ; Lead, $3 \cdot 15$; Tin, Cast, $4 \cdot 91$; Zinc, Cast, $49 \cdot 8$; Granite, 13. 514 ; Marblo. 13.343 ; Paving Stone, 14:83; Millatone, $14 \cdot 42$; Grindstones, 17 ; Common Stone, $14 \cdot 22$; Fire Brick, 16.284 ; Brick, Mrean, $21 \cdot 961$; Anthracito Coal $21 \cdot 284$ and $21: 958$; Cannel Coal, $23 \cdot 609$; Cótton Bale, MCean, 154.48; Preased ditto, from $89 \cdot 6$ to $1 \cdot 14$; Hay, Bale, $23 \cdot 617$; Bale, Mean, $154 \cdot 48$; Hay, Prossed $89 \cdot 6$; Clay, $158 \cdot 69$; Common Soil, $16 \cdot 335$; Mud, $21 \cdot 987$; Loose Sand, $23 \cdot 803$; Earth with Gravel, $16 \cdot 742$; India Rubber, 39.69 ; Plaster of Paris, $21: 3$; Glase 12.44; Ice, 38.58; Chalk (British), 17.92; Tallow, 38 ; Oil, 39 ; Frosh Water, $35 \cdot 84$; Salt Water, $34 \cdot 931$.

Weight of Vamious Matertals in Lbs. (Avoirdupois) per Cubio Foot.-Pure Gold, $1203^{\circ} 6$; Standard Gold, $1102 \cdot 9$; Hammered Gold, $1210 \cdot 11$; Pure Silver, $654 \cdot 0$; Hammered Silver, $650 \cdot 9$; Staudard Silver, 658.4 : Caut Brass, $524 \cdot 8$; Brass Wire, 634 ; Blamuth, Gast, $613 \cdot 9$ Antimony. $418 \cdot 9$; Bronze, $513 \cdot 4$; Cobalt, Cast, $488 \cdot 2$; Copper, Cast, $519 \cdot 3$; Copper, Sheet, 557×2; Copper, Wire, $554 \cdot 9$; Wrought Iron, $488^{\circ} \cdot 75$:Tron Plates, $481 \cdot{ }^{\circ}$; Casi Iron, 450.4; Gun Metal, 543.75; Cast Lead, 709.5; Rolled do., 711.75. Red Lead, 658.75 ; Tin, $455 \cdot 7$; Platlnum, Puro, $1218 \cdot 8$; Hammored ' $10 ., 1271$; Mercury. ${ }^{60}$, Fluid, 848 ; mercury, Solld, 977 : Nlekel, Cast, $487 \cdot 9$; Stoel, Plates, $480 \cdot 75$; Steel, Soft, 489.6; Type Metal, 653.1 ; Zinc, Cast, 439; Granite, 105.75; Millstone, 155.3; Marble, Mean, of nineteen kinds. 180; Grindstones, 133.9; Firebrick, 137-5; Tile, 114•44; Brick, Nean, 103; Clay, 120; İmestone, Moan, of seven sorts, 184 1 ; Loose Earth or Sand, 05; C'oarse Sand, 112.5; Ordinary Soll, 124; Mud, 102; Clay and Stones, 160; Slate, 167 to 181 25 ; Plaster of Parls, $73 \cdot 5$; Plumbago, $131 \cdot 35$; Anthracite Coal, from 89.75 to 102.5; Cannel Coal, from 77.33 to 82.33; Charcoal from Hard Wood, 18.5; dilto from Soft Wocd, 18; Port Wine, 62•31; Frosh Water, 62•6; Sea Water, 64•3; Dead Sea Water, 77.5; Vinegar, $67 \cdot 5$; Alum, $107 \cdot 10 ;$ Asbestos, Starry, $192 \cdot 1$; Ice at $32^{\circ}, 57 \cdot 5 ;$ Sulphur, $127 \cdot 1$; Peat, 375 to $83 \cdot 1$; Marl, Mean, $109 \cdot 33$; Hydraulio Lime, 171.60 ; quartz, 166.25; Rock Crystal, 170.97; Salt, Common, 133.12 ; Lard, 59.20 ; Whale OI1, 57.70 ; Olive O11, 57.19 .
Weight of a Cubio Inch of Variods Metals ir Pounds.Hammered Gold, 701 lbs ; Cast do. (pure), .698; 20 Carats Fine do., . 667 '; Hammered Silver, .382 ; Pure do., 378 ; Cast Steel, .287 ; Cast Iron, ${ }^{263}$; Sheet Iron, .279; Rolled Platinum, .797; Wire do., 762 ; Hammered do, $735^{\prime \prime}$ Sheet Copper, 323 ; Sheet Brass, 304 ; Lead, 410 ; Cast Tin, 264 ; Casi Zinc, .245.
Sundry Commerctal Weights.-A ton of wool is 2 stones of 14 lbs. each. A pack of wool 182401 bs. A sack of wool is 22 stone of 14 lbs., or 308 lbs . In Scotland, it is 24 of 16 lbs . A keel of 8 Newcastle chaldrons is $151 / 2$ London chaldrons. 66 or 60 lbs . is a truss of hay, 40 lbs a truse of straw ; 36 trusses a load. A bushel of rock salt is 65 lbs ; ; of crushed salt, 56 lbs .; of foreign sait, 84 lbs . A tierce of beef, in Ireland, is 301 lbw .; and of pork, 320 lbs. A fodder of lead is $191 / 2 \mathrm{crt}$. In London and 21 otrt. in the North. A man's load is 5 bushels, a market load 40, or 5 quartert. A last is 10 quarters of corn, or 2 cart loads, 12 sacks of wool, 24 barrels of gunpowder, 12 barrels of ashes, herring, soap, \&c., and 18 barreis of salt. A hundred of salt is 126 barrels.
Sundry Measures af Lengte-The hair's breadth is the mallest of which 48 are an inch. Four barley-corns laid breadthways, are $z / 3$ an inch called a digit, and 3 barley-corns lengthways are an inch. An inch is divided into 12 lines and by mechanics into sths. A nail used in cloth measure, is $22 / 4 \mathrm{ins}$. or the 16 th of a yard. A palm is 3 ins . and a span 9 ins. (See Table of Measures of length, for other designations.) An English Statute mile is 1760 yds. or 5280 ft., an Jrish mile 2240 yds, a scotch mile 1984 yds. if 80 Scotch milles being equivelent to 91 Engliah and 11 Irlsh to 14 Englieh.

MEASURES OF LENGTH.

AVOIRDUPOIS WEIGHT.

APOTHECARIES' WEIGHT.

0 Crains make 1 Scruple.
3 Scruples " 1 Drachm. 15 Drope $=1$ teasponful or a 12 Ounces " 1 Pound. 45 Drops $=1$ teaspoonful or a fluid Drachm; 2 tablespoonfuls $=1$

DIAMOND WEIGHT.
16 Parts make 1 Grain (8-10ths Grain, Troy). 14 Grains, "s 1 Carat (3 1-5th Graing, Troy).

LIQUID MEASURE.
4 Gills make 1 Pint.
2 Pints " 1 Quart.
4 Quarts " 1 Gallon.

8 Quarts mako 1 Peck. 4 Pecks 64 Bushol. 1 Bushel equal to $28151 / 2$ cablo in. nearly.
A buishel of Wheat is on an average 60 lbs.; Barley or Buckwhat 46 lbs : Indian Gorn or Rye, 66 lbs. ; Oats, 30 lbs. ; Salt, 70 lbs. 14 lbs . C Lead or Iron make 1 Stone; $211 / 2$ Stone, 1 Pig. 1 Bbl. of Flour contrini 193 lbe. ; Beet or Pork, 200 lbs. The Imperial Gallon is 10 lbs avoirdupois of pure water; the Pint 114 lbe. 1 Gal. Sperm Oil woighs, 7/ libe 11 do. of Whale Oil, 7 lbs. 11 ozs. $; 1$ do. of Linneed; 7% lbe. 1 do. of Olive, $71 / \mathrm{lbs} ; 1$ do. Spts. of Turpentine, 7 lbs. 5 ozs. Proof Spirits T lbs. 15 oxs. 11 do. of Ale, 10.5 lbe .

Sompture -1.824 ft and 918 ft A sp broadthen $1 / 8$ of Cubliz=. 012 ing cublts $=10.04$ their mile 40 cabite, or 4 En come say 24 mil cay 3618 ft .
SCRIPTURE 1 Jomes' translat Ephah or Bath gals, 4 pts., 3 in. Omer $=1-10$ of E 10 ins. sol. The Syria (John 11. Ephal, $1 / 2 \mathrm{pt} .3$ is rain water. Ome SCRIPTURE
vel Geights and thell Gold and Silver:

The Gerah= ${ }_{2}^{2}$ of
The Bekali... Shekel......... The Sheikei. The Manei, ${ }^{\circ}$ Mini $=60$ Shekols Shekels..... 3000

Roman monoy m and American Stanc

A Mite

A Farthing, abol
A Penny, or Den
A Pound, or Min de, are principally b GUNTER's CHAlly 1 link; 100 linky 1 cha A square chain is 16 sc roods are an acre, oac
4 yarde 28 inches Forty poles of 30.25 mech way.
An acre is 4840 squar 2cres, or 0680 square yd cereas boing 1080 way A scres; a ang 1000 yds . e ceres; and arter of a Any length or brg, 0 aly which mate readt An English acres $18 \cdot 10$ sth. and an Irish of $851 / 2$ breadth A span thio less. $1 /$ of span the longer=1/2 a cubit $=10.04 \mathrm{ing}$. Cubite .012 ing, a oubit $=3.684$ ins, $=30415$ cubitile 10.944 ft Th. A fathom $=4$ cubits A inger's breath- 1.24 of
 comite, or 4 English miles and . The Parasann it. The Stadium, $1-10$ of come say 24 miles; and 3500 ft a Sabt. $33.164 \mathrm{mil} \mathrm{fl}^{3}$ of their miles $=12,000$ saris 3 f.
 Ephal or Bath was 7 gals. 75.65 gals. liquid, and 32125 or Homer in King gals. 4 pts., 3 in. sol. The 4 pts., 15 ins, sol, The See pecks dry. The 1 mer=1-10 of Ephah, 5 pts., 0,16 of Ephah, 1 gal., 2 ph, $1 / 2$ of Lphailh 2 10 ins sol. The Log $=71$ Syria (John 1i. 6) $=$ Cong ${ }^{2}$ of Ephah, $1 / 2$ pt., 10 ins $=1-16$ of Ephal, 3 pte. Ephalh, $1 / 2 \mathrm{pt} .3$ in. 801 ing. Rom. 71/p pts. The ins. sol. The metretes of rain water. Omer, 100 : This Cotyla contains lotyla Eastern $=1-100$ of Scripture Weian; Ephah, 1000; Chomer just 10 oss. Avordupois of Goights and their equivalents in Coins.-The followinger, 10,000 . Gold and Silver:-
and American Standard:-

de., are principally by determinations of Scripturo Mïenent 13
Gunter's Chain, Land Mev. Richard, Bishop of Peares, Weighte,
1 link; 100 linkg 1 chain ind Measurennent, bishop of Peterborough. A square chain is 16 squar 4 rods or poles, or 66 feet, 92 inches consititute roods are an acre, eaquare poles, and 10 arnareet, and 80 chaine 1 mille
4 yards 28 inches each containing 1210 square yarde, are 1 sere. Four quare jards, or 34.785 yards, or meh way.

1 rood, and a pole is $51 / 2$ yards $1201 / 2 \mathrm{yds}$. 9 ach square yds. are 98 y ${ }^{69}$ yds. $1 \mathrm{ft} ., 81 / 2 \mathrm{inm}$. each way; and acres; boing 1000 ydis. A square mile, or a 2 ins. each way; and 3 acres are 2 acres ; aquarter of a mile way; haif a milo, or Bection of Land, is 640 acres ; and a furlong, mile or 440 yds. each wor 880 Jds . each way, is 160 Any length or breadth or 220 yds. each way, fory, is a parts or farm of 40 wiy which meter readth in yds. Whit 1810 acres.
An English acre is a is a rood, and 30.25 is a plied make 4840 is an acre; sde. and an Irish of a square of nearly 70 yde pole.

Nadtical Distancen, Log Lines.-A nautical mile, the 60th of a degree, is 2026.5 yards; a marinu league, or 20 to a degree, is 6079.6 yards. Lox-linem are divided into spaces of 80 feet, and the way measured by a half minute sand-glass, which bears nearly the same proportion to ar hour, which 80 feet bears to a mile, the number of knote which run of the reel in half a minute showing the number of miles the vessel salis in all hour. The line should be about 150 fathoms long, having 10 fathoma between the ship and tirst knot for stray line. Estimating a mile at 6139.75 feet, and using a $30 /$ glass, $1 \mathrm{knot}=51 \mathrm{ft} .1 .95 \mathrm{jncs}$. and 1 fathom ${ }^{5}$ ft. 1.300 ins. Or if a $28 / \prime$ ginse is used, and 8 divisions, the result will be thius ; 1 knot $47 \mathrm{ft}_{\mathrm{t}} 9.02 \mathrm{flns}$, and 1 fathom $=5 \mathrm{ft}$. 11.027 ins.
Bowditch's Navigator computes 6120 ft . to a sea mile, which if taken as the length with a $28 /$ glass, will make the divisions $\mathbf{4 7 . 6} \mathrm{ft}$. and 8.95 ft.

Temajer Streyati of Materials, Showing the Strengti on Fohce hequined to Tear abunder 1 Squatre inch.

Iron Wire, wrought,	$\begin{aligned} & \text { Lbs. } \\ & 103,000 \end{aligned}$
Swedish bar Iron,	72,000
Russian " "	69,500
Mean of Engllsh Iron,	83,100
Gun Metal, mean of lron,	37,232
Clyde, No. 1, "\%	16,125
4 \% 2 ,	23,468
Stiviling, mean of	25,764
Ainerican, mean of	45,970
Low Moor, No. 2, cast "	14,076
Crank Shaft "	44,750
American boiler, plates, Iron,	$\left\{\begin{array}{l} 48,000 \\ 62,000 \end{array}\right.$
English plates, mean,	51,000
\% "4 lengtliwiso,	83,800
" " crosswise,	48,800
German piano steel Wiro,	268,800
Cast Steel, maximum,	142,000
Steel, 100,000 to	130,000
Chromo Steel, mean,	170,980
Sbear	124,000
American Tool Co.,	179,980
Blistered Stuel, soft,	$\left\{\begin{array}{l}133,000 \\ 104,000\end{array}\right.$
Kazor "	15,000
Steel plates, lengthwise, crosswise,	$\begin{aligned} & 96,300 \\ & 93,700 \end{aligned}$
Yelluw metal,	48,700
Cast Copper,	19,000
Americal Copper,	24,250
Brass Wire,	80,000

Munder by Wiro would oy Mr. Fairt that one aqua the strongest leable iron w strongest 20 t Hodgkinson sustaln a com respect malle Inch it yields, bear 27 tons, with a weight, the necrath matertals, lead $4 \cdot 6$; gun metal blistered steel, uhaft fincreases, A weight of 36 Inches in length $84,000-\mathrm{lbs}$., 4 lich flially break, STRENGTHOF of the bottom flay and divide the $p 1$ Then 614 times thi TABLe bhowing

Materials.

Quincy Granito,
Aberdeen "\% Arbroath " Portland Coment, Stourbidge Mean, Hard Brick,

Common "

> " " Masonry Marble, Leo, Mass., " Italian, $\begin{gathered}\text { " Baltimore, sy }\end{gathered}$ 200 farif all granites

200 feet elevation.
1 cask of ilme (240 Ib
wached should be thoro
A good Ma with dill ine, and Mastic is bur apiy, after giving thy boot whll not adhere been added in the prop
poring.
mander by a woight of from 16,243 to 19,464 lbe., and 1 square inch of irom wire would sustaln a mean weight of $126,340 \mathrm{Jba}$. In alxteen experimerite by Mr. Fairbairn and Mr. Hodgkinson, on cast iron, the average atraln that one apuare inch sustained was $71 / 2$ tons, the weakest bearing 6 tone, and the strongest $93 / 4$ tons. Telford's and Brown's experiments show that malleable iron will bear, on an average, 28 tons, the weakeat being 24 and the strongest 20 tolis.
Hodgkiuson's and Fairbaim's experlments prove that cast fron can austain a compression of from $361 / 2$ to 60 tons to the equare inch. In this respect malleable iron is inferior to cast. With 12 tons to the square Inch it yields, contracts in length, and expands laterally, though it will bear 27 tons, or more, without actual fracture. Rennie crushed cast iron with a weight of $93,000 \mathrm{lbs}$.
STrengoth of Shafts. - 44 lbs., acting at a foot railius, will twist ofl the neck of a shaft of lead 1 inch diam., and the relative strengths of other materlals, lead being 1, is as follows :-Tin, 14; copper, 4.3 ; yellow bracs, $4 \cdot 0$; gun metal, 5 ; cast iron, 9 ; Swedish iron, 9.5 ; Englidh iron, 10.1 ; bilistered stecl, $16 \cdot 16$; sh'ar steel, 17 ; cart ateel, 19.5 . The strength of a shaft increases as the cube of its diameter.
A welght of 36,000 lbe. attached to a bar of iron 1 inch square and 1,000 Inches in length, will draw it out 1 inch 40,000 whll stretch it 2 inches, $84,000 \mathrm{lbs} ., 4$ inches ; $63,000,8$ inchea; and $82,000,16$ inches, where it will thally break.-Prof. Leslie.
Strength of Cast iron Beams.-Rule. Multiply tho sectional area of the bottom flanges in square inches by the depth of the beam in inches, and divide the product by the length between the support also in inchee. Then 514 times the quotient will be the breaking weight in pounds.
Table bhowing tie Crubhing Strength of various materials
ON A BASIS OF 1 SQUARE INCH.

Materials.	Crushing Weight.	Materiala. \quad Cr	Crushing Weight.
	Lbs.		Lbss.
Quincy Granito,	15,300	Marble, Baltimore, amall,	8,058
Aberdeen "	${ }^{10,360}$	Stock Brick,	2,167
Arbroath "'	-7,884		,1,280 1,244 1
Portian Mean,	8,300	Gneiss, ,	19,600
Stourbridge Firebrlek,	1,717	Good Mortar,	240
Hard Brick,	$\left\{\begin{array}{l}4,368 \\ 2,000\end{array}\right.$	Common "	${ }_{342}^{120}$
	4,000	Sandstone, Senecr,	10,762
Common ${ }^{\text {a }}$	800 80	" Acquia Creek,	\%,310
" " Masonry,	$\left\{\begin{array}{l}800 \\ 500\end{array}\right.$	Briok, Sydney,	2,800 2,228
Marble, Leo, Masb,	22,702	Clay, fine, rolled and baked,	d, 400
"\% Itallan,	12,624 18,061	Portiand Oolite,	3,850

Nearly all granitea commence to crumble under a superstructure of 200 feet elevation.
1 cask of $11 \mathrm{me}(240 \mathrm{lbs}$.), will make from 7.8 to 8.15 cubic ft. of stifl parte. Bricks should be thoroughly wet previous to use. Brick walls elould be wathed down with diluted sulphuric acid when finished.
A good Mastic is burnt clay, 93 parts, litharge, 7 parts, all ground very ine, and thoroughly dried by artiticial heat, mix with linseed oll and apply, after giving the surface to which it is to be applied 2 or 3 coats of oll.
Soot will not, adhere to chimneys costed with mortar to which ealt hay been added in the proportion of 1 peck of salt to 3 of mortar whille teme pering,

TADEL to find tite moxbra of Brick requtred to comstruot axy building, mirbraing walle, prom 4 inches to 20 inclis: thiok, meckoning 7 brioks to raol suphryicial root.
Example, -Required the number of bricks in 100 superficlal feet of wall 12 inchen thick. Under 12 Inch, and opposite 100, you will fand the answer, \$250, the number of bricks required.

SuperAcial feet of Wall.	Number of Bricke to Thicknens of									
	4-Inch. \| 8-inch.	12-Inch.	18-inch.	20-inch.	24-iach.					
1	7	15	23	30	${ }^{38}$	45				
8	15 23	30 45	$\begin{array}{r}45 \\ -\quad 68 \\ \hline\end{array}$	${ }_{00}^{60}$	76 113	${ }_{100}^{145}$				
4	30	60	9080	120	150	180				
5	38	75	113	150	188	225				
6	45	90	135	180	225	270				
7	53	105	158	210	263	915				
8	60	120	180	240	300	360				
${ }^{9}$	68	135	203	270	338	405				
10	75	150	225	300	375	450				
20	150	300	450	600	750	000				
30 40	${ }_{320} 22$	450	675	900	1125	1350				
40	300	600	980	1200	1500	1800				
50	375	750	1125	1500	1875	2250				
${ }_{70}^{60}$	450	900	1350	1800	2250	2700				
70 80	525	1050	1575	2100	2625	3150				
80 80	600	1200 1350	1800 2025	2400 2700	3000 3375	3600 4050				
100	750	1500	2250	3000	3750	4500				
200	1500	2000	4500	6000	7500	9000				
300	2250	4500	6750	9000	11250	13500				
400	3000	6000		12000	15000	18000				
800	3750	7500	11250	15000	18750	29500				
600	4500	9000	13500	181000	22500	${ }^{271500}$				
700	5250	10500	15750	21000	26250.	31500				
800 900	6000	12000		24000	30000	86000				
900 1000	6750 7500	13500 15000	20250 22500	27000 30000	33750 37500	45000 45000				

FACCS FOR Builders.- 1000 shlagles, lald 4 ins. to the weather, will cover 100 sq . ft . of surface, and 5 lbs . of shingle nalls will fasien them on. One-1fth more sluing and flocring is needed than the number of sq . ft . of surface to be covered, because of the lap in the siding and matching.
1000 laths will cover 70 yards of surface, and 11 lbs. of lath nails will nall them on. 8 bushels of good lime, 16 bushels of sand, and 1 bushel of halr, will make enough good mortar tó plaster 100 sq. yds.
A cord of stono, 3 bushels of lime, and a cuble yard of sand, will lay 100 oubic ft. of wall.
5 courses of brick will lay 1 ft. in height on a climney, 16 bricks in a course will make a flue 4 ins. wide and $15 i \mathrm{i}$. c . long, and 8 bricks in a course will make a flue 8 ins . wlde and 10 hrs. long.
Coment, 1 bush., and sand, 2 bush., will eoier $31 / 2 \mathrm{sq}$. yds .1 in . thick, $41 / \mathrm{h}$ eq. yds. $8 / 4$ inch thick, and $63 / 4 \mathrm{sq}$. Yds. $1 / 2$ in h thick. 1 bush. coment and 1 of sand will cover $21 / 4 \mathrm{sq}$. yds, 1 in . thich, 3 aq . yds. $3 / 4$ buch thick, and $41 / 2$ aq. Yds. $1 /$ inch thick.
8 lbg of Asphalte Flooring composition will cover 1 superficial ft. $2 / 1$ inch thick. 308 pounds of fnely ground cement will make from 3.7 to 3.8 cubio feet of stiff paste. 1 citt. of mastlo and 1 gal. of oll will cover $11 / 2$ yds. at y, or $21 / 2$ at $1 / /$ inch in thickness. Pointing Mortar consiste, by welght, of finely ground cement, 1 part to from 3 to $31 / 2$ parts of fine allicions sand, mix under cover, in small quantitien at a time.

Flint glass.
 Glass
 " solid cast,

 Platinum, Palladium, Gold (Frenc) Silver (Frene Copper 8 par Copper. Copper 2, zin Brass 16, tin Brass wire...Brass Brass cast...
Solder, tin 1 , Bismuth...... Speculum meta
Iron........
and Steel (yellow te Tin,
Zinc
Mercury, in vol Water Alcohol. All the gases

Mercury freczes at 470 below zero; Alcobol has been e Ing. Granite decor 69.139 ins., is lengti vibrati ins in 24 hou The heat condu 10000; platinum, 98 363 ; tin, 303.9 lead,

1 lb . of coke me wood, $52 \mathrm{lbs} ; 1 \mathrm{lb}$. capacity of the solar
icy covering 46 feet i prevent dainp coming

Expansion and Contraction or Bodies．－The following table exhibits the linear dilatation of various bodies from 32° to $212^{\circ}, 80-$ ording to Laplace，Smeaton，Roy，etc．

	喜	$\begin{aligned} & \hline \text { 質 } \\ & \frac{8}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{70} \\ & \stackrel{7}{F} \end{aligned}$	H	疄
Flint glass．	${ }^{12^{\frac{1}{3}}{ }^{3}}$		स1ष		
Glass（barometer tubes）	T00才	To			：
＂solid rod．．．．．					13 By
＂＂cast，prism of		万28			गोर
Platinum，per Borda．．．．．．	$1{ }^{10}$		ITSI	1008	
Palladium，per Wollaston．	180				
Silver（French standard）	61			स ${ }^{1} \mathrm{~B}$	
Copper 8 parts，tin 1		\％ 10			
Copper	${ }_{6}{ }^{1} 5$	$8{ }^{88}$		8 $\frac{1}{2 T}$	
Copper 2，z		㦹区			
Brass 16，ti					
Brass wire．		T 7			
Brass cast．	53	${ }^{1}{ }^{15}$			
Bismuth．．		${ }^{7} 8$			
Speculum metal．		517			
Jron．	8 ${ }^{\text {d }}$	$\frac{1}{15}$	¢ 16		
Steel（yellow tempe	$8{ }^{1} 7$	${ }^{8} 8$		10	
Tin，Falmo	䨋 ${ }^{\text {d }}$	${ }^{\frac{1}{5}{ }^{5}}$			
Lead Zinc．	861	部 ${ }^{\text {g }}$			
Mercury，in vo	－10\％	310			
Water	${ }^{18}$				
Alll the	18				

Mercury freezes at 40° below zero，and melts at 39° ．Ether freezes at 47° below zero；wine freczes at 20° ；sea water freezes at $28^{\circ} 3$. Alcohol has been exposed to 110° and 120° below zero without freez－ Ing．Granite decomposes at a red heat．The second＇s pendulum，of \％9．139 ins．，is lengthened by 30° of temperature 128th of an inch，or 8 vibrati ins in 24 hours．

The heat conducting powers of metals，etc．，are as follows：Gold， 1000° ；platinum， 981° ；silver， 973 ；copper， 898.2 ；iron， 374.3 ；zinc， 363；tin，303．9；lead，179．6；marble，23．6；porcelain，12．2；fine clay，11．4．

1 lb ．of coke melts 94 lbs ．of ice； 1 lb ．of coal， 90 lbs ． 1 lb ．of wood， 52 lbs ； 1 lb ．of charcoal， $95 \mathrm{lbs} . ; 1 \mathrm{lb}$ ．of peat， 19 lbs ．The capacity of the solar heat all over the globe is the ability to melt an icy covering 46 feet in thickness．
6 lbe．white lead added to 1 gal．tar varnish，and applied as paint，wil： prevent damp coming through walls．

To Preveat Decay of Farm Implements.-When not in nse have them sheltered from the sun, wind, rain, and enow. Ly this means, sleighs, wagons, earts, plouglis, threshing-maehines, harrows, and the like, would last twice as long as they would if left in the open air, swelling from moisture ono week, and slurinking the next from tho influenco of the sun and wind.

Oiling or Cleaning old Carminge-tors.-Enmmel leather-tops should be first washed with Castilo soap and warm water, then oiled with neat's-foot oil ; or sweet oil and a coat of enamel rarnish put on, the leather will look like new. Dashes may be cleaned in the same miumer, but vanish color is not very beneficial to patent leather; howerer, when old and cracked, it may be colored to improve the appearance.

DYERS, BLEACHERS, AND CLOTHIERS' DEPARTMIENT.

In accommodation to the requirements of dyers, many of the following reccipts describe dyes for largo quantities of goods, but to mako them equally adapted for the use of private families they aro usually given in cien quantities, so that it is quito an easy matter to ascertain tho quantity of materials required for dycing, when once the weight of the goods is known ; the quantity of materials used being reduced in proportion to the smaller quantity of goods.

Uso soft water for all dycing purposes, if it can be procured, using 4 gals, water to 1 lb . of goods; for larger antities, a little less water will do. Let all tho implements used in dyeing bo kept perfectly clean. I'repare the goods ly scouring well with soap and water, washtug the soap well out and dipping in warm water, previous to immersion in tho dyo or mordant. Goods should be well aired, rinsed, and properly hung up after dyeing. Silks, and fine goods should be tenderly handled, otherwise injury to the fabric will result.

Saxon Blue.-For 100 lbs thibet or comb yarn, use alum, 20 lbs ., cream of tartar 3 lbs., mordant 2 lls.s.; extract of indigo 3 lbs., or carmine 1 lb ., makes a better color. When all is dissolved cool the kettle to 180° Fahr. ; enter and handlo quickly at first, then let it boil $\frac{1}{2}$ hour, or until even. Long boiling dims the color. Zephyr worsted yarn ouglit to be prepared, first by boiling it in a solution of alum and sulphuric arid, then the indigo is added afterwards.

Green liusita Dre. - For 50 ibs. of goods use 50 lbs. of fustic with alum 11 lbs. Soak in water until the strength is extracted, put in the goods until of a good yellow color remove the chips, and add extract of indigo in small quantities at a time, until tho color is satisfactory.

Purife Blue on Wool.-100 lbs. of wool are first dippedi in tho ! !uo vat to a light shade, then boiled in a solntion of 15 lbs . of alum, and 3 lbs of half refined tartar, for 13 hours, the wool taken out, cooled, and let stand 24 hours. Then boil ia fresh water 8 lbs of powdered cochineal for a few miuntes, cool tho kettle to 1700 Fahr.; hardle the prepared wool in this for 1 hour, when it is ready to cool? rinse, and dry. By coloring first with cochincal, as aforesaid, and
finishing i in German in this colo BLUE D Guatemala boil in a k paste ; add to about $1 \overline{17}$ minutes, the the cudbea analine pur tho cudbear. nlow by dyere duces a very which have t Locwood color the cloth rinse it well, refined tartar, cool. In fresh is: a bag or hande well ore cool, and rinse.
DyEf for W 40 lbs. of goods, all aud bring the then empty the tract of logwood tho color by usin in the color. New Bleach oxalic acid, 4 lbs. mixture for 1 hou require to bo thor is best to soak the of chloride of lime wards removed by To Fix DYes.lans a new process room. The colorin thereto; after whic pigment thus becon Scahlet With I low, of ground lac d below), 5 libs. of tart: crystals, 5 libs. of mi dye to 1700 Fahr. ; ϵ Let thom boil 1 hour impurities harden. cochineal scarlet. To be used, as it dissolve
Muriate of Tis
finishing in the blue rat, the fast purple or clahlia, so much admired in German broadcloths, will be produced. Tin acids must not bo used in this color.

Blue Dye for fosymar. -100 lbs. of wool are colored with 4 lbs. Guatemala or 3 los. Bengral indigo, in the soda or wood vat ; then boil in a kettle a few uinutos, 5 lbs. of cudbear or 8 lbs of orchil paste; add 1 lb . of soda, or luetter, 1 pail of urine, then cool the dye to about 170° Fahr.; and enter the wool. Inandle well for about 20 minutes, then take it out, cool, rinse, and dry. It is all the same if the cudbenr is put in before or after the indigo. 3 ozs. of anallue purple dissolved in alcohol, $\frac{1}{2} \mathrm{pt}$, can be used instead of the cudbear. (Wood spirit is cheaper than alcohol, and is much used now by dyers for the purpose of dissolving analine colors). It produces a very pretty shado, but should never bo used on mixed goods whlch have to be bleached.

Logwood and Indigo Blue Dre for Cloti.- 100 lbs. of cloth, color the cloth first by one or tro dips in the vat of indigo blue, and rinse it well, then boil it in a solution of 20 lbs . of alum, 2 lbs . of half refined tartar, and 5 lbs. of mordant, for 2 hours, then take it out and cool. In fresh water boil 10 Jbs. of good logwood for half an hour in: a bag or otherwise; cool off to 1700 Fahr. liefore entering; liande well over a reel, let it boil for leilf an hour, then taleo it out, cool, and rinse. This is a very firm blue.

DYe for Wool or Silm.-C'olor between Purple and Blue. For 40 lbs. of goods, take bi-chromate of potash 8 ozs., alum 1 lb ., dissolvo all aud bring the water to a boil, and put in tho goods; boil 1 hour ; then empty the dye, and mako a new dyo with logwood 8 lbs ., or extract of logwood 1 lb .4 ozs., and boil in this 1 hour longer. Grado the color by using more or less logwood, as you wish it dark or light in the color.

New Bleaci for Wool, Silk, on Stratw.-Mix together 4 lbs. oxalic acid, 4 lbs . table salt, water 50 gals. The goods arolaid in this mixture for 1 hour, they are then generally well bleached, and only require to bo thoroughly rinsed and worked. For bleaching strav it is best to soak the goods in canstic soda, and afterwards to make use of chloride of lime or Javelle water. Tho excess of chlorine is afterwards removed by hyposuiphite of soda.
'To Fix Dyes.- Neio Process. Mr. Kipping, of Manchester, England, lans a new process of fixing dyes. He dissolves 20 ozs. of gelatine in wisier, and adds 3 ozs . of bichromate of potash. This is dono in a darle room. The coloring matter is then added and the goods submitted thereto; after which they aro exposed to tho action of light; tho pigment thus becomes insoluble in water and the color is fast.

Scarlet witi Lac Dye.-For 100 lbs. of flannel or yata, take 25 lie. of ground lac dye, 15 lbs. of scarlet spirit (made as per directions below), 5 lbs . of tartar, 1 lb . of flavine, or according to shade, 1 lb . of tin crystals, 5 lbs. of muriatic acld. Boil all for 15 minutes, then cool tho dye to 170° Fahr. ; enter the goods, nnd handle them quickly at first. L.et them boil 1 hour, rinse them while jet hot, before the gum and impurities harden. This color stands scouring with soap better than cochineal scarlet. To this dye, a smat quantity of sulphuric acid may be used, as it dissolves the gum.

Muriate or Tis on Scanlet Spinit.-Talo 10 lbs . muriatic
acid, 22° B., 1 lb . feathered tin, water 2 lbs . The acid should bo put in a stone ware pot, and the tin added, and allow to dissolve; the mixture should be kept a few dars before using. The tin is feathered or granulated loy melting in a suitable vessel, and pouring it from a heiglit of about 5 feet into a pailful of water. This is a most powerful agent in certain colors, such as scarlets, oranges, pinks, \&c.
Scarlet Die with Cocinneal.-For 50 lbs . of wool, yarn, or cloth, use cream of tartar 1 lb .9 ozs ; cochineal pulverized, 12 h ozs., muriate of tin or scarlet spirit 8 lbs.; after boiling the dye, enter tho goods, work them well for 15 minutes, then woil them $1 \frac{1}{2}$ hours, slowly argitating the goods while boiling, wash in clean water, and dry out of the sun.
Purple Dye.-For 40 lbs. of goods, nse alum 3 lbs., mariate of tin 4 tea cups, pulverized cochineal 1 lb ., cream of tartar 2 lbs . Boil tho alnm, tin, and cream of tartar, for 20 minutes, add the cochineal and boil 5 minutes, immerse the goods 2 hours, remove and enter them in a new dyo composed of Brazil wood 3 lbs., logwood 7 lbs ., alum 4 lbs , muriate of tin 8 cupfuls, adding a little extract of indigo, made as follows:

Caemic Blueing or Extract of Indigo.-Take oil of vitriol 2 lbs ., and stir into it finely, pulverized indigo 8 ozs., stirring briskly for the first $\frac{1}{2}$ hour, then cover it up, and stir 4 or 5 times daily for a ferw days, then add a little pulverized chalk, stirring it up, and keep adding it as long as it foams; it will nentralize the acid. Keepitclosely zorked.
Light Silyter Drab.-For 50 lbs. of goods use logwood $\frac{1}{2} \mathrm{lb}$., alum, about the same quantity ; boil well, enter the goods, and dip them for 1 hour. Grade the color to any desired shade, by using equal parts of \log wood and alum.

Chbome black for Wool.-For 40 lbs of goods, use blue vitriol 3 lbs., boil it a slort time, then dip the wool or fabric 4 of an hour, airing frequently; take out the goods, and make a dye with logwood 24 lbs ; boil $\frac{1}{2}$ hour, dip $\frac{4}{4}$ of an hour, air the goods, and dip $\frac{4}{4}$ of an hour longer, wash in strong soap suds. A good fast color.

Black Dye on Wool, for Mixturfs.-For 50 lbs . of wool tako bl-chromate of potash 1 lb .4 ozs ., ground argal 15 ozs. , boil together and put in the fabric, stirring well, and let it remain in the dye 5 lours; take it ont, rinse slightity in clean water, then make a new dye, into which put logwood 17 flbs. Boil $1 \ddagger$ hours, adding chamber lye: pts. Let the fabric remain in all night, and wash out in clean water.

Red Madder.-This color is mostly used for army uniforms, \&e. To 100 lbs. of fabric use 20 lbs. of alum, 5 lbs . of tartar, and 5 lbs . of muriate of tin. When these are dissolved, entor the goods, and let them boil for 2 hours, then take them out, let conl, and lay over night. Into fresh water, stir 75 lbs . of good madder, and enter the fabric at 120° Falir. and bring it up to 200° in the course of an hour, handle well to secure evenuess, then rinse and dry.

Dark Snuff Brown on Wooin-For 50 lbs. of goods, take camwood 10 lbs., boil for 20 minutes, then dip the goods for ${ }^{3}$ of an hour, then take them out, and add to the dye, fustic 25 lbs ; boil 12 minutes and dip the goods $\frac{8}{4}$ of an hour, then add blue vitriol 10 ozs., copperas 2 lbs .8 ozs ., dip again 40 minutes; add more copperas if the shade is required darker.

Wine Color Dies.-For to lbs. of goods use camwood 10 lbs., boll

20 minntes, dip the goods $\frac{1}{2}$ hour, bcil again, and dip 40 minntes, then darken with blue vitriol 15 ozs., and should you wish it darker, add 5 lbs. of copperas.
Pinic Dye for Wool.-For 60 lbs . of goods, take alum 5 lbs .12 ozs, boil and immerse the goods 50 minutes, then add to the dye cochineal well pulverized, 1 lb .4 ozs., crean. of tartar, 5 lbs ., boil and enter the gonds while boiling, until the color is satisfactory.
Dark 1blue Dye.-Suitable for Thibets and Lastings. Boil 100 lbs. of the fabric for $1 \frac{1}{2}$ hours in a solution of alum 25 lbs., tartar 4 lbs., mordant 6 lbs., extract of indigo 6 lbs ; cool them as usunl. Boil in fresh water from 8 to 10 lbs . of logwood, in a bag or otherwise, then cool the dye to 170° Fahr. ; reel the fabric quickly at first, then let it boil strongly for 1 hour. This is a very good imitation of indigo blue.

Orange Dye.-For 50 lbs . of goncis, use argal 3 lbs , muriate of tin 1 qt., 3oil and dip 1 hour; then tddi to the dye, fustic 25 lbs. , madder 24 qts., and dip argain 40 minutes. - If preferred, cochineal 1 lb. 4 ozs. may be used ihstead of the madder, as a better color is induced by it

Sisy Blue on Cotton. - 60 lbs. of goods, blue vitriol 5 lbs . Boil a short time, then enter the goods, dip 3 hours, and transfer to a bath of strong lime water. A fine brown color will bo imparted to the goods if they are then put through a solution of prussiate of potash.

A Brown Dye on Wool may be induced by a decoction of oak bark, with variety of shade according to the quantity employed. If the goods be first passed through a mordant of alum the color will bo brightened.

Bhown on Cotton.-Catechu or terra japonica gives cotton a brown color, blue vitriol turns it on the bronze, grecn copperas darkens it, when applied as a mordant and the stuff boiled in tho bath boiling hot. Acetate of alumina as a mordant, brightness it. The French color named "Carmelite" is giren with catechu 1 lb ., verdigris 4 e7s., and sal-ammoniac 5 ozs.
Brown on Wool and Silk.-Infusion or decoction of walnut peels dyes wool and silk brown color, which is brightened by alum. Horse-chestnut peels also impart a brown color; a mordant of muriate of tin turns it on the bronze, and spgar of lead the reddish brown.

Solitaire.-Sulphate or muriate of manganese dissolved in water Tith a little tartaric acid imparts this beautiful bronze tint. The stuff after being put through the solution must be turned through a weak lye of potash, and afterwards through another of chlorido of lime, to brighten and fix it. Prussiate of comper gives a bronze or yellowish brown color to silk. The pieco well mordauted with blue vitriol, may be passed through a solution of prussiate of potash.

Fuller's Purifier fori Clotis.-Dry, pulverizo, and sift the following ingredients: Fuller's earth 6 lbs , French chalk 4 ozs., pipe clay 1 lib ; make into a paste with rectified oil of turpentino 1 ov., alcohol 2 ozs., melted oil soap $1 \frac{1}{2}$ lbs. Compound the mixture into cakes of any desired size, for salo if required, keeping them in water, or small wooden boxes.

Green on Coxton.-For 40 lbs . of goods, uso fustic 10 lbs., blue vitriol 10 ozs., soft soap 21 qts., and logwood chips 1 lb .4 ozs. . Soals the logwood over night in a brass vessel, put it on the fire in the morning adding the other ingredients. When quite hot it is ready for djeing ; enter the goods at once, and handle well. _ Different shades
may bo obtained by letting part of the goods remain longer in the dye.

Pink Dye for Cotton.-For 40 lbs. of goods, use redwood 20 1bs., muriate of tin $2 . \frac{1}{2}$ Ibs. ; boil the redivood 1 hour, turn off into a large vessel, add the muriate of tin, and put in the goods, let it stand a few minntes (5 or 10), and a nice pink will be produced. It is quito a fast color.
Pruple Dye for Silf.-For 10 lbs. of goods, enter your goods in blue lye bath, and secnre a light blue color, clyy, and dip in a warm solution containing alum $2 . \frac{1}{2}$ lbs. Should a deeper color be required, add a little extract of indigo.
Yellow on Silk.-For 10 lbs. goods, nse sugar of lead $7 \frac{1}{2}$ ozs., alum 2 lbs., enter the goods and let them remilin 12 hours, remore them, drain, and make a now dyo with fustic 10 lbs . Immerse until the color suits.
l'unpies on Cotton.-Get upa tub of hot logwood liquor, enter 3 pieces, give them 5 ends, hedge out; enter them into a clean alum tub, give them 5 ends, hedge out; get up another tub of logwood liqnor, enter, gire them 5 ends, hedge out ; renew your alum tub, glve them 5 ends in that, and finish.
Dlacik on Cotton.-For 40 lbg . goods, use sumac 30 lbs ., boil hour, let the goods steep over night, and immerse them in lime water 40 minutes, remove, und allow thicin to drip ${ }^{3}$ hour, now add coppreras 4 liss. to the sumac liquor, and dip) 1 hour inore; next work them through lime water for 20 minutes, next make Ω new dye of logwood 20 lbs., boil 2 h hours, and enter the goods 3 hours, then add bl-chromate of potash 1 lb . to the new dye, and dip 1 hour more. Work in clean cold wator and dry ont of the sum.
Red Dye for Wool.-For 40 lbs. of goods, make a tolembly thick paste of lae dye and sulphuric acid, and allow it to stand for a day. Now take tartar 4 lbs., tin liguor $2 \mathrm{lbs}, 8$ ozs., and 3 lbs . of the above pasto, make a hot bath with sufficient water, and enter tho goods for 4 hour, afterwards carefully rinse and dry.
Yellow on Cotron.-For 40 lbs . goods, use sugar of lead 3 lbs . 8 ozs., dip the goods 2 hours. Make a new dyo with bi-cliromate of potash 2 los., dip until the color suits, wring out and dry, if not yellow onough repeat the opleration.
Violet Die on Silis on Wool.-A good violet dye may be given by phssing the goods first through a solution of verdigris, then through adecoction of logivood, and lastly slum water. A fast violet may bo given ly dyeing the goods crimson with cochineal, without alum or taitar, and after rinsing, passing them through the indigo vat. Linens or Cottons are first galled with 15% of gill nuts, next passed through a mordant of alum, iron liquor, and sulphate of copper, working then well, then worked in a madder bath made with an equal weight of root, and lastly brightened with soap or soda.
Slate die on Silik.-For a small quantity, tilie a pan of warm water, and about a tancupful of logwood liquor, pretty strong, and a piece of pearlash the slze of a nut ; talko gray colored goods and handle a little in this liquid, and it is fimished. It too mnch logwood is used, the color wlil be too dark. A Stravo color on silk.-Use emartweed, boil in a brass vessel, and set with alum.
Limac Dre on Silas.-For $\overline{5}$ libs. of silk, uso archil 71 lbs., mir it
rell mi
let it co more or Grice let it set in it and vaiter an till of the bay to pm Brown watcr, an squeeze it first throul of logivoni out and dr. Brown mordant of in a bath nlumina pr thint is obtai lath, then a added.
Mulberar 50 minutes, ${ }^{\text {logiwood 1 }} 1$ Brazil-wood a Green Dy: and hickory b desired tint by Orange Dy 15 minutes, wh Wrins them our madder 1 lb ., in raried by dippi BLuE On Co ${ }_{4}^{\text {and dimes }} 20$ ming 4 timos ${ }^{\text {then m }}$ m
vitriol 1 pts. $;$ b Solpering A. Corton And
Mreyenta shade, required; dissoir alcohol, or about wood spitrit becau crs. nuiline red, Cold water 1 gt. but the cleancst an or wood spirit. C heat in reak soap, asido moist. The a to time to the warn tho destred shade.

DYERS AND bleacmers'

 let it conl, and wash it in re it boil $\$$ hour, dlp the silk quiekly, then Geor less full, will be obtained. and a fino half viclet, or lilac, let it sett Die on Silk. in it and handle yone clear liguor as hot ebony, boil it in water, and tiller and put in andittloods in it until of a jouln can bear your hands till of the shade desired. bag to prevent it sticking the ebony may previou your goods in this Brown on Silk.-Dissolve silk. may previously be boiled in a squeeze it well and dry silk throngh it for 1 lb , peariash 4 lbs., in boiling first throngh a bath of Buext give it a mordours, then take it ont, out and dry which a little grewood, and afterwards of the and pass it Brown DYe iftervards rin green copperus has been added a bath mordant of acetan COTTON or Linen. - Gi In a bath of madder, or mand and acetate of ire the pieces a mixed tint is obtredominates the madder and fustie, when then dye them bath, then a bath first giving a mord amaranth tint the acetate of added. a bath of fustic, to which ardant of alum, then a cinnamon Mulberry on 50 minutes, wash Silk.-For 5 lbs. of sill logwood $1 \ddagger$ ozs. by boiling make a dye with , ase alum 1 lb .4 ozs., dip Brazil-wood and logmond together; dip in this Brazil-wood 5 ozs., andGreen Dre on Wood, equal parts, intil the hour, then add more and hickory bark, malko and Silk. - Equa the color suits. desired tint by adding a a smitrong yellow thal quantities of yellow oak 15 Onange Dre.-For 48 small quantity of exth by hoilling, shade to the wring thes, when a little cos of goods, use suct of indigo. madder 1 ll out, make a fresk, enter the goods, and lead 2 lhs., boil varied by dinpinmerse until of the with bi-chromate of por 2 hours, Blue oy fing in lime water. desired color. The potash, 4 lus., and dip 20 minuton.-For 40 lbs, of poods 4 times ; then mako a new dip soap suds, and copperas 2 lbs ., boil Solferino ; boil h hour, rinse with prussiate of potashe the dye 3 or Cotron and And Magenta Dres and dry. of potashi $\frac{1}{2}$ ib., oil of Mrayenta shade, 96 grs an Mixtures. - For 1 Woolenen, Sile, on required; dissolve in a little wecaries' wolght 1 lb . of woollen goods, wood spirit obont 6 gills alcohol walcohol; hssing aniline red, will bo grs. anilino red de of its cheapner oz. of anilhe. May fluid ozs, of Cold water 1 red, dissolved in 4 ezs. For a Solferino Many dyers use but the clean qut. Will dissolve thezs. alcohol, to each 1 shade, use 64 or wood spirit. and quickest way will inll quantities of piniligoods. heat in weak. Clean the cloth and be found by using the aniline red, aside moist. Thap suds, rinse in seve goods by steeping the alcoliol, to time to the alcoholic solution seral messes of clenng at a gentlo tho desired the warm or hot dye both aniline is to be an water and lay before each shade. The goods are to till the color on added from timo before each addition of goods are to be removed on the goods is of dition of the alcololic solution, and the the dyye is of is to bo
well stirred before tho goods are returned. The alcoholic solution should be tirst dropped into a littlo water, and well mixed, and tho misture should then be strained into the dye bath. If the color is not dark enough after working from 20 to 30 minutes, repeat the removal of the goods from the bath, and the addition of the solution, and the re-imnersion of the goods from 15 to 30 minutes more, or until suited, then remove from the bath, and rinse in several messes of clean water, and dry in the shade. Use about 4 gals. water for dyebath for 1 lb . of goods; less water for larger quantities.

Liguid Die Colors.-1. Blue. Liinte Saxon blie or sulphate of indigo with water. If required for delicate work, neutralize with chalk. 2. Purple. Add a little alum to a strained decoction of logwood. 3. Grcen. Dissolve sap green in water and add a little alum. 4. Yellow. Dissolve aunatto in a weak lye of subcarbonate of soda or potash. 5. Golden color. Steep French berries in hot water, strain, and ndd a little gum and alum. 6. Red. Dissolve carmine in ammonia, or in weak carbonate of potash water, or infuse porrdered cochineal in water, strain, and add a little gum in water. The preceding colors, thimecied with a little gum, may be used as inks in writing, or a.3 cr ...tint maps, foils, artificial flowers, \&c., or to paint on velvet.

To Clensiss. h.un-Make a hot bath composed of water 4 parts, urime 1 part, enter the wool, teasing and opening it out to admit the fnil action of tho liquid; after 20 minutes immersion, remove from the liquid and ailory to $\mathrm{d}^{\prime \prime}$: then rinso it in clean ruming water, and spipad out to dry. Tles ugpid is good for subsequent operations, only keep up the proportions, and ise no soap.
Starcir Lustre. - A portion of stearine, the size of an old-fashioned cent, added to starch $\frac{1}{2}$ half lb ., aud boiled with it for 2 or 3 minutes will add greatly to the beauty of linen, to which it may be applied. See also Starch Polish under the Grocers' Department.
To Dye Hats.-The lats should be at first strongly galled by boiling them a long time in a decoction of galls with a fittle logwood, that the dye may penetrate the better into their substance; after which a proper quantity of vitriol and decoction of logwood, with a littlo rerdigris, are added, and the hats continued in this mixture for a considerablo time. They are afterwards put into a fresh liquor of logrood, galls, vitriol, nud verdigris, and, when the hats are of great price, or of a hair which with difflculty takes the dye, the same process is repeated a third time. For obtaining the most perfect color, the hair or wool is dyed blue previously to its being formed into liats.
Chestnut Brown on Stratw Bonnets.-For 25 hais, use ground sanders $1 \frac{1}{3}$ lbs., ground curcuma 2 lbs., powdered gall nuts, or sumac $\frac{4}{4}$ lb ., rasped logwood $\frac{1}{1} \mathrm{lb}$. Boil all together with the hats in a large kettle (so as not to crowd), for 2 hours, then withdraw the hats, rinse, and let them remain over night in a bath of nitrate of 4° Baume, when they are washed. A darker brown may be obtained by increasing the guantity of sanders. To give the hats the desired lastre, they are brushed with a brush of dog's (couch) grass, when dry.
Violet Dye on Straw Bonnets.-Take nlum 4 lbs., tartaric acid 1 lb ., chloride of tin 1 lb . Dissolve and boil, allow the hats to
remain of logive shade, a dissolvec Silvel and softe lime wate hours in: viz. : alum carmine o neutralize Ingradient boiling bat Lime W lime water minutes, th clear; add t DARK St proportion o sinall quant thoronghly.
To ReNDE gelatine in ac and the anilir so as to mako over a water that heat for Aniline G easily in warm gal. alcohol, ar acid.
To Dre An 5 llos. white vi into this bath fo for a few minu same continuall ed to the bath. thoy have becon in the same bat this is added the Bismance Br pals. water, and hot water and m bo prepared by m alcohol. To dye add a quantity o color by small p Very interesting witli indigo paste To DYE Wool baths, one contain: of soda or borax. raised to 2120 Fal remain in the boiling solution 2 hours, then add as numeh of a decoction
of logwood and car shade, and lastly, rinso finally in water in whisite to induco the desired solved
Silver Grey Die on Straw.-For 25 hats, se and soften them in a bath of crystallized sod, select yonr whitest hats hours in a has been added. See "Lime soda to which some clean viz. : alum 4 lbs vessel, using for a bath e water" below. Boil for 2 carmine of indigo; a litic acid g lb., some ammonion of the following. nutralize the allolittle sulphuric acid may be ncal cochineal; and ingredients are used of the cochineal dye. If necessary in order to boiling bath, then rinse the hats remain for an the last-mentioned Lime Water For Din slightly acidulated water. lime water 14 for DYers Use, - Put stone water. minutes, then let it into a pail of water ; rummen 1 lb ., and strong clear; add this quat rest until the lime is precipitated well for 7 or 8 Dark Steet quantity to a tubful of clear water. proportion of 50 Color. - Mix black and water. sinall quantities lbs. of black wool to $7 \frac{1}{2}$ lbs wite wool together in the thoronghly. , mixing carefully and gelatine in acetic acid of almors Soluble in Water.-A solution of and the aniline in fine powder is graduaistence of syrups is first made, over a wako a homogeneous paste. Them added, stirring all the time that heat for bath to the temperature of boiling is then to beheated Aviline Giome time.
easily in we Green on Stlk.-Iodin gr gal. alcohol, and mired For a liquid dye, 1 or night green dissolves acid.
gals. water, containing 1 oz. sulphuris
5 lbs. White vitriol (sulphate.-For every 40 lbs of goods, dissolve into this bath for 10 minutes, then ad, at 1800 Fah., place the goods far a few minutes, 1 lb . aniline add the color, prepared by boiling ed to the bually. This solution has to in 3 gals. Water, stirring tho they have beco. The goods remain in the filtered before being addin the same bath browned and must bo boiled for 15 minutes, when this is added the deeper the addition of sal-ammonian ather half hour

Bismanck Broweper will be the shade. amoniac. The more of gals. water, and inn For dyeing-Mix hot water and $\frac{4}{} \mathrm{lb}$. sulphuric acid. Thisgether 1 lb . Bismarck, 5 be prepared by maline used directly for dyeinste dissolves easily in alcohol. To dye with the bulk of the above mix. A liquid dye may add a quantity of with the above mixture color by small portionste of soda, immerse thith sulphuric acid; Very interesting portions, leeping the temperatuo wool, and add the with indigo paste shades may be developed by combinin $212{ }^{\circ}$ Fah. To DYE Woor picric acid. baths, one containing the ANilines Green.-For wool, prepare two of soda or borax. In this thesolved dye and a quantity of carbonate raised to 212° Fal. A greyish greol is placed, and the temperature is A greyish green is produced, which must be
brightened and fired in a second bath of water 100° Fall., to which some acetic acid has been added. Cotton requires preparation by sumac.

Asiline Blue.-To 100 lbs. of fabrle dissolve if lbs. aniline blne in 3 qts, hot alcohol; strain through a filter and add it to 2 bath of 130° Fah. ; also 10 lbs. glauber salts, and 5 lbs . acetic acid. Euter the goods and handie them vell for 20 minutes ; next leat it slowly to 200° Falı. ; then add 5 lbs. sulphuric acid diluted with water. Let the whole boil 20 minutes longer; then rinse and dry. If the aniline be added in two or three proportions during the process of coloring, it will faclitate the evenness of the color.
Aniline Red.-Enclose the anlline in a small muslin bag; hare a kettle (tin or brass) filled with moderately hot water and rub the subatance out. Then immerse the goods to be colored, and in a short time they are done. It improves the color to wring the goods out of strong soap suds before putting them in the dye. This is a permanent color on wool or sills.
Amiline Violet and Purple.-Acidulate the bath by sulphario acid, or use sulphate of soda; both these substances reuder the shade bluish. Dye at 212° Falı. To give a fair middle shade to 10 lbs. of wool, a quantity of solution cqual to $\frac{1}{2}$ to $\frac{5}{2}$ ozs. of the solid dye will bo required. The color of the dyed fabric is improved by washing in soap aud water, and then passing through a bath soured by sulphuric acid.

Aniline Black for DYeing.- Water 20 to 30 parts, chlorate of potassa 1 part; sal-ammoniac 1 part; chloride of copper 1 part; aniline hydrochloric acld, of each 1 part, previously mixed together. It is essential that the preparation should bo acid, and the more acid it is the more rapid will be the production of the blacks; if too much so, it may injure the fabric.
New Dfordant for Antinne Culors.-Immerse the goods for some hours in a bath of cold water in whilch chloride or acetate of zinc has been dissolved until the solntion slows 2° Baumé for the wool the mordanting bath should be at a boiling heat, and the goods should also be placed in a warm bath of tannin, 90° Fah., for half an liour. In dyeing, a hot solution of the color must be used to which should be added, in the case of the cotton, some chloride of einc, and, in the case of the wool, a certain amount of tannin solution.
To Dre Aniline Yellow.-Thls color is slightly soluble in water, and for dyers' use may be used directly for the preparation of the bath dye, but is best used by dissolving 11 lb . of dye in 2 gals alcoliol. Temperature of bath should be under 200° Fal. The color is much improved and brightened by a trace of sulphuric acid.
To Dye with Alisali Blue and Nicholson's Blue.-Dissolve 1 1b. of the dye in 10 gals. boiling water, add this by small portions to the dye bath, which should be rendered allialine by borax. The fabrlc should be well worked about between each addition of the color. The tempernture must be kept under $212 \circ$ Fah. To develop tle color, wash with water and pass through a bath containing sufphuric acid.
Anilinis Brown Dye.-Dissolve 11 lb . of the brown in 2 gals. of spirit, specific gravity 8200, add a sufficient quantity to the dye bath, and immerse the fabric. Wool possesses a very stroug affinity for this color and no mordiunt is required.

DYERS AND RLEACIIERS' RECEIPTS.

 To ExTR with benzino, then placo two picces of Find Goops.-Satumato the spot ansorbed. upon it, press well with a hot very soft blotting paper under To Preserve Goods and dissolved in 60 lbs. water ; blotming from Mirmbew. - Altm 2 Ibs acetate of lead, is added gelatine $1 \mathrm{lriol}, 2 \mathrm{lbs}$., dissolved in 8 lbs . of all hot, and separately missolved in 30 lbs . of dissolved in 30 lbs . of water ; is added. To Bleacir Fratimers, tepid diluto solution of bi-chronce the feathers from 3 to 4 honrs in n a greenigic acid has been added (at of potassa, to which, cautiousl n lution of sulpinduced by this solution quantity ouly). To remove perfectly whito and bleached water, whereby them in a dilute soto Clean Strapreached. water, then with wonsets, - Firct Cirimson.-For solution of oxalic acid brush them with soap and take ont an.-For 1 lb . of silk alum acid cochineal, 3 oz; while making a new ; dip at hand-heat, 1 hour; one pail of water; whed nut-galls, 2 oz . ayd by boiling, 10 minutes, a boil, continuing, to dio 1 littlo cool, begin to cream of tartar, $\frac{1}{2}$ oz., inCinvamon on Broiv 1 hour ; wash, and dry, raising the heat to much color, from arown on Cotton and dry. It will take up in dippine lun of blue vitriol, 2 oz . to wive the goods as this will inake a beautiful skyutes; then run it the water, one gal., as to bo run through a solution sky-blue of much durability lime-water; 1 gal. prussiate of potash, 1 oz. to wow chlorate of BLaCK ON SILK on C 1 part; aniline 1 , 1 part; anl-ammonisow.-Water, 20 to 30 parts together. The fabric or ; and hydrocloric, 1 part; chloride of copper, perature for 24 hours, aryarn is dried in ageingrt; previously mixed Ts Color Straif, Hats onshed afterwards. First, soak the Straif Hats or Bonnerg remove sizing or stiffen in rather strong warm Beactifec Slate. soap; now scald cudbearg; then rinse in warm fuds 15 minutes to lignnet; work the bounet, 10 oz, in sufficient water tor, to get out the light-purple, now have a in this dye, at 1800 of heat corer tho hat or ol indigo, $\frac{1}{2}$ oz., and work or shades; dry, then rinse out stir the bonnet in this, with the extract shade. If you get tho purple too cold water, and dry until tho tint too dark.
To Clean Ostrich Featirets Wmall pieces, pour boiling water on, - Cut some white curd soap in the hand to sorp is quite dissolved, and and add a littlo pearl ash. the hand till the dirt ange the feathers into mixture cool enongh for a clean lather withrt appears squeezed out of and draw them through blue to give them a come blue in it, then ringe them, pass them through off the water, and a good color. Beat themse them in cold water with dry, coil each fibro separmaking them near a fire. the hand to shako y, coil each fibro separately with a bluat knifo or When perfectly or írory folder.

144

To Clean Fers:-For dark furs; warm a quantity of now bran in a pan, taking care that it does not burn, to prevent which it must bo briskly stirred. When well warmed rub it thoroughly into the fur with the hand. Repent chis two or threo times, then shalse the fur, and give it another sharp brushing until free from dust. For white furs; lay them on a table, and rub well with bran made moist with warm water, rub until quito dry, and afterwards witl: dry bran. Tho wet bran should be put on with flamel, then dry with book muslin. Light furs, iu addition to the above, should bo well rubbed with magnesia or a plece of book muslin, after the bran process, against tho way of the fur.
Washina Fluid.-Take 1 lb . sal soda, $\frac{1}{2} \mathrm{lb}$. good stono lime, and 5 gts. of water; boil a short timo, let it settic, and pour off the clear tluid into a stono jug, and corls for use; soak your white clothes ovor night in simple water, wring out and soap wristbands, collars, and dirty or stained places; have your boiler half filled with water just boginning to boil, then pat in ono common teacupful of fluid, stir and put in your clothes, and boil for half an hour, then rublightly through one suds only, and all is completo.
Chip or Straw hats on Bonnets may bodyed black by boiling them three or four hours in a strong liquor of logwood, adding a littlo copperas occasionally. Let the bounets remain in the liquorall night; then take out to dry in the air. If the black is not satisfactory, dyo again after drying. Rub insido and out with a sponge moistened in fine oil; then block. Red Dye.-Boil ground Brazil-wood in a ley of potash, and boil your straw hats, \&c., in it. Blue Dyc.-Take a sufflcient quantity of potash ley, 1 lb . of litunus or lacmus, ground; mako a decoction and then put in the straw, and boil it.
Dres for Hats. - The ordinary bath for dyeing hats, employed by the London manufactures, consists, for twelve dozen, of 144 ibs. of logwood; 12 lbs . of green sulphate of iron or copperas; $7 \frac{1}{\mathrm{~g}} \mathrm{lbs}$. verdigris. The logwood having been introduced into the copper, and digested for somo time, the copperas and verdigris are added in succossive quantities, and in the above proportions, along with crery successive two or three dozeus of hats suspended upon the dripping machine. Each set of hats, after being exposed to the bath with occasional airings during forty minutes, is taken off the pegs, and laid out upon the ground to be moro completely blackened by the peroxydizement of the iron with the atmospheric oxygen. In threo or four hours, the dycing is completed. When fully dyed, the hats are weil washed in running water.
Waterproof Stiffenting for Ifats.-Mix 18 lbs. of shellac with $1 \frac{1 \mathrm{l}}{} 1 \mathrm{of}$ salt of tartar (carbonate of potash), and 5it gals. water. Theso materials are to be put in a kettle, and mado to boil gradually till the lac is dissolved, when the liquid will become as clear as water, withont any scum upon the top, and if left to cool, will have a thin crust upon tho surface, of whitish cast, mixed with the light impurities of the gum. When this skin is talien off, the hat body is to bo dipped into the mixture in a cold state, so as to absorb as much as possible of it; or it may be applied with a brnsh or sponge. Tho hat body, being thus stiffened, may stand till it becomes dry, ornearlyso; and after it has been brushed, it must be immersed in rery dilute sulphuric or acetic acid, in order to neutralize the potash, and cause the shellac
to set. thrown i Metn oxygenat muriate whifte, an Bresac it in a clo barrel is t stone bein barrel con chould be Varnisi ted with a To Blea portion of 1 let it settle, 1 gallon of and boil it h abore; and muslin may tho tub when DYE FOR at first hot, 1 part. D luc brown dyes f lowed by a h cudbear. Pir with the red d alum, followe alum, followe rerdigris and well and dip th into the said m nation, vermilic used in dying f Colons For fine cambric anc recently thin pla portions of the a dissolved in oil o tartar or whiting Liquid archil. tar, or in splrits
little salt of tarta
generally generally applied Black Vamisis
4 oz. ; pulverized and put the phial until the wax is in the san. This,
Easy Mietroo
-Sprinklo the furs

DTERS AND LLEACPIERS'

to set. If the hats are not to bo napped Immedlately, they may be Method of Bleachivie water, and taken ont as wanted. oxygenated muriatic acid, saturated Dip the straw in a solution of white, and its fle much cheapor). The strap potiash. (Oxygenated Brieachina Straiv Gis increased. straw is thus rendered very it in a closed chamair GOODS.-Stre harrel is the apparating to the fumes os burninched by simply exposing stone being laid on the most used for the purg sulphur, an old flour barrel containing the ground, tho sulphur fornited milliners, a flat should be previously goorls to be bleached turued ov thercon, and the Valnisir for faded Red in pure water. ted with a litto faded Rubber Goods.

To Bleacir Lineed oil. GOoDs.-Black Japan rarnish dilu1 gallon of and pour it off clear. intirit occasionally for threo days, and boil it haif ang soft water, in which make a ley of 1lb. of soda to abore; and lastly, was; next soak it in the blee linen for 12 hours, muslin may be restored it in the usual monneraching liquor, mado as the tub wherein the ared by putting a portion of bleuscolored linen or Die fon Featherticles aro soaking. of bleaching liquor into at first hot of timers,-Black: Imag.
1 part. Dluc: with th, 8 parts, and coppor 2 or 3 days in a bath, brown dyes for sille the indigo vat. Broweras or acetate of iron, lowed by a hot bato or woollen. Crimson. : by using any of the cudbear. Pink or Rose Brazil wood, afterivardsant of alum, folwith the red dyo, followed with saf-flower or lems by a weak dye of alum, followed by a bath by an alkalino bath lemon juice. plum: alum, followed by a bath of Brazil-wood. Y, Red : a mordant of rerdigris and verditer, of turmeric or weid. Cellow: a mordant of well and dip the featherg cach 1 oz . ; gum ina Green Dye. Take of into the said mixture nation, vermilion and smar Purple, uso lake and soaked in hot water, used in dying feathers. Colors for Antricicial Fion fine cambric and leid for the petals, ans.-The French employ velvet, portions of the plates of bleached whalob tafieta for the leaves. Very, dissolved in oil of vicial flowers. - Colors and he been used for some tartar or whiting. Vitriol, and the acid partly Stains. Blue.-Indigo Liquid archil. Rea, - A solution of distilledtralized with salt of tar, or in spirits of hartsmine dissolved in a ved verdigris. Lilac.little salt of tartar. Yartshorn. Violet.-Liquid solution of salt of tar:gencrally applied with the fingincture of turmerichil mixed with a Black Vannish for ingers. . $40 \mathrm{OR}^{-}$pulvern FOR CHIP and put the phial into a sealing-wax, 1 oz. until the wax is dissolved warm place, stirring or shat into a phial, in the sun. This makes a. Apply it when warm bing occasionally
EASY Method of PReveautiful gloss. Warm before the fire or -Sprinkle tho
-Sprinkle tho furs or woollen stuffs, aths in Furs on Woollens, 10: well as the drawers or bozes

In whel they are kept, with spirits of turpentine, the unpleasant scent of which will speedily evaporate on exposure of the stuffs to the alr. Some persons place sheets of paper moistened with apirits of turpentine, over, under, or between pieces of cloth, \&cc, and find it a very effectual method. Many woollen drapers put bits of camphor, the size of a mutnieg, in papers, on different parts of the shelves fin their slops, and as they brusli their cloths cyery two, three or four months, this keeps them freo from moths : and this should bo done In boxes where tho furs, \&c., are put. A tallow candle is frequently put within each muff when laid by. Snuff or pepper is very good.
Clotinna henovator.-Soft water, 1 gal. ; make a strong decoctlon of logwood by boiling the extract with tho water. Straiu, when cool, add 2 oz . gum arable in powder ; bottie, cork well, and set aside for use; cleau the coat well from grease and dirt, and apply the abore liquid with a sponge erenly. Dilute to suit tho color, and lang in the shado to dry ; afterwards brush the uad smooth, and it will look like new.
Watemhoor for Ponous Cloth.-Dissorve 2; lbs. alum in 4 gals, water ; dissolve also in a separate vessel tho sume weight of acetate of lead in the same quantity of water. When both are well dissolved, mix tho solutions together ; and, when the sulphate of lead resulting from this mixture has been precipitated to the bottom of the ressel in the form of a powder, pour off the solution, and plungo into it the fabric to be rendered waterproof. Wash and rub it well during n few minntes, and hang it in the air to dry.

To Remove Gnease.-Aqua ammonia, 2 oz. ; soft water, 1 quart ; saltpetro, 1 teaspoonful ; shaving soap in shavings, 1 oz. ; mix altogether ; dissolve the soap well, and any greaso or dirt that cannot be removed with this preparation, nothing else need be tried for it.

Waterproofing Fon Clothino.-Boiled oil, 15 lbs. ; bees-wax, 1 ll . ; ground litharge, 13 lbs. ; mix and apply with a brush to tho article, previously stretched against a wall or a table, previonsly well washing and drying each article before applying the composition.

To Renew Old Silks.-Uuravel nud put them in a tub, cover there with cold water, let them remain one hour ; dip them up and down, but do not wring; hang up to drain, and iron whilo very damp, and they will look beautifnl.

Dyes for funs.-For black, use the hair dye described in theso receipts. Brown, use tincture of logwood. Red, ground Brazilwood, $\frac{1}{2} 1 \mathrm{~b}$. ; water, $1 \frac{1}{3}$ quarts ; cochineal, $\frac{1}{2}$ oz. ; boil tho Brazil-wood In the water one hour ; strain and add tho cochineal ; boil fifteen minutes. Scarlet color, boil $\frac{1}{2}$ oz. saffrou in $\frac{1}{2}$ pint of water, aud pass over the work before applying the red. Blue, logwood, 7 oz . ; blue vitriol, 1 oz . ; water, 22 oz ; boil. Purple, logwood, 11 oz ; alum, 6 oz . $;$ water, 29 oz . Green, strong vivegar, $1 \frac{1}{2}$ pints; best verdigris, 2 oz . ; ground fine ; sap green, $\frac{1}{4} \mathrm{oz}$. ; nix all together and boil.

Potter's Invisible Waterproorina.-Imbue the cloth on the wrong side with a solution of isinglass, alam, and soap dissolved in water, forming an cmulsion of a milky thickness ; apply with a brush, rubbing in well. When dry, it is brushed on the wrong side against the grain, and then gone over with a brush dipped in waterafterwards brushed down smooth.

Io maise a Nas on Clotir.-Clean the articlo rell ; soak it in
cold π bare pa teazle o righit wi
Bibac 2 lbs. ; and it is

Retes
and dise Wylio, la long obser occurring more nuin rect action hand rem each, in a operation. eggs alone ?ases of or light b in is dest on the bacl raise the he oncd wound cut out the 1 cigar or a he a rein is c cough. Bef then go alhe careful. Sm burning oil by dashing w with a soft, st cold, by regu sald: "The temperance, c cold water, in have adopted luted with $2 p$ ing, if liberall gle of lemon j parts. To ave from differeut the natural he In arranging sl
cold water for half an hour ; put it on a bonrd, and rub the threadbare parts with i half-worn hatter's card fillod with focks, or with \& right way with a hatter's brish, nand is raised; then lay the nap the black Revivere fon Crish, mind haig up to dry:
2 lbs. ; groen vitriol, $\frac{1}{1 \mathrm{lb}}$; water, 5 bruisod galls, 1 lb ; logwood, and it is ready for uso. ; water, 5 gluarts ; boil two hours ; strain,

MEDICAL DEPARTMENT, \&c.

Roles for Action, very
and diseaso endeavor alivays to shont nut verf Safe.-In health Wylie, late physician to the Emperor tho sunnyside. Sli Jamos loug observation in tho hospitnis of that cof Russla, romarked during more num rooms averted from the light of rect action of the sin the fatal cases in the rome sun, wero four times hand remedy is to mirys. When poison is swallowed to the dieach, in n glass of water sait and mustard, 1 heaped teaspood offoperation. The of water nnd drink immedinteaped teaspoonful of eggs alone if coffice givo the whites of 2 eggs in n cup of quifek in its ases of opium cannot be had. For aeld poisons civen, or the or light burns or poisoning, give strong coffee and give acids. In
in is destroyed, corer witip tho part in cold water or keep moring. un the back, with cover with varnish. If you water or in flour, if the raise the head and the nose and month projecting the water, foat oned wounds, unlesody ; for fainting, lav the person for apoplexy, cut out the part with your mouth is sore, Enlarge tho wout. Suct poiscigar or a hot coni hout delay, canterize it with cre wound, or better a rein is cut, con. If an artery is cut, compress caustic, the end of a cough. Before compress below. If choked, get abore the wound; if then go ainead ; but if through smoke take a full breath-fours and careful. Smothera firo yon rear carbonic acid mal breath, stoop low, burning oil and incre with blankets or carpets; walk erect and be by dashing water into the the danger. Remove dust from to spread with a soft, smootlinto them, and avoid rubling. Remove cinder eyes cold, by regular diet said: "The incthod, healthy food and cleanliness. Sir Astle catching temperanee, early riss by which I have preserved. Sir Astley Cooper cold water, immediatel, and sponging the body every mornith, aro have adopted for 30 yey after getting out of bed ; a practice wh with luted with 2 per cent oars without ever catching cold:" Wrace which I ing, if liberally used as a carbolic acid will disinfectimy room or buildgle of lemon juice, swallowing a littlo Dipheria can be cured by n garparts. To avert cold from the feet wo as to reach all the affected from different fabrics, one pair of cot, wear tro pairs of stockings mado tho natural heat of the fect will be preserved or sill, the other of wool, and In arranging sleeping rooms the po preserved if the feet are keptclean. her will bo enjoyed when the head is tost and most refreshing slumLato hours
and anxious pursuits exlanst vitality, producing diseaso and promature death, therefore the hours of labour and study should be short. Take abundant exerciso and rocreation. Bo moderato in enting and drinking, using simple and plaiu diet avoiding strong drink, tobacco, sulff, opium and cvery excess. Keep the body warm, the temper calm, serone and placid; shum idleness; if your hands cannot be usefuliy employed, attend to the cultivation of your mir ls. For pure health giving fresh air, go to tho country. Dr: Stockt 1 Mough asserts that if all the inhabitant ; of the world were living in cities of the magnitude of London, the l . man raco mould become extinct in a century or two. The mean averago of human lifo in the Urited States is 394 years, while in New York and Philadelphia it is only 23 years; about 50 per cent. of the deaths in theso cities being of children under five years of age. A great percentage of this excessive mortality is caused by bad air and bad food.
'T'o ascertain the State of the Lungs.-Draw in as much breath as you conveniently can, then count as long as possible in a slow and andible voice vithout drawing in more breath. The number of secouds must be carefully noted. In a consumptire the time does not exceed 10, and is frequentiy less than 6 seconds; in pleurisy and pneumonia it ranges from 9 to 4 seconds. When the lungs aro sound the time will range as high as from 20 to 35 seconds. To expand the lungs, go into tho nir, stand erect, throw back tho head and shoulders, and draw in the air through the nostrils as much as possible.

After having then filled the lungs, raise your arms, still exteuded, and suck in the air. When you have thus forced the arms backward, with the chest open, clange the process by which you draw in your breath, till the lungs are enptied. Go through the process severa! times a day, and it will enlargo the chest, give tho lungs better play, and serve very much to ward off consumption.

Reaiedy for Neuralgla.- Mypophosphito of soda taken ia 1 dram doses 3 times per day in beef tea is a good remedy for this painful affection. So is the application of bruised horsc-radish, or the application of oil of peppermint applied lightly with a camel inair pencil.
Remedy for Meadacte--A Parisian physician has publishod a new remedy for headaches. IIe uses a mixturo of ice and salt, in proportion of one to onc-half, is a cold misture, and this he applies by means of a little purse of silk gauze, with a rim of gutta perclia, to limited spots on the head, when rheumatic headaches aro felt. It gives instantaneous relief.' The application is from $\frac{1}{2}$ minute to it mhutes, and tho skin is rendered white and lard by the applications.

To Cums a Cold.-Before retiring soak tho feet in mustard water as hot as can be cndured, the feet should at first be plunged in a pail half full of lukewarm water, adding by degrees very hot water until the desired heat is attaiued, protecting tho body and lenees with Hankets so to direct the vapor from the water as to induce a good sweat. Next, to 2 table spoonfuls of boiling water, add 1 table spoonful of white sugar and 14 drops of strong spirits of camphor. Drink tho whole and cuddle in bed under plenty of bedclothes and sleep it off.

Remedy for Consumption.-The following is said to be an effectual remedy, and will in timo completoly curo tho disorder. Livo temperately, avold spirituous liquore, wear faunel neat the skin, and tako,
every morning of the express
"Four weeks' breast, gave n and harmoniz than I had enj

Tmerina is worm, scarcely discovered to e transferred to of these filthy ts engender 30 , ing birth to fro: thread-like wor testines, remain intestines, caut present in suffic to penetrate the the voluntary in during cramps, tion they encys begin to secrete In this torpid st
Remedy for swabling tho ba Table salt, 2 dr alum, 1 dram ea water ; stir well, hour, one, two, may swallow a sweet oil, and an throat, and to t the part.
Holloway's oz. ; jellow rosi eraporate; and lalsam of Peru, ginger, of cach 2 Abernetiny's 3 grains compoun Worm Lozend mix with mucila divide in 20 grain Sootimna Syn 1 oz ; mix ; add rized ginger, 40 g
Soothing Syi paregoric, and the make a thick sy spoonful occasion INFANT's SyRU $\frac{1}{2}$ ounce of anise sc anise seed, and cu
every morning, half a pint ne now milk, mixed with a wine glassful of the expressed julce of green horehound. Ono who has tried itsays, "Four weeks' use of the hore..ound and milk relieved tho pains of my breast, gave me ability to breathe deep, long and free, strengthencd and harmonized my voice and restored me to a better state of health than I had enjoyed for years."

Tmichina is th:e term anplied to a minuto, slender, and transparent worm, scarcely i-20th of an inch in length, which has recently been discovered to exist naturally in tho muscles of swine, and is frequently transferred to the human stomach when pork is used as food. Enough of these filthy parasites linve been detected in half a pound of pork ts engender $30,000,000$ more, the females being very prolific, each give ing birth to from 60 to 100 young, and dying soon aiter. The young thread-liko worm at first ranges freely through the stomach and intestines, remaining for a short tine within the lining membrane of tho intestines, causing irritation, diarrhoea, and sometimes death, if present in sufficient numbers. As they becomo stronger, they begin to penctrate the walls of the intestines in order to effect a lodgment in the voluntary muscles, cansing intense muscular pain and screre enduring cramps, and sometimes tetanic symptons. After 4 weeks migration they encyst themselves permanently on the muscnlar fibre, and begln to secrete a delicate sac which gradually becomes calcarcous. In this torpid state they remain during the person's lifetime.

Remedy for Dimitneria. -Tha treatment consists in thoronghly srabbing tho back of the mouth and throat with a wash made thins: Table salt, 2 drans; black pepper, golden seal, nitrate of potash, alum, 1 dram each; mix and pulverize; put into a teacnp half full of water ; stir well, and then fill up with good vinegar. Use every half hour, one, two, and four hours as recovery progresses. The patient may swallow a little cach time. Apply 1 oz . each of spirits turpentine, swect oll, and aqua-ammonia, mixed, every hour to tho whole of tho throat, and to the breast bono cvery four hours, keeping flannel to the part.
Holloway's Onntment and Prils.-Bntter, 22 oz. ; beeswax, 3 oz. ; yellow rosin, 3 oz ; melt ; add vinegar of cautharides, 1 oz ; eraporate; and add Canada balsam, 1 oz. ; oil of maco, $\frac{1}{2}$ dram ; balsam of Peru, 15 drops. Pills: Aloes, 4 parts ; myrrh, jalap, and ginger, of each 2 parts ; mucilage to mir.

Anernetny's Pills.-Each pill coutains 2 grains of bluo pill and 3 grains compound extract of colocynth.
Worar Lozenges.-Powdored lump sugar, 10 oz ; staren 5 oz ; mix with mncilago; and to overy ounco add 12 gralus calomel ; dlvide in 20 grain lozenges. Dose, two to six.

Sootinna Synup.-Alcohol, oil of peppermint, castor oil, of each, 1 oz . ; mix ; add oil of anlse, $\frac{1}{3}$ dram ; magnesia, 60 grains ; pulverized ginger, 40 grains ; water, 2 oz . ; white sugar to form a syrup.

Soothina Syuur.-Take 1 lb of lioney; add 2 tablespoonfuls of paregoric, and the same of oil of anise sced; add enough water to make a thick syrup, and bottle. For children teething, dose, teaepoonful occasionally.

Infant's Syrup.-The syrup is made thus : 1 lb. best box raisins ; $\frac{1}{2}$ onnce of anise seed; two sticks licorice ; split tioo raisins, pound the anise seed, and cut the licorice fine ; add to it 3 quarts of min water,
and boil down to 2 quarts. Feed three or four times a day, as much as the child will willingly drink. The raisins strengthen, the auise expels the wind, and the licorice is a physic.

Brandreth's Pills.-Take 2 lbs . of aloes, 1 lb . of gamboge, 4 oz . of extract of colocynth, $\frac{1}{3} \mathrm{lb}$. of Castilo soap, 3 fluid drams of ofl of peppermint, and 1 fluid dram of cinnamon. Dix, and form into pills.

Davis' Pain Kifuer Ibtproved.-Powdered guaiac 20 lbs. ; camphor, 2 lbs. ; powdered cayenne pepper, 6 lbs. ; caustic liguor of ammonia, 1 lb .; powdered opium, $\frac{1}{2} \mathrm{lb}$. ; digest these ingredients in 32 gals. alcohol for two weeks, and filter.

Compound Syrup of Hyporhosphites and Iron.-Dissolve 250 grs. each of liypophosphites of soda, lime and potassa, and 126 gre. hypophosphite of iron, in 12 oz . water, by a water bath. Filter and ndd sufficient water to make up for the evaporation. Add 18 ozs. sugar by gentle heat, to make 21 fluid ozs. syrup.: Each fluid oz. contiains 12 grs. each of the hypophosphites of soda, lime and potassit, and six grs. hypophosphite of iron.

Cobe for Drunkenness.-Warranted a certain Remedy. Confine the patient to his room, furnish him with his favorite liquor of discretion, diluted with $\frac{2}{3}$ of water, as much wine, beer, coffee and ter as lie desires, but containing $\frac{1}{8}$ of spiric ; all the food-the bread, meat and vegetables steeped in spirit and water. On tho fifth day of this treatment he has an extreme disgust for spirit, being continually drunk. Keep up this treatment till lie no longer desires to eat or drink, and the cure is certain.

Fahnestock's Vermifuge.-Castor oil, oil of worm seed, each 1 oz. ; oil anise, $\frac{1}{2}$ oz. ; tincture myrrh, $\frac{1}{3}$ dram ; oil turpentine, 10 minims. Mix.

Swaim's Venaifuge.-Wormseed, 2 oz. ; valerian, rhubarb, pinkroot, white agaric, of each $1 \frac{1}{3}$ oz. ; boil in sufficient water to yield 3 quarts of decoction ; and add to it 10 drops of oil of tansy and 45 drops of oll of cloves, dissolved in a quart of rectified spirits. Dose, 1 tablespoonful at night.

Ayer's Cherry Pectoral.-Take 4 grains of acetate of morphia; 2 fluid drams of tincture of bloodroot; 3 fluid drams each of antimonial wine and wine of ipecacuanha, and 3 fluid oz. of syrup of wild cherry. Mix.
Spasms.-Acetate of morphia, 1 gr . spirit of sal volatile, 1 oz . sulphuric ether, 1 oz . camphor julep, 4 ozs. Mix. Dose, 1 teaspoonful in a glass of cold water, or wine, as required. Keep closely corked, and shake well before using.
Radway's Ready Remef.-According to Peckolt, is an ethereal tincture of capsicum, with alcohol and cainchor.
Radifay's Renovating Resolvent.-A vinons tincture of ginger and cardamon, sweetened with sugar.
Ayer's Sarsaparilla.-Take 3 fluid ozs. each of alcohol, fluid extracts of sarsparilla and of stillingia ; 2 fluid ozs. each, extract of yellow-dock and of podophyllin, 1 oz . sugar, 90 grs . iodide of potassium, and 10 grs . iodide of Iron.

Brown's Bronchinl Trocifes.-Take 1 lb. of pulverized extract of licorice ; $1 \frac{1}{2} \mathrm{lb}$. of pulverized sugar ; 4 oz . of pulverized cubebs; $40 z$. pulverized gum arabic ; $1 \mathbf{~ o z}$. of pulverized extract conium. Mix.

Rcssia Sa melt slowly, of glycerine.

Dentists' part ; mercu mixed pour t . together in a palm of the h glass with so somo mineral sncced:unemm 1 nart ; levige miake Into n pa varnish. Or, ver, 72 parts; cold, 1 part ; tinl, reduce all mercury.
Gutta-percha rises melting a ducing it while Amalgams fc silver, the exces gam used warn or zinc. A po quicksilver and The following i amalgam : Mel got, and rednce mercury, and sc Work up the so Another cement of zinc, amalgan is the best filling
Poudre Meta appenrs to be an an excess of mer
To Extracic 1 nite, chloroform, gets of cotton witl the tooth to be ax other instruments ly inside and out.
Tootir Wasilwater, 1 oz ; hor frecly with this pl a moment's time Wash out the mont enamel of the teetl Dentists' Neris destroy the nerve, viously moistened main 4 hours, the

Rcssia Saive.-Take equal parts of yellow wax and swoet oll; melt slowly, carofully stirriug ; when conling, stir in a small quautity of glycerine. Good for all kinds of wounds, \&c.
Dentists' Confoosition for Filling Diccayed Teeth.-Gold, 1 part ; mercury, 8 parts; incorporated by heating together; when mixed pour them into cold water. Or, tinfoil and quicksilver ; melt together in a convenient vessel, take a small quantity, knead it in the palm of the hand, and apply quick. Or, mix a little finely-powdered glass with some nineral succedauerm; apply as usual. Or, take somo mineral succedaneum, and add some steel dust. Or, mineral succedanemm mixed with levigated porcelain or china. Or, gypsum, 1 part; levigated porcelain, i part; levigated irou filings, 1 part; make into a paste with equal paits of quick-drying copal and mastic varnish. Or, quicksilver, 40 grains ; steel filings, 20 grains. Or, silrer, 72 parts; tin, 20 parts; ziuc, 0 parts. Better than any, pure gold, 1 part ; silver, 3 parts ; tin, 2 parts ; melt the first two, add the tin, reduce all to a fine powder, use with an equal quantity of pure mercury.
Gutta-percha, softened by heat, is recommended. Dr. Rollfs adrises melting a plece of caoutchouc at the cud of a wire, and introducing it while warm.
Amalgams for the teeth are made with gold or silver, and quicksilver, the excess of the latter being squeezed out, and the stiff amalgam used warm. Inferior kinds are made with quicksilver and tin, or zinc. A popular nostrum of this kind consists of 40 grains of quicksilver and 20 of fine zinc filings, mixed at the time of using. the following is said to be the most lasting and least objectionable amalgam : Melt 2 parts of tin with 1 of cadmium, run it into an ingot, and reduce it to filings. Form these into a fluid amalgam with mercury, and squeeze out the excess of mercury through leather. Work up the solid residue in the hand, and press it into the tooth. Another cement consists of about 73 parts of silver, 21 of tin, and 0 of zinc, amalgamated with quicksilver. Beyond all doubt, gold foil is the best filling in tise.
Poudne Metallique.-The article sold under this name in Parls appenrs to be an amalgam of silver, me cury, and ammonium, with an excess of mercury, which is pressed out before using it.
To Extract Tfetif with little on no Pain.-Tincture of nconite, chloroform, and alcohol, of each 1 oz. ; mix; moisten tivo pledgets of cotton with the liquid, and apply to the gums on each side of the tooth to be extracted, holding them in their place with pliers or other instruments for from five to ten minutes, rubling the gum freely inside and out.
Toorir Wasir-To Remove Blackness.-Pure muriatic acid: 1 oz.; water, 1 oz . ; honey, 2 oz ; mix. Take a tooth-brush, and wet it frecly with this preparation, and briskly rub the black tecth, and in a moment's time they will be perfectly white; then immediately wash out the mouth with water, that the acld may not act upon the enamel of the tecth.
Dentists' Nerve Pastr.-Arsenic, 1 part; rose pink, 2 parts. To destroy the nerve, apply this preparation on a pledget of cotton, proviously moistened with creosote, to the cavity of tho tooth, let it remain 4 hours, then wash out thoroughly with water. Another.-

Arsenous acid, 30 grs ; acetato of morphia, 20 grs ; creosote, q. s. for paste. Mix.

Alloys For Dentist's Moulds and Dies.-1. Tin, tery hard.-Tin, 16 parts; antimony, 1 part; zinc, 1 part; 2. Tin, softer than the last. 'Tin, 8 parts; zinc, 1 part; antimony, 1 part; 3. Copper Alloy, very hard.-1in, 12 parts; antimony, 2 parts; copper, 1 part; 4. Cadmium Alloy, about the hardness of zinc.-Tin, 10 parts; antimony, 1 part; cadmium, 1 part.
Dentists' Emery Wheers.-Emery, 4 lbs.; shellac, $\frac{1}{2}$ lb. ; melt the shellac over a slow fire; stir in the emery, and pour into a mould of plaster of Paris. When cold it is ready for use.
Base fon Artificlal Teeth.-Proportions,-India-rubber, 1 lb . $;$ sulphur, $\frac{1}{2 l \mathrm{lb} .}$; vermillion, 1 lb .4 oz .
Nitimous OXide, on Laughing Gas.-Take two or three ounces of nitrate of ammonia in crystals and put it into a retort, taking care that the heat does not exceed 500°; when the crystals begin to melt, the gas will be produced in considerable quantities. The gas may also be procured, though not so pure, by pouring nitric acid, diluted with fivo or six times its weight of water, on copper filings or small pieces of tin. Tho gas is given out till the acid begins to turn brown; the process must then be stopped

To Inhale the Laughing Gas.- Procure an oiled or varnished silk bag, or a bladder, furnished with a stop-cock, into the mouth, and at the same time hold the nostrils, and the sensation produced will be of a highly pleasing nature ; a great propensity to laughter, a rapid flow of vivid idens, and an unusual fitness for muscular exertion, are the ordinary feelings which it produces. The sensations, produced by breathing this gas, are not the same in all persons, but they are of an agreeable nature, and not followed by any depression of spirits like those occasioned by fermented liquors.
Magnetic Pain Killer, For Toothache and Acute Pain.-Landnum 1 dr . gum camphor 4 drs. oil of cloves $\frac{1}{2} \mathrm{dr}$. oil of lavender 1 dr . add then to 1 oz. alcohol, 6 drs. sulphuric ether, and 5 fluid drs. chloroform. Apply with lint, or for toothache rul' on the gums, and upon the fa: s against the teeth.

Cure for Loci Jaw, said to be positive.- Let any one who has an attack of lock jaw talke a small quantity of spirits of turpentine, warm it, and pour it on the wound-no matter where the wound is, or What its nature is-and relief will follow in less than one minute. Turpentine is also a sovereign remedy for croup. Saturate a piece of flannel witi it, and place the flannel on the throat and chest-and in very severe cascs three to five drops on a lump of sugar may be taken internally.
New Meriod of Enibalming.-Mix together 5 pounds dry sulphate of almmine, 1 quart of warm water, and 100 grains of arsenious acid. Inject 3 or 4 quarts of this mixture into all the vessels of the human body. This applies as well to all animals, birds, fishes, \&c. This process supersedes the old and revolting mode, and has been introduced into the great anatomical schools of Paris.

Nitrate of Silver.- Pure silver, 1 oz. ; nitric acid, 1 oz. diluted with water, 2 oz.; heat by a sand-bath until ebullition ceases, and the water is cxpelled then pour into moulds. This substaneo must be kept from tho light.

Clifforn's Smampoo Compound.-Mix borax $\frac{3}{4} \mathrm{lb}$. with salts tar tar $\ddagger \mathrm{lb}$. and dissolve 1 oz . of the mixture in 1 pt . water.

Clifford's Hair Dre.-No 1. Pyrogallic acid 1 oz. ; water 1 qt No 2. Nitrate of silver 1 oz . ; water 4 ozs. ; ammonia 1 oz . Keep rour materials free from grease, cool, and in the dark. Apply each No. alternately to the hair, first cleaning the hair well.

Bay Rum. French proof spirit 1 gal. ext. Bay 6 ozs. Mix and color with caramel, needs no filtering.

Hair invigorator-Bay rum, 2 pints; alcohol, 1 pint; castor oil, 1 oz . carb. ammonla, $\frac{1}{2}$ oz. ; tincture of cantharides, 1 oz . Mis thom well. This compound will promote the growth of the hair, and prevent it from falling out.

Razor-Sthop Paste.-Wet the strop with a little sweet oil, and apply a little flour of emery evenly over the surface.

Oil of Roses.-Olive oil, 1 lb . ; otto of roses, 50 drons; oil of rosemary, 25 drops; mix. Another, roses (hardly opened) 12 oz .; olive oil, 10 oz., beat them together in a mortar; let them remain for a few days, then express the oil.

Balm of Beauty.-Pure soft water, 1 qt.; pulverized Castilo soap, 4 oz. ; emulsion of bitter almonds, 6 oz. ; rose and orange flower water, of each, 8 oz ; tincture of benzoin, 2 drs ; borax, 1 dr. ; add 5 grs. bichloride of mercury to cvery 8 oz. of the mixture. To use, apply on a cotton or linen cloth to the face, \&c.
Oriental Cold Creamr,-Oil of almonds, 4 oz ; white wax und нpermaceti, of each, 2 drs . ; melt, and add rose water, 4 oz .; orauge flower water, $1 \mathrm{oz} . ;$ used to soften the skir, apply as tho last.
Shaving Crfam.-White wax, spermaceti, almond and oil, of cach $\frac{1}{4}$ oz. : melt, and while warm, beat in 2 squares of Windsor soap previously reduced to a paste with rose water.
Circassian Cream.-Take 2 ounces of perfectly fresh snet, either mutton or venison; 3 ounces of olive ofl; 1 oz . gum benzoing in powder, and $\frac{1}{4} \mathrm{oz}$. of alkanet root. Pat the whole into a jam jar, which, if without a lid, must bo tied over with a bladdor, and place the jar in a sauce pan containing bolling water, at the side of the fire. Digest for a whole day, then strain away all that is fluid through fine muslin, and stir till nearly cold. Add, eay 1 dram of essence of almonds, roses, bergamot or any other perfume desired.
Freckle Cure.-Take 2 oz . lemon juice, or half a dram of powdered borax, and one dram of sngar; mix together, and let them stand in a glass bottle for a ferw days, then rub on the face occasionally.
Yankee Shafing Soar.-Take 3 lbs . whito bar soap; 1 lb . Castilo soap; 1 quart rain water; $\frac{1}{2}$ pt. beef's gall; 1 gill spirits of turpentinc. Cut the soap into thin slices, and boil fire minutes after the soap is dissolved, stir while boiling; scent with oil of rose or almonds. If vished to color it, use $\frac{1}{2}$ oz verinilion.
Bloom of Youtir.-Boil 1 ounco of Brazil mood in 3 pints of water for 15 minutes ; strain. Add $\frac{8}{4} \mathrm{oz}$. Isinglass, $\frac{1}{2} \mathrm{oz}$. cochineal, 1 oz. alum, $\frac{t}{2}$ oz. borax. Dissolve by heat, and strain.
Cologne Water.-Oils of rosemary and lemon, of each \ddagger oz.; oils of bergamot and lavender, cach s oz.; oil chnnamon, 8 drops ; oils of cloves and rose, each 15 drops ; best deodorized alcohol, 2 qts.; shake two or three times per day for a reck.

We propose to giro the formula for the following preparations, and shill commence with what is said to be

Bogle's Myreiton Fluid.-To 8 oz. of 90 or 95 per cent. alcohol, colored red with alkanet, add 1 oz . of castor oil: perfume with geranlum and verbena.

Lyon's Katriairon.-To 8 oz . of 80 per cent. alcohol, colored jellow by a few drops extract of annatto, add 2 oz . castor oil, and perfume with a littlo bergamot.
Phalon's ilair hestorative.-To 8 oz . of 00 per cent. alcohol, colored by a fow drops tincture of alkanet root, add 1 oz . of castor oll, and perfume with a compound of bergamot, neroll, verbena, and orange.

Mrs. Allen's.-To 16 oz . of rose rater, diluted with an equal part of salt water, add $\frac{1}{2}$ oz. of sulphur and $\frac{1}{4}$ oz. of sugar of leud; let the compound stand five days before using.

Batchelon's Ilair-Dre.-No. 1. To 1 oz. of pyro-gallle acld, dissolved in 1 oz . alcohol, add 1 qt . of soft water. No. 2. To 1 oz . nitrato of silver, dissolved in 1 oz . of concentrated ammonia, add 4 oz . of soft water. Apply cach No. alternately, with separate brushes, to the lair.

Chmistadoro's Mair-Dye.-No. 1. To 1 oz, of pyro-gallic acid, dissolved in 1 oz . alcohol, add 1 qt . soft water. No. 2. To 1 oz . crystallized nitrate of silver, dissolved in 1 oz . concentrated aquaammonia and 1 oz . soft water, add $\frac{1}{2} \mathrm{oz}$. gam arabic and 3 oz . soft water. Keep corered from the light.
Phalon's Instantaneous Mahe-Die.-No. 1. To 1. oz. nymgallic aci.l, and \ddagger oz. of tannia, dissolved in 2 oz. of alcohol, add 1 qt. of soft weser. No. 2. To 1 oz . crystallized nitrais of silrer, dissolvel in 1 oz. concentrated uqua-ammonia, add 1 oz . gum arable, and 1t oz. soft water. Keep in tho dark.
Ilarrison's.-No. 1. To 1 oz. pyro-gallic acid, 1 oz . of tannia dissolved in 2 oz . alcoliol, add 1 gt . soft water. No. 2 . To 1 oz . crystallized nitrate of silrer, dissolved in $1 \mathbf{o z}$. of concentrated aquaammonia, add 5 oz . soft water and $\frac{1}{2}$ oz. gum arabic. No. 3. 102. hydro-sulpliato of potassa, dissolved in 1 gt . of soft water. This last ingredient is intended to produce a deep black color if tho others should fail. Keep array from the light.

Pilalon's (One Prepalation.)-To 1 oz. crystallized nitrate of silrer, dissolved in 2 oz , of aqua-ammonia, add 5 oz . soft water. This is not an instantancous dye; but after exposure to the light and air, a dark color is jproduced upon the surface to which it is applied. Remember to remove all grease, \&c., from the hair before applying these dyes.

Professor Wood's.-To 8 oz . rinegar, diluted with an equal part of soft water, add 2 drs. sulphur, and 2 dirs. sugar of lead.

Alpine Mair-Balm.-To 16 oz . of soft water add 8 oz , of alcohoi and $\frac{1}{2}$ oz. splrits turpentine, $\frac{1}{2}$ oz. sulphur, and $\frac{1}{i}$ oz. sugar of lead.

Glicerine Preparation.-Neiv rum, 1 qt. ; concentrated spirtts of ammonia, 15 drops; glycerine oil, 1 oz. ; lac sulphur, 5 d drs. : sugar of lead, $5 \frac{1}{3}$ drs.; put the liquor into a bottle, add the ammonia, then the other components. Shake the compound occasionally for four or fire days.

Ceystallane Cieass.-Oil of almonds, 8 oz.; spermaceti, 1 oz ;
melt togeth
bergamot or
it stand till
using camph
Macassan
then tio 1 oz
the oil, let it
red, then ren
Ox Marbl
6 oz ; when
Brars' On
Extract
otto of roso,
Sea Fona
monia, \& oz.
the alcoliol, th
Proogalei
distilled water splrit, of fluid 0 Fine Stiam of borax in 1 , land rum, nud shampoo with off with clean Barber's S cream tartar, $\frac{1}{4}$ Cilear bay rith oil of Bay rater through alcohol. The q the desired stre liay, 10 fluid d drs.; alcohol 3 g filter.
Liquid for Fc 1 dr ; tinct. can 12 drops. Appl reliable.
Court Plast splrits or warm application apply cuts or rounds, off until the skin
Balm of a Tr White bar roap,
placo till dissolro placo till dissolre New York BA 14 pts. ; citronella
Franoupansi.1 oz. ; macerate f gal.; orrnge-flowr
melt together. When a littlo cooled, add $\frac{1}{2}$ oz or less of essence of bergamot or other perfume; put into wide-monthed bottles, and let it stand till cold. Camphorated crystalline cream may bo made by using camphorated oil (f. Camphore) instead of oil of almonds.
Macassar Oth.-Olivo oil, 1 qt. ; alcohol, 2\} oz. ; roso oil, $1 \frac{1}{4}$ or. ; then tio 1 oz. of chipped alkanet root in a muslin bag, and put it in the oil, let it alono for somo days till it turns the color of a pretty red, then remove to other oils. Do not press it.

Ox Marrow.-Melt 4 oz. ox tallow ; white wax, 1 oz ; fresh lard, 6 oz . ; when cold, add 1.f oz. oil of bergamot.
Beans' Oif.-Use good sweet lard oil, 1 qt. ; oil berramot, 1 , oz.
Exthact of Patchoulr.-Mix $1 \ddagger 0 z$. otthr of Patchouli, and $\$ 0 z$. otto of rose, with 1 gal . rectified spirits.

Sea Foam for Barbers.-Alcohol, 4 oz . ; castor oil, 1 oz ; ammonla, $\frac{1}{} \mathrm{oz}$. ; vater, 1 pt . Dissolre the castor oil and ammonia in the alcoliol, then add tho alcohol mixturo to tho water.

Pyiogallic IIair Dye.-lyrogalle acid, \ddagger oz. ; dissolro it in hot distilled water $1 \frac{1}{2} \mathrm{oz}$. ; when the solution cools add graduilly rectified spirit, $\frac{1}{2}$ fluid oz.
Fine Silasipoo Liqutd.-Dissolve $\frac{1}{2}$ oz. carb. of ammonia and 1 oz, of borax in 1 gt . water, then add 2 oz . glycerine, 3 qts . of New Eugland rum, and 1 qt . of bay rum; moisten the hair with this liquor. shampoo with the hands until a slight lather is formed, then wask uff with clean water.

Barber's Shanipoo Mixtcre.-Soft water, 1 pt.; sal soda, 1 oz.; cream tartar, $\frac{1}{} \mathrm{oz}$. Apply thoroughly to tho hair.

Criear Bay lium.-Saturato a \ddagger ib. block of carb. of maguesia rith oil of Bay ; pulrerizo tho magnesia, placo it in a filter, and pour water through it until the desired quantity is obtained, then add alcohol. The quantity of water and alcohol employed depends on the desired strength and quantity of the Bay rum. Another-Oil of liay, 10 fluid drs.; oil of pimento, 1 fluid dr.; acetic ether, 2 fluid drs. ; alcohol 3 gals.; water, $2 . \frac{2}{2}$ gals. Mir, and after 2 weeks rcposo, filter.

Liquid for Forcing the Beard.-Cologne, 2on.; liquid hartshom, 1 dr . ; tinct cantharides, 2 drs. ; oil rosemary, 12 drops; lavender, 12 drops. Apply to the face daily and await results. Said to bo reliable.

Court Plaster.-Brush silk orer with a solution of isinglass, in spirits or warm water, dry and repeat several times. For the last application apply several coats of balsam of Pcru. Uised to close cuts or wounds, by warming it and applying. It does not wash off until the skin partially heals.
bala of a Tiousand Flowers.-Deodorized alcohol, 1 pt. ; nico white bar roap, 402 . ; sharo the soap when put in, stand in a warm place till dissolved ; then add oil of citronella, 1 dr., and oils of neroli and rosemary, of each $\frac{1}{3} \mathrm{dr}$.
Neif York Babrais' Star Ilam Oil.-Caster oil $\frac{1}{2}$ pts. ; alcohol, $1 \frac{1}{2}$ pts ; citronelln and larender oil, each $\frac{1}{8}$ oz.
${ }^{2}$ Franoupanisi.-Spirits, 1 gal. ; oil bergamot, 1 oz : olì of lemon, 1 oz . ; macerate for 4 days, frenuently shaking ; then add water, 1 gal. ; orange-flower water, 1 pint, essence of vanilla, 202. Mix. Jocirey Cech-Spirits of wino, 6 gal ; orango-lower water, 1
gal. ; balsam of Peru, 4 oz . ; essence of bergamot, 8 oz ; essence of musk, 8 oz , essence of cloves, 4 oz ; essence of neroli, 2 oz

Ladies' Own.-Spirits of wine, 1 gal.; otto of roses, 20 drops; essence of thyme, $\frac{1}{2}$ oz. ; essence of neroli, $\frac{1}{4} \mathrm{oz}$. ; essence of vanilla, $\frac{1}{3} \mathrm{oz}$. ; essence of bergamot, $\ddagger \mathrm{oz}$. ; orange-flower water, 6 oz .

Kiss me Quicis.-Spirit, 1 gal. ; essence of thyme, $\frac{1}{女}$ oz. ; essence of orange-flowers, 2 oz ; cssence neroli, $\frac{1}{2} \mathrm{oz}$. ; otto of roses, 30 drops; essence of jasmine, 1 oz.; essence of balm mint \ddagger oz.; petals of roses 4 oz . oil lemon, 20 drops; calorus aromaticus, $\frac{1}{3}$ oz.; essence nercli, $\frac{1}{4}$ oz. Mix and stiain.

Upper Ten.-Spirits of wine, 4 qts. ; essence of cedrat, 2 drs.; essence of violets, $\frac{1}{4} \mathrm{oz}$. ; esscuce of neroli, $\frac{1}{3} \mathrm{oz}$. ; otto of roses, 20 drops ; orange-flower essence, 1 oz . oil of roscmary, 30 drops; oils bergamot and neroli, each $\frac{1}{2}$ oz.
India Cholagogue.-Quinine, 20 grs. ; Perurian bark, pulrerized, 1 oz . ; sulphuric acid, 15 drops, or 1 scruple of tartaric acid is best; brandy, 1 gill ; water to make one pint ; dose, 5 teaspoonfuls every 2 hours, in tho absence of fover ; an excellent remedy.

Febrifuge Wine.-Quinine, 25 grs. ; water, 1 pint ; sulphuric ncid, 15 drops ; epsom salts, 2 oz .; color with tincture of red sanders. Dose, a wine glass 3 times per day. This is a world-renowned medicine.

Barrele's Indian Linisient.-Alcohol, 1 qt.; tincture of capsicum, 1 oz . ; oil of origanum, sassafras, pennyroyal, and hemlock, of cach toz. Mix.

COD Liver OiL, as usually prepared, is nothing more orless than cod oil clarificd, by which process it is in fact deprived in a great measure of its virture. Cod oil can bo purchased from any wholesale oil dealer for one thirticth part of tho price of cod liver oil as usually sold, and it is easy to clarify it. Dealers might turn this information to good account. To mako it more palatable and digestible, put 1 oz . of tino table salt to cacl quart bottle.

Cod Liver Oil.-The first lirers are placed in a jacketed pan heated by steam, and when the oil is separated from the scraps it is passed through felt bags until it is perfectly clear. To remove a portion of the stearino, it is subjected to refrigerating mixtures in tho summer, and tho incongealablo portion is drawn off and placed in bottles.

Paregoric.-Best opium, $\frac{1}{2}$ dr. ; dissolre in abont 2 tablespoonfuls of boiling water; then add benzoic acid $\frac{1}{2}$ dr. ; oil of anise, $\frac{1}{2}$ a fluid dr.; clarificd honcy, $1 \mathrm{oz} . ;$ camphor gum, 1 scruple; alcohol, 76 per cent., 11 fluid oz. ; distilled water, 4 fluid oz. ; macerato (keep warm) for two weeks. Dose for children, 5 to 20 drops; adults ; 1 to 2 teaspoonfuls.

Cocigh Sxrup. - Put 1 qt. horcinound tea, 1 qt. of water, and boil it down to 1 pt . ; add 2 or 3 sticks licorice ; 2 oz. syrup of squills, and ar tablespoonful essence of lemon. Take a tablespoonful 3 times a day or as the cough requires.

Cougr Syrup.-Syrup of squills, 2 oz. ; tartarized antimony, 8 grs. ; sulphate of morphine, 5 grs.; pulverized arabic, 1 oz. ; honey, 1 oz. ; water, 1 oz.; mix. Dose for an adult, 1 small teaspoonful; ropeat in half an hour if it does not rellere : child in proportion.

Vegetale Substitute for Calourel.-Jalap, 1 oz, senna, 2 oz;
peppermiz
ted throug
spoonfuls
drink all ;
not operat
DYNAMI
meal will f 3 lbs of le: that of 91 lean beef. or 8 lbs. of to health, al man of ave solid matter contains 50 ozs., or 31bs daily. The sa nous matter 1.058, total 2 vary greatly employments digestiou, as nuch also, d given to the f nature in the lbs. of such n tains 21 lbs. Hour is also ve flour ; hence other ailments. 100 parts, the Indian corn, 19 is well adapt required may
weighing 154 (consisting of o nitrogen 3 lbs. lbs., potassium 2 ozs. $47 \mathrm{grs} .$, i death, the hun these its comp complex and wo forms of vegeta law by yielding What a sugges present inliabit fucrative comme itants from the sands of years a order to fertilize the bone and sin
Core for Sn
peppermint, $10 z$ (a little cinnamon if desired), all pulverized and sifted through gauze. Dose, 1 teaspoonful put in a cup with 2 or is spoonfuls of hot water, and a good lump of white sugar ; when cool, drink all ; to be taken fasting in the morning ; drink freely ; if it does not operate in 3 hours, repeat $\frac{1}{2}$ the quantity; use instead of calomel.

Dynamic Yower of various kinds of Food.- Une lb., of oatmeal will furnish as much power as 2 lbs. of bread and more than 3 lbs of lean veal. One lb., butter gives a working force equal to that of 9 lbs . of potatoes, 12 lbs . of milk and more than 5 lbs . of lean becf. One lb. of lump sugar is equal in force to 2 lbs., of ham, or 8 lbs. of cabbage. The habitual use of spirituous liquors is inimical to health, and inevitably tends to shorten life. A mechanic or laboring man of average size, requires, according to Moleschott, 23 ozs ., of dry solid matter, daily, one fifth nitrogenous. Food, as usually prepared, contains 50 per cent. of water, which would increase the quantity to 46 ozs., or 3 lbs. 14 ozs., with at least an equal weight of water in addition daily. The same authority indlcates as healthy proportions, of albuminous matter 4.587 ozs., fatty matter 2.964 , carbo-hydrate 14.250 , sadts 1.058 , total 22.859 ozs., for daily use. This quantity of food will vary greatly in the requirements of individuals engaged in sedentary employments, or of persons with weak constitutions or impaired digestion, as also whether employed in the open air or within doors much also, depending on the temperature. Preference should be given to the food which most readily yields the materials required by nature in the formation of the human frame. Beef contains about 4 lbs . of such minerals in every 100 lbs . Dried extract of beef contains 21 lbs. in each 100 lbs . Bread made from unbolted wheat flour is also very rich in such elements, much more so than superfine flour ; hence the common use of Graham bread for dyspepsia and other ailments. The analysis of Liebig, Johnston, and others give in 100 parts, the following proportions of nutritious elements, viz., Iudian corn, 12.30 barley 14.00, wheat 14,06 , oats 19.91 . A fish diet is well adapted to sustain intellectual, or brain labor. What is required may be lest known from the fact that a human body weighing 154 lbs., contains, on a rough estimate, of water 14 gals. (consisting of oxygen 111 lbs., of hydrogen 14 lbs.), carbon 21 lbs. nitrogen 3 lbs. 8 ozs., calcicum 2 lbs., sodium 24 ozs., phosphorus 1 案 lbs., potassium $\frac{1}{2} \mathrm{oz}$. sulphur 2 ozs .219 grs ., fluorine 2 ozs ., chlorine 2 ozs. 47 grs., iron 100 grs., magnesium 12 grs., silicon 2 grs. After death, the human body is by gradual decay, slowly resolved into these its component parts, which elements are again used in the complex and wonderful laboratory of nature, to vivify the countless forms of vegetable life. These in their turn fulfil their appointed law by yielding up their substance for the formation of other bodies. What a suggestive comment on mortal ambition to witness the present lulabitants of Egypt engaged in what they consider the lucrative commerce of quarrying out the bones of the ancient inhabitants from the catacombs where they have been cutombed for thousands of years and transporting them by the ship-load to England, in order to fertilize the orops which are destined to assist in forming the bone and slnew of the British nation!

Cure for Snake Bites.-The Iuspector of Police in the Bengal Goverument reports that of 939 cases in which ammonia was freely
administerod 207 rictims have recorered, and in the cured instancea the remedy was not adininistered till about 3f hours after the attick, on the average of the fatal cases the corresponding duration of time was 4f hours.
lifaredy For Smalr Pox.-Sulphate of zinc, 1 gr., foxmlore [digitnis,] 1 gr., sugar $\frac{1}{2}$ tenspoonful mix with 2 tenspoonfuls of water, add 4 oz . of water, Doso 1 spoouful every hour, child in proportion. From experience it is knomn that nothing will break up this frightful diseaso sooncr than contimed aud perserering bathing, with the water at a comfortable temperaturo.
Rejiable Safale lox Resiedy.-Testect.-A child 9 years old was effectunlly cured of smatl prox by administering 13 grs. sudio sulphico dissolved in mills, swectened, every 3 hours. The entire body was oiled with crude potroloum applied by hand. Next morning the eruption was killed and dry; and tho diseaso broken up. To provent pitting with small pox, as soon as the disense is distiugnished, apply an ointment mado of lard and charcoal to the face, yeck, hands, \&c., and continue until all signs of supperativo fever has ceased. Ono caso is worthy of notico, being that of a gentleman who suffered terribly for many days with this dreadful disease. Everything wits done for him that medical skill could suggest, without giving tho slightest relief. Finally, as a last resurt, lie wis removed from tho bed and placed in a warm bath; the transition was so soothing and delightful that he exclaimed, "Oh, my God, I thank Theo for this great relief!" In a short timo he fell sound aslecp in the bath, and continued in this position for many hours, tho water being renerred from timo to timo to lieep up the temperiture. The cure proved to be immediate and permanent. Nothing is so conducive to health of body, and the eradication of disease therefrom, us the litelligent uso of pure water. Sir Astley Cooper, being coinplimented ou ons occasion for his great skill, remarked, that he liad "mado mistalies enough to fill a graveyard," but it is scarcely possible to make a mistake with water, as no diseased person can fail to derivo benefit from its uso.
Portable Batir.-Make a small circular boller of copper or tin, and fit the same into an upright tin stand, in which, directly under tho boiler, you must leare nu aperture to contaln a small spirit limp. Tho boiler lid must fit tightly and be provided with three small tubes pointing upwards. The boiler being filled with water and the lamp lighted, as soon as the steam gets up, it rushes through these tubes, and tho patient, seuted on a cano clair, with lis or her feet in a pau of warm water, with a suitable cloak tightly fastened around tho neck, is speedily enveloped in a cloud of steam. Ten minutes is tho time recommended for tho duration of the first fert baths. It may bo nftervards increased, but not beyond half an hour. On getting out of the cloak, plunge into a cold bath for a few minutes, then, rub tho skin till it isquito dry and glowing with a coarse towel and a pair of good hair-gloves. Persons in health or disease will experience a कouderful recuperative power in the frequent use of this bath, and all will find it incomparably superior to the use of drugs in any form whatever. In this connection a new and very ingenious invention called Spongio Pisine, is deserving of favorable mention. It conalsts of π ool and small particles of sponge felted together, and attacleed
to a skinc c
ness, and mater, \&c. ncarest to felted surf skin, and retainiug t) part, from pel disense Fly Par
the rarnish
Sweatin of each, 3 o: filter. A until free p tions, \&e. Syidur fo mithout ross hops, 2 oz .
water; strair
best honey, a
Dose, drink 1
more; cure
Consmon C.
mix.

P'tLMONTC parts; gum, 1 carium, 2 par
Sir Jaires
Tinct. of opilu drams; oil of cholera.
Vegetarle ginger 8 oz, cup of boiling tinctures to cach pint of Essences an alcohol. Pepp with tinct. of r Substitute lump sugar; 4 Certaln Cu Dose, 1 teaspoo Coinns and recommended f Dnuggist's to dissolve, dilu cochineal, to co eolve, then dilu
3 parts, diluto m 1 oz ., dismolve.
to a skin of India-rubber, tho wholo being abont hali an inch in thickness, and of inestimablo value as a means of applying cold or tepuid mater, \&c., to such exterior parts of tho luman frame as may bo nearest to the seat of pain or discase. The water is sponged over tho felted surface, tho gurplus, if any, wiped off; it is then placed on tho skin, and covered over with severnil folds of bandages, which assist in retaining the heat and molsture, thus attracting healthy blood to tho part, from which nature selects such food as is inost conducive to expel disense and build up healthy tissuo.

Fly larer.-Coat paper with turpentine rarnish, and oil it tokeep tho rarnlsh from drying.

Sweatina Dnops.-lpecac., anffron, boneset, and camphor gum, of cach, 3 oz.; opium, 1 oz.; alcohol, 2 qts. Let stand 2 weeks and filter. A teaspoonful in a cup of hot sago or catulp ten every hour until free perspiration is induced; good in colds, fevers, inllumnutions, \&e. Bathe the fect in liot wator at the same time.
Srinur for Consumptives.-Ot tamarac barls, take from the tree, mithout rossing, 1 peck; spikenard root, $\frac{1}{2}$ llb. ; dandelion root, $\ddagger 10$.; hops, 2 oz. Doil these sutficient to get the strength in 2 or 3 gals vater; strain, and boil down to 1 gal.; when blood warm, add 3 lbs. best honey, and 3 pints best brandy; bottle and keep in a cool place. Doso, drink freely of it 3 times per day before meals, at least a gill or more; cure rery certain.

Conmon Castor Oix.-Talo regctable oil, 1 gal. ; castor oil, 3 gals.; mir.

P'olmonic WV. rens.-Lump sngar, licorico, and starch, of ench 2 parts; gum, 10 parts; squills and ipecacuanlia, of each 5 parts; luctucarium, 2 parts. Mix, and divide into 8 grain lozenges.
Sir Jases Clarke's Diarmioga and Choleik Mixture.Tinct. of oplum, tinct. of camphor, and spirits of turpentine, of each 3 drams; oil of peppermint, 30 drops; mix. Doso, 1 teuspoonful for cholera.
Vegetable or Composition Powdrin.-Fine bayberty bark, 1 lb ; ginger 8 oz., common cayenno, 3 oz., mix. Dose, 1 teaspounful in a cup of boiling water, swecten and add milk.
tinctures are mado with 1 oz . of gum, root, or bark, \&c., dried, to each pint of proof spirits ; let it stand ono week, nud filter.

Essences are mado with' 1 oz . of any given oil, added to 1 pint alcohol. Peppermints are colored with tinct. turmeric; cinnamon with tinct. of red sanders; wintergreen with tinct. kino.

Sunstriute for Arrowroot.-Finest potato starch, 75 lbs ; lamp sugar; 4 lbs.; fincly-ground rice, 21 lbs . Mix, and sift throughi lawn ; yields 100 lbs. excellent arrowroot.

Certain Cure for Croup.-Goose oil and urine equal parts. Doso, 1 teaspoonful. A certain cure if taken in time.
Coins and Warts.-Take a small quantity of tho potash pasto recommeuded for Poll Evil, and apply to the com or wart.
Drugaisr's Conons.- Yellow, take iron filings, hydrochloric acid to dissolve, dilute with cold water. Red, solution of sal ammoniac, cochineal, to color. Blue, indigo, 1 part, oil of vitriol, 2 parts, discolve, then dilute with water. Green, verdigris, 1 part, acetic acld, 3 parts, dilnte with vater. Purple, cochimeal, 35 grs., sugar of lead 1 oz., dissolve.

Sorellino Salts．－Sub－carbonato of ammonia， 8 parts；put it in conrse powder in a bottle，and pour on it oil of lavendar， 1 part．

Tunbmide Wells Water．－Chioride of sodium， 5 grains； tinct．steel， 20 drops ；distilled water， $1 \frac{1}{2}$ pints．

Mineral Water．－Epsom salts， 1 oz．；cromm tartar，$\frac{1}{2}$ oz．；tar－ taric acid，\ddagger oz．；loaf sugar， 1 lb ．；oll of birch， 20 drops；put 1 gt． cold water on 2 tablospoonfuls yeast（winter green oil will do），let it work 2 hor sand then bottio．

Congress Watrer for Fountains．－Common salt， 7 路 ozs．$;$ hydrato of soda， 20 grs ；bicarbounte of soda， 20 grs ；callelned magnesia， 1 oz ．Add to 10 gal．of water，and then cliarge with gas．

Kissingen Water for Fountalis．－－1Bicarbonate of soda， 1 dr．； carbonate of lime， 2 drs．，and 2 scr．；precipitate carbonate of lime， 2 scr．；common salt， 8 ozs ；muriato of anmonia， 4 grs ；sulphate of soda， 2 drs ．and 2 scr．；sulphato of magnesin， 2 ozs．；pliosphate of soda， $13 \mathrm{grs}$. ；phosphato of lime 2 drs．and 2 scr．Mir．Add water $\frac{1}{4}$ of a gal．Let it stand for 6 hours，filter，add carbonato of magnesia， 3 drs．and 1 scr．，and chargo with 10 gals．of water．

Vichy Water fon Fountains．－Sulphate of potass， 2 drs．； sulphate of soda， 25 grs ；common salt， 6 drs．；bicerbonato of am－ monia， 10 grs ．Mix．Add water． 1 gal．Let it staud 1 day，filter and then charge with 10 gal ．of water．

Genuine Seidlitz Powders．－Fochelle kalts， 2 drs．；bicarb． soda， 2 acr．；put these into a blue paper，and 35 grains tartaric acid into a white paper．＇To use，put each into different tumblers，fill के with water，adding a littlo loaf sugar to the acid，then pour together and drink quick．

Bottled Seidlitz Water．－Fill soda－watcr bottles with clear water ；add to each as below；cork and wire immeriately ：Rochello salts， 3 drops ；bicarbonate of soda， 35 grs ；sulphuric acid， 11 drops．

Exceleent Tooth Powder．－Suds of castilo soap and spirits of camphor，of each an equal quantity ；thicken with equal quantitles of pulverized chalk and charcoal to a thick pasto．Apply with tho finger or brush．

Rat Extensinaton．－Warm water， 1 qt．；lard， 2 lbs ；phospho－ rus， 1 oz ．mix，and thicken with flour；to be spread on bread and covered with sugar．

Bua Poison．－Alcohol，名 pint；turpentino，立 pint ；crude sal am－ moniac， 1 oz ．；mix all together，and let it digest in a warm place for a few days，and it is ready for uso．

Medicated Cougir Candy．－To 5 lbs，candy just ready to pour on the slab，add the following mixture，and form it into sticks to correspond with the price asked for them ：Tinct．squills， 2 oz．；cam－ phorated tinct．of opinm and tinct．of tolu，of each $\frac{1}{3}$ oz．；wine of ipecac．，$\frac{1}{3}$ oz．；oils of gautheria， 4 drops ；sassafras， 3 drops ；and of aniso seed oil， 2 drops，and use this freely in common coughs．

Ague l＇ili．－Quinine， 20 grs．；Dover＇s powders， 10 grs．；sub－ carbonato of iron， 10 grs．；mix with mucilage of gum arabic and form into 20 pills．Dose， 2 each hour，commencing 5 hours before tho chill．should set in．Then take 1 night and morning until all aro taken．

Age at mimeit Menstruation Commences．－Dr．Waltor Rigc gives the sulijoined statistics obtained from females who were a

fined nt Uni occured for t］

It thus appen great care shoul important perio ATKinson＇s I 6 dra．；sugar， 2 laudunum， 1 dr． caraway water．
Pille to pion and myrrh， 4 dr into 100 pills．D For Obstruct
ced，covering it weed，covering it
weed instead，taki （or about 10 teae making free use of body．It will give INJECTION FOR
irs．liquor of amm For Obstructe potassa（sub．carb． pills ； 2 to bo taken Painful Menstruati
syrup of morning．To cleck ammonia， 3 drs．；mi Stimulanti－In Rniges．－Best bran drops ；mix eggs，${ }^{\text {Dose，}}$ This makes both mea call be used，if prefer for female Com femalo mmnlaints is n ＂uscyanus 10 grs．； use， 1 piil at bed time laxative stal
For DISEASE OF TH
pints of water dome＊o
fined nt Unirersity College IIospita occured for the first time: At the age of

17 " 272 "
It thus appears that it is
great care should be taken of thost common at
important periods. taken of the houlth on the occurs of are, and atimingon's Infant's Presetryatite Caccurrence of theso 6 drs ; sugar, 2 oz ; ; oll of anise seed, 20 .-Carbonato of magnesia, caraway water. ; syrup of saffron, 10 drops ; sal-volatilo, 24 dis.; Pills to pronn 1 oz. Mako up 1 pint with and myrrh, 4 drs. ; compenstroal Secretion.-Tale pills of aloo into 100 pills. Dose, 2 twice a day. pills, 280 grs. ; mix and form For Obstrocted 2 tivice a day. weed, covering it to retain the strens.-Mako a strong tea of smart (or about 10 taking 1 teaspoonful of the or use the extract of smart making free use of hoonfuls of the tea) in watter once every 3 hours, body. It will give great raths for the feet and the water, sweetened,
Injection for great relief. drs. liquor of amm Obstructid Mens
For Obstructenia with 1 pint milk potassa (sub. carb.) Menstrination.-Sil'phate of daily. pills ; 2 to be taken threet. ; myrrh, 2 drs. ; make thom, 60 grs. ; Painful Menstruation, tale time a day, in the make them into $3 f \mathrm{gr}$. syrup of poppies to mix. take pulv. rhei., 2 dra , morning. To cleck Imm. Divide into 200 pill. ; pulv. jalap, 2 drs. ammonia, 3 drs.; mir. Derate F'low-Tinills, and take night and Simmlant.-IN Low Dose, teaspoonful in worgot, 1 oz., liquor of minges.- Best brandy fevers, and after water 3 times a day. rolks of 2 eggs, well and cimnamon water, of Uterine Hemordrops ; mix Dose, fromen ; loaf sugar foz. cach, 4 fluid oz.; the This makes both meat and $\frac{1}{3}$ to 1 (fluid) oz., ; oil of cinnamon, 2 can be used, if preferred, and drink. Of course, ans often as required. For Female Compe, in place of the cinnamy other flaroring oils female commini Complaints. - One of cinnamon.
L" sscyauns 10 grs.; Castile mand rhubarb, each laxative pills for
4 bogether, forming int soap, 40 grs ; scrape 10 grs ; extract of usse, 1 pill at hed time, or sufficonsized pills with soap, and mix laxative stat
often to keep the bowels in a pints of water down the Kidneys.-Boil 1 oz, of pareira brava in 3

To cene vomitisa in Pregnanct.-Mix 1 dr. cariwnate of magnesia; $\frac{1}{2} \mathrm{oz}$. tinct. of colombo; $5 \frac{1}{2} \mathrm{oz}$. peppermint water. Dose. 1 tablespoonful 3 times a day.

IIarland's Venereal Cune.-Mix together powdered cubebe, 1\} oz. ; balsam capaiba, $\frac{1}{2}$ oz. ; powdered gun aribic, $\frac{1}{3}$ oz. ; cimamon water, 3 ozs . A tablespoonful of the mixturo to bo taken at sutervals 8 times a day.
Incontinlence of Urine of Old People.-Tho continued uso of 1 to 6 drops tinct. of iodine has proved a successful remeds. Fior other persons, put 4 drops tincturo of aconite root in a tumbler of water, and use a teaspoonful every half hour until relieved.

Compound Extract Buchu.- Buchu, in coarse powder, 12 oza. ; alcohol, 3 pts. ; rater, 6 pts. are sufficient. Treat the leaves by maceration and displacement, first with a portion of tho alcohol and then with the remainder mixed with the water, evaporate the resulting liquid with a gentle heat to three pints, and add $2 \frac{1}{2}$ lbs. engar, continue the heat till it is dissolved, and after removing from the firc, add oil of cubebs, oil of juniper; of each 1 fluid dr.; spinits of nitric cther, 12 fluid ozs., proviously mixed, stir together.
Anodyne for Painful Menstination.-Extract of stramonium and sulphate of quinine, each 16 grs . macrotin, 8 grs ; morcrotin, 8 grs . ; morphino, 1 gr. ; make into 8 pllls. Dose, 1 pill repeating once or twice only, 40 to 50 minutes apart, if the pain does not subside before this time. Pain must subsido under tho uso of this pill, and costiveness is not increased.

Powder for Excresive Floodino.-Gums kino and catechn, cach 1 gr ; sugar oi lead and alum, each $\frac{f}{\mathrm{f}} \mathrm{dr}$; pulverize all and thoronghly milx, then divide into 7 to 10 grain powders. Dose, ono every 2 or 3 hours until checked, then less often inerely to control the flow.

Injection for Levcornhgea. - When the glairy mineus dischargo is present, prepare a tea of hemlock Inner bark and witch hazel (often called spotted alder) leares and bark, havo a female syringo largo enough to fill the vaginfs, and inject the tea, twico daily ; and occasionally in bad cases. suy twice a wreek, inject asyringe of the following composition : For Chronic Female Complaints. White vitriol and sugar of lead, each, \% oz. ; common salt, pulverized alum, and loaf sugar, each, $\frac{1}{2}$ dr. ; soft water, 1 pt. Inject as above.

For Pholapgus Uteri, jr Faleing of the Womb.-Not only the cheapest but the best support will bo found to be a piece of fino fi:m sponge, cut to a proper size, to admit when damp of being pressed up the vagina to hold the womb in its place. The spongo should have a stout pipce of small cord sewed 2 or 3 times thirough its centre, up aind down, and lefi sufficieutly long to allow its being taken hold of to remove the sponge, once a day, or every other day at the farthest, for the purpose of washing, cleaning, and using tho necessary injections ; and this must be done whice the patient it. lying down, to prevent the romb from again falling or prolapainy. After having injected som, of the above tea, wet the spoage in tho same, and introduce it sufficiently high to hold tho womb in its place. If pain is felt about the read, back, or loins for a few days before tho menses appear, prepare and use tho following : Emmenagogne Tin-ture. Alcohol, 1 pt ; red oxide of iron, 1 oz ; olis of jıniper aud
arin, eac
tincture S
1 toaspoon gum arabi or use the isamena
myrrh, of 1 dr . ; and 100 pills by daily, but n^{\prime} UTERINE crgot, 10 gr well inired. In very b minutes, or t profuse wast urgency of th In every cas rant of iron i fine iron filin, spoon 3 times ing the dose course until we
Lifperlal D of origanum, 1 anise, $\frac{1}{2}$ oz., alc times a day, i stant wenkness affections causin Positive Cuia apple $\frac{1}{2}$ oz., spir fum 10 oz. To u times per day: c Celebrated phate of morphi crops. Mix and Another-Powd 10 oz., tincture of Stamamering.there is no malform for three or four n tho teeth closed, f Cold in trie I liend can bo cure hose should be
Camiphor ICE. nimonds, 4 teaspoo olved; heat just en moulds. :I desired t
clappes on hands or
Fisiples Remepis
ijg every day with
senma, ctc. ; and kd gum arabic, and drink freely of the mucilacilago of slippery clm or mucilage also thirough the day, emamenagogue Pill.-Precipitated carbonato 1 dr.; and oil of 2 drs. ; aloes and tincturo of Sm of iron and gam 100 pills by using thick, 1 dr.; all to be pulverized anish flies, of each daily, but not to move fum solution. Dose, 1 pill, from 1 to 3 into Uterine Hesionreve the bowels too much. 1 pill, from 1 to 3 times ergot, $10 \mathrm{grs}$. ; onkeagis.-Unfailing cure. well mixed. Dosium, 3 grs.; ipecac., 10 gr Sugar of lead, $10 \mathrm{grs}$. ;
In very bad cases to 12 grs. ; given in a gr.; all pulverized, aud minutes, or tho dose infter chilbbirth, it nitho honey or syrup. profuse wasting, repeatensed to 15 or 18 grs. ; but in repeated in 30 urgency of the case repat it once at tho end of 3 in cases of rather In overy caso of famy require. 3 hours, or as tho mant of itcoso of female debility fine iron filings the system is often the a liberal use of iron, as the spoon 3 times daily in a minch ground ginger. of the trouble. Mir ing tho dose to produce a honey or molasses, Dose, half of a teacourse until well. produce a blackness of the stools Cosing or lessenIstperlal Drops for Gripe Continue this of origanum, 1 oz., oil of hemavel and Kidnef Complaints.-Oil anise, $\frac{1}{3}$ oz., alcohol, 1 pint: mix. $\$$ oz., oil of sassafras, \ddagger oz., oil of stant a day, in swectened water, wose, from +1 to 1 tcaspoonful 3 affections coess is felt across tho small of soon give relief when conPositive Cung pain about the kidnoys. back, as well as gravolly apple, oz cure for Gonorrhaza. -ys.
gum $\frac{1}{4}$ oz. To use, spirits of sweet nitre, $\frac{1}{3}$ oz., balsam of potass, $\frac{1}{2}$ oz., Witter times per day: use, mix with peppormint wam of copaiba, $\frac{1}{2}$ oz., best
Cilemrated Pile curtain in 9 days. Water; tako $\frac{1}{2}$ teaspoonful 3 phate of morphisile Ointment. - Ta
crops. Mix and apply ${ }^{2}$; stramonium ofarbonato of lead, Hoz., sul-
Another-Powderdy 3 times per day, or as tht, 1 oz ; ollvo oil, 20 10 oz., tincture of oninm nut gall, 2 drs., camphor pain may requiro. Stammering, opinm, 2 dis., mix. thero is no malformation of the in tho speech may be cured, where for three or four months, in thorgans of articulation, by presoverance, the teeth closed, for at least 2 hoursle remedy of reading aloud, with head can in trur Ifead.-Dr. Pours each day.
nose should be cured by inhaling hartshorn frane, says that cold in the
Camphor Ice. nimonds, 4 teaspoon. Spermaceti, 13 oz., gum camph.
solved; heat jupoonfuls; sot on thie stove in an anor, it oz., ofl awrect moulds. if desired to chape on hands or lipe sell; then paper, and put into tinforlinto small siatpler Rpar lips. - aiy every day wits for Scarlet senan, etc. ; and th some mild aperient medicine tho bowels regncena, etc. ; and keen tho maticnt at rest medicino, such as castor oil, an tho matient at rest, di comfortably wamm;
sponge the surface with tepid water, two or three tlmes a day ; while it is hotter than natural, admit fresh air ; live on a bland diet, such as a cupful of arrowroot, several times a day; toast-water for common drink. Gargle made of strong sage tea, honey aud alum, or borax, may be used from the commencement, if the throat is affected.

Nerves and Bone Linimient.-Beef's gall. 1 qt.; alcohol, 1 pt.; rolatile liniment, 1 lb. ; sirits of turpentino, $1 \mathrm{lb} . ;$ oil organum, 4 oz .; aqua ammonia, 4 oz .; tincture of cayenne, $\frac{1}{2} \mathrm{pt}$; oil of amber, 3 oz. ; tincture Spanish flies, $\mathbf{G} \mathrm{oz}$. ; mix well.

Cephalio Snuff.-Take asarbacca leaves, marjoram, light Scotch snuff, equal parts ; grind and sift, use like common snuff.

Downir's Salve.-Beeswax, 4 oz. ; oplum, $\frac{1}{4}$ oz.; sngar of lead, 10 o.: ; melt the beeswax, and rub the lead up in the wax, then tho opium, then 1 gill of sweet oil, incorporate all thoroughly together, spread lightly on cloth; good for burns, piles, \&c.

Another Salve.-Burgundy pitch, beeswax, white pine pitch, and resin, 1 oz . each, mutton tallow, 8 oz . ; goose oil, 1 gill ; tar, 1 gill ; melt and mix thoroughly. A first-rate salve.

Whooping Cough Syrup.-Best rum, 1 pt. ; anise oil, 2 ozs. ; honey, 1 pt. ; lemon juice, 4 oz. ; mix. Dose for adults, 1 tablespoonful, 3 or 4 times per day; children 1 teaspoon, with sugar and water.

Liquid Opodeldoc.-Warm brandy, 1 qti; add to it gum camphor; 1 oz .; sal ammouinc $\ddagger \mathrm{oz}$. ; oils of origanum and rosemary, cach $;$ oz. ; oil wormwood, $\frac{f}{2}$ oz. ; when the oils are dissolved, add $6 \mathbf{~ o z}$. soft soap.

Greex Mountain Salve.-For rheumatism, burns, pains in tho back or side, \&e., take 2 lbs. resin, burgundy pitch, $\frac{7}{4} \mathrm{lb} . ;$ beeswax \ddagger lb. ; mutton tallow $\$ 1 \mathrm{lb}$. melt slowly ; when not too warm, add oil liemlock, 1 oz. ; balsam fir, 1 oz . ; oil of origanum, 1 oz . oil of red cedar, 1 oz . ; Venice turpentine, 1 oz . ; oil of wormwood, 1 oz . reldigris, $\frac{1}{2}$ oz. The verdigris must be finely pulverized and mixed with the oils; then add as above, and work in cold water like wax till cold cuough to roll ; rolls 5 inches long, 1 inch diameter, sell for 25 cents.

Enalisir Renedy for Sanceir.-Take chloride of zinc, bloodroot pulverized, and flour, exnal quantities of each, worked into a paste and applied. First spread a common sticking-plaster much larger than the cancer, cutting a circular plece from the centre of it a little larger thau the cancer, applying it, which exposes a narrow rim of healthy skin; then apply the cancer plaster, and keep it on 24 hours. On removing it, the cancer will bo found to be burned into, and appears the color of an old shoo-sole, and the rim outside will appear white and parboiled, as if burned by stcam. Dress with slippery elm poultice until suppuration takes place, then heal with any common salve.

Chronio Gout-To Curre.-Take hot rinegar, and put into itall the table salt which it will dissolvo, and bathe the parts affected with a soft piece of flamecl. Rub in with the haud and dry the foot, \&c., by the fire. Repeat this operation four times in 24 hours, 15 minutes cach time, for four days ; then twice a day for the same period; then once, and follow this rule whenever the symptoms show themselves at any fucure time.

Gout Tincture.-Veratrum riride (awamp hellebore), $\frac{1}{3}$ oz.; opium, 杂 ou. ; wice, $\frac{3}{3}$ pin ; leítuem stand for soreral days. Duse, 15
to 30 drops 2 to 4 hour paraly lnudanum, recent case thoroughly ininutes, usi take interna Charcoal spoons of fil will, in less when caused the stomach.
In every instn
Cathintio lark of the r fcumel seed, all into the sil reeks, then st sinumering a priping in any Dose, 1 tablesp loose, up to th
loped, and in expected, and melt in an iron continually witl color ; then let i bole, 1 oz . ; oil o oil lefore putting Felons.-If 1 1 oz . ; and put fin stick until the m coat on a cloth,
recent, it will rem Felon Salve. as, then pulverizin to reilere the pais cream two parts, daily after soaking
Filon Ointme of tobacco in it un add red lead, 1 oz., rerized camphor gi Warts and Con piece of potash, ant thicken it to a paste from spreading whe Inflannatory on ;
年;
oz 2oz. Dose, one tea
rather frecly; then

.

iaudralizio Lintment. - Sulpharic ether, 6 oz ; alcohol, 2 recent case of paralysis lavender, 1 oz . mix, and cork tightily. $\mathbf{0 z}$. ; thoronghly bathed and rubbed with extent of the numb surface in minutes, using the hand, at least with this preparntion surface bo tike internally, 20 drops of east three times daily ; at for several

Cifarcoal a curp pon the samo, in a little sy, at the same time apoons of finely pure for Sick Headacur sweetened water. rill, in less than firtered charcoal, drank in t a stated that 2 teawhen caused, as in feen minutes, give relief to thaubler of water the stomach. We most cases it is, by superabundancle headache, in erery instance has bo frequently tried this remedy ance of acid on
Cathaintio Srrup been signally satisfactory. bark of the root
femel sced, $\frac{1}{2} 0$, dried and bruised, 2 oz , ; bntternat, the inner all into the spirit ; alcohol, $\frac{1}{2} \mathrm{pt}$. ; water, if peppermint leaf, $\frac{1}{2} \mathrm{oz}$. weeks, then strain, and water, except the sugts. ; sugar, 2 lbs. ; put simmering a fow minntes out from the drees, and let it stand two friping in any case, increaso, to form the syrup, adding the sugar and Dose, itablespoon, increase the femel seed inp. If it should cause loose, up to the nence a day, or less often if aud peppermint leaf. expected, and it will not period when the headacho boweis become too Cinlblains.-To not be forthcoming. melt in anins.-To Cure, - Mntton
continually with vessel, and add hydrated ow and land, of each $\ddagger \mathrm{lb}$.; color ; then let it an iron spoon, until the mass of iron, 2 oz . ; stirring lole, 1 oz . ; oil of cool, and add Venice turnenstine a uniform black oil before putting it ingmot, 1 dr .; rub up the bole 2 oz. ; Armenian 1 oz. ; and put into it half a teaspinsix IIocrs.- Tenice turpentine, stick nutil tho mass looks like can of water, and stir with a rongh, coat on a cloth, and wrap around tho honey; then spread a good recent, it will remove the pain in six honreger. If the case is ouly Felon Salve.-A salve main six honrs. as, then pulverizing it and mixing burning one tableapoon of coppercreainere the pain, and cure tho felon in tho yolk of an egg, is sulf daily after parts, and soft soap one part. 24 hours; then fienl with Ficon Oinking the part in warm water. Apply the healing salvo of tohacco infment. - Tako sireet oil, $\frac{1}{2}$ pt
add red lead, 1 oz., and tobacco is crisped ; the stew a 3-cent plus rerized camphor gim, 1 oz until black; when a litule cooit out, and piece of potash, and let it Cure in Ten Minutes. - Take a small thleken ft to a paste with puand in the open air until it slacks, then from spreading whern it is not paved gum arabic, which provents it Inflasmiatory ititey not wanted.
oz. ; gum guaiac, \ddagger oz. ; colchism.-Sulphur and saltpetre, of each 1 $\frac{7}{2} \mathrm{z}$; all to be pulverized and mirrot, or seed, and nutmegs, of each 2oz. Dose, one teaspoon and mixed with simplo syrup, or molasses, ruther freely; then 3 or 4 times daily tuntil curcel. it moves the bowels

The Conservation of Health.-This important object, so necessary to the enjoyment of life, can only be secured by conforming to an orderly state of existence. Every man is in duty bound to disclarge with fidelity the debt which he owes to that frame, so "fearfully and wonderfnlly made," and so well adapted by the Divine contriver to fulfil the uses of life, by living with regularity and moderation, abstaining from every excess calculated to induce disease or inflict injury either on body or mind. Excessive intellectual labor is just us fatal in its degree as violent physical exertion. We have a lamentablo proof of the truth of this remark in the sudden termination of a most nsefnl life, that of the late Dr. Hall, Editor of Hall's Journal of Health. As is well known, the fatal stroke was induced by an overworked brain, it being his habit to apply himself ardently to study, writing, \&c., from 5 in the morning to 10 in the evening, an imprudence all the more reprehensible as it was r ne which he was continually denouncing in others.

Business men are particularly liable to affections of the heart resnlting from trade anxieties, \&c., and in the male, the number of deaths from enlargement of the heirt are as seven compared with five in the femele. This phase of mortality is cansed not only by intranquillity and worry of mind occasioned by lack of success in the grand struggles of life, but is too frequently brought on by conjugal infelicities and disturbances, which seldom fail to accelerate a crisis which terminates in death. Nany a well meaning man lays plans which ie fondly anticipates will result in securing to him and to those dependent on him, an honestly obtained competence, and confident of prosperity, does his best endeavors, and often risks a great deal, to ensure success, little dreaning of the poetle apothegm, that " the best laid schemes o' mice and men, gang aft aglee." The result too often is, as many know to their sorrow, entire failure, and subsequent reproaches, opprobrium, asperitles, ascriptions of ineapacity, \&c., are showered on his head, and continued to the end of life, with more frequency and greater regularity than the dispensation of his daily bread, by the very one who should be all gentleness, all love, and her husband's chicf conforter and consoler under misfortune. This is the most fatal kind of mental trouble, inasmuch as it involves a grinding grief of mind, winich dissipates happiness, induces gloom, and tends to destroy life; whatever affects the love, which is the real man, or spirit, reacts upon, and affects in an equal degree the body which contains that spirit. That this is so, results from the correspondence existing between the soul and body, as may be palpably manifest to every one capabie of interior reflection, and this to such a degree that to obtain convincing proot it is not necessary to extend his observations beyond his own experience.

Grief cansed by financial loss and the reaction which sets in on re tiring from business, after spending an active life in amassing a for tuno, are also pregnant with evil results to health. No man has right to retire from the duty of making himself useful to society, eve if he has a fortune, and can afford to do so. If he does, this evil like every other, is sure to work out its own retribution with a iu harrest of unexpected misery.

Many of the influences which are patent for evil, and evil only, at self inflicted, such as the habitual indulgence in alcoholic drint:s, win beer, \&c., the use of tobacco, opinm, and other narcotics. Eigity-ser use curtails vitalityey diseases arc. wrecks theart, spinal cordtroys the meinduced by alcohol precipitates srystem, impedingss, liver, muliscl, generates Its continued a most baneful effure decay. circulatlonses and blood disease in the A distinguished ect on the h. Tobacco, pan, paralyzes bood vessels ; it observed a ance of snunch savant and mind, in every formhood, and some 1500 rapid decay until int 18 the Abbe cradually drot words in of the faculty was over 20 no, increased his its ance to dictiong out of his of several memory. crammes, and his its ise, and actionaries. Ais mind, angul lages, He had, and he "It was forter 6 years of last he, so as to nages, but had learned health, mind us the con of abstine summoned necessitate frend then inaginationd, and me commencemence writed resolution to frequent rehare seen more vividry; our ident of a veritollows: to abandon word, las gradually rid, olly worteas have reritable resur especially recovered all ith that arn easier, our come more lection of which it his the form ats riches army of word pen quicre lucid, our camnot be do destroyed of shuff, is an its sensibilionr iner, and we from the doubted." wittle by little a powerfillity. Themory, in a becomes anse of alchith these te, and sometienemy of tobacco, Other an inperions inc drinks known sometimes very memory; pure air, most inprortanecessitys. and tobacco, abstineffects promptly, person (See ect rentilationiliaries to a, abstinence fromulting 150 cubic feet, Bathinty). hary respiration, on teu times that estimates and absolnte of health, are 274 cungic 20 times in or 17 cubic of the exterual surface of cleanlinesss of generate feet in 24 haminute, or inches of atnal body. the lungs of from the 10.7 cubic holus, or a or a cubic atmospleric Dirring ordiThe cause atmosphere feet of deadly of 61 feot every 5.25 pipass into and work of nearly all the same amy carbonic each way. minutes; is due monops, as well the headachent of oxy acid gas, and The hungs canse is ore to vitiated as all the ches in crowyen, every 24 remove citv teneming the feed air than to sleeping and factory 24 honrs. on low lerents, loardinful mortalito any other snoring in ch schools imprisoned and and boging houses, celly so prevalent cause. To chilirches, and in hed springs, \&c land neenrellars, \&ce as int badly the same Thile thealth must \&c. Bad ear stagnant, as well as in y ventilatede oper 100 death rate ever go hand imperfect pools, inoperationses built ises to 48 of the populatio filthy mand. it entilation, ure sewers, tranges in part of thation, in wastern distris worthy uncleanness the falr allotween 58 and Aldgate dite Chapel its of Lond note that antistics of thance of 25 , or more thet of the is 41 , in Lim is nearly eortality has same city, per cent. 'Yet double White Chapel nuluse it lubrious parts fall to 17 , that in the Yet it apple what maypll nuion, ields varioparts of Englater 1000 , Peabody apears from the called bison the bis ninxions and. Decayif near the mionel Buirme recent lould the blood and gases, also ecaing vegete minimum of thas the mire pure rept awny fermeate the expired breable and an of the most is the sola. Tempern our abodesystem ; the all enter the matter ify the solar rays eprature of roos, and ere therefore all implunge, lont stint air in divellicise a beoms should by precaution talinities
atint, for dood lings, therengmant influeabout 600 Fahkent to

As disinfectants, the following may be used with good effect 1. Quicklime, to absorb moisture and putrid fluids. Use fresh lime, scattering it about, finely powdered, and whitewash with lime. 2 . Charcoal powder, to absord putrid gases. The coal should be dry, and fresh, mixed with lime. 3. Chloride of lime, to gi-e off chloride to absorb putrid effluvia and to stop putrefaction. 4. Sulphate of iron (copperis) 1 lb . dissolved in 1 qt . water and poured down a water closet will destroy the foulest smells. A quantity in an open pan will purify the air in rooms. 5. Fluid carbolic acid dissolved at the rate of 1 part to 100 or 150 parts of water is also very good.

Among diseases liable to be spread by the distribution of organic, poisons, may be mentioned scarlet fever, typhus fever, typhoid fever, yellow fever, measles, small-pox, diphtheria, infectious oplithalmia, hydrophobia, erysipelas, cholora and glanders. The poisonous particles which effect contagion, are in every instance of organic origiu, and are evolved from matter composing living bodies. They float in the atmosphere, are inhaled by the breath, and are absorbed by the walls of dwellings, hospitals, etc., and are liable at any time to enter on a career of baneful activity. The walls of hospitals should be glass lined, the better to prevent contamination, and means should be used to destroy the contagious matter by means of chemical agents, such as powerful lieat, nitrous acid gas, bromine, chlorine, lodine, sulphurous acid, etc. Solar light is another powerful disinfectant, and as a means of health has been ranked by Lavoiser as superior to pure air.

Dust is lighly inimical to health, and it is everywhere present in the air we breathe. Its presence is made manifest in a manuer perfectly startling, by admitting a beam of sun-light through an orifice into a dark room. It has a most pernicious effect on the health in cities, and indeed everywhere, but the air may be filtered from the noxious particles previous to entering the lungs, by the use of a cot-ton-wool respirator. This contrivance possesses the further merit of being an effectual barrier to the admission to the lungs of those germs or poisonous particles whereby contagious disease is propagated.

Good health is impossible without pure water. The amount of organic and mineral impurities held in solution or suspension by water, is perfectly astonishing, and wherever suspicion of such impurities exists the water should be filtered. Good reliable filters may be purclased ready for immediate use, but wherever they cannot be obtained, an excellent substitute may be made from an oak tub made to hold from lialf to a barrel of water, according to the needs of the family. Let it stand on end, with a faucet near the bottom, or preferably, a liole through the bottom, near the front side, with a tube inserted to prevent the water from rotting the outside of the tub; then put clean pebbles 3 or 4 inches in thickness over the bottom of the tub. Spread a piece of clean white flannel over the pebbles; now have charcoal, pulverized to the size of small peas (that made from hard maple is best), and put in half a busliel or so at a time; pound it down quite firmly, then put in more and pound again antil the tub is filled to within 8 inches of the top, and again put in 2 inches more of pebbles, then put a piece of clean white flannel over the whole top as a strainer. The flannel may be washed occasior
ally, to ren be well to The result Reckless sons, should by the Reg winter inon creasing rat fu an increa from loss to ning of Septe from pnenum of January, 1 decline, and ing to increas with moisture eases of the hi

During col
house in apart is much prefe stean pipes, of morning, do no fast, and be su the clothing eit spring, eat witl and take a dai minutes after d ing the night, n for as a rule, th
most rest and
wn excited way. D ment of body an Authons, cler study, should,
labor, at once
cf pended energies soothes, strength Clothing shou unueceswary smot sembling cliillines caution wear flany modifying dange states that equal s
air as follows, flan 68; silk, 40; bucks The dress slion and frequently chat ${ }^{\text {skin. Clothing co }}$ cal to health if wo ferer shonld be isol destroyed or purifi
Sleeping appartn and kept at a tempe draughts on the sled
ally, to remove the impurities collected from the water, and it might be well to replenish the tub with fresh charcoal once a year at least. The result will be wholesome water.

Reckless exposure to cold, especially by aged and sensitive persons, should be carefully guarded against. From returns published by the Kegistrar General in England, it was found that during the winter months the body wastes, the loss of weight varying in an increasing ratio ; that during summer the body gains, the gain varying in an increasing ratio, and that the changes from gain to loss, and from loss to gain, are sudden, and take place, the first at the beginning of September, and the second at the beginning of April. Deaths from pnemmonili and bronchitis nttain their maximum in the months of January, February, and March; in the succeeding 3 months they decline, and in the next quarter reach their minimum, re-commencing to increase in October, November, and December. Air saturated with moisture tends to develop rheumatic disease, and organic discases of the heart which spring from rheumatism.

During cold raw weather, aged persons should keep close to the house in apartments warmed by a cheerful, open, blazing fire, which is much preferable to the oppressive heat from a hot air register, stean pipes, or close stoves. If called out by busiuess during a cold morning, do not go out too early, nor until after a good warm breakfast, and be sure to return before the chill of the evening. Add to the clothing early in the fall, diminish it very gradually in the spring, eat with great moderation and regularity of nourishing diet, and take a daily nap on a lounge, or in an armchair for 15 or 20 minutes after dinner, or during the forenoon. If rest is broken during the night, make it up with prolonged rest during the morning, for as a rule, those aged persons will live the longest who take the most rest and work the least, except in a very calni, placid, and unexcited way. During old age guard against haste, hurry, and excitement of body and mind, for nothing can be more dangerous to life.

Authors, clergymen and all others engaged in intense mental study, should, whenever they become exhausted by severe brain labor, at once cease from further effort, and recuperate their expeuded energies by taking as much sleep as nature requires. Nothing soothes, strengthens and invigorates the brain like refreshing sleep.

Clothing should not be worn in quantity to induce oppression or munecessary smothering, but only enough to repel every feeling resembling chilliness. Keep a clean skin at all times, and as a safe ןrecaution wear flamel next to it, as it possesses a powerful influence in modifying dangerous extremes of temperature. Dr. Pettenkofer states that equal surfaces of various materials are permeated by the air as follows, flamel being taken as 100: Linen of mediun fineness, 58; silk, 40; buckskin, b8; chamois leather, 51; tanned leather, 1.

The dress should fit loosely, should be warm and light throughout, and frequently changed to remove the impuritles exhaled through the skin. Clothing contaninated witi excretory matter is highly inimical to health if wom too long. In cases of infections disease, the sufferer should be isolated, and the infected clothing and bedding either destroyed or purlified.

Sleeping apartments shonld be elerated, roomy, well ventilated, and kept at a temperature of about 60°. They should be free from direct dranghts on the sleeper. The mattress, sliould be hard, but may be
easy and springy if so desired. Feathers should not be used, the emanations from them are most unhealthy, and they generate an excess of heat which is very enfeebling and unwholesone. The sweetest repose is obtanned with the head towards the north, -with the bed insulated by means of glass interposed between the feet and the floor, to bar the passage of the electric currents, which are liable to leave the body depleted of strength unless they are retained. Guard against sleeping in new dwellings before the plaster and paint have become fully dry. Thousands of deaths, seeningly very mysterious and principally of aged persons, have taken place from ueglect of this precantion. The natural allowance for sleep is tight hours out of the twenty four, and the most favorable time is from 10 o'clock until 6. Intellectual labor is more exhaustive than physical, consequently persons thus enployed require more rest than working men. The most favorable position for sleep is on the right side; the worst is to lie on the back, as it generates a perilous heat over the region of the kidneys und spinal cord. Solitary repose is the most beneficial every way; when two parties sleep together, each one inhales a deleterious effluvia thrown off by his neighbor, and the weakest is always the greatest sufferer, more especially is this the case with children who sleep with aged persons. Add to this, electric clianges are continually taking place, which frequently cause unrest, disquiet, and exhausdion, when two slecp together. Refreshing sleep gives rest to the brain and the nervous system. The retina is iuert, the tympanum is placid, the nerves of taste, smell, and feeling, are dormant, and all the powers of the cerebrum and cerebellum are quiescent. Children require more sleep than adults, and they should get all they will take of it, with a benediction and kind words to begin with. It is atrocious to think of the hard language, maledictious, and downright lies addressed to tender hearted children by many parents on putting them to bed. They certainly ure not nware of the grievous injury they inflict by such irrational conduct. Sleep is an absolute necessity to all animal existence, and when we think of its inestimable benefits, and wonderful surroundings, we can only stand mute, and with emotions inexpressible, refer their origiu to that Infinite Love which " weither sliumbers nor sleeps."

In dressing children, use care to keep them warm, keeping flannel to their skin during the entire year, especially covering the extremities well. There is a peculiar fashion most deadly in its effects, which lets children run about with bare legs, arms, and necks, with the lower part of the dress expanded away from the person, thus admitting the chilling cold to do its worst. Such exposure would prove certain death to its parents in less than a montl. Keep the extremities warm by keeping them well clothed, and thus keep up a free circulation, for cold feet and hands prevent health, and are the certain precursors of disease and death. Add to this plenty of good food, ripe fruit, and ont-door exercise ad libitum, nnd you will have rosy, blooning children, as the result. In the matter of ont-door exercise, it might not be amiss to use a little wholesome oversight and restraint, let them have their full swing iu the enjoyment of exercise calcnlated to develop the frame, such as running, jumping, playing ball, driving hoops, \&c., but when it comes to every day sport in the line of firing pistols, exploding fire crackers, cracking whips, and an everlasting battering of toy drums, \&c., then I say, stop it at osce, uules

Yoll wish te just the wa Children, speech, ma for an hou the lungs, b b
in nlue cas in nlue case
empty. Dr. cessful stam by the meth

It is ouly for health an sentiment a forest, but a very apt to c greasy blanke apt to make sl romance, or s ness," and it ideas regardin piety, are notic lutely lengthen
compared with observance of s the proportion t

Dr. Jarvis in 500 years after most favored arerage lougevi 16th century, th tween 1814 and 70 as lived to 43 from 08 life seem those who attain 40 Agriculturlsts, cates, 28 Artists, When man, b of a healthy exist
hood, and from m ually approaches from the gradua speaking, terinina attained,' and deat as much in the ligl Working out of a in We make to this na
regarded as a curs which is indeed ter natural death is no vision of Infinite M Harassing thoug are fruitful causes
of
Uness. Use eve

fon wish to raise a dangerous boy and a dangerous man, for that is

Clit way to do it

Children, or others who may be afflicted with finpediments of for an hour or two every day remedy is not organic, by reading alond the lungs, before reading day, tiking care to inhale air, and well fill in nine cases out of ten, is the endearaph, as the cause of stammering empty. Dr. Hunt, of Regent entreet, cessful stammerers' doctor, charged fifty by the method just noted. It is only in civillzed lif for health and longevity. The poets have most favorable conditions fenthment and romance about "the have expended much rapturous forest, but a personal investigation of thoble red man" in his natlve very apt to cause a sudden revulsion the object of their effusions is apt to make short, rank skins, and other of feeling. A filthy person, romance, or sentimork of high-strung ideas in thy surromdings, are ness," and it is indent. Of a verity, "cleanlluess shape of poetry, ideas regarding theed a most auspicious token that is noxt to godilpiety, are notions necessary counection between fitt old medixeval futely lengthened by thging to the past. Human life poverty, and compared with why the addition of several man life has been absoobservance of sanitary was a huudred years years to a generation, the proportion that thy lavs, and it will continue to lengtheng to the

Dr. Jarvis intut these laws are respected. 500 years after the Ces that in ancient Rome
most favored class christian era, the average duration of of 200 to average longevity of was 30 years, while in the presen of life in the 16th century, the ave persous of the same class is 50 rent century the tween 1814 and 1833 it we longevity in Geneva was 21 years. In the 70 as lived to 43300 it was 40.68 , and as large a proportion years; befrom 63 to 72, and 328 years ago. In 1000, only 228 medical inen live to term of life seems to theologians. In the last 50 years inen live those who ateins to have increased from 33 to 41 . ycars the mean 40 Agriculturists, 35 age of 66, there are found to Iu professious, of cates, 28 Artists, 27 Pren in office. 32 Military, 32 Clerks, 29 Thians,

When man, 27 Professors, and 24 Medical practitioner, 29 Adroof a healthy existen anderly life, passes through thitioners.
hood, and fromistence, from childhood to youth, from various stages ually approaches theod to old age; during the decline youth to manfrom the gradual speaking, terminate in tion of vitality. Few lives, death takes place attained, and death in this way, but when this consumparatively as much in the ligh, purely natural, takes place it consummation is working out of a inot a blessing as is natural birth for it be regarded we make to this most wise and beneficent law, and thor it is an orderly regarded as a natural limit of existence the and the nearer adranco Which is indeed terrible as something very dreadful; Death is usually natural death is errible beyond all powers of luman here is a death vision of Infinite mot and is in no sense a calamity conception, but

Harassing thougercy for man's lighest good. are fruitful
of illuess. Use of disease in healthy persons, and and worriment, of illmess. Use every possible means to get rid, and of death in cases
do not scruple to make use of such diversions or amusements as will effectunily divert an invalid's thonghts from being too much engrossed with self. When nature calls for rest and recreation, do not neglect the waruing. Guard against extreme fatigue of either body or mind,especially a complication of both together. Keep the passions under thorough control; in doing this the good old Quaker's rule wiil be found of great assistance, viz., Never to allow himself to speak in a loud tone of voice. Nothing preserves health better than a placid temper. Exercise and physical training should not be neglected; persons engaged in sedentary employments should resort to exerciso, or rest on finding their thoughts become confused, and lalorers should not carry their efforts to the verge of exhanation; the heart's action is greatly injured thereby, and the bad effects will become permanent.

Of all peoples, the Jows are notably the longest lived race; the reason is because they live orderly liven, they take care of themselves, so to speak, use proper food, mad abstaln from pork, which, from its liability to promote diseased conditions of the blood, and thenee of the whole system, is decidedly injurions as an article of diet. The use of immoderate quantities of moat lias an unhealthy inflnence on the body, and induces ferocity of the mind, as in Indians and others who subsist on it. Plutarch was astonished to think what appetite first induced inin to taste of a dead carcase, and Popesaid thut the horrid mind shocking sight of one of our modern kitchens gives one the image of a giant's den in romance, bestrewed with scattered heads and mangled limbs. Vogetable food is not liable to distend the vessels, load the system, or beclond tho mind, but the hent, fulness, aud weight of animal food is unfavorable to its efforts. Cornaro, the dietetic, nllowanced himself to 12 ozs . of dry food and 14 ozs . of liquids per day, from the age of 40 to 100. See Dynamic Pover of Food.

In eating, select good nourishing diet, so as to insnre variety without excess, eat with regularity, without long intervals of abstinence, and eat leisurely. In drinking, avoid taking large draughts of cold water, drink with extreme moderation during meals, and avoid drinkfag water which has stood long in rooms or in lead pipes. Impure water is liable to produce malarial affections. Tea and coffee, if used strong, and in large quantities, are certain to produce nervous irritabiiity and brain excitement, but if used in moderation and of mild strength, they are most refreshing and pleasant. Nervous persons will tind eoffeo more soothing than tea, while persons of a different temperament will be better sulted with the latter. Beyond all donbt, and for almost every purpose, in health and disease, pure water is the healthiest beverage, and it certainly is the uatural drink of man. According to Iloffman, "If there be any universal medicine it is water; for, by its assistance, all distempers are alleviated or cured, and the body preservod sound and free from corrnption, that enemy to life." As Dr. Gall said of another subject, so the writer would say here, that "This is Trutir, though at enuity with the philosophy of ages."

On Bathing. - Nothing is of more transcendant importance to the maintenance of health than eleanliness, and tinis can only be obtained by the free use of water, in washing, sponging, and bathing. The modes of bathing are varions, and, when rightly nsed, are most powerful for good. The rule is, the more rcbust the constitution of

the pation be the wat

 within two cooling aft, water befc menstrial bath while ting on the body is war on the first highly bene powerful chi may bathe e jected to gid heart, shonld The Coll ture from 3 tonic effect on to the system. minutes.The Temp preferable to t not bo extende thoroughly rut The full as arranged by degree promoti water connectio the best effect than over it. T of soda, 4 ozs.
matter, promot matter, promotg The Hot BA the nervolls syst. three minutes wi air heated to 260
such high temper such high temper an oven, heated
minutes in a temp main more than 10 to get out of a van half minutes. T with bolling water also grow in a ba water-plants are fo is 116°, the hot bat In the hot springs a springs varies from make it as agreeab men and women, a may see the curious the bath, with coff them on little float within two hours after a meal, or when exl to avoid taking a full bath waoleng after perspiratlon, or when feell exhausted by fatigne, or when menstrual perithing, nor eat soon after chilly. Do not drink cold bath while the for, should never take cold it. Females, during the ting on the bauks dare cold. Never chill thaths. Never take a cold body is warm, and aring ont-door bathing ; entedy by standing or siton the first feeling of ehid remaining too long in the water while the highly beneficial. Fhlliness. Exerciso before and after, learing it powerful chilling shocks frand nervous persons should after bathing is may bathe early in the mom cold water. The yound guard against jected to giddiness, faintneseng on an empty stomach. and vigorous heart, should use a cold bass, palpitation, or other fersons sub-

The Cold Batif, usually with extreme cantlon affectlons of the ture from 350 to 580 usually taken in the cantlon.
tonic effect on the 050 fahr:, has a most nowerfin a river, temperato the system. It should and imparts a vigorous, exhilarating and minutes.
continued longer than two or three preforable to the cate Batir, ranging from 650 to $80{ }^{\circ} \mathrm{F}$ not bo extended over the use of invalids. Dume Fahr., is much thoroughly rubbed dry with minutes, and the whoto of bath should

The full Wariy with a coarse towel, to induco body shondd bo as arranged by plumi Bath, taken in the to induce a glow. degree promotive of health dwellings, hotels, ordinary long hath tubs, water connections, any desired comfort. Fitted are in the highest the best effect it shoy desired temperature may with hot and cold than over it. The benefits ring from 90° to 98° be obtained, but for of soda, 4 ozs, to 30 gals. Will be increased by thetter nuder that matter, promotes the water. This rids thy the use of carbonate emunctories. After cure of disease, and tho system of much effete

The Hot Bater bathing, rub thoroughly dry the nervons system, ranging from 980 to 1120 dry. three minutes with, but immersion cannot be thoronghly stimulates air heated to 2600° is permanent injury. Water panged over two or such high temporatures painful. It is not safe to scalds at 1500 , but an oven, heated to 2300°. Bugh Berger remained tamper mueh with minutes in a temperature. Blagden exceeded this, seven minutes in main more than 10 minue of from 2400 to 260°. this, remaining eight to get out of a vapor bath in a vapor bath at 100°. Doche could not rehalf minutes. The bath at a temperature of Berger was obliged With boiling water. Fish sition in hot vapor resembles thelve and a also grow in a bath at actually live in hot bathe that of contact water-plants are fond 170°; flowers near baths up to 1500 . Trees is 116°, the hot bath ind in boiling springear a voleano, at 2100 ; and In the hot springs it is 117°, at Vichy 120° The king's bath at Bath springs varies from 050 Lo in Switzerland, the temp la Chapelle 140°. make it as agreeable as 1250 ; the baths are emperature of twenty men and women, dre as possible, the patiente given at 980, and, to may see the curious dressed for the occasion. In the together, both the bath, with them on little coffec, books, cards, newseat up to their neeks in the on little floating tables, or gossiping tors, work, \&c., before
friends, who look on from the wooden gallery which runs around the wall. The waters are both drank and bathed in, being considered excellent for weak nervep, palsy, diseases of the skin, und many chronic comphints. Elevation, 41755 feet above the sea.

Poor Man'h Vapor Bath. Heat two or three bricks and place them under the patient's chair, sprinkle some water over the bricks, and cover the patient to keep in the steam, or, a large lump of quick lime placed din a pan or old iron pot and aprinkled with water, or wrapped upin a wet, coarse towel. Neither of these methods, however, are it all comparable to the efficiency of a properly administered vapor bath, either pure or medicated, in which the temperature of the steam, \&c., can be regulated as follows: Temperature of tepid vanor bath, to be brenthed, 10° to 100°, warm ditto 100° to 110°, hot ditto 1.10° to 130°; not to be breathed, tepid bath, 96° to 103°, warm 106° to 120°, hot 120° to 130°. These baths have performed wonders in cases of chronic rheumatism, stlffness of joints, indurations, diarricen, suppressions, \&c.

The Sronge Bati is a means of health of such transcendant importance, that in the absence of other bathing facilities, it should never be neglected for a singlo day. It is a powerful conservor of health, and affords positive relief in almost every phase of disease. The water may be used of any desired temperature. Apply with a towel or sponge, and when through polish off with a regular hard finish with Ω coarse towel, or still better, two of them, well laid on, the last one dry, to induce a glow on the skin by friction.

Fing. 1.

Fig. 2.

Tile Sititing or Sitz Bath, Fig. 1, shonld be arranged to adinit of the complete immersion of the lower part of the back and abdominal regions, the thighs, \&e., with ample room for laving the water and kneading the parts. The cold tonic bath given in this way is excellent for diseases of the kidneys, bladder, urino-genital organs, plles, constipation, \&c. In cases of colic, spasm, griping pains, gravel, suppressed or painful menstruation, inflammation, de., it should be given warm in order to prove effective. Cover the patient, If need be, to prevent catching cold. The cuts are borrowed from an excellent little work by Dr. Trall, entitled, "The Bath : its History and Uses in Health mid Disease ;" published by S. R. Wells, New York.

Tne 1 lack, on 11 depression of water, application

The Douch stimulant in let lings, sprains, to the parts, as substitute for
TiIe Shalle tage both by in at any desired to a spacious tub. breast, aldomen wet, and water, and shoulders by tions, headache, rub thoroughly Thic Wet SHI
cut for invalids ageut for invalids
water, remove the spread a coverlet; wet sheet in the b patient will no himself at full hen ly all around his lorrs, and covered chill, which gives gradually increasin pask from 25 minu

The Hean
back, on n mattress, with. his is taken by placing the patient on his depression in the rim to accommodnto a shallow hasin (mate with a of wnter, warm or cold, as may be desine neck) with about 3 inches application for affections of the head, brain, \&c.

Fra. 3.
The Doucue Batif, Fig. 3, consists of Fia. 4.
stimulant in lethargic states of tho system of jet of water nsed as a to the parts, as she joints, rheumatic affections as a remedy for swelsubstitute for the shown above. A jet fromions, \&c., applied directly

Tife Siraliow douche bath in certain cases. tage both by iny Bath, FIg. 4, may be used. nt any desired temperaturp persons in health; the Immense adrana spacions tub. The wate, not moro than 6 luches doer may be used breast, abciomen, sides, thithould be thorourhes deep, contained in wet, and water, cold, or ofhs, and extremities; thapplied over the and shoulders by an, or otherwise, as desired, the head should be tions, headache, \&e assistant. This bath is ar, poured over the neck rub thoronghly to dry and bath may be used for front for brain affec-

The Wet Sheet Pack, Firce a healthy glow on the to 15 minutes; agent for invalid. Water, remove the bed merse a cotton or linen st powerful remedial spread a coverlet; thed clothes from the mattrest sheet in a pail of cold wet sheet in the bucken two or three blankess, and on the mattress patient will now warm of water, and sprefd it orext, wring out tho himself at full lenarm his feet, divest hinself over the blankets. The his breast. The sheet on the cold wet sheet, with of elothing, and place ly all around his sheet, blankets and cover, with his hands placed over lows, and covered wody by an attendant, the are now tucked in closechill, which gives pha wet cloth. Tho firgt ad is elevated on pilgradually increasing to alinost immediately to sation is that of a pack from 25 minutes to an swat. The paticint shomld cortable glow, mintes to an hour or more. Some have remain in the
to fall asleep in it. To receive the fullest beneft, it shonld be follorred at once by a plunge bath (See Fig. 6), or thorough ablution in cold water previous to dreasing. Then rub with friction by means of a coarse towel. In cases of severe disease, the benefit of this treatment is manifest from the very offensive odor inparted by the per-

spirations to the shect. Mercury, also, which had lolged in the aystem for years, having been taken under the guise of calomel, has been withdrawn through the pores by the wet sheet, and detected in its woven fabric. The wet sheet pack is of great value in fevers, colds chronic diseases, and general derungement of the system.

Spirit Vapor Batif. The paticnt divested of all clothing except a night shirt, is seated on a wooden bottomed chair, and well covered before and behind with blankets or coverlets reaching from his shoulders to the floor. A saucer concaining a few spoonfuls of alchohol, whiskey or any epirit that will burn, is now placed on the floot under the chnir and ignited. The vapor ascends, and, contined by the blankets, it will soon fuduce a copious permpiration from ever pore of the body subject to its nction. The spirit may be replenished when it burus out, but not while burning or while under the pailent, owing to the possible resulting danger. The operntion is highly beneficial to the system, and may last from 10 to 15 minutes, or mintil a free perspiration is inducer.". Be carefnl that no damage results to the patient or his clothing from the burning spirit.

For Srongio Piline, see Portable Bath.
Sulphur and Meincatfed Batis.- The former is compounded b; mixing sulphuret of potassinm 4 ozs. and sulphuric acid 1 oz . in :0 gals. of water. The latter are decoctions of vegetable or other mp.crials in water, in which the patient is immersed; or, it can be tipplied with a sponge if so desired, and may be tepid, warm, or hot, as preferred.

Tife Air Batit, taken by exposing the naked body to the air in a cool room, is very salutary ind beneffial. When not carried too far, it is very soothing in its effects, and, in walceful states, is promotive of sleep. The good effects are greatly enhanced by friction with a towel during exposure. The same remariss are eminently true when
anderstoor which, in vigorating Gaf.val by placing tub), filled, tive pole o nected with with the bo body and e higliest degi meated on n the glass pla holda the pri tive electrict

Thricid water, 30 gal? or non-metail

The Shov shock whish stand; but, to beneficial, for action. This feeble, by the delicato spray, placed overhea descent.

Tue Foot 1 in correcting co heat in the hear extremities. In
of inustard or of mustard or
rheumatic pain. treatment to the ing the parts.

Tite Min' BA of the most powe purifies foul wat opening the port ruring discase. the test.

The Iodine iodide of potassi? whould be weaker diseases affecting lodine vapor bath

Tine Tunkisis may be, end ofter ditions of the bor regularity as a soc ${ }^{n}$ nationil custom in sealing thn dom
the past, and the r
nnderstood of sun-bathing, or exposnre of the unde body to the sun, which, in certain diseused conditions, has a most vivifying aud invigorating effect.

Gativanic, Electric, and Magnetic Baths.-The first is taken by placing the pationt in a wooden buth tub (or in a painted metnllic tub), filled with water impregated with any desired drug. The negative pole of the battery is suspend in in the water, and a wire connected with the positive pole, with a sponge attached, communicates with the body. The electric current from the positive pole enters the body and escapes through the pores. The effect in beneficial in tha highest degree. An electro-positive bath is given while the patient is seated on a chnir, insulated by placing glaes under the feet. Whilo the glass plate of tho electric machine js being revolved, the patient holds the prime conductor and his body becomes charged with positive electriclty. The effect is very stimulating to deficient vitality.

The Acid Batir is highly beneficial in liver and other complaints, and may be compounded with water acldified with vinegar, or with water, 30 gals., muriatic acia, 14 ozs. Use the latter in a wooden tub or non-metailic vessel, as the neid is inimical to metals.

Tue Showim batif, with cold water, never fails to prodnce a slock whish norvons and weak patients find it very hard to withstand; but, to persons of strong constitution, it caunot fail to prove beneficial, for the shock is usually succeeded hy a most agrecable reaction. This bath may, however, be rendered ngreeable, even to the feeble, by the use of tepid or warm whter, applied in the form of a delicate spray, passed throngh minuto perforations in a tin vessel placed overhead, and fitted with a proper apparatus for regulating the descent.

Tief Foor Batir in caleulatod to prodice the mont decided benefit in correcting cold feet, inducell by liver complaint, etc.; alsu, to relieve lient in the head, cansed by fulluess of blood on the brain, with cold extremities. In such cases, use warm or hot water, with tie aduition of mustard or cayonno pepper. In cases of swelled linibs, uleers, rheumatic pains, etc., great relief vill bo obtained by exiesiding the treatment to the legs, kuees, limbs, ete., thoroughly washing and laving tho parts.

Tine Mud Batu, equirocal as it may appenr, is nevertheless one of the most powerfil remedial agents. On the principle that charcoal purifies foul watar, absorbing its impuritien, so inud acts on the body, opening the poren, withilmwing effete matter, cooling the skin, and ruring discase. If any diseased person doubts this, let him put it to the test.

The Iodine lsarir, for adulta, is compounded of iodine, 1 dr.; iodide of potassium, 2 drs.; water, 20 gals. For children's use, it should be weaker. It is not ndapted for inuliseriainato uss, but for liseases affecting the glands, tubercular troubles, scrofula, ete. Tho iodine vapor bath may be used ns describel under spirit vapor bath.

The Turkish Barhe, by means of dry lieated air, is one which may be, pend often is, prodictive of much henefit in dineased conditions of the body, but is most inimieal to health when used with regularity as a social enjoyment or luxury. Wherever it has become a mational custom, this bath has always proved the princigal agency in sealing tho doom of that nation, ns witness the collapsed Rome of the past, and the reeling Turkey of the present. In refercnce to this,
one of the most prominent medical practitioners of the day, Dr. Richardson, of London, writes to the British Medical Reviery, as follows: "I predict it will be the samo here, under the same principles. I predict that whenever Eaglishmen give up the active occupations I hava named (he had been urgug healthy men to spend the time required for the bath in digging, walking, rowing, rifle drill, cricketing, etc.), and, in slippered pantaloons, luxuriate daily in a bath, to rid thenselves of the products of excretion, then this country will have passed its zenith. Then there will be no great hero to bid every man do lis duty, no man to do the duty, and no England for which the duty should be done."

The foregoing; presenting a choice of between 20 and 30 different methods of bathing, is of great utility to all, but especially so in the prevention and cure of the complex and delicate affections to which females are liable, and which call for such careful treatment from medical practitioners. There is room for deep regret that this class of diseases has opened a wide field for the operations of numerous rapacious and incompetent men, who are a disgrace to the profession, and whoso ravenons proclivities and infamons practices blind them to everything but tho acquisition of plunder. The medical profession, as a class, have always been held in high estimation; so much so, that. during the reign of the Emperor Augustus, they were exempted from the payment of taxes; and that there should be so many cormorants in their ranks, is regretted by none more sinceroly than by the respectablo members of the profession. The real impostor is generally known by his resonant puffs, in the shape of advertisements, in which, while uttering the most savage maledictions against quacks and quackery, he almost lays personal claim to the powers of omnipotence in the cure of disease. Theso incorrigible rascals generally parade a dazzling list of fictitious certificates of cures performed by thom where evory other doctor had failed; but they will not hesitato to act the thief as nearly as the law allows, and strip their victim of his or hrir last dollar, exacted for services fifty times worse than uscless.

Gratefnl, indeed, should he be who escapes with nothing worso than the loss of his money. The advertising quack is generally a dead shot, something of the Dr. Hombook genus, as immortalized by Burns, very profuse in lis promises to cure disease and conceal infirmities, but like his illustrions prototype, very uncanny, and altogether too ready to send his patients "aff to their lang hame, to hide them there."

In England, previons to the advent of the modern newspaper, the quack used to transform himself into a living advertisement, by itinerating through the provincial towns in a blazing uniform, dressed like a mountebank, with cocked lat and wig. Accompanied by an assistant, he would mount a platform, gather an immense crowd, and proceed to deliver an extravagant sulogium on his profound skill, prow digions wealth, and the wonderful virtues his pills, panaceas and elixirs, as he offered them for sale. 'the assioiant, who seemed to answer to the character of a modern clown in a circus, would aid with the sales, and keep up tho farco by making witty remarks on the doctor's wild averments. For example, after listening to the doctor's statements regarding his boundless wealth, and great condescension in consenting to truvel for the purpose of healing the sick, as ho was
not oblly dience the want, for laugh, the piled from presenting
clements
not obliged to do so for want, the clown would announce to the an-
dience that " want, for we have enoof of the truth, we doant need to travel for laugh, the crowd is in good humor, hoam." The result is a loud and the buyers are sold at the samer, the pills, elixirs, etc., are sold,
Practical Diepata the same time. piled from various authoritionomies. - The following table, compresenting as it does at a cries, is eminently and practically usefui, elcments contained in the leading staples used ascentage of nutritive

Ourrants \ldots.
Whipped Egge..... 13
pples.................. 14
l'eaches................ 16
Bolled Codiais 21

> For furtiber detrila

The figures nresent n diveris subject see tables on pp. 623 and 705 iuvariable, presenting to the cepity, but the gencral results are fixed and ment supplied by each kind of food it will be seen that the most wholesom the evidence presented oatmeal, flour, peas, beans, rice, crushed and nutritious articles, as be'ne sunerior to beef in supplying effectlve at, eorn bread, cte., are tinlillion price cading markets of the world, abillty to labor; besides plied oy iveft is 20 the latter. It will be seen that the at about oneeent. ; while there per cent., while the cereals yicid from liment suphealthiness of there is no room for dispute a cid from 75 to 95 per good digestion, and ment kinds of diet. The bouthe comparative the sound sleep accorded al activity enjoyed by say toy cireulation, luxurious living accorded by night, to the man who prether with worth striving for and vegetable to animal food, aro prefers plain to used with the above notedre percentage of wholesome ripe iny well it will be greatly enn noted diet, its value and the enjormen firuit be touchirg a vegetable dinced. After all tinat can be joyment of using limits himself to a wellet, eertain are we that the said, pro and con, cidents aride, a well-selected regimen of verotaverage man who will sleep sounder and ten, have a bet, and come nearer the alloted in a healthy body, man who indulpetter cigestion, and have fewer age of three.seore Effects of rue roast beef with the usual raridaches, than tho rector of the Lunatic ceived the iden that Asylum at Alessandria Pics.-Dr. Ponza, diin diseases of tho brain solar rays might have camont, having con. by stained glass, the rain, the experiment was tried curative power dows. The patients palls bejug painted the same in rooms lighted and south, and puint passed the night in rooms ore color as the winwith morbid taciturnity and glazed as above. One of thed the east a red chamber; andity, beeame gay and attible one of them, affected some breakfast another, a maniac who refused after 3 hours' stay in oreakfast after having stayed 24 hours in all food, asked for
ber. In a blue one, a highly excliad madman with a straight waistcoat on, was kept all day, an hour after he appeared much calmer. The action of blue light is very intense on the optic nerve, and seems to cause a sort of oppression. A patient was made to pass the night In a violet chaniber; on the following day he begged Dr. Ponza to send him home, because he folt himself cured, and indeed he ha, been well ever since. Dr. Ponza's conclusions from his axperiments, are these: "The violet rays, are, of all others, those that possess the most intense clectro-chemical power. The red light is also very rich in calorific rays: blue light, on the contrary, is quite devoid of them, as well as of chemical and electric ones. Its beneflecnt influence is hard to explain $; \mathrm{r}$ it is the absolute negation of all excitement, it succeeds admirably in calming the furious excitement of maniacs."

Weak Back.-Take a beef's gall, pour into it 1 pint alcohol, and bathe frequently. It acts like a charm.

Sprained Anicle.- Wash the ankle frequently with cold salt and water, which is far better than warm vinegar or decoctions of herbs. Keep your foot as cold as possible to prevent juflammation, and sit with it elevated on a cushion.

Spiting of blood. - Two spoonfuls of sage juice in a little honey, will speedily stop either spitting or vomiting blood, or, take 20 grains in water every two hours.

Aporleny.-Occurs only in the corpulent or among high livers. To treat-raise the head in a nearly upright nosition; unloose all tight clothes, strings, etc., and apply cold water to the head, and warm water and warm cloths to the feet. Have the aparment cool and well ventilated. Give nothing by the mouth until the breathing is relieved, and then only craughts of cold water.

13right's D.sease.- Dr. Arthur Scott Donkin, extols a skim milk diet in this disease. "The first appreciable action," he says, " of skin. milk taken to the extent of 6 or 7 pts. daily, is that of a most energetic diuretic, a profuse flow of urine being rapidly produced. The effect of this in Bright's disease, is to flush the uriniferous tubules, and to dislodge and wash out the concrete casts of diseased epithelial cells by which they are blocked up and distended. The emptying of the tubules relieves their pressure on the surrounding secondary capillaries, the blood begins to flow more freely through them, the distension of the primary malpighian capillaries, is relieved ; less and less albunen eseapes through their walls, antil the renal circulation is gradually restored, when it fimally disappears from the urine. While this beneficial change is progressing, healthy epitheliun is developed in the tubules, and the urinary excrement is withdrawn from the blood. In short, a healthy nutrition becomes re-established in the kidneys through the agency of millk, which, above all other substances, seems to exerciso a controlling influence over this process.

Remedy for Gout and Rheumatism.-Gum ghaincum, 1 oz.; rhubarls in powder, 2 drs.; fiour of sulphur, 2 ozs.; eream of tartar, 1 oz ., ginger powder 1 oz ; make into an electuary with molasses. Dose : 2 teaspoonfuls, night and morning. Rheumatic Plaster, resin 4 lb., sulphur f lb., melt them by a slow fire; then ndd cayenne pepper 1 oz ., camphor gum $\ddagger \mathrm{oz}$. Stir well till mixel, and temper with nentsfoot oil. To guaxd against rhemmatism, adhere to a regnhar dict, breath pure air, and avoid exposure.

INDUSTRY PRO
Livery true man thon of old king food woman, "is
thank his Maker for an inestimable blessing in the companionship of a virtuous, loving, devoted and affectionate wifo. What carthly prize can for a moment be compared with this. In her person we see the perfection of loveliness-modesty, grace, and beauty; in her voice we hear the sweetest music ; in her mind we see a fragrant blending of the most attractlve attributes, and the nearest created approximation to that Love which is Infinite. Sherlock avers that "The perception of woman is as quick as lightning. Her penetration is intuition: aimost instinct. By a glance she will draw a deep and just conclusion. Ask her how she formed it, and she cannot answer the question. Whiie she trusts her instinct sine is scarcely ever decelved, but she is generally lost when she commences to renson."

Eyery one knows that this is true, but very few know the reason why it is so. This we find unfolded in the following quotation from the illumined Swedenborg: "The man is born to be intellectual, thus to think from the understanding, but the woman is born to be voluntary, tinus to think from the will; which also is evident from the inclination or connate disposition of each, as also from their form. From the disposition, in that the man acts from reason, but the woman from affection. From the form, in that the man has a rougher and less beautiful face, a henvler speech, and a harder body, but the woman has a smoother and more beantiful face, a more tender speech, and a softer body. Similar is the distinction between the understanding and the will, or between thought and affection." Again, "The male is born into the affection of knowing, of understanding, and of being wise, and the female is born into the love of conjoining herself with that affection in the male." The special attributes of the will principle are perception, affection, and every resultant feminine grace, or in one word-Love.

The question which eclipses all others in importance is, How shall this most precious quality be trained and cultivated? Or, into what channeis should its course be guided and directed ? On this subject, hear Swedenborg once more: "Love truly conjugal, considered in its origln, and its correspondence, is heavenly, spirituai, pure, and clean, above every love which is with the angels of heaven and the men of the church." Again, "I know that few will acknowledge, tiant all joys and delights, from first to last, are gathered into conjugal love, becauso that love truly conjugal, is at this day so rare, that what it is is not known, and scarcely that it is "We may learn from this, that love is of heavenly origin, and was given that it might bo used for he:.venly ends and purposes. It follows from this therefore, that in order to attain to a full and healthy mental and physical development, it is imperionsly necessary that immorality and unchastity in every furm, should be discountenanced and shumed, for it is only in total abstinence from impurita and illicit pieasures, that we cun find Immunity from ruin, degradation, and death. This is true in the case of man, and it is still nowe so in the case of woman, for in ulmost every case after the finst false step, she is led on to swift destruction by the ascendaney of her affections. without being arrested in her career by the wholesome restraint of the reflective or reasoning faculties which operate so poweratily in mmn. Every means shouid be employed that will operate to pevent such a balefin consummation. All obscene, immoral, aud impino books, everything

In the sho

 mote lice deposited fire. Lab and practi hold them parable wiPerhaps susceptiblo husband. attracts the nlng mann sweet temp Which seem repels. Me they most d cidedly defic great selenti Iately marrie martiare, as forth his prel reply was: " will so contlr

In every ner, without tion, If you w card at onco appllances in tlght lacing, et the observer. temper, and re

If the moth acter, and is, in is orderly, cleal
Hio very natur the very natur
heroffspring, ar know that, by ties and endown they good or
The most po nation of yrood
mhad. Useful female grace, sw It is the great sit to ubsorb and at human belig du ness, firivolity, d duce the most m Ladles should crelse, elther In w in close rooms,
robust health. auce of those hig beautiful, delicatd functions are acte In the shape of literature which tends to inflamo the passions, promotelicentiousness, and corrode purity of mind, shonild be at once tire. Labor to clevate and where they will prove inocuous-in the and practice of what is good and truenltics of the soul in the love hold them in abeyance, rememberinge; rule the propensities, and parable with that obtuined over self: that no victory is at all culuPerhaps the intensest longiny of which a good woman's heart is husband. It may be no news to inflimate conjunction with a worthy attracts the opposite sex to them compored women that nothing ning manner, blended with femininpared with a tender and winwhet temper is a crowning charm, together with of temper. The repels. Mien to solicit and invite, while ot the sith the female grace they most desire ter respect boldness or audacity in time it modestly cldedly defieient thee in them is something in women. Whint great scientifle themselves. Prof. Tyndall, in which they are deIntely mirried. On bents, is now tifty-six yenrs of are, a man of marriage, as to what belig interrogated by a friend prepi, and but forth his preferenat attractions ho suw in his intended whe to his reply was: "Less dyuanier more than for others, the chureh drew will so continue. dyamic forec." It has been so in all acteristic
In every ner, without nffectation try to aet in a natural and becoming mantion, if you will, but always in according to your means and stacard at onco and forever all those wretce unassuming style, and dlsappiliances in the shape of padding, pajutin shams and miserable thight lacing, etc., which are colculated pajuting, perfuming, curling, the observer. Cultivate kindness, cheerfuthe health and deceive temper, and repress asperities of every kind If the mother bo endowed wif every kind.
acter, and is, in her domestic rith physleal vigor, a pure moral charis orderly, clean, prompt, dignitied, kind a becoming model of all that the very nature of things, to transmit thed loving, she is certniu in her offspring, and through them a blessinese benefleient qualities to know that, by a law from which there ing to society. Let all parents thes and cudowments of mind which ther appeai, those very quallchey good or evil, they by that very net cultivate in themselves, be The most powerful means for the net implant in their posterity. mation of yood, is constancy in some repression of cvil and the ellmimind. Useful industry promotes bodily employment of body or It is to ubsor ${ }^{\text {reat si }}$ fety-valve which, by Divineautifies the countenance. human beind dilize the surplus energy dleppointment, is cesigned ness, fivolity, disel the prime of life, and which if every healthy duce the imost misijpation, or senseless gossiping is spent in IdleLadies shomalignant eviis. ercise cithould never nericet pure air, and in close rocr in walking, carringe, or horsuba abundant ont-door exrobust heaiths, with stove or firnace heat is rlding. Conthement ance of those it is all important, in considemest unfavorable to beautiful, delicate and holy finctions entrusted to of the performfunctions areate, and exquisitely constructed to woman, that the functions areaccomplished, should constructed body by which those
fect state of health. The mind shonld be kept free from moral contamination of every kind, and trained to labits of pure thought, sobriety and stability. Nothing can be of greater importance to humanity than the proper adjustment of the physical and mental equilibrium of woman. The weal or woe of the haman race seem to tnrn on this primary essentlal as on a pivot. What our children are, is in a great measure what their mother's have made them, for in the turn on this primary essential as on a pivot. What our clildren are is in a great measure what their mothers have made them, for in the very nature of things, chlldren are in the mother's hand, like plastic wax under the seal, and the impression is gencrally in harmony either with what she has taught them or neglected to teach.

Equally important is the duty incumbent on every female to rigilantly guard against forming matrimonial engagemeuts with men of defective health or vitiated morals. The neglect of this wise precaution has cansed an extent of misery and wretchedness beyond all human conception. On this subject, one of the ablest living medical men, Dr. B. W. Richnrdson, of London, lingland, remarks as follows: "The first step towards the reduction of diseases is, beginning at the beginning, to provide for the health of the unborn. If the intermarriage of disease were considered in the same light as the intermarriage of poverty, the hereditary tumsmission of disease would be at an ond in three, or at most, fonr generations." He remarks in ancther place, "Greater care than Is at present manifested, ought to be talken with women who are about to become mothers."

As many estimablo ladies are pardonably anxions about their chances for marriage, the following curions statement, by Dr. Granville, is drawn up from the registered cases of 876 married women in France. It is the firsitable ever constructed to exhibit to ladies their chances of marriages at various nges. Of the 876 tabulated, there wero married :-

Years of age.	Years oi ago.	Years of ago.	Years of age.
3 at 13	118 at 20	28 at 27	5 at 34
11 at 14	86 at 21	92 at 28	3 at 35
16 at 15	85 at 22	17 at 29	0 at 36
43 at 16	50 at 23	9 at 30	2 at 37
45 at 17	63 at 24	7 at 31	0 at 38
77 at 18	36 at 23	5 at 32	1 at 39
115 at 19	24 at 26	7 at 33	0 at 40

Women married at 25 , live four years longer than unmarried ones; 72 marricd womon live to 45 , for 52 mnnarried. Among married men, 41 attain 45 , for 18 unmarried. At 60 , there are 48 married men for 11 unmarricd. At 80 , the numbers are 9 married for 3 unmarried.

Cerebro-Spinal Mpingitis, or Spotted Fever, is frequently cuused by bad ciet, malaria, cold, repression of the secretions, changeable weather, etc. It is a most nalignant trouble, consisting of inflainmation of the brain and spinal marrow. There is ferer, pain in the hend, rigidity of the muscles, intense thirst, terrible pain, and an abundance of purple spots. The lead is forced
backward
tions, stupt case is not In treating inmersion to bring the in a woollen blanket bot scribed und ation and af nal heat, an tion on the tract of Veri by adding 1 against const
head is sover
Crour S_{1} gills ; white Dose, from $\frac{1}{2}$ ing to the sev tus water, an teaspoonful (teaspoonfuls

Sulpitide carbonate of 1 spirit into a gl bath, so that ti it forms, pass tion until a lie add the remain supernatent p finally, distil t stoppered bottl Chlorofor 12 lbs. ; mix in fluid ozs., and c in the water it water, rgitate it carbonate of ba form, consists in

Prof. Nussba dneed by chloro containing 1 gr. 12 hours and ung whatever. The of chloroform, p Carbonic 0. Carbonic Acid G bottle, strong eng libs. to the sipuare and a small pot
Insert the latter
In Insert the latter
an air tight caj,
a inner pot. The g and on opening thi
rush out, and par
backward with fearful agony, the intense suffering induces prostrations, stupidity, deafness,-in some cases blindness, and if the discase is not restrained by skilful treatinent, insensibility and death In treating this discase, keep the bowels open, and the body warm: immerslon in a hot bath, made strong with salt and mustard, is good to bring the blood to the surface. Another way is to wrap the body in a woollen blanket wrung out of hot witer, and place outside of the blanket bottles filled with hot water, and cover over close, as doscribed under the wet sheet pack ; this will induce a coplous perspiration and afford relief. Warm ghiger tea is useful to generate inter nal heat, and tincture of pepper for outward application, with friotiou on the skin. If the pulse is high, give two to three drops extract of Veratrum viride (Ancricau Hellebore), every hour, diluted by adding 1 teaspoonful of water to eash drop of the extract. Guard against constipation, retention of urine, convulsions, ete., and if the head is severely pained, relieve by dry cupping over the neck nnd spine.

Choup Sxiur.--Crushed blood root, 2 teaspoonfuls; vinegar, 2 gills; whito sugar, 8 tablespoonfuls; boil all together and strain. Dose, from $\frac{1}{4}$ to 1 teaspoonful every hour or half hour, (warm) according to the severity of the case. Sjonge the body with striong salerntus water, and if infiammation exists, give, for a child of 1 year; a teaspoonful (every hour) of a mixture of 5 drops of veratrum in 20 teaspoonfuls of water.

Sulpiumic Ether.-Rectified spirit, 3 lbs.; sulphuric acid, 2 lbs. carbonate of potassa (previousiy iguited), 1 oz.; poir 2 lbs. of the spirit into a glass retort, add the acid, place the vessel on a sand bath, so that the liquor may boil as soon as possible, and the ether as it forms, pass over into a well cooled receiver; continue the distillation until a heavier finid begins to pass over, then lower the heat, add the remainder of tho spirit, and distil as before; pour off the supernatent portion, add the carbonate of potassa for one hour; finally, distil the ether from a large retort, and kecp it in a wellstoppered bottic.

Chloroform.-Take chloride of lime (in powder), 4 lbs.; water, 12 libs. ; mix in a capacions retort or still, add, of rectified spirit, 13 fiuid ozs., and cantiously distil, as long as a dense liquid, which sinks in the water it passes over with, is produced ; separate this from the water, agitate it with a littio sulphuric acid, and, lastly, rectify from carbonate of baryta. The only safe way known of purifying chloroform, consists in agitation with pure water and redistillation.

Prof. Nussbaum has succeeded in prolonging the anesthesia induced by chloroform, by the sub-cutaneous injection of a solution containing 1 gr . of acetate of morphia. In one case the patient slept 12 hours and underwent a painful operation, without any sensation whatever. The injection performed without the previous inhalation of chloroform, produced no such effect.

Carbonic Oxide Gas, is iuflammable, but arrests animal life. Carbonic Acid Gus may be liquefied as follows:-Get a strong iron bottic, strong enongh to resist a pressure of 40 atmospheres, or 600 los. to the square inch ; put into it about 4 ozs. of sodic bicarbonate, and a small pot containing about the same quantity of oil of vitriol. Insert the latter carefully, so as not to spill any : close the bottle with an air tight cap, surround by a mixture of ice mind salt, and upset the inmer pot. The gas becomes condensed and liquified in the bottle, and on opening the bottle, by means of a stop-cock in the hd, will rush out, and part wili fall down in a frozen state like snow. A jet
of the liquid carbonic acld, directed on the bulb of a spirit thermometer, made it fall to 104° below zerv. A jet passed into a phial is expanded 400 times, and the cold solidifies it as a white powder. Then, if the finger is placed on the powder, the expansion repels the finger, the cold being 231° below zero! It is too dingerously cold for medical applications, but a mixture of salt and finely broken ice, havo been used to promote inmuity from paln during amputation, and in cases of sovere headache. Amesthewin may also he produced by projecting a spray of sulphuric ether and rhigoline, which produces a temporary freezing, during which time an operation may be performed without pain to tho patient, after which the parts ihaw, and scusibility returis.

Rules to ne Fodlowed hy the lby-standers in case of injuhy hy Machinery \&c., whehe Suhohcal assistance cannot hif ontained,--lu cases of sovere shock, inducing palenens, chillinese, and prostration, place the sufferer on a bed with the head but sllyhtly raised, keep ul warmth by wrapping him in blaukets and coverlets, ussiated by bottles containing hot water, or by warm bricks, wrajped in cloths, and applied to the armpits, sides, feet, \&c., stimulnto with tuble spoonful doses of whiskey or brandy every 15 or 20 minutes, until partinl recovery, and nourish by giving strong soup occasioually. If the patient is not bleeding, do not bind tho limb tight, but cover the bruised part lightly with rags.

If bleeding resulto, do not try to stop it by binding up the round, but find the artery by its beating, and place a firm and smooth. wad made of cloth or rags rolled up, or any round smooth articlo of proper size, wrapped up and place over the artery as shown in the figures, tie a liandkerchief around the limb and tighten up; put a stick through under the handkerchief as slown in IJg. B, giving it just enough of twist to stop the bleeding, then enter one end of the stick under the handkerchief as shown in Fig. C, to secure the bind. When the leg is bleeding below the knee, apply the pud over the artery at the back of the thigh, as shown at C, on Fig. Λ, und secure in front as above described.

The artery in the thigh runs along the inner side of the muscle in front near the bone. A little above the knee, it passes to the back of the bone. In injuries at or above the kneo, apply the compress lifgh up on the imer side of the thigh, at the polint where two thimbs meet at C,ou Fig. D, with the knot on the outer side of the thigh.

The artery in the arm runs down the inner side of the large muscle in front, quite close to the hone; low down it gets further forward towards the bend of the ellow. It is most easily fonnd and conpressed a little above the middle at C, as shown on Fig. F.

Examine the limb from time to time, and relax the compression if it becomes very cold or purple, but lighten the handkerchief again in case of bleeding.

To transport an injured person, make a soft hed for the injured part, of straw, folded corerlets, \&e., laid nil a boird, with side-jifers
of board nai be laid oll n covered, and For Buriss a item.

For Bruts sides, use sti ated liniment

For sprai lotions or fom ing liniments, water.

For Nump portion as cir

Fon a Fro for a short tim add heat very or insensible, of mouth and is thawed, dry the cover; cont tions of campl tongue; then rt then give ten,

In Appare: pose the person strong vinegar suffocated by br excite breathing

Dir. M. Hali Drowned.-1. instanteyon neek, and chest to clear tire ti wrist under the forward, and lea cite respiratic somo irritating DILUTE AMMONI Make the face wa C. If not success place the patient the face, and so o and perseveringly lies on the breast, body, and expirat pressuro is remo position is resum the spine, remov side. (The pressu inspirition). Con With fink phess retur: of vonones b wet clothing, if po:
of loard malled on, when this can be done. If possib.e let the patient be laid on a door, slutter, settee, or other firm support comfortably covered, and carry hilin steadily. Send for a physician in all cases. For Buras and Scalds, consult the Eugiueers Depurtment under that item.

For Bruises, uso tepid applications at first. After inflammation sulssides, use stimulating applications, as vinegar and wator, or camphorated liniment.

For sprains, elevate the limb; keep the joint eass; apply tepld lotions or fomentations. When inflammation subsides, apply stimulating liniments, and shower the part alternately with cold and tepid water.

Fon Numbness from Cold.-Restore warmth gradually, in proportion as circulation in tho parts or body increases.

Fon a Frozen Limin.-Rub with snow, and place in cold water for a sloot time. When sensation returns, place again in cold water; add heat very ! gradually, by adding warm water. If apparcualy deal or insensible, strip entirely of clothes, and cover body, with exception of mouth and nostrlls, with snow or ice-cold rater: When the body is thawed, dry it, place it in a cold bed; rub with warm hands under the cover; continue this for hours. If life uppears, give small injections of camphor and water; put a drop of spts. camphor on tho tongue; then rub body with spirits and water, finally with spirits; then give tea, coffee, or brandy and water.

In Appaient Deati from Bheathing Noxious Vapons.-Tixpose the person to the air; sprinkle cold water on face and head; rub strong vinegar about nostrils; give drink of vinegar mind water. If suffocated bil breathing charcoal fumes, treat in the samo mamer, and excite breathing as directed in cases of drowning.
Di. M. Hall's Directions for Restoring tife Apparently Drowned.-1. Send for a physicion in all cases. 2. Treat the patient instantly on tie spot, in the open air, freely exposing the face, neck, and chest to the breeze, except in cold weather. 3. In order to clear the throat, place the patient gently on the faco with ono wrist under the forehead, that all finid, and the tongue itself may fall forward, and leave the entrusce into the windpipe free. 4. To Excite negirination, turn the patient slightly on his side, and apply some irritating or stimulating agent to the nostrils, as vebatrine, dilute ammonia, \&e., or snnff, or apply a feather to tho throat. δ. Make the face warm by brisk friction; then dash cold water upon it. 6. If not suceessful, loso no timo, but, to imitate inespiration, placo the patient on hus side, and a hittle berond; then again on the face, and so on alternately. Repeat these movements deliberately: and perseveringly 15 rimes onty in a minnte. (When tho patient lies on the breast, this cavity is compressed by the weight of the body, and expiration takes place. When he is turned on the side thi:1 pressuro is removed, and inspiration occurs). 7. When the prone position is resumed, make a uniform and efficient pressure alono THE sPine, removing the pressure immediately, before rotation on the side. (The pressure augments the expiration: the rotation commences inspiration). Continue theso measures. 8. Rub thes hmas criward WTHL FIRM Phessche, and with energy. (The objest being to aid the retura of venous blood to the heart). 9 . Substitute for the patient's wet clothing, if possible, such other covering as can be instantly pro-

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation
cured, each by-stander supplying a coat or vest, \&c. Meantime, and from time to time, to excite insipination, let the surface of the body be slapred briskly with the hand. 10. Kub the body briskly till it is warm and dry, then dash colv water upon it, and repeat the rubbing.

Avoid the immediate removal of the patient, as it involves a DANgerous loss or time; also, the use cf bellows, or any forcing instrument, and all rovgh treatment.

Rules fur Armidents on Water.-When upset in a boat or thrown into the water and unable to swim, draw the breath in well; keep the mouth tight shut; do not struggle and throw the arms up, but yield quietly to the water; hold the lead well up, and stretch out the hands only below the water; to throw the hands or feet up will pitch the body helow the water, hands or feet up will pitch the body head down, and cause the whole person to go immediately under water. Keep the head above, and every thing else under water.

Evefyone should learn to swin; no animal, aquatic fowl, or reptile requires to be taught this, for they do it naturally. Few persons exist who have not some time or other, seen a bullfrog perform his masterly movements in the water, and it would detract from no one's dignity to take a few lessonis from him. In learning, the beginner might sustain himself by a plank, a block, of wood, an attachment composed at sork, an inflated bladder, a flying lite, or a stont cord attached u_{j} a loug rod held by an assistant on the land. Learn to swim cost \%,hat it will.

An ofticer of the New York police force wears three medals, and receives $\$.00$ per month from the Life Saving Benevolent Association. He has saved 12 lives from death by drowning, but he says that when a boy he received a thrashing every night from his father for going in swimming.

Oxygen Gas.-1. Use red oxide of mercury; heat over-a spirit lamp, or ignited charcoal in a green glass retort, or in a short tube of Bohemian glass, closed with a perforated cork furnished with a piece of bent glass tube of small bore to convey the liberated gas to tho vesisel arranged to receive it. Pure. 1 oz. yields about 100 cubic inches. 2. Treat chlorate of potassa as above. Pure. Product 100 cubic inches of gas from 100 grains. 3. Bichromate of potassa, 3 parts; oil of vitriol, 4 parts; heat qently as before ; yields pure oxygen very freely and rapidly. 4. Binoxide of manganese and oil of vitriol, equal parts: treat as the last. Prodnct, 256 cubic inches from 1 oz . binoxide. 5. On the large scale; expose nitre to a dull red heat in an iron retort or gun barrel, Product, 1200 cubic.inches of gas (from 1 lb . nitre), contaminated more or less with nitrogen. 6. Treat good commercial binoxide of manganese, as the last. Product, 1500 to 1600 cubic inehes, or from 5 to 6 gals. from 1 lb . of binoxide. 7. Chlorate of potassa $1 \times$ lbs.; binoxide of manganese, $\frac{3}{4} 1 \mathrm{lb}$. ; treat as the last. Gas procured from manganese or nitre, may be purified by passing it through lime water. When required for nice experiments, the first gas should be allowed to pass away, or else be gathered separately, as it is apt to be impure. Oxygen gas is the supporter of vitality and fire, and is often used as a remedial agent in asphyxia, arising from the inhalation of carbonic acid or carbonic oxide. It was first discriminated as a distinct gas, by Priestly, in 1774.
oz. ; capsicum pulverized sassafras, each 1 oz . aqua ammonia, 1 camphor, each 1 oz. ; put all oz. ; spirits of turpentine and gum cent. alcohol. Dose for colic, for quart bottle, and fill with 95 per liorse, $\frac{3}{3}$ to 1 oz ., in a little warm for man, half a teaspoonful; for a Liniment for Old Sores, water, every 15 minutes, till relieved. oil of origanum, 2 oz Nores.- Alcohol, 1 qt ; aqua ammonia, 4 oz . inyrrh, 2 oz . ; common salt, twor gum, 2 oz . ; opium, 2 oz . ; gum sionally for a week. salt, two tablespoons. Mix, aud shake occa-
Liniment
and add to it the followaritan.-Take 98 per cent. alcohol, 2 qts. ; spirits of turpentine, tincturg articles: Oils of sassafras, hemlock, landanum, of each, 1 oz. ; tincture of me. catechu, guaiac' (guac), and 2 oz . ; oil of wintergreen, toz. form, $1 \frac{1}{2}$ oz. This is one of the ; gum camphor, 2 oz. ; and chloroknown : it is superior to any other enupplications for internal pains Inhalation of Tar for Consummerated in this work. liquid tar and one fluid oz. liquor of piqn.-Mix together 16 ozs. of minutes in the open air, then luor of potassa, boil them for a few epirit or other lanp in the chamber of the pimer in an iron vessel over a excite a disposition to cough, but in a sho patient. This may at first moves any tendency to it. Cancer cure- Drink about 1 qt . per day should a tea made from the tops of red clover; used as a wash twice per dav, ; very strongly, and the tea should bo Tarlor's Remedy for Despry strougly recommended. 1 lb . oil of almonds for a week, and is effective in temporary deafness. strain. A drop poured into the car Cure for Earacht
mum, dip a piece of cotton Take equal parts of chloroform and landaand cover up and get to sleep as soon as possibintroduce into tho car, Otrawa Root Beer. - Taleo as soon as possible. dock, and winter green ; $\frac{1}{2}$ oz. each wach of sassafras, allspice, yellow\ddagger oz. hops and 3 qts. molasses. Ponr cherry bark and coriander ; ingredients and let them stand 24 onr sufficient boiling water on the yeast, and it is ready for stand in 24 hours, filter the liquor and add 1 pt . To Extract Essential Oin 24 hours.
\&c.-Take balm, mint, sage, ori from Wood, Barks, Roots, Herbs, tle, and pour upon it a spoonfor any other herb, \&c., put it into a bothours, and then fill the bottlu of ether; keep in a cool place a few swim upon the surface and may be cold water ; the essential oil will Fumigating Paper. - Dip may be easily separated. of alum 1 oz ., water 1 pt . Dry th paper in a solution of alum; strength mixture of equal parts of gum benzoinghly, and on one side spread a melt the gums in an earthenvenzoin, galbanum, or Peruvian balsam; slips of the paper are held over a dish and spread with a hot spatula; be evaporated, the alum preventing the when the odorons matter will Transparent Cement forting the paper from igniting. in chloroform, and add 16 parts by measi-Dissolvo 1 part India-rubber Digest for 2 days, shaling tho bottle freqe of gum mastic in powder. camel's hair brush.
frquently; apply with a fino
DoU'L WAsI,-Proof spirits, 1 qt. ; borar and honey, of cach 1 oz .;
gum myrrh, 1 oz ; red sanders wood, 1 oz . Rub the honey and bormx well together in a mortar, then gradually add the spirit, the myrrin and sanders wood, and macerate 14 days.

Wasir for memoving Particles of Zinc or Inon from the Ere. - Muriatic acid, 20 drops ; mucilage, 1 dr. ; mix with 2 fluid ozs. rose water. Iron or steel particles may bo extracted by holding near then a powerful magnet.
'To lienove Tuanors.-Dr. Simpson of Edinburgh introduces a hollow acupuncturo needle, or very fine trocar (a surgical instrunent in tho form of a fino hollow needle) into cheir tissue, and injects a few drops of some irritant liquid, such as a solution of chloride of zinc, percholorde of iron, or creosote. The effect is to destroy the vitality of the tumors so treated, and admit of separating them.

Conipound Sxinup of Hxpophosphites.-Take of hypophosphito of lime, $1 \frac{1}{3} \mathrm{oz}$. ; hypophosphite of soda $\frac{1}{3} \mathrm{oz}$; hypophosphite of potassa, $\frac{1}{2}$ oz. ; cano sugar, 1 lb . troy ; hot water, 20 fluid ozs. ; orange water, 1 fluid oz. Nix a solution of the mixed salts in the hot water; filter through paper, dissolve the sugar in the solution by heat, and strain, and add the orango flower water. Dose, a teaspoonful, containing nearly five grains of tho mixed salts.

Cook's Electro-Magnetic Lintaent.-Best alcohol, 1 gal. ; oil of amber, 8 oz .; gum camphor, 8 oz .; Castile soap, shaved fine, 2 oz. ; beef's gall, 4 oz ; ammonin, 3 F.'s strong, 12 oz . $\mathfrak{m i x}$, and shake occasionally for 12 hours, and it is fit for use. This will bo fo:und a strong and valuable liuiment.

London Liniment.-Take chloroform, olive oil, and aqua ammonia, of cach 1 oz ; acetate of morphia, 10 grs . Mix and use as other liniments. Very valuable.
 lead, $\frac{1}{3} \mathrm{oz} . ;$ burnt alum, .1 oz . ; whito vitriol, $\frac{\ddagger}{4} \mathrm{oz}$., or a littlo less; :lll to be very fincly pulverized; havo mutton tallow made warm, $\frac{1}{2}$ lb. ; stir all in, and stir until cool.

Judikin's Ointment.-Linseed oil, 1 pt. ; swect oil, 1 oz ; and boil them in a kettle on coals for nearly 4 hours, as warm as you can then have pulverized and mixed borax, 1 oz . ; red lead, 4 oz . and sugar of lead, $1 \frac{1}{2} \mathrm{oz}$.; remove tho kettle from the fire, and thickeu In the powder; continue the stirring until cooled to blood heat, then stir in 1 oz . of spirits of turpentine; and now take out a littlo, letting it get cold, and if not then sufficiently thick to spread upon thin soft liwen as a salvo, you will boil again unti'. this point is reached. It is good for all kinds of wounds, bruises, sores, burns, white swelliugs, rheumatisms, ulcers, soro breasts; and even where there are wounds on tho inside, it has been used with advautage, by applying a plaster over tho part.

Manetio Ointment.-Said to be Trask's.-IIard raisins cat in picces, and fine-cut tobacco, equal weights; simner well together, then strain, and press out all from the dregs.

Mead's Salt-Rheum Ointment.-Aquafortis, 1 oz . ; quicksilver, 1 oz. ; good hard soap, dissolved so as to mix readily, 1 oz. ; prepared chalk, 1 oz . ; mixed with 1 lb . of lard ; mix the above ly putting the aquafortis and quicksilver into an carthen vessel, and when done effrrvescing, mix with the other ingredients, putting the chalk in inst; add a little epirits of turpentine, say $\frac{1}{3}$ tablespoon.

Grefen Ointment--IIoney and beeswax, each $\frac{1}{2}$ lb, ; spirits of turpentine, 1 oz ; wintergreen oil and laudanum, each 2 oz .; verdigris, fincly pulverized, 4 oz. ; lard, $1 \frac{1}{2} \mathrm{lb}$. ; mix by a stove fire, in Ω copper kettle, heating slowly.
Itch Ointment.-Unsalted butter, 1 lb . ; burgundy pitch, $2 \mathrm{oz} .$, spirits ot turpentine, 2 oz. ; red precipitate, pulverized, $1 \ddagger \mathrm{oz}$; melt the pitch and add the butter, stirring well together; then remove from the fire, and when a littic cool add the spirits of turpentino, and lastly the precipitate, and stir until cold.
Jaundice.-In its Wonst Forms.-Red iodide of mercury, 7 grs ; iodide of potassium, 9 grs ; aqua dis. (distilled water), 1 oz ; mix. Commence ly giving 6 drops 3 or 4 times a day, increasing 1 drop a day until 12 or 15 drops are given at a dose. Give in a little water, immediately after meals. If it causes a griping sensation in the bowels, and fulness in the head, when you get up to 12 or 15 drops, go back to 6 drops, and up again as before.
Remedy for Rheusiatism and Stiff Joints.-Strong camphor spirits, 1 pt. ; neat's-foot, coon, bear's, or skunk's oil, 1 pt .; spirits of turpentine, $\frac{1}{2}$ pt. Shake the bottle when used, and apply 3 times daily, by pouring on a little at a time, and rubling in all you can for 20 or 30 minutes.
Asthma Remedies.-Elecampane, angelica, comfrey, and spikenard roots with hoarhonnd tops, of each 1 oz.; bruise and steep in honey, 1 pt. Dose, a tablesponn, taken hot erery few minutes, until relief is obtained, then several times daily until a cure is effected.
Another.-Oil of tar, 1 dr . ; tincture of reratrum viride, 2 drs .; simple syrup, 2 drs. ; mix. Dose, for adults, 15 drops 3 or 4 times daily. Iodide of potassium has cured a bad case of asthma, by taking 5 gr. doses 3 times daily. Tako $\frac{1}{8}$ oz. and put it in a phial, and add 32 teaspoons of water; then 1 teaspoon of it will contain the 5 grs ., which put into $\frac{1}{2}$ gill more water, and drink before neals.

Composition Powder.--Thompson's.-1Bayberry bark, 2 lbs. ; hemlock bark, 1 lb . ; ginger root, 1 lb . ; cayenne pepper, 2 oz. ; cloves, 2 oz . ; all finely pulverized and well mixed. Dose, $\frac{1}{2}$ a teaspoon of it, and a spoon of sugar ; put them into a tea-cup, and pour it half full of boiling water ; let it stand a few minutes, and fill the cup with milk, and drink frecly. If no pailk is to bo obtained, fill up the cup with hot water.
Frencil Reatedy for Cmbonio Rhecmatism.-Dr. Bonnet, of Graulbet, France, states, in a letter to the "Aveilio Dedicale," that ho las been long in the habit of prescribing "the essential oil of turpentine by friction for rheumatism ; and that he has used it himself with perfect success, having almost instantanconsly got rid of rheumatic pains in both knees and in the left shoulder."
Diuretics-Pills, Drops, Decoction, \&o .-Solidified copaiba, 2 parts ; alcoholic extract of cubebs, 1 part ; formed into pills with a littlo oil of junipor. Dose, 1 or 2 pills 3 or 4 times daily. This pill hats been found very valuable in affections of the kidneys, bladder, and urethra, as inflammation from gravel, gonorrhocr, gleet, whites, lencorrhœea, common inflammations, \&c. For giving them a sugar coat, sce that heading, if desired.

Drumetic Drors.-OIl of cubebs, $\frac{\ddagger}{} \mathrm{oz}$. ; swect spirits of nitre, $\frac{1}{2}$ 0z. ; balsam of copaiba, 1 oz . : Harlem oil, 1 bothe ; oil of lavender,

20 drops; spirits of turpentine, 20 drops; mix. Dose, 10 to 25 drops, as tho stomach will bear, three times daily. It may bo used in any of the above diseases with great satisfaction.

Diuretio Tincture. - Green or growing spearmint mashed, put into a bottle, and covered with gin, is an excellent diuretic.

Diuretio for Childmen.- Spirits of nitre-a few drops in a littlo spearmint tea-is all sufficient. For very young children, gumpkinsced, or water-melon-seed tea is perhaps the best.

Dropsy.-Syrup and Pills.-Queen-of-the-meadow root, dwarfelder flowers, berries, or inner bark, juniper berries, horse-radish root, pod milkweed, or silkweed, often called, root of each, 4 oz ; prickly-ash bark of berries, mandrake root, bittersweet bark, of tho root of each, 2 oz ; white-mustard-seed, 1 oz . ; Holland gin, 1 pt. l'our boiling water on all except the gin, and keep hot for 22 hours; then boil and pour off twico, and boil down to 3 qts., and strain, adding 3 lbs. of sugar, and lastly the gin. Dose, take all the stomach will bear, say a wine glass a day, or more.

Drorsy Pills.-Jalap, 60 grs.; gamboge, 30 grs. ; podophyllin, 20 grs. ; elatarium, 12 grs. ; aloes, 30 grs. ; cayeme, 35 grs. ; Castilo soap, shaved and pulverized, 20 grs. ; croton oil, 90 drops ; powder all finely, and mix thoroughly ; then form into pill mass, by using a thick mucilage made of equal parts of gum arabic and gum tragacanth, and divide in three-grain pills. Dose, 1 pill every 2 days for the first week; then every 3 or 4 days, until the water is evacuated by tho combined aid of the pill with the alum syrup. This is a powerful medicine, and will well accomplish its work.

Liver Piel.-Leptandrin, 40 grs. ; podophyllin and cayenno, 30 grs. each ; sangainarin, iridin, and ipecac, 15 grs. each; see that all are pulverized and well mixed; then form into pill mass by using a dr. of the soft extract of mandrake and a few drops of anise oil ; then roll out into threo-grain pills. Dose, 2 pills taken at bed-time will generally operate by morning; but some persons require 3.

Irritating Plabirer.-Extensively Used by Eclectics.-Tar, 1 lb. ; burgundy pitch, $\frac{1}{2}$ oz. ; white-pine turpentine, 1 oz . ; resin, 2 oz. Boil the tar, resin, and gum together a short time, remove from the fire, and stir in finely pulverized mandrake root, blood root, poko root, and Indian turnip, of each, $1 \mathbf{0 z}$.

Pills.-To Suaar Coat.- Pills to be sugar conted must be rery dry, otherviso they will shrink awsy from the coating, and leare it a shell easily crushed off. When they are dry, you will take starch, gum arabtc, and white sugar, equal parts, rubbing thom very fine in a marble mortar, and if damp, they must be dried before rubbing together; then put the powder into a suitable pan, or box, for shaking ; now put a ferv pills into a small tin box having a cover, and pour on to them just a little simple syrup, shaking well to moisten the surface only; then throw into the box of powder, and keep in motion until completely coated, dry, and smooth. If you are not very careful, you will get too much syrup upon the pills; if you do, put in more, and be quick about it to prevent moistening the pill too inuch, getting them into the powder as soon as possible.

Positive Cure for Hydrophobia. - The dried root of elecampane, pulverize it, and mcasure out 9 heaping tablespoonfuls, and mix it with 2 or 3 teaspoonfuls of pulverized gum arabic; theu divide into

9 equa cne of half th the mo repeate doses a The abstain a dose take less
Eye of each 1
ware uni
water of
now add
spoon ; bl prove too I. DIA P tincture of drop or twe ANothen each $\frac{1}{2} o z$. and use as little of the ly. This wi eyes of long application lindian Ey ritriol, 1 oz. ; until dissolve Black Or of tar, of eac black oils are valuable, espe Vrimituae oz. ; mucilage paste, worked
mixed throngh cover up the m from 12 to 24 better than if
for a child 1 ye lozenges ; 024 lozenges ; in all the worms start Harligar Oif Bulphur and oil
turpentine suficil turpentine suffici
Boil the salphur oil of amber and and erening. A used for strength One of these portions and steep it in 1 pitton by a rabid animal, taite the morning fity of milk is evaporated pt, of new milk, until nearis repeated 3 mornings for 4 or 5 hours after then strain, and drink it in doses are taken. ${ }^{\text {gis in succession, then skip. The same dose is to bo }}$ The patient abstain from higust avold getting wet, or tho 1 a dose of salts -seasoned diet, or hard or the hent of the sum, and take less according to above quautity is for an and, if costive, take Eye Prefarations. of each 1 tablespoon; heat the Water.-Table salt and white vitriol ware until dry; the heating driven upon copper plates or 'I earthennow add to thallization, making them off the acrid water, called the spoon ; blue vitriol, a water $\frac{1}{2}$ pt. ; putting milder in their action; prove too strong in any case the sizo of a common ite sugar, 1 tebleof i^{+}. Apply it to the eyes 3 or 4 times dittle more soft water to a phind I.DIA Prisciription eyes 3 or 4 times daily. tincture of optiliption FOR SORe tes daily. drop or two in the (laudanum), 1 dr. ; res, -Sulphate of zinc, 3 Another. -Sulpeye, 2 or 3 times daily. water, 2 oz.; mix. Put a each $10 z$. -Sulphate of zinc, acetat. and use as other sugar, 1 oz ; soft water, 12 lead, and rock salt, of litile of the oxide eye waters. If sore eyes oz.; mir without heat, ly. This will soon zinc into a phial of water, and uch water, put a eyes of long standing a cure. Copperas and and use it rather freeapplication in erysipelas and used quite strong, it mat has cured sore INDIAN ExE WATER. - Allt wan and the white of an ese an excellent vitriol, 1 oz. ; fine salt. 1 Soft water, 1 pt. ; gum arabic isg good. until dissolved. Put into theapo n ; put all into a bottle oz. i white Black Oil. - Best into the eye just as you retire bottle, and shako of tar, of each 2 ost alcohol, tincture of arnica B to bed. black oils are getting into slowly add sulphuric aritish on, and oil valuable, especially in to extensive nse as aliniment, $\frac{1}{2}$ oz. Theso Vermifuag Lozen cases atterded with much int, and are indood oz. ; mucilage of gum tragacanovin, 60 grach inflammation. paste, worked carefully tragacantih, sufficient ; pulverized sugar, 5 mixed throughout the together, that the santo make into a thick cover up the mortar in whole mass; then if not in shall be even'y from 12 to 24 hours to which you havo rubbed in too great a hurry better than if done immemper; at which time them, and let stand for a child 1 year old, 1 lozenly ; divide into 120 they will roll out lozenges ; oi 4 years, 3 ; of 8 ge, night and morninozenges. Dose: lozenges ; in all cases to of 8 years, 4 ; of 10 morning ; of 2 years, 2 the worms start on a voya be taken twice daily, and or moro, 5 to 7 Harlem OIL or Wryage of discovery. sulphur and oil on Werse Mremida
turpentine sufficient amber, of each 2 oz. ; lingeed -Sublimed or flowers of Boil the sulphur in the reduce all to the conseed oil, 1 lb . ; spirits of oil of amber and turpentineed oil until it is disten of thin molasses. and erening. Amongst the. Dose, from 15 to used for streagthening the Welsh and Germans drops, morning 13 , Lidneys: Lver, and lungsively

194

asthma, shortness of breath, congh, invard or outward sores, dropsy, worms, gravei, fevers, palpitation of the heart, giddiness, headacho, \&e., loy taking it internally; and for ulcers, malignant sores, cankers; \&c., anointing externally, and wetting linen with it, and npplying to burns.
tayptian Cure for Cholera.-Best Jamaica ginger root, bruigcd, 1 oz . ; cayemne, 2 teaspoons; boil all in 1 qt . of water to $\frac{1}{2}$ pt., and add loaf sugar to form a thick syrup. Dose, 1 tablespoon every 15 minutes, until vomiting and purging ceases; them folow up with a Wlackberry tea.
Indian Prescription for Cholera.-First dissolvegum camphor, 4 oz., in $1 \frac{1}{4}$ oz. of alcohol ; second, give a teaspoon of apirits of hartshorn in a wine glass of water, and follow it every 5 minutes with 15 drops of the camphor in a teaspoon of water, for 3 doses; then wait 15 minutes, and commence again as before; and continuo the camphor for 30 minutes, unless there is returning heat. Should this be the case; give one more dose, and the cure is effected; let them persplre frecly (which the medicine is designed to cause), as apon this the life depends, bnt add no additional clothing.
Istharos Cholera Tincture.-Tincture of rhubarb, cayenno, opium, and spirits of camphor, with essence of peppermint, equal parts of each, and each as strong as can be mado. Dose, from 5 to 30 drops, or even to 60, and repeat, until relief is obtained, every 5 to 30 minutes.
King of Orls, for Neuralgia and Rheumatism.-Burning fluid, 1 pt. ; oils of cedar, hemlock, sassafras, and origanum, of each $2 \mathrm{oz}_{\text {. }}$; carbonate of ammonia; pulverized, 1 oz. ; mix. Directions.-Apply freely to the nerve and gums around the tooth; and to the face, in nearalgic pains, by wetting brown paper and laying on the parts, not too long, for fear of blistering, - to the nerves of teeth by lint.
Neuralgia.-Iytrernal Remedy.-Sal-ammoniac, $\frac{1}{2}$ dr., dissolve in water 1 oz . Dose, one tablespoon every 3 minutes, for 20 minntes, at the end of which time, if not before, the pain will have disappeared:
Artificial Skin.-For Burns; Bruises 2 Abrasions, \&ec.-Proof againgt Water.-Tako gun cotton and Venice turpentine, equal parts of cach, and dissolve them in 20 times as much sulphuric ether, dissolving the cotton first, then adding the turpentine ; keep it corked tightly. Water does not affect it, hence its value for racked nipples, chapped handis, surface bruises, \&c., \&c.
Indian Balsam.-Clear, pale resin, 3 lbs., and melt it, adding spirits of turpentine, 1 qt. ; balsam of tolu, 1 oz . ; balsam of fir, 4 oz .; oll of hemlock, origanum, with Venice turpentine, of each, 1 oz . strained honey, 40 oz. ; mix well, aud bottle. Dose, 6 to 12 drops; for 2 child of six, 3 to 5 drops; on a little sugar. The dose can be varied according to the ability of the stomach to bear j it, and tho necessity of the case. It is a valuable preparation for coughs; internal pains, or strains, and works beuignly upon the kidneys.

Wens-To Core.- Dissolve copperas in water to make it very atrong ; now take a pin, needle, or sharp knife, and prick or cut tho wen in about a dozen places, just sufficient to cause it to bleed ; then wet it well with the copperas water, once daily.
Bronchocele.-Enlaraed Neck.-To Cure- -Iodide of potatalum (often called hydriodate of potash), 2 drs ; iodine; 1 dr ; wates

23 cz

 for in a litt enlar It will is peri one do perfori Dall oil nut of assai 50 drop Posix and one the salt strengthCure then wit down to stand till dose, $i m n$
To Impi powder ol wax in ar fire, and n these pills Corr ${ }^{\text {F }}$ Iftor this most so, an Necessal established
Its energies are recuper cxpenditure English hist vented from starved to de can not siee
think most, The time "s unind, body a pive all that by compelling nise in the
night, Nature night, Nat for the wants Signs of D nble to taik, it loud, long, and and beginning If the chest diately, as if ca_{2}

21 cz ; mix and shake a fer minutos, and pour a-little into a phial a little water use. Dose, 5 to 10 drops before each meal, to be taken in enlarged neck, from the or Application.- With a feather, wet tho It will cause the scarf skin ther bottle, night and morning, until well. is perfect, leaving it tender; but do off several times befors the cure one day at most, and you may rest assured the application more than performed by any means whatever. dalby's Carminative.- Magne
oil nutmer, 7 draps ; oil anise, 9 drops 2 drs. ; oll peppermint, 3 drops; of assafcetida, 45 drops ; tinct. of drops ; tinct. of castor, $1 \frac{1}{2}$ dres; tinct.
Posirs ; tinct. of cardamons, 95 drops, 18 drops ; essence pennyroyal, and one tablegre for Diarriggi.-Tpeppermint water, 7 oz ; mix. the salt ; add 7 to 10 of salt. Mix the whole wine glasses of vinegar, strength of the patient drops of laudanum. accordingly to dissolvo Cure for Ague. - and give the whole according, to the age or them with a mailes.-Cut three lemons into one dose.
down to a pint and then take enough coffee to malices and pound stand till cold, then pour it while quite hot over make a quart, boll it dose, immediately strain throngh a cloth, and the lemons. Let it

To Impnove the Vozce chill is over, and before the fever come ans powder of llquorice Vorce.-Beeswax, 2 drs.; core the fever comes on. wax in a new earth root, 4 drs. ; melt the copinaba balsam, 3 drs. ; fire, and mix in then pipkin; when melted, remore tham with tho these pills to be talo powder; make the pills of 3 grs each from tho Curf for Tape wocasionally, 3 or 4 timesaday. Veach. Two of nfter this take castor oil 1 .-Take at one dose, cther or ort 2 hown. most so, and always with tho head intact is discharged entire or al. Necessary Rules
established in the physiolog SLeEP.-There is no fact more clearly its euergies and itself during of man than this, that the brain expendy are recuperated during sleep. If hours of walsefulness and that theso expenditure, the brain withers ; the recuperation does not equal tho English history; persons who were cond insanity. Thus it is in early vented from sleeping always died raving med to death by being prestarved to death become insane ; the brain is iacs, and those who aro think moseep. The practical inferences is not nourished and they The time " waved" the most brain work, are three; 1st. Those who mind, body aud esta from necessary sleep require the most sleep. 2d. give all that are under 3d. Give yourself, your children destructive to by compelling them to you, the fullest amount of sleep, your servants, rise in the morning to go to bed at some regur sleep they will take, night, Nature with at the moment they regular early hour, and to loose the bonds of almost the regularity afoke; and, within a fortfor the wants of sleep the moment enough the rising sun, will unSigns of Disease iv Ci. This is the only safe and effictent secured able to taik, it misease in Children.-In the safe and efficient rule. loud, long, and passionsten it is iul. The colic of a baby not yet and beginning again. If the chest again. diately, as if crying hurt it. gives one alharp cry, breaking off immo-

If the head is affected, it cries, in sharp, piercing shrieks, with low moans and wails between. Or there may be quiet dozing, and startings between.

It is easy enongh to perceive, where a child is attacked by disenso that there is some change taking place ; for either its skin will be dry and hot, its appetite gone; it is stupidly sleepy, or fretful and crying; It is thirsty, or pale and languid, or in some way betrays that something is wrong. When a child vomits, or has a diarrhoea, or is costive and feverish, it is owing to some derangement, and needs attention. But these various symptoms may continue for a day or two vefore the nature of the disease can be determined. A warm bath, warm drinks, etc., can do no harm, and may help to determine the case. On coming out of the bath, and being well rubbed with the hand, the skin will show symptoms of rasli, if it is a skin diseaso which has commenced. By the appearance of the rash, the mature of the disease can be learned. Measles are in patches, dark red, and come out first about the face. If scarlet fever is impending, the skin will look a deep pink all over the body, though mostiy so about tho neck and face. Chicken-pox shows fover, but not so much running at the nose, and appearance of cold, as in measles, nor is there as much of Ω cough. Besides, the spots are smaller, and do not rin much together, and are more diffused over the whole surface of tho skin, and enlarge into littie blisters in a day or two.

Let the room where the child is sick be shady, quiet, and cool. Bo carcful not to speak so suddenly as to startle the half-sleeping patient and handle it with the greatest tenderness when it is necessary to move it. If it is the lungs that suffer, have the little paticnt somewhat elevated upon the pillows for casier breathing, and do everthing to sooth and make it comfortable, so as not to have it cry, and to thus distress its inflamed lungs. If the child is very weak, do not move it too suddenly, as it may be startled into convulsions. In administering a bath, the greatest pains must be taken not to frighten the child. It should be put in so gradually, and so amused by something placed In the water on purpose as to forget its fear ; keep up a good sapply of fresh air, at a temperature of about 60° Falh. If a hired nursa must be had, select if possible a woman of intelligence, gentle and Ioving disposition, kind and amiable manners, and of a most pacific unruffled, and even temper. If a being can be got possessed of these angelic qualities, and we believe there are many such, you will be quite safe in intrusting to her care the management of your sick child or yourself either, in case of sickness. She should not be under twenty-five or over fifty-five, as between these two ages she will, if healthy, be in her full strength and capacity.

Whooping Cough.-To empty the child's stomach by a lobelia emetic, is the first step. After this make a syrup of sugar, gingerroot, a little water, and enough lobelia tincture to produce a slight nausea. This, given two or tliree times a day, will loosen the cough very much. See "Whooping Cough Syrap."

Diarricea.-Nothing is better for looseness of the bowels than tea made of ground bayberry. Sweeten it well, and give a halfteacupful once in two hours, until the child is better. Bathing, wust not be neglected. For Croup Remedy see "Cure for Lockjaw."

Conc.-This can be cured with warm injections of simple soap-
nds, tea m famil
muds, or warm water with a marming tincture in it. \boldsymbol{Y}^{-}littlo warm family should hare a small time, and tho bowels rubbed. Erery needed, particularly in the care large syringe. Nothing is oftener Fever, - Where a child care of children.
other cause not connected with simple ferer from teething or any syrup of rhubarb, a warm injection, disease, give a teaspoonful of generally be all that is needcd. Rickets and Scrofut these diseases, a good, nutritive dict is have elther of these, or both ankaline-bath, a little lime-water, say is a great cssential. Then the FITs-door exercise, are the chief remedies. child-Spasms-Wnen these are bromedies. child in a warm bath immediately, frough on by indigestion, place the the warm wate skin briskly, etc., to getnp warm water, or a lobelia tional, the warm bath will useful. In fact, unless the fit is disease the surface.
patient by drawing the blood to consists in an unnatural growth of This chiefly effects children, and with it, and there be no symtoms of disense the The sknul may grow enlargement afe to die of some brain though children with this ternal objects, the brain are, dullness of intease. The symptoms of habitual headachritabie temper, inordinate appt, indifference to exand idiocy. Thero Sometimes there are appetite, giddiness, and in this disease. Treatmens
Do not suffer the much as possible, repress all exercise of the mind. and muscular exercise to go to school ; but put it to the most active in the top of the head, apply cold water The moment there is any heat child grows diet should be very simple, ice, or cold evaporating lo-
Water in up, the signs of the disease increase. milk only, if, as the of scrofun the Mead.- Another diserse of ase.
ticed. mory, and should be early nolarged, and some times tender belly, a foul tongne, offensive breath enfrom having no bile, or dark fromy, torpid bowels, stools light-colored slimy and lumpy. The child grom vitiated bilo, fetid, sour-smelling, gnid, dejected; it is fretful, irritabs pale and thin : and is heavy, lanin its gait.
asy, and apt to be tottering becoming more severe and after these symptoms, by pains in the head, chiriek to waken and shriek out. Asent, sharp and shooting, causing the of the ng gives place to moaning. As the drowsy state advances, tho ing, intoleran pain in the limbs, tenderness is great stiffness in the back ance of the stomaght, knitting of the brows, scalp, vomiting, sighteen days, the patient bowels. This may last from tod disturbform of attack is mant growing more weak and pom ten to fourvulsions, flushed marked by acute pain in the and peevish. Another pain, tenderness in the brilliant eyes, intolerance of high fever, conpain, tenderness in the belly, stuper, intolerance of. light and gound,
causing retching and vomiting on orery attempt to sit np. Tho third mode of attack is very insidious-the carly symptoins being so mild as hardly to be noticed. In this case, the convulsions or palsy come silddenly, without notice, bringing swift and unexpected destruction. In the first stage of the discase there is increased sensibility ; in the second decreased seusibility; in the third, palsy, convilsions, squinting of the eyee, rolling of the head, stupor, ind a rapid, threadlike pulse.

Theatment.-In the first stage, purging is very irnportant, and must le continued for three or four days. An excellent purgative is this: pulverized scammony, six grains; croton oil, four drops ; pulverized loaf sugar, sixteen teaspoonfuls. Rub well together in a mortar. Give one teaspoonful every hour or two, till it operates. Apply cold water or ico to the head. In the second stago put olisters upon the back of the neck, and one on tho bowels, if very tender. In the third stage use the warm bath, also alteratives and diurcticis. For an alterative, use iodide of potassium, one dram ; water, half ail ounce; mix. Thirty drops to a child sevem years old every hour. For a diuretic, use tincture of digitalis, one onnce ; syrup of squills, one ounce; mix. Ten drops for a cliild seven years old overy four hours. The patient should be kept in a dark room, a tay from all noiso and excitement, and sloould lie upon a hair mattress, with lits head somewhat elevated. The dict in the first stage should be nothing more than gruel ; after that, more nourishing, but easy of digestion, such as beof-tea, plain chicken-broth, animal-jellies, ctc. Λ it the same time the patient should be supported by tho cautious use of wine-whey, valcrian, or ten drops of aromatic spirits of ammonia every four hours.

Mumps.-This disease, most common among cnildren, bergins witn soreness and stiffess in the sido of tho neck. Soon a swelling of tho paratoid gland takes place, which is painful and continues to increaso for four or five cays, sometimes making it difficult to swallow, or open tho mouth. The swelling sometimes comes on one side at a timo, but commonly upon both. There is often heat and sometimes fever, with a dry skin, quick pulse, furred tonguo, constipated bowels, and scanty and high-colored urine. The disease is contagious.

Treatnent.-Keep the face and neck warm, and avoid taking cold, Drink warm herb teas, and if the symptoms are severe, 4 to 6 grs . of Dover's powder ; or if there is costiveness, a slight physic, and observe a very simple dict. If the disease is aggravated ly taking cold, and is very severe, or is translated to other glauds, plyysic must be used freely, leeches applied to tho swelling, or cooling poultices. Sweating must be resorted to in this case.

Scarlet Fever is an acute inflammation of the skin, both external and internal, and connected with an infectious fever.

Sumptoms.-The fever shows itsolf between two and ten days after exposure. On the second day of the fever the eruption comes outin minute pimples, which are either clustered together, or spread over the surface in a general bright scarlet color. The disease begins with languor, pains in the head, back, and limbs, drowsiness, nausea and chills, followed by heat and thirst. When the redness appears tho pulse is quick, and the patient is restless, anxions and often delirious. The eyes are red, the face swollen, and the tongue covered in the

mind exty By heig com

hedical depantarent, etc.

myddle with white mucus, throngh which are extreme redness. The tonsils are shen are seen elorated points of height, and tion the third or fourth swollen, and the throat is red. come off in scales. In this focales. disfiguro the the fiesh puffs up so as to the tongue, leaving is it progresses the condistend tho fingern, and throat is very much it and the whole mouth coating suddenly comes off tonsils. The custachian swollen and inflamed, and and t-ider. The under the ear and jawn tube which extends und ulcers form on the scesses formed in the, sometimes inflame and to the ear, the glands diffeult to cure. The ear irequertly occasion and break; and the absthat of measles by the symptoms of this disease deafness, more or less scarlet color; by the absence of cough ; by may be known from fourth day; and by the rash appearing on thy the finer rash; by its T3eatment. - In ordinary ulceration of the throat. The room where the inary cases tine treat throat. covering light. The patient lics should be trequired is very simple, often as it becomes hot olo body should be spongt cool, and the bodistored. A few drops of and dry, and cooling dinged with cool water as needed. If there is much ferer and morning, is on that is tincture of hellebore often enough soress of throat, give the following oz. ; mix. Talie.
It would also be easpoonful 3 to 6 times ; ticture of black coliosh, 2 and to soak the be useful to commences is day. mustard or cayenne pepr hands in hot treatiment with an emetic. a day, for 2 or 3 days. \mathbf{r}; continuing this bat containing a little having set in, warm water cold stago being bath 20 minutes, twico pepper. If the head is ater may be used with passed, and the ferer bowels be costive, five a mected, put drafts npout tho mustard or allowed; but when the a mild physic. Solid the feet; and if tho tamarind-water, rice-water sets in, cooling drink food should not bo may be given in reason, flaxseed teat, then , such as lemonade, muriatic acid, 45 drops renable quantities then gruel, or cold water and given in doses of a teaspombler filled with watimulato tho skin, Where the diseaso is teaspoonful, is a good remed and sweetened, immediately ; whso is very violent, and the remedy.
prostration ; the eruption oid symptoms appearent inclines to sink color; the tongue is a the ulcers in the thron deep red, or has on it changes to a mahogany ent from the above. In thiome putrid, the treatark brown fur, and given freely; and wine this case it must treatment must be differQuinia is made as followhey, mired with toast-mic. Quinia must be 4 ozs. ; sulphuric acid, 5 :-Sulphate of quinine 1 , water, we useful. wine-glassifuls a day. Tinops; Madeira wine, 1 scruple; alcohol, be given in small doses Tincture of cayenne, in 1 quart ; mix. Two made of pulverized ases. Gargles are also necessary.ned water, may 1 gill. Mix, and let cayenve, 1 dram ; salt, ocessary. A good ono is Let it stand and hour them stand 15 minutes. The dram ; boiling water, mouth onco in anour and strain. Put a teaspen add 1 gill vinegar, mouth onco in an hour. A strain. Put a teaspoonful in this vinegar. warm bath should bo used daily as soon
as the skin begins to peel off, to prevent dropey. If dropisy sits in the bath once in 3 days is sufficient, and sweating should be promoted ty giving the tincture of Virginia snake-root and similar articles; a menerous diet should be allowed at the same time, to bring up ths - hild's strength

Measess is an acute inflammation of the skin, internal and exterenl, combined with an infectious iever.

Symptoms.-Chills succeeded by great heat, langnor, and drowsjless, pains in the head, back, and limbs, quick pulse, soreness of throat, thirst, nausea and vomiting, a dry cough, and high-colored uriue. These symptoms increase in violence for four days. The eyes are inflamed and weak, and the nose pours forth a watery secretion, with irequent sneezing. There is considerable inflammation in the larynx; windpipe, and bronchial tubes, with soreness of the breast and hoarseness. About the fourth day theskin is corered with a breaking out which produces heat and itcling, and is red in spots, upon the face first, gradually spreading over the whole body. It goes off in the same way, from the face first and then from the body, and the hoarseness and other symptoms decline with it; at last the outside skin peels off in scales.

Treatment. - In a mild form, nothing is required but a light diet, slightly acid drinks, and flax seed or slippery elm tea. Warm herb teas, and frequent sponge baths with tepid water, serve to allay the fever; care should be taken not to let the patient take wid. If the fever is very high, and prevents the rash coming out, a slight dose of salts, or a nauseating dose of ipecac., lobelia, or hive-syrup should bo given, and followed by teasponful doses of compound tincture of Virginia snake-root until the fever is allayed. If the patient from any derangement takes on a low typhoid type of fever, and the rash does not come out until the seventh day, and is then of a dark and livid color, tonics and stimulants must be given, and expectoration promoted by some suitable remedy. There is always danger of the lungs being left in an inflamed state after the measles, unless the greatest care is taken not to suffer the paticut to take cold. Should there be much pain, and a severe cough, this must be treated as a separate disease, with other remedies.
TYPHoid Fever.-Symptoms.-Is generally preceded by severaid days of languor, low spirits, and indisposition to exertion. There is also, usually, some pain in the back and head, loss of appetite, and drowemess, though not rest. The disease shows itself by a chill. During the first week there is increased heat of the surface, frequent pulse, furred tongue, restiersness, sleeplessuess, headache, and pain in the back; sometimes diarrnca and swelling of the belly, and somotimes nausea and vomiting.
Tho second week is often distinguished by small, rose-colored spots on the belly, and a crop of littie watery pimples on the neck and chest, having the appearance of minute drops of sweat; the tongue is dry and black, or red and sore; the teeth are foul; there may be delirium and dullness of hearing; and the symptoms every way are more serious than during the first week. Occasionally, the bowels are at this period perforated or ate through ly ulceration, and the patient suddenly sinks. If the disease proceeds unfavorably into the third week, there is low, muttering delirium; great exhaustion; aliding

dow

mis

skin. brigh char

GROC

Cmeap
molasses 2 best of vin stock is so FOR GR your vineg molasses, 2 portions in your old vi time ; when on to sell o the last ; th case when n vinegar on low the nex admit air. Vinegar basswood ch three days. pierced with Iree admissio the better, fo another barre
muscles, bleeding from the the foot of the bed; twitching of the brin. If, on the other hand, the patient red or purple spots npon the chargec look the pulse moderates, the limproves, the conntenance Treatment.-Give water, cold or tepid, as patient good air, and frequent spongings with and be more afrald of diarrh agreeable. Keep the bowels in order powder. For costirenetle brandy, or by repeated Diarrhcea should ing by castor oll, or coms, give mild injections, made doses of Dovir's produce perspiration, givmon molasses. To keep dome slightly looseryhour. If the bowels are tincture of veratrum down the fever, and hops and vinegar. If the swelled, relieve them by hide, 10 drops every let the hair be cut short pain in the head is rery bot fomentations of water. Give light nourishm the head bathery severe and constant, wine will be needed. hyson. If the fever Cleanse the mouth wility is great, broth and quinine may be given from a low course, and the very weak tea-old nursing are very Important the beginning. Constant care and wood, Typhus fever is distingant.
disease of the bowels in typhus.

GROCERS AND CONFECTIONERS' RECEIPTS.
 Chieap Vineaar, - riz molasses and 1 gal. yeast and

best of vinegar; keep adding thet it formarm rain water, with 4 gals. stock is sold. For Grocers' Sacers-Tate the your vinegar barrel ; fill this last ree barrels; let one of them be mortions, 2 gals. ; soft water, 11 gals upero it is quite empty, with your old vinegar up the whole three barrel. 1 qt.; keeping these protime; when nearly emas soon as it is ready, seli the vinegar out of on to sell out of thy empty, fill it up with the which will be in a short the last ; then go backt barrel; by the time fit is as before, and pass case when nearly empty, to the first, filling un disposed of go on to vinegar on hand unless yond you will always your barrels in every low the next process. your sales are very large; in a stock of good admit air. The free admiave the bung-holes ope in which case, fol-
Vinegar in Tree admission of warm air hasten in the barrels to basswood chlps or shavin Dys.-Get a quantity three days. With thavings, and soak these in tyy of maple, beech, or pierced with a larthese chips you will fill a good vinegar, for two or rree admission of air number of inch noles all arorel, which has been the better, for the momong the chips (the moround the sides for tho another barrel in two halve the sooner the vinere holes in the barrel place ono lualf below the be made) cut
chips and the other half above it. The top tab must have its bottom pierced with a number of gimlet holes, in which are placed sureral threads of twine, to conduct the vinegar evenly over the chips. The liquid drains down slowly through the chips and out of a faucet near the bottom of the barrel into the lower tub. It should run through every four hours, and then be baled or pumped back. Directions to make vinegar from sugar: Use $1 \frac{1}{2} \mathrm{lb}$. to each gal. of water; of the dregs of molasses barrels, use 2 lb . to each gal. of water; small beer, lager beer, ale, se., which have become sour, make good vinegar by being reduced with water; small beer needs but little water, lager beer as much water as beer; to 2 gals. cider, add $\frac{1}{2}$ gal. of water; you can also mako excellent vinegar out of the artificial cider mentioned below. Use, in every case, soft water to make vinegar, and use 2 qts, yenst to every barrel. It makes much quicker if the fluid is slightly lukewarm. Leach either of these preparations through the shavings.
This process should be attended to during warm weather, or in a rrom where a pretty ligh temperature is kept up, as it will not work otherwise.
Excellent Vinegar, Chrap.-Acetic acid, 5 lbs.; molasses, 2 gal. ; yeast, 2 qts ; put them into a forty-gal. cask, and fill it up with rain water ; stir it up, and let it stand one to three weeks, letting it have all the air possible, and you will have good vinegar. If wanted stronger, add more molasses. Should you at any time hare weak vinegar on haud, put molasses into it to set it working. This will soon correct it. Make in a warm place.

White Wine Vinegar.-Mash up 20 lbs. raisins, and add 10 gals. water ; let it stand in a warm place for one month, and you will haro pure white wine vinegar. The raisins may be used a second time the same way.
To Preserve Eggs.-To each patent pailful of water, add 2 pts. of fresh slacked lime, and 1 pt. of common salt ; mir well. Fill your larrel half full with this fluid, put your eggs down in it any time after June, and they will keep two years if desired.

Liquid Múcilage.-Fino clear glue 1 lb . ; gum arabic, 10 oz. ; water, 1 qt. ; melt by heat in Ω glue kettle or water bath ; when entirely melted, add slowly 10 ozs. strong nitric acid, set off to cool. Theu bottle, adding in a couple of cloves to each bottle.

Candied Lemon Peel.-Take lemon peels and boil them in syrup; then take them out, and dry.

Baking Powden.-Tartaric acid, 5 lbs. ; pure sesquicarbonate of soda. 8 lbs ; potato farina, or other flour or starch, 16 lbs. Dry separately by gentle heat. Mix this perfectly in a dry room, pass the mixture through a sieve and put up at once into damp proot hard pressed packages. To use, 1 or 2 teaspoonfuls aro mixed with dry flour, which is then mixed with cold water, and baked immediately. Another.-Tartaric acid, 1 lb ; pure bicarbonato of soda 4 lbs. ; potato farina, $\frac{8}{4} \mathrm{lb}$. Treat the same as the last.

To Make an Ice Chest.-Take 2 drygoods boxes, one of which is enough smaller than the other to leave a space of about 3 inches all around when it is placed inside. Fill the space between the two with sawdust packed closely, and cover with a heavy lid made to fit neatly inside the larger box. Insert a small pipe in the bottom of tho chest to carry off the water from the melting tce. For family use or

gro

 wenty times as much cable as refrigerators that cost ceutly slacked lime, and manufacturers ashes cannot conreniently bo ellongh to give the ley suff soda, soda ash use equal quantities of ro ming, or very strong. The cient strength to caustic soda, using water clear of sedimeth methods, finally dra can be effected a fresh egg. It sediment to settl, previously thy drawing off, or tected by heat, or stitallow and 350 ld 1 ton of yellowing in salt and bailing out the liquid whito soap will reg. resin, with low sonp will reguire ging time for tho With tho proper require nearly 130% sufficient. The samout 1000 lhs. neous mass by a quantity of les libs. tallow, boiling in quanlity of when it is poure perfect blending, until it forms a ping in every caso afterwards cured out into suitabio the component perfectly homogehandles are attac into proper sized frames to hard parts all together; Transparemened and then piled bars by means of and cool. It is ings ; put into a boAP. -Slice 61 led up to dry. ing gradually a brass, tin or copper. nico yellow1 oz. sassafras ever a slow fire, stirrine till, with ilar-soap into sharpans about 13 essence, and stir uping till ail is dissol col, $\frac{1}{2}$ gal., heatlength or widt inches deep, and when all is mixed. red; then add ENalisy bith of the pan, as denen cold cuited; now pour into 20 lbg. sal-sodar-Soap. - Six gals, sod verized resin, and 40 . borax ; 15 lbs . fat tall 61 lbs . good stone lime. fire, and when nearly boilinwax ; put thallow is best) ; 10 lbs. pulthen add, add the borax ; boing the lime and water in a kettle on tho flaky on the fat, resin, and bently, and stir noda; when these aro BeST So stick, then pour iees-wax: boil all gentil all is dissolved; orer night ; in soAp.-Mix 10 ibo moulds. all gently until it shows in a barrel, adding morning boil it, adding in 10 gals. warm soft water Soap wrinout LYE gals. soft water. 6 lbs. grease ; then put all made hard or my Lre or Greater. Boil the mixture 15 mip, and $\frac{1}{2} \mathrm{lb}$. sal In a clean pot put $\frac{7}{2} \mathrm{lb}$. 4 cents. Hard Soap-Tnise, and you will hand 5 pts. of soft homo4 lbs. sal-soda, and 2 -Take 6 lbs. hau will have 51 lbs . of soft water. hour with 22 qts, water. horax, and hard soap, or 71 bs good soap for Gerinan Yyts. Water ; add, to hard oz. hartshorn ; boil soft soap, ind resin, $561 \mathrm{lbs}$. ; stow SoAp. - Tailonden, $\frac{1}{3} \mathrm{lb}$. resin ; boil one quarter P'nt soda, lim, stone lime, 281 bs .
let it settle, and and water into a palm oil, 8 oz .; of each 112 lbs ., resin, and palm pour off the lye. In and boil, stirtinater, 28 gals. all together, stirril ; laving it hot, thanother kettle, melt well; then -Tallow and saing well and thot, tho lye being als, melt the tallow, palm oil, 1 oz . salesoda each, 1 lb . IIARD SoAp ; soft water, 1'qt. 1 lb ; xesin, ' $\mathfrak{j z}$. ; stonc lime quatities. lime, 3 lbs. ; soft Tr Lard. - Sal-soda Thater lyy boiling, stirring, 4 gals. ; dissolvo lard, each 6 lbs. ; stone the kettle (brass or copper), settling, and pouring off and soda' stone the soad dry it pour into adish or add the lard, and off; then return to aud dry it. \quad a dish or moulds ; and, when cold, ill it becomes and, whon cold, cat into bars,

White Hard Soap with Tallow.-Fresh slacked lime, eal-soda, and tallow, of each, 2 lbs. ; dissolve the soda in 1 gal. boilin. soft water; now mix in the lime, stirring occasionally for a few hours; after which, let it settle, pouring off the clear liquor, and boiling tho tullow therein until it is all dissolved ; cool It in a flat box or pan, cut into bars or cakes as desired. It may be perfumed with sassafras oil or any other perfume desired, stirring it in when cool. One hundred pounds soap, very cheap.-Potash, 6 lbs. ; lard, 4 lbs. ; resin, \ddagger lb. Beat up the resin, mix all together, and set aside for five days; then put the whole into a 10-gal. cask of water, and stir twice a day for ten days, when it is ready for use.

Variegated Soaps.-Soft water 3 qts., nice white bar soap 3lbs., sal-soda 2 ozs . Chinese vermilion and Chinese blue, of each about 7 grs ., oil sassafras $\frac{1}{2} \mathrm{oz}$. ; shave the soap into thin slices and add it to the water as it begins to boil, when dissolved set it off the fire, take out a cup of soap and stir in the vermillion, take out another cup of soap and stir in the blue; then pour in the contents of the first cup, giving twe or three turns only with a stirring stick, then add the other cupful in the same way, then pour into moulds, or into a proper box and when cold it can be cut into bars; it will present a beautiful streaked appearance.

CaMPHor Soap. - Curd soap 28 lbs ., otto of rosemary 11 lbs . Reduce the camphor to powder, add one ounce almond oil, then sift it, when the soap is melted and ready to turn ont, add the camphor and rosomary. White Windsor Soap.-Curd soap 1 cwt. marine soap 21 lbs. oil soap 14 lbs., oil caraway, $1 \frac{1}{2}$ lbs., oil thyme and rosemary of each $\frac{1}{2}$ lb . oils of cassia and cloves of cach $\frac{1}{} \mathrm{lb}$. Brown Windsor Soap. Curd soap $\frac{8}{4}$ cwt., marine soap 4 cwt., yellow soap 4 cwt., oil soap 4 cwt. Brown coloring (caramel) $\frac{1}{2}$ pt. oils caraway, cloves, thyme, cassia petit grain and French lavender of each 2 oz . Sand Soap.-Curd soap 7 lbs. marine soap 7 lbs., sifted silver sand 28 lbs., oils thyme, cassia, caraway, and French lavender of each 2 oz.

Solid Candles from lard.-Dissolve \ddagger lb. alum and $\ddagger \mathrm{lb}$. saltpetre in $\frac{1}{2} \mathrm{pt}$. water on a slow fire ; then take 3 lbs. of lard cut into small pieces, and put into the pot with this solution, stirring it constantly over a very moderate fire until the lard is all dissolved; then let it simmer until all steam ceases to rise and remove it at once from the fire. If you leave it too long it will get discolored. These candles are harder and better than tallow.

Tallow-To Cleanse and Bleach.-Dissolve alim, 5 lbe., in water, 10 gals., by boiling; and when it is all dissolved, add tallow, 20 lbs. ; continue the boiling for an hour, constantly stirring and skimming; when sufficiently cool to allow it, strain through thick muslin; then set aside to harden ; when taken from the water, lay it by for a short time to drip.

Impation Wax Candies.-Purify melted tallow by throwing in powdered quick lime, then add two parts wax to one of tallow, and a most beautlful article of candle, resembling wax, will be the result. Dip the wicks in lime water and saltpetre on making. To a gallon of water add 2 oz . saltpetre and $\frac{1}{2} \mathrm{lb}$. of lime; it improves the light, and prevents the tallow from ruaning.
adamantine Candeis from Tallow.-Melt together 10 oz mutton tallow ; camphor, $\ddagger 0 \mathrm{z}_{\mathrm{c}}$; bees-wax, 4 oz ; alum, 2 oz

Table of Miscellanfous We

Amonds, soron of, 1 tout 25 lbs.
Beef, tirkin, 100 lbs to 2 cwt .
" or Port 100 lbs
Buckwheark, barrel, 200 lbs.
Beans, white, bushel 61 ly 50 lbs .
Butter, barrel, 2241 lb.
" firkin $56{ }^{2} 24$ lbs.
" hrkin, 56 lbs.
Coffee, tiercl 84 bs.
" bags of of, 5 to 7 cwt . 1 bs . St. Domingo, ald 162 bs.
lbs. Domingo, about 130
pocket of Java, abont 50 lbs.
" bale of Moclia, 2 to $21 / 2 \mathrm{cwt}$.
Clover seed, cask, 7 to 9 cwt cwt.
Corn, per bushel, in mossely 60 lbs .
lbs.
Cement, barrel, 300 lbs .
Cotton, bale, N. Orleans
ma, 400 to 300 lbs. lbs. East Indies, 320 to 380
"Carolina, Georgia \& West
" Indies, 300 to 312 lbs. West
Dried Peaches, bush, nsually 231 lbs .
Flax, bale, Russian, 5 to 6 cwt.
Fish, quintal, 112 lbs to 6 cwt .
" barrel, pictids.
Flaxseed, bush. ping, 200 lbs. lbs. Dush. in most places, 55
Flour, bbl. net, 196 lbs.
" Including bbl., 216 lbs .
Figs, drum, 24 lbs . 280 lbs .
Ginger, ground,
Money, gal. 12 box, 24 lbs.
Hops, bag of,
Hempseed, bush in $21 / 2 \mathrm{cwt}$.
lbs. Wash. in most places 44
Indlan Meal, hogshead, 800 lbs.
lime, bbl., 225 ibs.
Mace, caze, about 1 i about 350 lbs .
The win about $1 / \mathrm{g}$ cwt.
tilled wane gallon of 231 cubic \quad of distilled water.
and the legal sthe government or containing 8.355 lbs. avoirdupois of diestatute gallon gallon of each State in customs gallon of the United States ing 2150.42 cubbit the Standard in which no law exists fulnted States, The Imperial inches, or 77.627413 . bushel is the Winchester, containdiameter, cone 6 ing $l=2218.192$ cubic ins, avoirdupois of distilled water. 1 quarter. 1 quarter high 2810.4872 cubic ins heaped bushel $=19.5$ in bushels $=1$ sack, 12 sarter 10.2694 cuble feet ins. For Grain- 8 bushels. weighs $3136 \mathrm{lbs}, 12$ sacks $=1$ chaldron feet. Coal or Hrain 8 bushels $=$ 1 saek flour $=5$ i. 1 stone $=14 \mathrm{lbs}$. 1 ; 1 chaldron $=58.656 \mathrm{cubl}$ measure- 3 102 lbs . Bitumilushs. $=280 \mathrm{lbs}$. Anthrarter is equal to $81 / 4 \mathrm{U}$. S. bushels
 coal, per cubic ft. 79 to 82 lbs . Coal as conventionat
ly purchased $=43.56$ cubic ft . to a ton (or about 28 bushels and 5 pecks), in the U. S., and is bought wholesale by the dealer at 2240 lbs . per ton, and retailed at 2000 lbs . In commerce, 1 ton of flour is 8 sacks, and 1 tou of potatoes 10 bushels. The welght and measures in the Donimion of Canade are the same as those of Great Britain, but the United States bushel and gallon are most in use. The dimensions of a barrel should be, diam. of head, 17 ins., do. at bung, 19 ins.; length, 28 ins.; volume 7689 cub. ins. A tun is 2 pipes, 4 hogsbeads, 3 puncheons, 8 barrels, or 252 gals.

QUANTITY OF GOODS Estimated to compose a ton in calculating Freights by Water.- Jemons, 20 boxes ; Raisins, 20 casks; do., 80 boxes ; do., 160 half boxes ; do., 320 quarter boxes ; Almonds, 16 frails; Grapes, 40 kegs; Wine, Malaga, 8 quarter cusks; ditto, 14 Indian barrels; Cassia, 25 piculs ; Jute, 4 bales; Linseed, 1600 lbs ., or $81 / 2$ bags per ton; Ginger, 110 lbs .; Twine, 890 lbs.; Matting, $4-4,83 / 4$ rolls of 40 yds. ; do., $5-4$, 7 rolls of 40 yds. ; do., $6-4,53 /$ rolls of 40 yards ; Gunny bags, large, 425 ; medium do., 500 ; small do., 625 ; Saltpetre, 11 to 12 bags per ton of 2240 lbs.

NEW YORK Freights. -QUANTITY of Goods which compose a 'ION.-Extract from the Bye-Laios of the New York Chamber of Commerce. Infreighting vessels by the ton, in the absence of a definite agreement be'ween the owner of the vessel and freighter of the goods, the following regulations shall be the standard of computation : That the articles the bulki of which shall compose a Ton, to ecual a Tom of heavy materials, shall be in weight as follows. Coffee in casks, 1568 lbs.; Coffee in bags, 1830 lbs. : Cocoa in casks, 1120 lbs.; Cocoa in bags, 1307 lbs. ; Pimonto in casks, 952 lbs. ; Pimento in bags, 1110 lbs. ; Dry hides, 10 cwt . ; Chinese raw silk, 8 cwt ; ; Bohea tea, net, 10 cwt . ; Green teas, 8 cwt . ; Ship-bread, bulk, 8 cwt. ; Ship-bread, bags, 7 cwt ; Ship-bread, casks, 6 cwt.; Grain, Peas, or Beans in casks, 22 bushels; Grain, in bulk, 36 bushels; European salt, 31 bushels; West India salt, 31 bushels ; Sea coal, 29 bushels; Tobacco, θ hhds. ; Pig and Bar iron, Potashes, Sugar, Logwood, Fustic, Nicaragup wood and Heavy Dye-woods, Rice, Honey, Copper ore and til othel heavy goods, 20 cwt. $=1$ ton; 'Coffee, cocoa, and dried codfish i) bulk, if $\mathrm{cwt} .=1$ ton ; Dried Codfish, in casks of any size, $12 \mathrm{cwt} .=1$ ton ; cil, Wine, Brandy, or any kind of liquor, reckoning the full contents of the cask, wiue measures 200 gals. $=1$ ton. Mahogany, Square timber, Oak Plank, Pine and other boards, Beavers, Furs, Peltry, Beeswax, Cotton, Wool, and ale of all kinds, 40 cubic ft . $=1$ ton. Flour, in blls. of 196 lbs . each 8 bbls. $=$ 1 ton; Beef, Tallow, Pickled fish, Pitch, Tar, and Turpentine, $6 \mathrm{bbls} .=1$ ton.

A Car-Load.-As a general rule the following quantities constitute a car-load throughout Canada and the United States, viz. : $20,000 \mathrm{lbs}$. or 70 bbls. of salt, 70 of lime, 70 of flour, 60 of whiskey, 200 sacks of flour, 6 cords of hard wood, 7 of soft wood, 16 head of horses, 18 to 20 head of cattle, 50 to 60 head of hogs, 80 to 100 head of sheep, 9,000 feet of solid boards, 17,000 feet of siding, 13,000 feet of flooring, 40,000 shingles, one-half less of hard lumber, one-fourth less of green lumber, one tenth less of joists, scantling and all other large timber, 340 bushels of wheat; 360 of corn, 680 of oats, 400 of barley, 360 of flax-seed, 360 of apples 430 of Irish potatoes, 356 of sweet potatoes, 1,000 bushels of bran.

Exchange on England.

Exchange is the method of adjusting accounts or paying debts, when the deltor and creditor are distant from each other, by means of an order or draft called a bill of exchange, so as to avoid the transmission of cither monley or goods ; for example, A of New York wishing to pay a debt to B, of London, pays an equivalent amount to C, of New York, who has a debtor, D, in London; and A receives from C an order, addressed to D , requesting him to pay the amount to B. This is sent in a letter to B, who presents it to D for acceptance or payment. Thus the debtorin one place is substituted for the debtor in another, and two accounts may be adjusted at the same time by the simple transmiasion of a letter. l'ar of ex-
chans coumt prect to 25 f Londd precia by the and an mand standa change celliar floor, y barrel, then a then a layer packed in this ing to the nint regulatity fixed by their resrencies of both being of the to 25 francs, 20 centimes, which England and France, $£ 1$ sterinus accordLondon and Paris. Exchanch is consequently saince, $£ 1$ steriing is equal preciation of this currency inge is made to diverge to be the par between ayd ane difference in the amounter coturtry below trom par, either by deand another, called the balanints of indebtedness betweent ontandari, or mandarid balls of exchange. Thr trade, which effects the relat country change is at 9 of $£ 1$ stg. in the Unit the followiug table relative de if leas than 9 , it is cent., it is then United States, being $\$ \mathbf{k i b l e}$, the phenent

Bhitish Money in Amble eximbits the Legal Equivalents of
 4 ozs. ; sugar, 2 ozs.; alcohol, 4 finidla, Ginger, \&c.-Vanilla beans, all into a strong ans fincly, and rub thorougle syrup, 4 ozs. ; brandy, a water bath for sthe bottle, secure the cork with with the sugar, put colate through, thour, then traisfer to a filt with twine, and boil in extracts, as ginger, \& add brandy sufficient to and allow it to perthe respective ingredients. can be made in a similar manner, by 4 pther Essential oils of aniseed, la \&c., are obtalued by submitting per, peppermint, cloves, cinnamon, over in a powrder, to distillation warts of the plants, previonsly ground essential a minute state of division water, when the oils are carried \&c., are obtained by presine skins of lemons, aqueous vapor. The
To Preserve App pressing the rinds of these fraitges, bergamots, cellar floor, with a layes. - Pack in boxes or barruits. barrel, then a layer of ar dry sawdust at the bottolevated from the then a layer of sawd apples placed ont of contom of each box or packed in this way will packed this way will leep fresh a long time. full. Sound apples
Weiohts. in Pounds, of Various Articles, as Rated by Railway Companies, wien their whights cannot otheleise be abcer- tained.
Pounds.
Ashes, pot or pearl. Barrel 450
Apples, and barrelled fruits Barrel 200
Apples Busiel ${ }^{6} 0$
Barley Bushel 45
Beef, pork, bacon.
Per hhd
Per hhd 1,000 1,000
Butter, tallow, lard Per bbl 333
Salt flish and meat. 100
Per firkin Bran, feed, shipstuffs, oats
Bushel
Bushel 35 35
Buckwheat. Bushel 48
Bricks, common .Each. 5
Bark. Cord 2,000
Charcoal Bughel
22
22
Coke, and cake meal
Bushel
Bushel 40 40
Clover seed. Buehel 62
Eggs: Barrel 200
Frsh and salt meat Per firkin 100
Flour and meal Per bushel, 56 lbs, Barrel 216
Grain and seeds, not stated. Bushel 60
Hides (green). Each 85
Hides (dry), salted or Spanish Each 33
Ice, coal, lime Bushel 80
Liquors, malt and distilled 350 Per gallon 10
Lquors
Lquors Lumber-pine, poplar, hemlock Ft. b. m 4
Lumber-oak, walnut, cherry, ash. Ft. b. m 5
Nails and spikes 106
Onions, wheat, potatoes Bushel 60
Oysters Per bushel, 100 lbs ., per 1,000 350
Plastering lath 600
Resin, tar, turpentine Barrel 300
Sand, gravel, eto Per cuble ft 150
Shingles Per M., short, 900 lbs., Long 1,400Perch 70
Salt
Salt
Stone, undressed
ubic ft..... 180
ubic ft..... 180
Stone, dressed
Stone, dressed
Bushel..... ${ }^{40}$
Trimothy and light grass seed
Trimothy and light grass seed
Cord.... 3,500
Wood-oak
1 ton (2240 lbs .) cured hay is 425 cuble ft .; 1 ton of hay in mow, 414.37 lbs., or a cube of $71 / 2 \mathrm{ft}$. Hay, as usualiy delivered, weighs 5 lbs. per cuble ft.; do.. well pressed, 8 lbs. Straw, loose, weighs $31 / 2 \mathrm{lbs}$. per cuble ft.; do., well pressed, $58 / 4 \mathrm{lbs}$. U. S. gallon of water weighs 8.33 lbs ; do., of molasses, $112 / 3$; do., of turpentine, 7.31 ; do., of alcohol, 6.96 .
Belfast Ginger Ale.-Double refined sugar, powdered, 1 lb ; bicarbonate of soda, $3 \frac{1}{2}$ ozs.; citric acid, $4 \frac{1}{2}$ ozs.; concentrated ess. of ginger, $1 \frac{1}{2}$ ozs.; ess. of cayenne, 2 drs.; ess. of lemon, 40 drops. The soda, acid and sugar must be carefully dried separately at a temperature not exceeding 120°; and the sugar before drying must be thoroughly incorporated with the essences, to which a small quantity of carainel, as color, may be added. The whole forms a powder, a dessertspoonful of which will make a tumblerful of the drink.
Unfermented Wine.-To make this, boil grapes of any kind over a slow fire till the pulp lias thoronghly separated from the skin, adding just enough water to prevent burning at the bottom of the vessel, then press the juice throngh a fine cloth and add \ddagger its weight of sugar,
$\operatorname{mix} \cdot$ in aircolor To 1 arrang known ities of remove sel by n surromn clean b charcoal a short bad sme fresh, ms imparted ing opera Anothe its weight and pour water to Or, wash the rancid water. A previously portion.
To CAN 1 ning frult mane of the boiling, and Currants, 6 , gooseberries, 4; peaches (1 $10 ;$ tomatoes To Can ${ }^{2 r}$
and use 1 teas heat. When cans of corn.

Percentag

Champague (stili
Clder... (spar
Constantia.
Gooseberry wine known absorbentand deodorizing qual- butter by means of the well. removed from. The tainted butter is sel by removing tirkin or other vessurrounding it. It staves and hoops clean bag and buried then placed in a charcoal in a suitabied in granulated a slort time, the ofterrel or box. In bad smell will disappensive odor and fresh, marketable appear, and a fine, imparted to the butterarance will be ing operation of butter by the conservAnother way the charcoal. its weight of boiling the butter in twice aud pour the melt, water, shake well water to regain a med butter into cold Or, washin in good new proper consistence. the rancidity, is freely milk, in which t
 water. Another goody soinble. Wash butyric acid, which causes previously permitting the way is to wasli the butterwards in cold spring portion. To Can Frutr. - The follo ning fruit will prove useflowing instructions for bolling and cannoiling of the fruit has reference to many. The first number after the Currants, 6,8 . second to the ounces of gumber of minutes required for gooseberries, 8 , cherries, 5,6 ; crab-a sugar required to each quart. 4; peaches (haives), grapes, 10,8 ; plums, , 25,8 ; blackberries, 6 , 6 ; 10 ; tomatoes, 30 , (no so 4 ; pears (whole), 30,8 ; peaches (whole), 15 ,
To Can Green Corn sugar) ; beans and peas, 3 quinces (slliced), 15, aud use 1 teaspoonfnl to Dissolve $2 \frac{1}{2}$ ozs. tartaric 4 hours, no sugar. heat. When opened for every pint of corn while acid in 1 pt. water, cans of corn. pened for use, add one teaspoonful of corn is at boiling

Scotch Whiskey................... 54.53

Gin...
Burgundy.. .51.6
Chpe Muscat. . ..
Champagne (stiili) 18.25
Cider.... (sparkling)............... 13.80
Cider.........................12.61 Ale.. . . 8.79
Constantla. to 9.8 Porter... 6.87
Gooseberry Wine.....................19.75
19.75 Rhenlsh

Rhenish 17.26
Smail Beer...................................... 12.8 .
rapid Procegs of markino Goods at any desimed per cent. Phorit.-Retail merchants, in buying goods by wholessle, buy a great many articles by the dozen, such as boots and shocs, hats and caps, and notions of various kinds; now, the merchant, in buying, for instance, a dozen hats, knows exactiy what one of these hats will retall for in the market where he deals; and, unless he is a good accountant it will often take him some time to determine whether he can afford to purchase the dozen hats and make a living profit by selling them by the single hat ; and lin buying lis goods by auction, as the merchant often does, he has not time to make the calculation before the goods aro bid off. He therefore loses the chance of making good bargains by being afraid to bld at random, or if he bids, and the goods are cried off, he may have made a poor bargain, by bidding thus at a venture. It then becomes a useful and practical problem to determine instantly what per cent. he wonld gain if he retailed the hat at a certain price, to tell what an article should retail for to make a profit of 20 per cent.
Rule.-Divide what the articles cost per dozen by 10, which is done by removing the decimal point one place to the left.
For lustance, if hats cost $\$ 17.50$ per dozen, remove the decimal point one place to the left, making $\$ 1.75$, what they should be sold for apiece to gain 20 per cent on the cost. If they cost $\$ 31.00$ per dozen, they should be sold at $\$ 3.10$ apieco, etc. We take 20 per cent. as tho basis for the following reasons, viz : because we can determine instantly, by simply removing the decimal point, without changing a figure, and, if the goods would not bring at least 20 per cent. profit in tho home market, the merchant could not afford to purchase, and would look for cheaper goods.

Tho reason for the above rule is obvious, for if we divide the cost of a dozen by 12, we have the cost of a singlo article; then if we wish to make 20 per cent. on the cost (cost being 1-1 or $5-5$), we add tho per cent., which is 1-5, to the 5-5, making 6-5 or 12-10; then as we multiply the cost, divided by 12, by the 12-10 to find at what price one must be sold to gain 20 per cent., it is evident that the 12 s will cancel and leavo the cost of a dozen to bo divided by 10, to do this remove the decimal point one place to the left.

Example 1.-If I buy 2 dozen caps at $\$ 7.50$ per dozen, what shall I retail them at to make 20 per cent.? Ans. 75 cents.

EXasples 2.-When a merchant retails a vest at $\$ 4.50$ and makes $; 0$ per cent. what did he pay per doz. ? Ans. $\$ 45$.
Example 3.-At what price should I retail a pair of boots that cost $\$ 85.00$ per doz, to make 20 per cent? Ans. $\$ 8.50$.
Now, as removing the decimal point one place to the left, on the cost of a dozen articles, gives the selling price of a single one with 20 per cent. added to the cost, nnd, as the cost of any article is 100 per cent. it is olvious that the selling price would be 20 per cent. more, or 120 per cent. ; hence, to find 50 per. cent. profit which would make the selling prico 150 per cent., we would first find 120 per cent. then add 30 per cent. by increasing it one-fourth itsolf; Por 85 per cent., increase it one-eight itself, etc. Hence to mark an article at any per cent. profit we find the following:
-Gentran Rule.-First find 20 per cent. profit by removing the decimal point one place to the left on the price the articles cost per doz; then, as 20 per cent profit is 120 per cent. add to or subtruct from this
quot part of 100, as $25,331-3,30$, gerally take a per cent. that is an allcauso it makes it much easier to, dec. The reason they do this is boinstance, a merchnnt could mark almonch a per cent. to the cost ; for profit in the time it would tako him a dozen articles at 50 per cent. marking thig is arranged for tho convent mark one at 49 per cent. To make 20 per

If I buy a doz. shirts for $\$ 28.00$, what shall I. $1-06 "$
make 50 per cent. ? Ans. $\$ 3.50$: What shall I.retail thom for to itself.
placo to the left, and add $亠$ crally make the price of and 1000.-Merchants in selling goods gening sugar at 121 cents per incle some aliquot part of 100 , as in selling calico for $162-3$ cents per , or 8 lbs . for $\$ 1.00$, or in sellfollowing table will be found per yard, or 6 yds. for $\$ 1.00$, etc. The $12 \frac{1}{2} 1-8$ part of 100 .

25 is $1-4$ part of 100 .
$37 \frac{1}{2}$ is $3-8$ part of 100 .
60 is $4-8$ or $\frac{1}{3}$ of 100 . 62, 5-8 part of 100.
75 is 6-8 or 3-4 part of 100
$87 \frac{1}{2}$ is $7-8$ part of 100.
18 is 1-16 part of 100.
$18{ }^{3}$ is $3-16$ part of 100 .
31 is 5 -16 part of 100.
To multiply by an aliquot part of 100
of it as the multiplier is part of 100 maltiplicand, then talse such part N. B. If the multiplicand is a m.
a decimal of two places before dividing number reduco the fraction to N. B. For the sake of uniforming. classify the Coal, Interest and Rcady, it has been thought best to the Engineers' Department.

Teas.-The names of the different kinds of tea relato to the time of their being gathered, or to some pecullarity in their manufacture. It is a general rule, that all tea is fine in proportion to the tenderness and immaturity of the leaves. The quality and value of the different kinds diminish as they are gathered later in the season.

Black Teas.-As soon as the leaf-bud begins to expand, it is gathered to make Pehoe. A few days' later growth produces blackleaved Pokoe. The next picking is called Souchong ; as the leaves grow larger and more mature they form Congoul ; and the last picking is Bohea. Bohea is called by tho Chinese, Ta-cha (large tea), on account of the maturity and size of the leaves ; it contains a larger proportion of woody fibre than other teas, and its infusion is of a darker color and coarser flavor. Congou, the next higher kind, is named from a corruption of the Chinese Koong-foa (great care, or assiduity). This forms the bulk of the black tea imported, and is mostly valued for its strength.

Souchong-Seaoa-choony (small scarce sort), is the finest of the strongest black tea, with a leaf that is generally entire and curly. It is much esteemed for its fragrance and fine flavor. Pekoe is a corruption of the Canton name, Pak-ho (white down), being the first sprouts of the leaf-buds ; they are covered with a white silky down. It is a dellcate tea, rather deficient in strength, and is principally used for flavoring other teas.

Green Teas.-The following are the principal kinds. I wankay, IIyson-Skin, Hyson, Gunpovoder; and Young Hyson.

Young IIyson is a delicate young leaf, called in the original lan. guage Yu-tsien (before the rains), because gathered in the early spring. Ilyson, from the Chinese word He-tchune, which means, flourishing spring. This fine tea is gathered early in the season, and prepared with great care and labor. Each leaf is picked separately, and nipped off above tho footstaiks; and every separate leaf is rolled in the hand. It is much esteemed for its flavor. Gunpowder Tea is only IIyson rolled and rounded to give it the granular appearance whence it derives its name. The Chinese call it Choo-cha (peal tea). IIyson-Skin is so named from the Chinese term, in which comnection skin means the refuse, or inferior portion. In preparing IIyson, all leaves that are of a coarse yellow, or imperfectly twistcd appcarance, are separated, and sold as skin-tec., at an inferior price.

Ihoankay is the last picking of green tea, and the leaf is not rolled or twisted as much as the dearer descriptions. - There is altogether less trouble bestowed on the preparation.

Coffees.-Java Coffere.-Use of the imported article, 20 lbs . dried dandelion root, 7 lbs ; chiccory, 13 lbs. Roast and grind well together.

For West india, use ryo roasted with a little butter, and ground very fine.

Fon Turkey Coffee, nse rice or wheat roasted with a little butter, 7 lbs. ; chiccory, 3 lbs. ; grind.?

Lssence of Coffee is made by boiling down molasses till lhard ; grind to a powder ; add $\frac{1}{2} \mathrm{lb}$. of good Java coffee to every 4 libs. of the misture. . Put up for sale in round tin cans or air-tight paper packages.

Coffee for Pound Packages.-Best Java_coffco, 1 lb ; ryc, 3
lbs.; ca
dust, d carefulls separate amma.
To Fr,
each of 1 $\frac{1}{2}$ part ea saltpetro,
10 parts solution decoction to this end meated w. and finall!
Flavor oz. cinnan them into macerato ; common o will bo une
Tabato jasmines, to chest or jar, Maccabo mixture of t Spanish adding grou water, and a Yeliow S with a mixtu spoonfuls of Perfumes musk ciret, le or oils of bey roses, as well Unerminc; yellowish or your hand; hnead a little poor. Throw like powder, it
To Conrect TCi llbs.; mix. wholesome, pr used, and absor Erated Bri mon salt; 1 teas less, according t require less: : W ressel, then add spoou. Bake in aroid tho use of
lbs.; carefully clean the rye from all had graing, carefully suifring the water, and put the graing, wash to remove separately, gring and brown it evenly. Brown into your roaster, aroma. and put up in tight packages to pre and coffee nach of lemon peel, orange peel done by means of a mixture of 1 part $\frac{2}{2}$ part each of clderflowers, peel, figs, coriander seed and sassafras 50 parts, 3 of salt, and 4 of sugar. Therries, and cinnamon; 2 parts of solution of water, and, before applying it fixture must be digested in decoction gives a benzion, mastic, and myrrh. to this end the liavor to common leaves resemb it is said that this meated with theaves must be well dried, resembling Porto Rico, but and finally dried preparation, kept in a pile for 8 ycar old, well perFlavor for Ctgar Mrys. oz. cinnamon ; bruise and pulverize 2 ozs. tonqua beans and 1 macerate 1 pint of Santa Cruz rum ; them to a powder, and put common or inferio together, and with thes stand for a few days to will bo unequalled. tobacco. Dry out of the suu, sprinkle your Tanao Perfumee aux Fipur and the flayor jasmines, tube roses, musk roses, or made by putting orange flowers, chest or jar, sifting them out after 24 common roses, to snuff in a close Maccaboy SnuFf is imitated 24 hours, and repcating if necessary. mixture of treacle and water, and allo moistening the tobacco with \& SPANISH SNUFY is made, from anlwing it to ferment. water, and ground Spanish nutshells, sprinkling thana snuff, reduced by Yellow SNuFs it to sweat for some days before pare with treacle with a mixture of is prepared from ordinary pare packing. spoonfuls of thin muelono ochre diffused in water shuf; molstened Perfumes for micilage has been added. water, to which a few musk ciret lear SNuFF. - Tonqua beans, or oils of berges of orchis fusca, and essenence of ditto, ambergris roses, as well as set, cedar, cloves, lavender of orris root, essenco Unerrinci Testeral others, either alone or petit grain, neroli and jellowish or tests for good Flour-Ge or compounded. your hand; if good, it Knead a little between it will retain the shape of the flour in poor. Throw a little your fingers; if it shape given by pressure. like powder, it is bad. arainst a dry perpendicular surforicky, it is
To Conrect Musty Froun Toj lbs.; mix. This improves bad Carbonate of magnesia, olbs. ; fonr, wholesome, producing lighter bad flour, causing it so becomo more used, and absorbs and dissipates the better bread than when alum is Erated Bread.-1 lb. four '100 musty smell.'
mon salt; 1 teaspoon powdered sugar; 120 carb.' of soda; 60 grs. comrequire larding to its strength; 1 wine pt. ofs. muriatic acid, more or ressel, then : Well mix the four, soda, salt water, inferior flour will spoou. Bako in the acid mixed with the weter sugar in an carthen aroid the use of one loaf abont 1 hour. Bako in tir with a wooden

214 GROCERS AND CONFECTIONERS' RECEIPTS.

Patent Self-Raising Flour.-Kiln-dricd four, 1 cwt.; tartario acid, 103 oz.; mix thoronghly. After 2 or 3 days, add, of bicarb. soda, 12 oz.; lump sugar $\frac{1}{2}$ lb. ; common salt, 1! lb. Mix, and pass through tho "dressing machine." Have all the articles perfectly dry, and separately reduced to fine powder before adding to the flour. Mix with cold water, and bake at once. It produces light and porous bread.

To Cure Butter.-Take 2 parts of fine salt; 1 part lonf sugar; i part saltpetre ; mix completcly. Use 1 oz . of this mixture to each pound of butter; work well. Bury your butter firkins in tho earth in your cellar bottom, tops nearly level with the ground, or store away in a very cool place, covering the butter with a clean cloth and a strong brine on the top, and it will keep two years if desired.

To Keep Butter durina Hov Weather.-A simple mode of zeeping butter in warm weather is to invert a large crock of earthen, or a flower pot if need be, (rarying with the size of the vessel containing the butter, over the dish or firkin in which the butter is held. The porousness of the earthenware will keep the butter cool, and all the more so if the pot be wrapped in a wet cloth, with a little water in the dish with the butter. Not the porosity of the earthenware, but the rapid absorption of heat by external evaporation causes the butter to become hard.

To aestore Rancid Butter.-Use 1 pt. water to cach lb. of butter, previously adding 20 grs . chloride of lıme to cach pt. of water; wash well the bntter in this mixture, afterward re-wash in cold water and salt ; or melt the butter in a water bath with aninais charcoal, coarsely powdered and previously well sifted to freo it from dust; skim, remove, and strain through flannel ; then salt.

Tomato Catsup. - 'oil 1 bushel of tomatoes till they are soft; squeeze them through a fine wire sieve; add $1 \frac{1}{2}$ pts. salt, 2 oz. cayenne pepper, and 5 heads of onions, skinned and separated; mix together, and boil till reduced one half; then bottle.

Tife Noithern-Ligit Burning Filuid.-Get goou deodorized benzine, 60 to 65 gravity, and to each brl. of 42 gals. add 2 lbs. pulrerized alum, 3 h oz . gum camphor, and $3 \frac{1}{3} \mathrm{oz}$. oil of sassafras, or 2 oz . oil wergamot; stir up and mix thorovghly together: and it will soon bo ready for use. N. B.-As this fluid creates a much larger volume of light and flame than carbon oil, it is necessary to use either a high burner, such as the smi burner, to elevate the flame avay from the lainp, in order to keep it cool, or instead thereof, to use a burner providod with a tube for the escaps of the gas generated from the fluid, such, for instance, as the Meriden burner.

Test for burnina Oil.-Heat water in a pot on the fire to 120° Fahr. Take a tin and put in it a tablespoonful of the oil you wish to test, place the tin containing the oil in the hot water, let it cool down to 112° Fahr.; when at this point, approach a light very cautiously towards the oil, and if it takes fire before the light touches it you will be safe in rejecting it.

Preserved ol Solidified Mili.-1. Fresh-skimmed milk, 1 gal.: sesquicarbonate of soda (in powder), $1 \frac{1}{2} \mathrm{dr}$. Mix; evaporate to $\frac{1}{}$ part by heat of steam or waterbath, with constant agitation ; then add of powdered sugar cot lbs, and completo the eraporation at a rcduced
tomperat drained, put the w 2. Carbor milk, one and finis Observea good su Sealin a bright Venice tu remove un color, use blue color, Each color use only sy
IIontice parts, and Bottle powdered i substitute Gold-cor turpentine 1 he ground, dust. Mix Litiogira hard tallow wax 16 parts Inks.-1. tion of logiwa 6 ozs. suipha sugar, and 8 to boil; strai black. 2. Gi weter 8 part Take sulphat quired color. aniline in wat littlo aniline Mosaic gold, condition. 6. foil and sulpha tho salt out, a gum arabic Ynk. 1 lb . pr lbs. acetic acid printer's varni Add 1 lb. of E lbs. ; gum, 10 Maccrate for 3 rill endure for lbs. Put them Allow the who
tomperature. Reduce the dry mass to powder, add the cream well drained, which was taken from the milk. After thorough admixture, put the whole into well stopped bottles or tins, and hermetically seal. 2. Carbonate of soda, $\frac{1}{2}$ dr.; water, 1 fluid oz.; dissolve; add of fresh milk, one qt. ; sugar, 1 lb . ; reduce by heat to the consistency of a syrup, and finish the evaporation on plates by exposure, in an oven. Observe-About 1 oz . of the powder agilated with 1 pt . of water forms a good substitute for milk.
Sealing-wax, Red.-Shellac (very pale), 4 oz.; cautlously melt in a bright copper pan over a clear charcoal fire; when fused, add Venice turpentine, $1 \ddagger \mathrm{oz}$. Mix, and further aul vermilion, 3 oz ; remove une pan from the fire, and pour into a monld. For a black color, use ivory black, or lampblack, instead of the vermilion ; for a blue color, use Prussian blue, instead of the vermilion, same quantity. Each color must be well nixed with the composition; of the lampblack, use only sufficient to color.
IIorticultural Ink.-Copper, 1 part; dissolve in nitric acid, 10 parts, and add water, 10 parts ; used to writo on zinc, or tin labels.
Bottle Wax-Black.-Black resin, $6 \frac{1}{2}$ lbs. ; beeswax, $\frac{1}{1}$ lb. ; finely powdered ivory black, $1 \frac{1}{2}$ lbs. Melt together. Lied, as tho last, but substitute Venetian red, or red lead, for the :vory black.
Gold-colored Sealing-wax.-Bleached shellac, 3 lbs.; Venice turpentine 1 lb . ; Dutch leaf gromen fine, 1 lb ., or less. The leaf should be ground, or powdered sufficiently fine, withont being reduced to dust. Nix with a gentle heat, and pour into moulds.
Litiogizaphio Ink. - Venice turpentine 1 part, lampblack 2 parts, hard tallow soap 6 parts, mastic in tears, 8 parts, shellac 12 parts, wax 16 parts; melt, stir, and pour it out on a slab.
Inks.-1. I ine Black writing Ink.-To 2 gals, of a strong decoction of logwood, well strained, add $1 \frac{1}{2}$ lbs. blue galls in coarse powder, $(6 \mathrm{ozs}$. suiphate of iron, 1 oz . acetate of copper, 6 ozs . of well ground sugar, and 8 oz . gum arabic. Sct the above on the fire until it begins to boil; strain, and then set it away until it laas acquired the desired black. 2. Green Ink. Cream of tartar 1 part, verdigris 2 parts, weter 8 parts. Boil till reduced to the proper color. 3. Blue Ink: Take sulphate of indigo, dilute it with water till it produces the required color. 4. Violet Ink. Is made by dissolving some violet aniline in water to which some alcohol has been addecl: it takes very little aniline to make a large quantity of the ink. 5. Gold Ink. Mosaic gold, two parts, gum arabic, one part, rubbed up to a proper coudition. 6. Silver Ink. Triturate in a mortar equal parts of silver foil and sulphate of potassa, until reduced to a fine powder, then wash the salt out, and mix tho residue with a mucilage of equal parts of gmm arabic water. 7. Fullam's IRecipe for Indelible Stencil-plate Ink. 1 lb . precipitato carbonate of tron; 1 lb . sulphate of iron; $1 \pm$ lbs acetic acid. Stir over a fire until they combine; then add 3 lbs . printer's varnish and 2 lbs. fine book ink, and stir until well mixed. Add 1 lb. of Ethiop's mineral. 8 Exchequer Ink. Brrised galls, 40 lbs.; gum, 10 lbs. ; green sulphate of jron, 9 lbs. ; soft water, 45 gals. Macerate for 3 weeks with frequent agitation and strain. This ink rill endure for ages. 9. Asiatic Ink. Bruised galls, 14 lbs. ; gum, 5 libs. Put them in a small cask, and add of boiling soft water, 15 gals. Allow the whole to macerate, with freguent agitation, for two weeks,

216 GROCERS AND CONFECTIONERS' RECEIPTS.

then further add green copperas, 5 lbs., dissolved in 7 pts. water. Again mix well, and agitate the whole daily for two or three weeks 10. Extra good Black Ink. Bruised galls, 2 lbs., logwood chips, green copperas and gum, of each, 1 lb . ; water, 7 gals. Boil 2 hours and strain. Product. 5 gals. 11. Brown Ink.. A strong decoction of catechu. The shado may be varied by the cautious addition of a little weak solutiou of bichromate of potash. 12. Indelible Ink. Nitrate of silver, $\frac{1}{2} \mathrm{oz}$; water, ${ }^{\text {g }} \mathrm{oz}$. Dissolve, add as much of the strongest liquor of ammonia as will dlssolve the precipitate formed on its first addition; then add of mucilage $1 \frac{1}{d r}$., and a little sap green, syrmp of buckthorn; or finely powdered indlgo, to color. Turns black on being held near the fire, or touched with a hot iron. 13. Indelible Ink for Glass or Metal. Borax, 1 oz; shellac, 2 oz ; water, 18 fluid oz.; boil in a covered vessel, add of thick mucilago, 1 oz .; triturate it with lovigated indigo and lampblack q. s., to give it a good color. After 2 hours' repose, decant from tho dregs and bottlo for use. It may bo bronzed after being applied. Resists moisture, chlorine, and acids. 14. Common Ink. To 1 gal. boiling soft water, add $\frac{3}{4}$ oz. extract logwood; boil two minutes; remove from the fire, and stir in 48 grains blchromate of potash, and 8 grains prussiate of potash; for 10 gals. uso 6. oz. logwood extract; 1 oz. bichromate of potash, and 80 grains prussiate of potash; strain. 15. Black Copying Ink, or Writing fluid Take 2 gals. rain water and put into it gum arabic, $\frac{1}{4}$ lb. ; brown sugar, $\ddagger \mathrm{lb}$. ; clean copperas, $\frac{1 \mathrm{lb}}{} \mathbf{1}$; powdered nutgalls, $\frac{3}{4} \mathrm{lb} . ;$ mix, and shako occaslonally for ten days and strain; if nceded sooner, let it stand in an iron kettle until the strength is obtained. This ink will stand tho action of the atmosphere for centuries, if required. 16. Red Ink: In an ouuce phial put 1 teaspoonful of aqua-ammonia; gum arabic size of two or three peas; and 6 grains of No. 40 carmine; till up with soft water, and it is soon ready for use.

Liquid Blacking.-Ivory black, 2 lbs. ; molasses, 2 lbs.; swect nil, 1 lb ; rub together till well mixed; theu add oil vitrol, 4 lb . ; add coarse sugar, $\frac{2}{} \mathrm{lb}$. ; and dilute with beer bottoms; thls cannot bo excelled.

Ticketing Inir for Gròcers,\&c.-Dissolve 1 oz. of gum arabic in 6 oz . water, and strain ; this is the mucilage ; for black color, use drop black, powdered, and ground with the mucilage to extreme fineness ; for bluc, ultra-marino is used in the same manner ; for green, emerald green ; for white, flako white ; for red, vermilion, lake, or carmine ; for yellow, chrome yeliow. When ground too thick they are thinned with a little water. Apply to the cards with a small brush. The cards may bo sized with a thin glue, and afterwards varnished, if it is desired to preserve them.

Bluing for Clothes. -Tako 1 oz of soft Prussian blue, powder it, and put in a bottle with 1 quart of clear rain water, and add $\frac{1}{2} \mathrm{oz}$. of pulverized oxalic acid.! a tablespoonful is sufficient for a large washling

Primiun Method of Keeping Hanss, \&c.-To 4 gals. water, add 8 lbs. coarse salt ; \ddagger oz. potash ; 2 oz . saltpetre ; 2 lbs. brown sugar. Boil together, skim when cold, put on the above quantity to 100 lbs . meat; hams to remaln in eight wecks, beef, threo weeks. Let the hams dry several days before smoking. Meat of all kinds, salmon avd other fish, lobsters, \&c., may be preserved for years by a light ap-
plication as usual. an effect
To PR aesled.and freed are quite ture, is th? fectly full, the cookin, soldering w is now allo the sides of sure, and ically sealed any climate food of one tion, months ed longer th the canisters French proce two-thirds of concentrated canisters, whi aperture is mitted to fart above stated,
To preser mouthed bott a copper or la np to the mo the bottles, an bottles to prev der the kettle, be continued f scalded ; after an inch of the their sides; c week during th any fermentatic kept by the pro they are to be Another Me sufficient sugar 3 or 4 lbs. only the sugar, not u: the boiling with heat them throus hot water, into then fill in the fr end of the cork Wo.
Worcestersim

GRCCERS

AND

plication of pyroligneous acid ap

 sealed Terve Meats, Salmon and freed from meat to be preserved is fobsters, sc., Hermeticaliy are quite filled no wes. It is then put into tin cased or somewhat more ture, is then carefully firch gravy. A tiu cover or canisters, which fectly full, it is placed in fixed on by solder ; and, while th a small aperthe cooking. The sman boiling water, and undergoes the vessel is persoldering while the whall hole in the corer is comple the remainder of is now allowed to coole is yet hot. The canister, with ly closed up by tho sides of the ressel are consequence of which thith its ingredients, sure, and become a little slightly forced inward by atme contract, and ically sealed, and all actece concave. The vessel by atmospheric presany climate without fear of the air prevented it food of one country may of putrefaction ; and thay be sent into tion, months and years afte used in another' in all the most delicato cd longer than meats anter its preparation. Lill its original perfecthe canisters. Salmats, and the scales removed previers should be boilFrench process the mon put up by this process is mosious to putting into two-thirds of it are maken is boiled till it is three-qust delicious. By tho concentrated soup, and the the remaining onequarters done, when canisters, which are then meat previously takethird is boiled into a aperture is soldered on filled up with the soup out is put into the mitted to farther boiling on, and the canister with it tin cover with above stated, and the cong in water, when the apo its contents sub-To preserve Fruits wirs laid away in store. mouthed bottle ruits without Socip store.
a copper or large kett the fruit carefully picked some stone wideup to the mouths ofe; then fill the kettle wed, and set them in the bottles, and a clothe bottles. Corks shouth cold water uearly bottles to prevent their should bo put under the prepared to fit der the kettle, and heir cracking with the heat. the bottoms of the be continued for half the water to 160° or 170°. Light the fire unscalded ; after that, fill hour, when the fruit whill heat should an inch of the cork, and the bottles with boiling we sufficiently their sides; change, and cork them tightly. week during the first the position of the bottles Lay the bottles on any fermentation the two months, turning bottles onco or twice a kept by the process mot might take placo. Tiruitsound to prevent they are to be scalded mentioned above for meats, could also bo Another Method only, not boiled, as in th, remembering that sufflcient sugar to mat-After paring and corine case with meats. 3 or 4 lbs. only to make them palatable for cong, put among them the sugar, not using any bushel ; let them or present eating, about the boiling with care any water; then heat to a awhile to dissolve heat them throuchere for 20 to 30 minute to a boil, and continue hot water, into whi which expels the air. Har sufflciently long to then fill in the which dip the can or bottle have ready a kettle of and of the cork into whilo hot, corking it immg enough to heat it; There.
preparation described elso-
Worcesterasimar Sauce.-Whito vinegar 15 gals.; walnut catsup

218 GROCERS AND CONFECTIONERS RECEIPTS.

10 gals.; Maderia winc 5 gals.; mushroom catsup 10 gals. ; table salt 25 Jbs .; Canton soy, 4 gals.; powdered capsicum 2 lbs ; powdered allspice $1 \mathrm{lb} . ;$ powdered coriander, seeds 1 lb .; cloves, mace, and cinnamon, of each, $\frac{1}{2} \mathrm{lb}$.; asafoctida $\frac{4}{4} \mathrm{lb}$. ; dissolved in brandy 1 gal. Boil 20 lbe hogs livers in 10 gals. of water for 12 hours, renewing the water from time to time. Take ont the liver, chop it, mix with water, work through a sieve, and mix with the sauco.
Gherkins.-Take small cucumbers (not young), steep for a week in very strong brine; it is then poured off, heated to tho boiling point, and again poured on the fruit. The next day the gherkins are drained on a sieve, wiped dry, put into lottles or jars, with some spice, ginger, pepper, or cayenne, and at once covered with strong pickling vinegar.
Mixed pickles from caulifowers, white cabbage, French beans, onions, cucumbers, \&c., are treated as gherkins, with raw ginger, capsicum, mustard-seed and long pepper, added to each bottlo. A little bruised turmeric improves both the color and flavor.
Indian pickle.-Piccalilli.-Take one hard white cablage (sliced), 2 cauliflowers, pulled to pieces, 20 French beans, 1 stick of horse-radish, sliced fine, 2 doz. small white onions, and 1 doz. gherkins. Cover these with boiling brine ; next day, drain the Whole on a sieve, put it into a jar, add of curry powder, or turmeric, 2 oz . garlic, ginger, and mustard-seed, of each 1 oz ; capsicum $\frac{1}{2} \mathrm{oz}$. Fill up the vessel with hot pickling vinegar; buig it up close, and let it stand for a month, with occasional agitation.
To Preserve Fruit Juice without Heat.-Ingredients: 10 lbs. of fresh-gathered, picked, red-ripe currants, or other fruit, 2 gts. cold water, 5 oz . tartaric acid, 6 lbs of coarso sifted sugar. lut the fruit into a large carthen pan, pour the water with the tartaric acid dissolved in it over the fruit, cover the pan with some kind of lid, and allow the whole to steep for 24 hours in a cold place, and it would be all the better if the pan containing the fruit could bo immersed in rough ice. Next, pour the stceped fruit into a suspended stout flannel bag, and when all the juice has ran through, tio up the open end of the bag, and place it on a large earthen dish, with another dish upon it ; place a half-hundred weight upon this, to press out all the remaining juice, and then mix it with the other juice. You now put the sifted sugar into the juice, and stir both together occasionally, until the sugar is dissolved, and then bottle up the syrup, cork, and tie down the bottles with wire, and keep them in the ice well or in a cold cellar, in a reclining position.
To restore Injured Meat.-When the brine sours and taints the meat, pour it off ; boil it, skim it well, then pour it back agnin on the meat boiling hot; this will restore it, even when much injured. If tainted meat is injured, dip it in the solution of chloride of lime prescribed for rancid butter; it will restore it. Fisblown meat can be completely restored by immersing it for a fer hours in a vessel containing a small quantity of beer; but it wili taint and impart a putrid smell to the liquor. Fresh meat, hams, fish, \&c., can lee preserved for an indefinite length of time withouk salt, by a light application of pyroligneous acid applied with a brush; it imparts a fine smoky flavor to the meat, and is an effect ual preservative. But pure acetic acid may be used instead.
table lered cinBoil vater work or others living at a disep a Wreer on Tw very nicely for a weelstance from butchers in Starmer.-Farmers ter milk, placing it in or two, by putting it can keep fresh meat remored. Rinse well when cellar. Tho bonto sour milk, or butMilkifan's Procegs. when used. following nutritiocess.-To giv crery 5 gals., stirring and licalthy combody to diluted milk use tho root, 6 oz . ; maguesia it up in the milk, till at the rate of 8 oz . to in porder, 1 lb ; mix 0%; starch, 1 lb. ; fon is dissolved: arrow[lace for use. ; mix all intimately together, $\frac{1}{2} \mathrm{lb}$. ; white surar Custard Powders.-Sago mether, and keep in a dry turmeric to a cream color. dr . temporaneous custards 2 drs. USs with Curry Pos custards. Wack pepper, 21 -Turmeric, and corand toz. ; cardamon oc ; ginger 14 drs . ; cimuander secds, of each, 4 oz . ; 1 oz . ; powder and mix 1 oz . ; cummin seeds, mace, and cloves, cach, ; cajenue pepper, nnchovies, 4 ounces; mix; boil 0 dd strong beer, 2 qts ., white wine, 1 gt ., fire, ind add peeled shallots, 3 ten ininutes ; renove it from tho ounces; macerato for 14 days, steep them in strong brinoso small round oulons, remoro tho skins, and heat till it boils; the for a week in a stono ressel, ponr skins, with stronn spiced a seire, then put on the onions, boiling hot ; after max over the colvegar, boiling hot, cork bottles, fill up over them canliflowers, samplimes a similar manner down immediately, and red cabbages (withouts, peas, beans, green are pickled mushroons, and more dellcate do nt salt, with cold vinegar) gooseberries, walnnts, and coarser linds, and requiro so much sonling Observe that the soft strong pickling vinegar may be often kept by in brine as the harder peaches, select ripe but on them without the by simply pouring rery clores, free from their not soft ones; rub with aplication of heat. pror ones; to 1 gallon vinegar, puts, in each large peach dry cloch ; put four 4 jar and put the vineme, put 6 lbs. brown sugar ; and two in small sugar in a preserving kettl (diluted with wagar ; put tho peaches in boiling hot over the peate over the fire; boil and too strong), and operation three times ; theaches, corering them and skim it; pour it 8ibench Patent Musten seal them tight? in closely repeat the 8 blb ; bay ealt, 2 lis
Common Mustard. ; cayenne pepper, 4 ozard, 8 lbs. ; wheat flow, ajyenne pepper, 12 oz , or of mustard 28 ; ; vinegar to mix. 014 lbs . ; turmeric to ., or as required; common wheat floar, 281 os . Starcir Polish. - Whor ; mix well, and pass thalt 10 lbs. ; rape logether with a gent Whito wax, $10 z$. ; spermacetiough a fine seive. mount of starch, in the he. When you have pati, 2 oz.; melt them piece of the polish aboue usual way, for a dozen prepared a sufficient ing to large or small washie size of a largo pea ; pieces, put into it a gh boiling water upon ghings. Or thick gum soi more or less, accorddies clothes a beautiful arable), ono tablespoon ton (made by pourglosa

Fine Kinderns.-To make very nice fire kindlers, take resin, any quantity, and melt it, putting in for each pound being used, from 2 to 3 oz . of tallow, and when all is hot, stir in pine sawdust to make rery thick; and, while yet hot, spread it out abont 1 inch thick, upon boards which have fine sawdust sprinkled upon them, to prevent it from sticking. When cold, break up into lumps about 1 inch square. But if for salo, take a thin board and press upon it, while yet wirm, to lay it off into inch squares ; this makes it break regularly, if you press the crease sufficicntly deep, greasing the marked board to prevent it from sticking.
To Keer Cider sweet, and Streeten Soun Cider.-To keep clder perfect, take a keg and bore holes in the bottom of it ; spread a plece of woollen cloth at the bottom; then fill with clean sand closely packed; draw your cider from a barrel just as fast as it will rum through the sand ; after this, put in clean barrels which have had a piece of cotton or linen cloth 2 by 7 inches dipped in melted sulphur and burned inside of them, thercby absorbing the sulphur finmes (this process will als's sweeten sour cider) ; then keep it in a cellar or room where there is no fire, and add $\frac{1}{2} \mathrm{lb}$. white mustard seed to cach barrel. If cider is long made, or sonring when you get it, about 1 gh of hickory ashes (or a little more of other hard wood ashes) stirred into each barrel will swoeten and clarify itnearly equal to rectifying it as above ; but if it is not rectified, it must be racked off to get clear ol the pomace, as with this in it, it will sour. Oil or whisky barrels are best to put cider in, or $\frac{1}{2}$ pint swcet oil to a barrel, or a gallon of whisky to a barrel, or both, may be added witi decidedly good effects; isinglass, 4 oz. to cach barrel, helps to clarify and settlo ctder that is not to be rectified.

Ginger Wine.-Water, 10 gals., lnmp sugar, 20 lbs., bruised ginger, 8 oz ; 3 or 4 eggs. Boli well and skim ; then pour hot on six or seven lemons cut in slices, macerate for 2 hours; then rack and ferment ; next add spirit 2 qts., and afterwards finings, 1 pint ; rummage well. To make the color, boil $\frac{1}{2}$ oz. saleratus and $\frac{1}{2} \mathrm{oz}$. alum in 1 pint of water till you get a bright red color.
Ice Creamr.-Have rich, swect cream, and a half-ponnd of loaf sugar to each quart of cream or milk. If you cannot get cream, the bestimitation is to boil a soft custard, 6 eggs to cach quart of mills (eggs well beat). Or another is made as follows: boil 1 quart of milk, aud stir into it, while boiling, 1 tablespoonful of arrowroot wet with cold milk ; when cool stir into it the yolk of 1 egg to give it a rich color. Five minutes' boiling is enongh for cither plan. Put the sugar in after they cool ; keep the same proportions for any amount desired. Or thus : to 6 quarts of milk add $\frac{1}{2 l b}$. Oswego starch, first dissolved; put the starch in 1 quart of the milk; then mix altogether, and simmer a little (not boil); sweeten and flavor to your taste; excellent The juice of strawberries or raspberries gives a beantlful color and flavor to ice creams, or about $\frac{1}{2}$ oz. essence or extract to 1 gallon, 0 to suit the taste. Have your ice well broken, 1 qt salt to a bucket of ice. About one hour's constant stirring, with occaslonal scraping down and beating together, will freeze it.

Chicado Ice Cream.-Irish moss soaked in warm water ono hour and rinsed well to cleanse it of sand and a certain foreigu taste ; the steep it in milk, keeping it just at tho point of boiling or simmerin, it work in t bunghole al to keep it fu cach bottle; Cheap Ci 1 gal. molass Well, add 25 taric acider $\frac{1}{2} 1$ 3 or 4 lbs. of ed juice. Th Sproce an 11 gals.; mix lbs.; oil of spr pint yeast, ferm spruce becr; us bruised, and a
water, strain Watcr, strain a
yeast, of course yeast, of course
Hop BEER, v Well together, au cool, add a cup time. Let it fer put it in a 9 -gallo and in 7 days it on porter up in a basine for Cream. -Take 2 and flavor like othecessary, and to prevent curdling poltr boiling hot or 3 whole eggs, ber creams. rich cream. It is difficult for tea over them, beat them well Grnger Beer. tartaric acid beaten, 10 smali tce, white sugar, 2 l , $\frac{7}{4} \mathrm{lb}$. root for 30 minn teaspoonfuls of lemo lbs., whites of root bruised, in while hot minutes in 1 gal. of the won ess. ; yeast, 1 of eggs well keeping out; mix, make orer night; water; strain off, and puil boil the Pirleader the sediments. aight; in the moruing, skimput the ess. ginger root brita Been.-Take 30 gats 10 oz ., oil of lemon, cutb., cream of tartar, water, brown sugar, 20 lbs 10 eggs well beaten, hops, 9 little alcohol, 1 t lbs., carbonate of soda, should be boiled for twen, 2 oz., yeast, 1 at teaspoonful, the white of to make all milk-warm; the or thirty minntes The ginger root aud hops and allowed to worm; then strained into thes in enough of the waters Cider without Appif clear; then bottlo. rest and the yeast added tartaric acid crening, and it will yeast, 1 tablespoonfallon; common sngar, 1 lb .; For Bottling.- Put to use next day. sugar; $\frac{4}{4} \mathrm{lb}$. tarta.- Put in a barrel, 5 day. ers yeast, worked incid; 25 gallons cold wate hot water; 30 lbs. common it work in the bed into paste with 1 pint water; 3 pints of lop common bunghole all the timel forty-eight hourst of water and 1 lb four orewto keep it full; then be, putting in a little, the yeast ruming our. of the cach bottle; and it will nearly putting in two or three wroter occasionally Cheap Cider.-Put in a cask equal champagne. broken raisins to 1 gal. molasses; $\frac{1}{2}$ gal. hon a cask 5 gals. hot water well, add 25 gals. cold water brewers' yeast; for; 15 lbs. brown sugar; tarinother Cider.-Cold waterent as the last. vivegar, 6 qts. ; stir turic acid, $\frac{1}{2} 1 \mathrm{lb}$. ruinmald water, 20 gals., brow.
3 or 4 lbs. of dried sour age well together, and add sugar, 15 lbs ., tar-
duice. This cider will apples, or boil them and , if you have them,
Spruce and Ginger keep longer than the and pour in the express. 11 gals.; mix in a baer Beer. - Cold wan the others.
pint; oil of spruce or any ; add molasses, 30 lbs gals.; boiling water, spruce be, ferment, bottle in two which wish the fle brom sugar, 24 bruised, and ase lump sugar; for or three days. If yor, 1 oz.; add 1 water, strain few hops; boil for theer flavor, use 17 ou wish whito yeast, of con and mix well; let it irty minutes in thre. ginger root
Hop Bersse, as before. Well together, VERY Fine.-Mix 14 lbs cool, add a cupful of them for 2 hours with 0 sses and 11 gals. water time. Let it ferm of yeast, and stir it with 6 oz . hops. When quiter put it in a 9 -gallonent for 16 hours, in it well by a pallon hen quite and in 7 dayg it porter
int to drink, and will be stronger down in 2 days,
be stronger than London'
pr. quarter, at 183°, mash three-quarters of an hour, let it stand 1 hour, and allow half an hour to run off the wort; 2d, mash 1 barrel per quarter. 180°, mash three-fourths of an hour, let it stand about three-fourths, and tap as before; 3d, mash 1 barrel per quarter, at 170°, mash half min hour, let it stand half an hour, and tap as before. The first and second wort may be mixed together, boiling them about an hour or an hour and a quarter, with a quantity of hops proportioned to the time the ale is required to bo kept. Tho first two may be mixed at the heat of 60°, in the glyctun, and the second should be fermented separately for small beer. The best hops should be used in the proportion of about 4 lbs . for every quarter of malt employed.

Botriling Porter.-Brown Stout. Pale malt, 2 quarters ; amber and brown malt, of each $1 \frac{1}{2}$ do. ; mash at 3 times, with 12, 7 , and (barrels of water; boil with hops, 50 lbs ; set with yeast, 20 lbs. Product, 17 barrels, or $1 \frac{1}{2}$ times the malt.

Lemon beer. - To make 20 gals, boil 6 oz . of ginger root bruised, 1 lb . cream of tartar, for 20 or 30 minutes, in 2 or 3 gals. water; this will be strained in 13 lbs. coffee sugar, on which you have put $\frac{1}{2}$ oz. oil of lemon, and six good lemons squeezed up together, having warm water enough to make the whole 20 gals. just so hot that you can hold your hand in it without burning, or about 70 degrees of heat ; put in $1 \frac{1}{2}$ pints of hop or brewers' yeast, worked Into paste with 5 or $6 \mathbf{o z}$. flour. Let it work over niglit, then strain and bottle for use.

Table Beer.--Malt, 8 bushels ; hops, 7 lbs ; molasses, 25 lbs ; brew for 10 barrels ; smaller quantity in proportion.
Hor Beer.-Hops, 6 ounces ; molasses, 5 quarts ; boil the hops till the strength is out, strain them into a 30 -gallon barrel ; add the molasses and one teacupful of yeast, and fill up with water; shake it well, and leave the bung out till fermented, which will be in about 24 hours. Bung up, and it will be fit for use in about three days.

Molasses Beer.-Hops, $1 \mathbf{o z}$. ; water, 1 gal. ; boil for teu minutes, strain, add molasses, 1 lb ; and when luke-warm, yeast, 1 spoonful. Ferment.
Root Beer.-Water 10 gals, heat to 60° Fall. then add 3 gals. molasses ; let it stand 2 hours, pour it into a bowl and add powdered or bruised sassafras and wintergreen bark of each $\frac{1}{2} \mathrm{lb}$. ; yeast 1 pt .; bruised sarsaparilla root, $\frac{1}{2} \mathrm{lb}$. ; add water enough to make 25 gals. in all. Ferment for 12 hours, then bottle.

Ottatwa Beer and Ginger Ale.-Ottawa beer is made by using 8 ozs . of a fluid extract which coutains the concentrated strength of 4 lbs. of 13 different roots and barks, added to 1 gal. syrup which is mired with 14 gals. water, into which carbonic acid gas is forced at a pressuro of 80 lbs . to the square inch. Ginger Ale is made in the same way except that 4 ozs. of extract is sufficient. When the ginger is really used, an extract deprived of resinous impurities is made use of, which gives a clear amber colored drink.

Cheap Beer. -Water, 15 gals. ; boil half the water with $\frac{1}{4} \mathrm{lb}$. hops ; then add to the other half in the tun, and mix well with 1 gal. molasses and a little yeast.
To hestore Sour Beer.-Good hops, \ddagger lb., powdered chalk, 2 lbs. Put inthe hole of the cash, and bung close for a few days ; for frosted beer, add some finings, a fow handfuls of nour, and somo scalded with a little powdered a handful or two of flour, the samo of hops, To Improve the Flavon to each barrel. Rummage well. cloves, $\frac{3}{2}$ oz. ; a few scalded hops and Bruised ginger, 1 oz. ; bruised Lemonade. -Warrels. Rummige well. ${ }^{\text {a doz. broken coarse biscuits }}$ lemon, 30 drow White sugar, 1 lb . tart
Cream Soda. Water 3 gts. Mix. rlly so as nod to -Loaf sugar, ten $1 \frac{1}{2}$ ounces ; extract nutinood rich cream 2 , 3 gals. ; warm gradubring to a boiling $n u t m e g, \frac{1}{2}$ ounce ; ta, 2 quarts; extract vanilla, crystallize ; use 4 or 5 ; for if you cook it any acid, 4 ounces. Just other syrups ; put or 5 spoonfuls of this syrup length of time, it will fountain. For changeaspoonful of soda to a instead of three, as in Freezing Preparged fountains no acid is used. if used without a 1 part ; saltpetre 2 ition.-Common acid is used. soda, well pulverized parts; mix well together. rations (which must be to use tako equal quartitien take common, using) and put them in kept sepante and weantities of these prepaquantity, and put in the the freezing pot: add covered previous to up, and your wants will sole to be frozen in a prot water a proper wines this cannot be beat. soon be supplied. in a proper ressel ; cover Sarsaparilla mead. and strain off 2 gals : add sum. of Spanish Sarsaparilla, boil 5 hours a Wino glass of syrup to half pint tums. and tarturic acid 10 ozs., half
Portable Lemor proportion for a drink. essence ible Lemonade.-Tartaric at dimk. dessert spoonfon, quarter ounce; powder 1 ounce, white sngar, 2 lbs., Imperial Crear make a glass of lemonade. sugar, 6 lbs., tirtam Nectal.- Part 1st, take. flour, 4 teaspoonfule acid, 6 ounces, gum arabic gallon water, loaf then add $\frac{1}{2}$ pint water the whites of 5 eggrabic, 1 ounce. Yart $2 d$; sccond ; boil 3 minut; when tho first part is; beat finely together; of syrup to two-thites, and it is done. Dart is blood warm, put in the of carbonate of soda, made glass of water; add ans : 3 tablespoonfuls PEPPERAIINT Cordiade fine ; stir well, and dee-third teaspoonful white sugar, 10 lbs., oil pen-Good whisky, 10 drink at your leisure. well worked in the fluid pepermint, 1 ounce, in 1 gals., water 10 gals., stand one week before us 1 lb . burned sugar to pintalcohol, 1 lb . flour yon have any flavor desired. Other oil in pla color. Mix, and let it Silver-top Drink.-Wa. 4 teaspoonfuls, white of 5 ter, 3 gts., white boil to a syrup; then of 5 eggs, beat with 1 taple 4 los., ess. of lemon, tartaric acid, to the otlide into equal parts, tablespoonfnl of flour; teaspoonful of each of ther 4 ounces of cart, and to one add 3 ounces; of the glass), to two-third syrups, more or lasate of soda; put in a Sangaree. - Wine, ale of a glass of water (according to the size according to the senc, ale, or porter, or twater; drink quick.
SODA SYrups, -Loaf of the year, loaf stigar to water, hot or cold, gum arabie, 2 oz ; mix or crushed sugar, 8 lbs to taste, with nutmeg. gum is dissolved, then in a brass or copper., pure water, 1 gallon, and strain through white flannel mill the
which add tartaric acid, $\boldsymbol{E}_{2} \mathrm{oz}$. ; dissolve in hot water ; to flaror, use extract of lemon, orange, vanilla, rose, sarsaparilla, strawberry \&c., \&c., $\frac{1}{2}$ oz. or to your taste. If yon use juice of lemon, add $2 \frac{1}{1}$ lbs. of sugar to a pint, you do not need any tartaric acdd with it ; now uso two tablespoonfuls of syrup to $\frac{8}{4}$ of a tumbler of water, and $\frac{1}{8}$ teaspoonful of super-carbonate of soda, made fine; drink quick. For soda fountains, 1 oz . of super-carbonate of soda is used to 1 gallon of water. For charged founkins no acids are needed in tho syrups.

Stovarron Brtrers.-Gentian, 4 ounces, orange peel, 4 ounces, Columbo, 4 ounces, camomile flowers, 4 ounces, quassia, 4 ounces, burned sugar, 1 lb ., whiskey, $2 \frac{1}{3}$ galls. Mix and let it stand 1 week. Bottle the clear liquor.
Combion Smare Beer.-A handful of hops to a pail of water, a pint of bran, add half a pint of molasses. a cup of cast, and a spoonful of ginger.
Royal Por.-Cream tartar, 1 lb ., ginger, $1 \frac{1}{2}$ oz., white sugar, 7 lbs., essence of lemon, 1 drachm, water, 6 galls., yeast 1 pint. Tie the corks down.
Raspbermy Syrup without Raspberries.- First make a syrup with 36 lbs . of white sugar, and 10 gallons of water, and put it into a clean mixing barrel. Then dissolve $\pm \mathrm{lb}$. of tartario acid in 1 qt . of cold water, and add to the syrup. Next take $\frac{1}{2} \mathrm{lb}$. orris root and pour orer it half a gallon of boiling water ; let it infuse until cold, then filter, and put is into the mixing barrel, stirring it well.

To CoLor. - Boil $\frac{1}{2}$ oz. of cochineal ; 3 cz. cream tartar; $\frac{1}{2}$ oz. saleratus; and $\frac{1}{3} \mathrm{oz}$ alum in 1 qt . of water until you get a bright red color, and add this to the sy rup till the color suits. The above is a very valuable receipt, and will make 16 gals. syrup at a very low cost per gallon. If it is desirable to produce a richer syrup, add more sugar. Colors should be made in a brass or copyer kettle.

Bottled Soda Water without a Machine.-In each gallon of water to be used, carefully dissolve $\$ \mathrm{l}$ b. crushed sugar, and one ounco of super-carbonate of soda ; then fill pint bottles with this water, hare your corks ready; now drop into each bottle $\frac{1}{2}$ dram of pulverized citric acid, and immediately cork, and tie down. Handle the bottles carefully, and keep cool until needed. More sugar may bo added if desired.
Orster Sour. - To ench dozen or dish of oysters, put $\frac{1}{2}$ pint of mater; milk, 1 gill ; butter $\frac{1}{2}$ oz. ; powdered crackers to thicken; Uring the oysters and water to a boil, then add the other ingredients previously mixed together, and boil from threo to five minutes only Scason with pepper and salt to taste.

Mock Terrapin.-A supper dish. Malf a calf's liver; seasoned, fry brown. Hash it, not very fine, dast thickly with flour, a teaspoonful mixed mustard, as much cayenne pepperas will lie on a half dime; 2 hard eggs, chopped fine, a lump of butter as large as an egg, a teacup of water. Let it boil a minute or two ; cold veal will do, if liver is not liked.

Blackberry Wine.- Wash the berries, and pour 1 gt . of boiling water to each gal. Let the mixture stand 24 hours, stirring occisionally $;$ then strain and measure into a keg, adding 2 lbs . sugar, and good rye whiskey 1 pint, or best alcohol, I pint to each gaL. Cork tight, and put away for use. The best wiye that can be made. and then it with ground -Take a loin of mutto catsup and y it. Irave good, allspice, and salt, let it into small chope, small, and addper, if necessary well seasoned withnd a night, hard boiled eg to tho mutton stewredil turnips and with flour, butter, imitation Apple forced meat balls. mir together apple Botcer. - Valls.
add 10 tablespoonfur the fire till it cogr, 1 qt . ; cheap molasses 1 qt . ter, then add $1 \mathrm{qt}$. scal wheat flour, and cold to cook; take it off Lemon Syrup, - Halding water, stir and cold water to make a batdrop in the white of 1 arna sugar, 1 lb ., boil in for fifteen minutes. it stand 2 days; shake ogg, and strain it. Add fater down to n quart improve it. Surerior Raisin Wrie stems and dust; put them in a largolbs. of chopped raisins free from weth burnt sugar; bottlo and strain througed, shaking occasionally Harsin Wine, not excceding cork well for uso. Then, or filter; color mater and Wine Equal to St libs, to each gallon. The more rajisins the chopped let it stand till shemry.-Boil the the whole stand provionsly well To each gal, of thper quantity of misins, and bung ior 1 month, stirrinhed, and freed from 4 lbs. of vessel, leaving in closely for 1 inong frequently; them stalks; let then to every all sediment behinonth more; then rack remove the oranges, the rinds gals. add 6 lbs. of find repeat till it becomenother brandy, whe rinds being pared. of fine sugar, and 1 becomes fine: the whole stand should be added to very thin, and infused in. of good main bottled three months in the liquor at its last recin 2 qts. of It is in the catwelve months. To cask, then bottle last racking. Let till the wine is b, put in a couple of give it the flavor of Mt should rePolt wie is bottled. good brandy, 3 Worked cider, 42 pals. aloes, and the fruit of ; pure spirits, 6 gals. ;good port wine, 12 gals: wines, or use burnt of the black haws. mals; mix. Elderberries and and Americane burnt bugar. 7 gals. ; best fourth pts.; milk, 1 gal. ; bitartrof brandy, 1 qt. (crab-apple cider is the best), time; bottlo while fermente of potassa, 2 gez Britisif Ceampagnenting. An excellont imitation let stand a short libs. ; water (warm), 45 .-Loaf sug excellent imitation.
temperature add yeast, 1 gals.; whito tartar, 4 oz brown sugar (palo), 48 bruised wild cherries, 14 qi.; and aftervo 4 oz ; mix, and at a propor oz. Bottle while fermenting oz. ; pale spirits 1 sweet cider, 5 gals.; British Madeira - Ping. mash and strain; then ale malt, 1 bushel; boiling ment, next add raisin or Cadd white sagar, 4 lbs l . water, 12 gals.; qts.; port, 2 qts. ; bung down. wino, 3 qts. ; brandy, 3 yeast 11 lb . FerCotie beer juico, add 2 and other FiUtit TVITE juico, add 2 gals. soft rater, 6 lbs Wres. -To every gallon of expressed 15. bromnsugar, cream tartar, $1 \pm$ ozed
and qt. brandy to every 6 gals. ; somo prefer it without prandy. After fermentation, take 4 oz . isinglass dissolved in 1 pt . of the whe, and put to each barrel, which will fine and clear it: when it must bo drawn into clean casks, or bottled; which is preforablo.

Blackibiriey and Straivbemiry Wines aro mado by taking the above wine when mado with port wine, and for every 10 gals, from 4 to 0 gts . of the fresh fruit, bruised and strained, aro added, and let stand four days till the flavor is extracted; when bottling, add 3 or four broken raisins to each bottlo.

Morella Wine.-To cach quart of the expressed juice of the morella, or tame cherries, add 3 qts. water and 4 lbs. of coarso brown stigar; let them ferment, and skim till worked clear; then draw off, avoding the sediment at the bottom. Bung up, or bottle, which is best for all wines, letting the bottles llo always on the side, either for wines or beors.

London Simenry.-Clopped raisins, 400 lbs. ; soft water, 100 gals. ; sugar, 45 lbs .; white tartur, 1 ll .; cider, 16 gals. I.et them stand together in a close vessel one month; stir frequently. Then add of spirits, 8 gals.; wild cherries bruised, 8 lbs . Let them stand one month longer, and fine with isinglass.

Einglisi Patent Wine from Rifobard.-To each gal. of juice, add 1 gal. soft water, in which 7 lbs . brown sugar have been dissolved; fill a keg or barrel with this proportion, leaving the bung out, and keci) it filled with swectened water as it works off, until clear. Any other vegetable extract may be used if this is not liked; then bung down or pottle as you pleaso. The stalks will yiold 4 their weight in juice; fine and settle with isinglass as abovo. This wine will not lead to intemperance.

Various Vines.-To 28 gals. clarified cider add good brand y 1 gal.; crudo tartar (this is what is deposited by grape wines), mills to settle it, 1 pt. ; draw off 36 hours after thorouglily mixing.

Ginaer Wine.-Put ono oz. of good ginger-root bruised in 1 gt. 03 per. cent. alcohol; let it stand nino days, and stmain; add 4 qts. water, and 1 lb . white sugar dissolved in hot water, color with tincture of sanders to suit.

Another.-To 1 qt . 05 per cent. alcolol add 1 oz . best ginger-root (bruised but not ground), 5 grs. capsicum and 1 dr. tartaric-acid. Let it stand one week and filter; now add 1 gal. water in which 1 lb . of crushed sugar has been boiled. Mix when cold. To make tho color, voil $\frac{1}{2}$ oz. cochincal, $\frac{9}{4} \mathrm{oz}$. cream tartar, $\frac{1}{2} \mathrm{oz}$. saleratus, and $\frac{1}{2} \mathrm{oz}$. alum, in 1 pt . of water till youl get a bright-red color.

To nestome Flat Wine.-Add 4 or 5 gals. of angar, honey, or bruised raisins to every 100 gals., and bung closo; a little spirits may lee added, to roughen; tako bruised aloes, or powdered catechu, and add to the wine in suitable proportions, or add a small quantity of bruised berries of the mountain ash, to allay inordinate flatuess. Let it stand 2 lours and bottle, using yeust, of course, as before.

Wirite Wines are generally fined by isinglass in the proportion of $1 \frac{1}{2} \mathrm{oz}$. (dissolved in $1 \frac{1}{3}$ pts. of water, and thinued with some or the wine) to the hogshead. Red Wines hie genorally fined with the whites of eggs, in the proportion of 12 to 18 to each pipe; they must be well veaten, to a froth with about 1 pt . of water, and afterwards mixed with a little of the wine before adding them to the liquor. Bummage well

Cinampaant Cider.-Good palecider, 1 hhd. ; spirits, 3 gals.; angar, 20 llss - mix , and let it stand one fortnight; then fino with skimmod milh, gal.; this will bo very pale, and a similar article, when properly bottled and labelled, opens so brisk, that even good judges have mistaken it for genuine champague.
berlin Cariraway Cordial.-Take8gals. apirit, 50 por cent. ; 1 oz. oil of carraway, which you dissolvo in spirit 95 per cent. ; 8 lbs. sugar; 8 lbs . water. Dissolvo your sugar in the water ; mix, stir and filter.

Stomacir Bitters kqual to Hostetters.-European gentlan root, $1 \frac{1}{3}$ oz. ; orango peel, $2 \frac{1}{2}$ oz. ; cinnamou, 市 oz. ; aniso seed, $\frac{1}{2} \mathrm{oz}$. coriander seed, foz. ; cardamon seed, $\frac{1}{8}$ oz. ; unground Peruvian bark, $\frac{1}{3}$ oz.; gum kino, \ddagger oz.; bruise all theso articles, and put them into the best alcohol, 1 pt. ; let it stand a weck, and pour off tho clear tincture; then boil tho dregs a few minutes in 1 gt. of water, strain, and press out all the strength ; now dissolvo loaf sugar, 1 lb . in the hot liquid, adding 3 qts. cold water, and mlx with the spirit tincturo first ponred off, or you cam add theso, and let it stand on tho dregs if preferred.

Bonki's Bitters.-Rasped quassia, 1\} oz. ; calamus, 13 oz. ; porrdered catechu, 1 l oz ; cardamon, 1 oz . ; dried orange pocl, 2 oz. ; macerato the above ten days in gal. strong whiskey, and then filter, and add 2 gals. water ; color with mallow or malva fiowers.

Cinacoa Comdial, 40 Gals.-Essence of bitter oranges, 2 oz. ; ess. of neroll, 2 oz ; ess. of cimamon, $\frac{4}{} \mathbf{~ o z .}$; 3 drs. mace, infused in alcohol. Dissolvo the abovo essence in 1 gal. alcohol, 05 per cent.; then put in a clean barrel 13 gals. alcohol, 85 per cent.; 26 gals. siggar syrup, 30 degrees baune ; and add 1 gal. perfumed spirit as above. Color with saffiron or turmeric.

Curacoa d'Ilollande, 20 Gals.-Curacor orange-peel, $2 \mathrm{lbs} ; \ddagger \mathrm{lb}$. Ceylon cimamon. Let them soak in water; boil them for firo minutes with the inice of 32 oranges and 14 gals. of plain whito syrup ; then add 6 gals. alcohol, 05 per cent. ; strain, filter; color dark yellow with slygar coloring.

Anisette Cordial, 40 Gals.-Put in Ω barrel 13 gals. alcohol, 5 per cent. Dissolvo 33_{2} oz. essence of green anise-seed in 1 gal. 95 per cent. alcohol, and add $\frac{1}{3}$ gal. orange-flower water ; 8 or ten drops infusion of maco, and 5 drops essence of cinnamon. Then put in tho barrel 26 gals. sugar syrup, 25 degrees Baumé ; stir fifteen minutes, and let it rest four or fivo days ; then filter. Add 2 or 3 sheets of filtering paper.
Ratafia.-Latafia may be made with the juice of any fruit. Take 3 gals. cherry jnice, and 4 lbs. sugar, which you dissolvo in tho juico; steep in 21 gals. brandy ten days; 2 drs. cinnamon, 24 cloves; 16 oz. peach-leaves ; 8 oz . bruised cherry kernels. Filter, mix both liquids, and filter again.

Arracis Puncri Syrup.-53ł lbs. sugar ; 33 gals. water. Boil up well ; then add 18 gals. lemon-julce to tho loiling sugar, and stir till the liquid is clear; pour it in a clean tub, and when nearly cool, add 5 gals. Batavia arrack, then filter.
Symups for Soda Fountanvs, \&ec-1. Simple syrup. Whito sugar, 10 lbs ; water, 1 gal ; best isinglass, $\frac{1}{2} \mathrm{oz}$. Dissolve the isinglass in hot water, and add it to the hot syrup. The syrup is to bo made with gentlo heat and then strained. 2. Lemon-a-Grato off the ycllow aind

228

 GROCERS AND CONFECTIONERS' RECEIPTS.of lemons and beat it up with a sufficient quantity of granulated sugar. Express the lemon juice, add to esch pt. of juice 1 pt . of water, and 3 lbs . of granulnted sugar, including that rabbed with the rind; warm until the sugar is dissolved and strain. 3. Lemon-bSimple syrup 1 gal, oil of lemon 25 drops, citric acid 10 drams. Rub the oil of lemon with the acid, add a small portion of syrup, and ınix. 4. Strawbervy-a-Strawberry juice 1 pt., simple syrup 3 pints, solution of citric acid 2 drams. 5. Strawberry-b-Fresh strawberries 5 gts. white sugar 12lbs., water, 1 pt. Sprinkle some of the sugar over the fruit in layers, and allow the whole to stand for several hours ; express the juice and strain, washing out the pulp with water; add the remainder of the sugar and water, bring the fluid to the point of boiling, and then strain. This will keep for a long time. 6. Raspbervy. Raspberry juice 1 pt., simple syrup 3 its., citric acid 2 drams. Raspberry syrup may also be made in a way similar to No. 5 for strawbery. 7. Vanilla.-Fluid extract of vanilla 1 oz., citricacid, soz., simple syrup 1 gal. Rab the acid with some of the syrup, add the extract of vanilla, and mix. 8. Vanilla Cream.-Fluid extract of ranilla 1 oz., simple syrup 3 pts ., cream or condensed milk 1 pt ; may be colored with carmine. 9. Cream.-Fresh cream 1 pt., fresh milk 1 pt, powdered sugar 1 lb ; mix by shaking, and keep in a cool place. The addition of a few grains of bicarbonate of soda will for somo time retard souring. 10. Ginger. -Tincture of ginger 2 fluid ozs. simple syrup 4 pts. 11. Orange.-Oil of orange 30 drops, tartaric acid 4 drams, simple syrup 1 gal. Rub the oil with the acid, and mix. 12 Pineapple.-Oil of pineapple 1 dram , tartaric acid 1 dram, simplo syrup 6pts. 13. Orgeat. -Cream syrup 1 pt., vanilla syrup 1 pt , oil of litter almonds 4 drops. 14. Nectar.-Vanilla syrup 5 pts., pineapplo syrup 1 pt ., strawberry, raspberry or lemon 2 pts . 15 . Sherbet.Vanilla syrup 3 pts., pineapple 1 pt., le mon syrup 1 pt. 10. Grape.Brandy ${ }^{\frac{1}{4} \text { of a pt., spirits of lemon } \frac{3}{4} \text { oz., tincture of red sanders } 2 \text { ozs., }}$ simple syrup 1 gal. 17. Banana.-Oil of banana 2 drams, tartaric acid 1 dram, simple syrup 6 pts. 18. Coffee.-Coffee roasted $\frac{9}{4}$ lbs., boiling water 1 gal. Enough is filtered to make abont $\frac{1}{2} \mathrm{gal}$. of the infusion, to which add grauulated sugar 7 lbs. 19. Wild Cherry.-Wild cherry lark coarse powder, 5 ozs. Moisten the bark with water, and let it stand for 24 hours in a close vessel. Then pack it firmly in a percolator, and pour water upon it until 1 pt . of fluid is obtained. To this add 28 ozs. of sugar. 20. Wintergreen.-Oil of wintergreen 25 drops, simple syrup 5 pts., and a sufficicut quantity of burnt sugar to color. 21. Sarsaparilla-a-Oil wintergreen 10 drops, oil of anise 10 drops, oll of sassafras 10 drops, fluid extract of sarsaparilla 2 ozs. simple syrup 5 pts., powdered extract of licorico 1 oz . 22. Sarsaparilla -b-Simple syrup 4 pts., compoind syrup of sarsaparilla 4 flud ezs., caramel 11 ozs., oil of wintergreen 6 drops, oil of sassafras 6 drops. 23. Maple.-Maple sugar 4 lbs., water 2 pts. 24 . Chocolate.-Best chocolate 8 ozs., water 2 pts., white sugar 4 lbs. Mix the chocolato in water, and stir thoronghly over a slow fire. Strain, and add the sugar. 25. Cofec Cream.-Coffee syrup 2 pts., creari 1 pt. 26. Am-brosia.-Raspberry syrup 2 pts., vanilla 2 pts., hock vine 4 ozs. 27. Hock and Claret.-Hock or claret wine 1 pt ., simple syrup 2 pts . 28. Solferino.-Brandy 1 pt., simple syrup 2 pts. 29. F'ruit Acid. - Used in some of the ejrrups). Citric acid 4 ozs., water. 8 ozs . Most of the

Byrni order
order to prot made from fruits may havo a little gam arabic added in Butymio Ere a rum. Dissolved in 8 or 10 pased to impart a plne applo flavor to esscnce. From 20 to 25 drops of af alcohol, it forms the pine apple pine applg a little citric acid, imparts to the anitured to 1 lb . sugar, Aurio. dicurlo-Acetic. Etimer is a preparation of en a strong taste of pear, and is used for flavoring alcohol, it is sold as essence of ather ingroacetic ether, with half noving different liquors. Fifteen of Jargonello alcohol, form whatf a part of acetic ether, dissolved in parts amyloWhen employed to flay be called the leergamot-pear esience, which parts the odor of the Bergagar, acidulated with a little citric acid, imlelargonate on etinition pear, and a fruity, refreshing taste. agreeable odor of the quinco, and ETHER (polargonio ether), has the proportion, forms the quince essence when dissolved in alcohol in duo Acetate of Ahyino quince essence.
butyric ether, forms in alcololic (same as amylo ether), mixed with Valeriavate of Amilic Esplution the banana essence. ether in the proportion of 1 part to
liquid under tho namo of apart to 6 or 8 of alcohol, forms a
Mirik Ponch. - Ono of apple essence. water, 1 wine glass of Cognespoonful of fine white sugar, 2 ditto of blerful of shaved ice; fill with milk. $\frac{1}{2}$ ditto Santa Cruz rum, $\frac{1}{8}$ tumgether, and grate a little nutheg on top Shake the ingredients well toand no ice. p. To make it hot, use hot milk of a couple of lemons, Malt lump-sugar in cold water, with the juico let, and most be well mingled through a fue wire straner; this is sherof rum to five of sherbet. Cut a Then add old Jamaica rum, one part cach section rapidly aronnd the eonple of lemons in tiwo, and run squezing in some of the delicate acide of the jug or bowl, gently water- Julep. - One tablespoonful, when all is ready. them well well with a spoon. Tako 3 or 4 e pulverized sugar, 2$\}$ ditto brandy, and fill the sugar end water, add 1+ wigs of fresin mint, press mint, and insert te glass with silaved ice, thende glasses of Cognao the leares will hien in the ice with the stems dout the sprigs of small pieces of sliced in the shape of a bouquet; arrangards, so that Jamalca ram, and orange on top in a tasty, arrange berries and or strum. on top. Sip with a glass tube 1 small glass brundy, juice cider, 1 bottle soda water, 1 glass sherry, and nutmeg to tasto. Flavor it win lernon, peel of \ddagger of a lemon, sugar ico it all well. IIalf and Male.-In London, this drink ig nat porter and half ale; in America, it ise mado is made by mixing half half old ale.
by mixing half new and glass of cider brandy, t tablespoonful of fine white sugar, 1 wine full of boiling water, and grato a littlopie. Fill the glass two-thirds Apple Puxcir.-Lay in a china borpl ntmeg on top.
alternately, each layer being thickly strowed with powdered sugar. l'our over the fruit, when the bowl is half filled, a bottio of claret; cover, and let it stand for 6 hours. Then pour it through a muslin bag, and it is all ready.

Old Man's Milk.-One wine-glass of port wine, 1 teaspoonful of sugar. Fill the tumbler one third full of hot milk.

Perfect Love.-One tablespoonfill sugar, 1 pieco each of orange and lemon peel. Fill the tumbler one-third full of shaved ice, and fill balance with wine; ornament in a tasty manner with berries in seasou ; sip through a straw.

Molasses Candy.-West-Indian molasses, 1 gallon ; brorn sugar, 2 lbs. ; boil the molasses and sugar in a preserving kottle over a slow fire ; when done enough it will cease boiling ; stir frequently, and when nearly done, stir in the juice of four lemons or two teaspoonfuls of essence of lemon • afterwards butter a pan, and pour out.

Confrctioners' Colors.-Red, cochineal, 1 oz. ; boil 5 minutes in half pint water ; then add crean tartar, 1 oz. ; pounded alum, $\frac{1}{3}$ oz. ; boil 10 miutes longer, add sugar, 2 oz ; and bottle for use. blue, put a little warm water on a plate, and rub in findigo till tho required color is got. Yellow, rub with some water a little yellow gamboge on a plate, or infuse the heart of a yellow-lily flower with milk-warm water. Green, boil the leaves of spinach about 1 minuto in a little water, and. when strained, bottle for uso.

To Candy Sugar.-Dissolve 2 parts of double refined sugar in 1 of water. Great care must be taken that the syrup does not boil orer, and that the sugar is not burnt. The first degree is called the thread, which is subdivided into the little and great thread ? you dip your finger in the syrup, and apply it to the thumb, the reity of the syrup will, on separating the finger and thumb, afford ead which shortly breaks, this is the little thread ; if the thread a its of a greater extension of finger and thunb, it is called the great chread; by longer boiling you obtain the pearl, which admits of being drawn without breaking by the utmost extension of finger aud thumb; this makes candied sugar: by further boiling you obtain the blow, which is known by dipping a skimmer with holes in the syrup, and blowing through them; if bubbles are perceived, you lave got the blow. The feather implies more numerous bubbles, and then the sugar will fly off like flakes while the skimmer is being tossed. By boiling longer, you obtain the crack; it will crack when broken, and does not stick to the teeth; dip a teaspoon into the sugar, and let it drop to the bottom of a pan of cold water. If the sugar remains hard, it lus attained the degree termed crack.

Fig Candy, -Take 1 lb . of sugar and 1 pint of water ; set orer a slow firo. When done add a ferv drops of vinegar and a lump of butter, and pour into pans in which split figs aro laid.

Kaisin Candx can be made in the same manner, substituting stoned raisins for the figs. Common molasses candy is very nico with all kinds of nuts added.

Scotcir Butter Candx.-Take 1lb. of sugar and 1 pint of water; dissolve and boil. When done, add one tablespoonful of butter, and enough lemon juice and oil of lemon to finvor.

Comaron Lexron Candy, -Tako 3 lbs. coarse brown sugar : add to
it thro an hou to clear perfect cold wa snap lik PEPP1 as lemo powdere square ti Poppe an excell Rock White sat boiled to weight, a a brass ke deep, smo cqual dist lettle, abo from one s_{i} or paper to pared the 1 tho threads to crystalliz take place is pour off the crestals that is thorongh! When it is stituting bro hot fire in ord kettle should prevent the so Oranger of teaspoonft jutst as the syr is flavored wit Vanilla Roek riolet. The de tho colored syn Ginger Can spring water; ${ }_{2}$ or 3 spoonful Boil the mixtur excced thls poin and stir the sug.
the spoon, with the spoon, with
for a moment for a moment
this happen by n sistency. Dip t] upon butterod pa

$$
\begin{aligned}
& \text { ta hour; put to it a of witlle gater, and set orer a slow } \\
& \text { to clear it. }
\end{aligned}
$$ to clear it. Continuo to gum arabic dissolved slow fire for half perfectly clear, try it by take off the scum as long in hot water; this is cold water, or by taking dipping a pipe-stem first anto any rises. When suap like glass. Flavor a withoonful of it into a sancer. if and then into l'eppelimint, hose, on Horsence of lemon and cut if done, it will as lemon candy. Flavor with enound Candy.-Ther into sticks. powdered horehonud. I'our it essence of rose or -They may be mado square tin pan. Pour it out in a wuttored peppermint or fincly Popped Colln, dippod in boiling molases ared paper, placed in a an excellent candy. white sugar, filter it, aude fino rock candy, clarify donblo refined boiled to a blister. The boiling it till it is ready to donble refined weight, a degree more or less it brass kettlo, of about 16 less prerents its crystallization on the syrup deep, smooth and polished or 18 inches diameter and from. Then tako cqual distances from each the inside. Make 8 or from 6 to 8 incles frome, about 2 inches from other in a circle around the small holes at from one side to the other, and bottom; pass threads the sides of the or paper to prevent the syrup frop tho holes on the outside the the kettle, pour in tho syrun rumning out. Intside with pasto to threads; then place it in syrup, till it rises about ang thus pretalerystallize, agitating it from atove moderately heated inch abovo take place in six or seven rom timo to time. The cated, and leare it pour off the remainingen days. As soon as the crystallization will crystals that are left at thrup, and throw in a littlo crystals are formed, is thoroughly draiend set it inottom of the ressel. So soon to wash the When it is fit for use. Straw very hot stove, leave it for as the mass hot fing brown for loaf sugar -colored rock candy is mor two dajs, hot fire in order to render this. The syrup must be boiled by subpretle should be sponged repeandy perfectly white. Thed over a very Orate sugar from adhepeatedly during the boiliug sides of the of teaspoe rock Candy is ming and burning. boiling process, to feaspoonfuls of orange made by flavoring.

jitstas the syrup is about to forver vater, and colorinp with a comple is flavored with rose water be taken from tho fire riollla Rock Candy is perfume colored with clarificde Rock: Candy violet. The degree of coloring with vauilla, and col carmine lake. tie colored syrup on a sheet of may be tested by dropred with liquid Ginger Candy.-Dissolvo of white paper. by dropping a little of spring water; set itobissolve 1 lb . douber.
Ilave ready a teaspoover a clear fire, and le-refined sugar in a pint of 2or 3 spoonfuls of the spres powdered ginger, bil to a thin syrup Boil the mixture into syrup, then stir it cr, mir it smoothly with excced this point; then adake, watching it carefinly into the whole. and stir the sugar constnad the freshly grated rindy, that it may not the spoon, without sintantly and rapldyly until it fil a large lemon, for a moment beyond ting. When dropped upon fall in a mass from this happen by mistake the point, it wifl fall upon a plate. If boiled sistenoy. Dip the cand add a liftle water, and into a powder. Shonld upon buttered pang, thand from the lettle, and dron to the proper conpans, then set it array to cool.

Crfam Candr.-To 3 lbs of loaf sugar add $\frac{1}{2}$ pt. water, and set it over a slow fire for half an hour; then add a teasponful of gum arabic dissolved, aud a tablespoonful of vinegar. Boil it till it is brittle, then take it off, and flavor with vanilla, roso, or orange. Rub the lands with sweet butter, and pull the cand: \quad till it is whito; then twist or break it, or stretch it out into thin white strips, and cut it off.
Red Verdun Sugared Alaronds.-Dry thealmonds in a storo by a slow firc. When dry enough to snap between the teeth, put them into n swinging basin and gum them by throwing over them a littlo gum arabic solution, cold; swing them constantly till dry; then give them another coating of gum arabic mixed with 4 oz . su" ${ }^{\text {wr }}$, and swing them again till dry, using no fire. When they are thonoughly dry, set them over a modorate fire. Dissolvo some sugar in oraugo or rose water, not too thin, set it over the fire 2 or 3 minutes, strain it through Ω sieve, and pour it over the almonds in tho basin. Swing them till they aro thoroughly coated and dried; then add another coating, composed of 2 parts of carmine, one part of gum, aud one part of sugar, and proceed as before. If the almonds are not perfectly covered, gire them a coating in which thero is considerable gum; and when thoroughly moistened, throw on them some sifted sugar, stir till the mixture is ail absorbed, then add successive coatings of sigar till they are large enough, and put them into the stove to remain till the next day, when in order to whiten them, you will proceed to boil 6 or 7 lbs . of fine clarified sugar to a blister, add 1 lb . of starch after taking it from the fire, stiring it constantly till a paste is formed a little thicker than that used for prastilles; a fer drops of blue lako suay be added to produce a pearl white. Put the almonds, warm, into the swinging basin, add enough of tho prepared sugar to coat them, swing the basin till they are nearly dry, then set on the fire to finish the drying, then take the basin off the fire, heap them up in the middle, so as to allow the bottom of the ressel to cool; then add the conting of sugar, swing and dry them as before, and continue the process until 4 successive contings of equal thickness have been given; then heat them well in the basin, put them into pans, and set them in the store to remain over night. You will then proceed to polish them by giving them a coat of the prepared sugar and starch, and shake them violently until they are quito dry; give them another coating and proceed as before, and continuo the process until they have received 4 successive coatings, when they will generally be found sufficiently polished. When the polishing is finished, put the almonds over a firo and stir gently till all are thoroughly heated, then place in a stove till the next day in a wicker basket lined with paper.

Spanish Suonaed ammonds.-Mako verdun sugared almonds abont the size of pigeon's eggs, whiten and polish them by the provious directions, and paint different designs on them when completed.

Superfine Vanilla Sugared Aimonds.-Proceed in the sume manner as in the manufacture of verdun sugared almonds, make the solntion of sugar in pure water; crush the essence of vanilla with a little sugar, and put in the solution.

Common Suaned Alaronds.-Common almoinds, 201 lbs ., sugar 8 lbs., farina, 20 lbs ., starch, 2 lbs. Heat the almonds in the eswinging hasin, when they boii, mako them into a pulp with diluted starch; giro first a rarm then a cold coating, cover them with farina, shaking
the ba requis in as descril
Sure shelled starch vanilla of gum, SUPEI starch, 4 flavor to color ano Corla 14 lbs. farina wi been pres aro used polished Coriani for the wh do not requ and are pal common su ANise-se stove ; rub dust, then p a thread, so sufficiently, They vary in MINT SUG.
in cont it in tho
mhiter than coating is sol sugar.

Grocers

 AND CONFECTIONERS' RECEIPTS. 233 requisite size, spread them when the almonds 1 in a stove to finish dryem out on sieves; aftave been coated to the described for the fine sug: Whiten them, and a fortnight put theme Superfine Chocolate Sug almonds. and fiuish by the process shelled and roasted, 20 lbg Sugred Alm vanilla sugar plue same methodimque sugar, 16 lb ecasa cacaonuts, of gum, to touch the, but care must be taired as for tho supertino Superfine Sut cacao nuts lightly taken in adding the coating starch, 4 oz. Emplied Filberts, - Fis they are very easily brokens flavor to taste. Roy the same process - Filberts, 50 lbs ., sugar, 4 los. color and fragrance water is generally as fref suredared almonds and Coriand grance 14 lbs. Ther waghar Plums.-Coriand farina without minngs of the basin arer, 21 lbs , farina, 30 lbs been prescribed making a paste, and are added to the colb., sugar. are used to whiter the common the method is focilander and pollshed with whiter them, and 6 sugared almonds: 8 owed that hias Coriander carmine, Prussian bo polish them; ; 8 Ibs. of sugar for the whitenin Bottres.-Corine, and saffron. color after being do not whitening, 3 lbs , starch 1 lnder, 10 lbs , fain and at require brilliancy. They, 1 lb . These are simp, 10 lbs ., sugar common put into little bottles. In making these follow tho sinall peas, stove ; rub it in thar Pcums.-Dry 2 ibed dust, then pat it in a hands to break off the green anise-seed in the a thread, so as to render thing basin, and coat it s, winnow to rid of sufficiently, whiten and polish candies hard and britth sugar boiled to They vary in size, being poish them, like the and brittle. When coated Mint Sugar Plums, generally as large as a pea sugared alinonds. coat it in the same ms.-Dry some perge as a pea. mhiter than rape seed), whith anlse seed (it meed in a stove and coating is sometimes compen and finish like must not, however, be sugar. composed of equal parts of seed. The first parts of peppermint and and boll it till it is brittle, talarify 3 lbs . of common brom sugar, puns; rub the hands with a little from the fire, pour brown sagar, trist and you would molasses cole butter, and as soon as in buttered Caranies is made by it into stjeks. then poluring is made by boiling clarif. is cool enough to recoiled slab or she sugar till it is very brittle it in small squares, abont an impression wit tin, and, as soon as it then turning over the about an inch in size, with the finger, stamplng that may hare adhered fross, wiping the bottom a carrunel mould ; harden. If you hare nom the slab, and puttin to remove any oil siab with a common case knifo al mould, you m it in dry place to other coating with sugar. knlfo, after which you may score it on the ter they are made. with a lump of sugar ; add by grating the yellow rind of a lemon water chongh to dissolve the sugar a few drops of lemon juice with sugar completely and stir the juice with

234 GROCERS AND CONFECTIONERS REEEIPTS.

to the briled syrup n few minutes before it is taken from the fire. Orange and Lime caramels are prepared in the same mamer fron these respectivo fruits. Cofjee caramel, coffee, 2 oz., sugar 1 lb . Mako an infusion of the coffee, using as little water as rossible; strain it through a cloth, and stir it gradually into the boiled syrup n few minutes before taking it from the fire. Chocolate caramel, chocolate, 4 oz ., sugar 1 lb . Dissolve the chocolate in as little water as possible, and add it to the boiled sugar, as in the coffec caramels.. Van. illa and Orange cream caramels are made by using the respective esseuces of these fruits.
Cocoa Nut Candy.- Pare and cut cocoa-nut into sllps, or grate on a coarse grater the white meat of cocoa-nuts until you have $\frac{1}{2}$ a potind ; dissolve $\frac{1}{2} \mathrm{lb}$. of lsaf sugar in 2 tablespoonfuls of water ; put it over the fire, and, as soon as it boils, stir in the cocoa-nut. Continne to stir it until it is boiled to a flake, then pour it on a butterede pan or marblo slab, and cut in whatever forms you wish, when it is uearly cold. Lemon or other flavors may be added.
Candy Drops or Pastilles.-Pound and sift doublo-refined sngar, first through a coarse, and then through a fine sievo. Put tho sugar into an earthen vessel, and dilute it with the flavoring extract, mixed with a little water. If too liquid, the syrup will be too thin, ani "t," cops wiil run together ; while, if too thick, the syrup will be to \quad in, and cannot be poured ont easily. When the sugar is mes i inther stiff paste, put it in a small saucepaul with a spout aud set itiover the fire. As soon as it begins to bubblo up tho sides of the sancepan, stir it once in the middlo, take it from the fire, and Cecp it in smill lamps, of the size and shape required, upon shects of tin, to si vif. alours, then put them in the stove to finish drying. is soon us they ary perfectly liard and brilliant, take them from the fire, otherwise they will lose their aroma. Color the syrup just before taking it from tho fire.
Orange, Jasmine, and Cloves Dnops are made by mixing the alove paste with theso ruspective extracts :
For Salad Drors. - Water distilled from lettuce is used.
Saffron Drops.-Mako an infusion of saffrou, strain it, let it cool, uso it to mix the pasto, and proceed as before.
Heliotiore Dhops.-Proceed in the samo manner, flavoring tho paste with a fow drops of oil of neroli, or oil of orauge, jasmine and tube-rose, and color violet.

Pink Drops.-Flavor the taste with tincture of red pinks, and color with carminc lake.
Cinnamon Drors.-Mix 5 drs. powdered ciunamon and 8 oz . of sugar with mucilage enough to mako it into a paste, and procced as above.

Cuevina Gomr-Take of prepared baleam of tulu. 2 oz ; white sngar 1 oz ., oatmeal 3 oz ., soften the gum in water bath and mix in the ingredients; then roll in finely powdered sugar or flour to form ticks to suit.

Marshmallow and Licomice drops are made the same may.
Rose Drops.-Mix the paste with rose water, and eolor with carmine lake. Proceed as above.

Lidion and Orange Drors.-Rasp off the jellow rind of an orange or lemon; mix the raspings with double-retined sugar; add 5 grs of will adheed as berore. If too sugar, color with rellow lake or saffron, Vionet Drops-Flets of tin. and color with blue and car the paste with tincture of Florence iris, inay be added to eustain the blue lakes. I few drops of tartaric acid Coffer Drops. - Substitntue. for water, in mixing the pasto. a strong, filtered infusion of coffee Ciocolate Drops - pasto. chocolate, pulverizo jt, and crery ponnd taking care not to boil the and mix it into a sugar, take 5 pts. good unfit for use. u paste too long, lest ite, as already directed, Vanilla Drors, - Mix test it granuiato, and become ground ranilla bean; to which the paste with extract of van solved in water, to sustain thich add 2 oz . 3 gract of panna, or finelyImitation Culuratain the bluo, without gris, of tartaric acid, dislittle essence of raspberry Drops.-Mix the pasto with would disappear. tartaric acid dissolved in and of violet, or Florence water, adding a above.
ater; color with carmino, and with a littlo strong pepperminors-Dissolve finel thoroughly dissolved, ater in a sancepan with ared sagar with a nttlo with a few drops more of an equal quantity of colt. As soon as it is moments, then drop the mixt peppermint, stir coarse-grained sugar In the same way are mixture on paper, and dry whole for a fow Citric and tartaric acid may lemon, rose, ranlly it in the open air. drops. used to increase the acidity of drops. Mavoring the waters Pastilies.- Male hours, then take the drop the pastilles upene paste as usual, without wanted for use, put the off and put them into paper, learo them for tro and flitror as desired. Gnantity required into stove to dry. When drons, take 5 pts. of sulphor instance, to make a large-mouthed jar, of essence of peppermint the jar, and shako it until and pour it over are diluted a few drops them on a sieve, and set they are thorough tho candies, then cover the ether. In this mand them in the stove forsistened; then place mignonette, clove, minnner rose, oranre, for 5 minutes, craporate solving their essential oils in, or any other dron, jonquil, tube-rose, Ginger Candy Tails in sulphuric ether drops inay bo made, disacetic acid or the jubbets.-Take 1 ll . of Jamaica ginger. Boil half a lemon, a deaf sugar, a ferr drops of dissolve it to the ball deal the sugar, a dessort-spoonful of essence and rub the sugar with, degree, then add the just water enough to up against the sides of the back part of the acid and the essence, cicutly to give to tof the sugar-boiler to wowl of a silver spoon into very small-sized whole an opalized whiten or grain it suffoblong square, or elso moulds, measuring appearance; then pour it marked out in small te into a tin pan, the half an inch or an inch into squares when dry. tabs, so that the cand bottom part of which is monds. When the dry. Sincar the mo candy maty bo easily broken is for half an hour or more is poured into thims slightly with oil of al.
OnaNge Flowre more, to dry them hard. rin Candy Tablets,-Ingre

236 GROCERS AND CONFECTIONERS' RECEIPTS.

a tablespoonful of orange-flower water, and a few drops of acetic acld. lroceed as directed in the preceding. No color.

Vanilla Candy Tablets.-Ingredients; 1.1b. loaf angar, a few drops of essence of vanilla, sugar, and a fow drops of acetic acid. Proceed as for ornaments in grained sugar.

Pepperaint Candy Tablets.-Ingredients : 1 ll . of loaf sugar, a few drops of cssence of peppermint, and a few drops of acetic acid. Proceed as above. No color.
Liquor Candy Tabhits.-Ingredients : 1 lb . of loaf bngar, and a gili of any kind of liqior. Boil the sngar to the crack, then incorporate the liquor, and finlsh as in the preceding. No color.

Cinnamon Candy Drops.-Use 1 lb . loaf sugar, and a few drops essence of cinnamon. Proceed as in the last. This may be colored rose pink, the coior is to be added while the sugar is boiling.

Clove Candy Tablets are prepared in tho samo way as tho forcgoing, essenco of cloves being used instead of cinnamon.

Rose Candy Tanlets.-Use 1 lb . loaf sugar, a few drops of essence of roses, a few drops of acetic acid, and Ω few drops of prepared cochineal. Proceed as in the preceding.

Finut Candy Tablets.-Use 1 lb . of loaf sugar, $\frac{1}{3}$ pint of the juice of any kind of fruit, cither currants, cherries, strawberrics, raspberries \&c., extracted by pressing with a spoon through a clean hair fieve. Boil the sugar to the crack, then incorporate the fruit juice by rubbing it with tho sugar, as directed in the preceding, and finish the candies as therein indicated.
'To free Molasses fhom its Sharp Taste, and to bayder it fit to be used instead of Sugar.-Take 24 lbs. molasses, 24 lbs. water, and 6 lbs . of charcoal, coarsely pulverized; mix them in a liettle, and boil the whole over a slow wood fire. When the misturo has boiled half an hour, pour itinto a flat ressel, in order that the charcoal may subside to the bottom; then pour off the liquid, and place it over the fire once more, "? at the superfluons water may evaporato and the molasses be brought to its former consistence. 24 lbs . of molasses will produce 24 lbs of syrup.
leppermint Lozenges.-Ingredicnts : 1 oz . of picked gum tragacanth soaked with 5 oz . of tepid water in a gallipot (this takes some 6 hours), and afterwards squeezed and wrung throngh a cloth, about 14 lbs. of fine icing sugar, and a teaspoonful of essence of peppermint. Work the prepared gum with the flattened fist on a very clean slab until it becomes perfectly white and elastic, then gradually work in the sugar, adding the peppermint when the paste has become a compact, smooth, elastic sulstanco ; a few drops of thick, wet, cobalt blno should also be added while working the paste, to give a brilliant whiteness. The paste thus prepared is to bo rolled out with fine silgar dredged over the slab to the thickness of two pemy pieces, then if you possess a ribbed rolling-pin, use to roll the paste again in cross directions, so as to imprint on its whole surface a small lozenge or diamond pattern. Yon now use yourtin cutter to stamp ont the lozenges; as you do so place them on sugar powdered baking sheets to dry in the screen.

Ginger Lozenaes.-Proceed as in tho last; uso a tablespoonfni of essence of ginger, or 1 oz , of ground ginger to flavor, and a few drops of thick ret gamboge to color tho paste. Horehound Lozenges. In.

Grocers

 of horehound, 1 of gum dragon sonked in a gill of sponer as ginger or peppon Lozenifes are roceed as for tho popperspoonful of esseuce of cinnamint, with this difepared in the same pinch drops of thick, ground, wis to be used in thence only; a dessertLozenges. carmine to give tho, wet-burnt umber the favoring of them, Lozenges. The same give the paste the tingerer should be ug of with, for flavoring, and burnt peppermint lozenges, nsinamon color Wina Ingredients: 1 oz . prepared ur to color the paste ning essence of cloves the gam to be soaked in 2 gum, $1 \frac{1}{2} \mathrm{lbs}$. singar, 2 Orange Lozenges leppermint lozenges. 2 oz. of orange flower, wate. of orange-sugar, gum, $1+1 \mathrm{lbs}$. of icing sugar, 2 Lozenges. Ingredier. Proceed as for acetic acid. Colt's foot'L, 2 oz . of lemongredieuts: 1 oz . prepared $\frac{1}{2} \mathrm{oz}$. of in 2 oz . of orange flowfer. Ingredients: 1 oz a few drops of Crajenne and Ce colt's foot water, 11 lb. of fino. of gum dragon soaked in 2 or atechu Iozenyes. Poceed is for peppermint sigar, and cayeme, and $\frac{3}{}$ of water, 2 lbs . fingredients: 1 oz . of gum lozenges. lozenges. $\frac{3}{2}$ oz. of prepared cateche icing sugar, it of gum dragon arabic, 14 oz of th, or Jojunes.-Inctedin orange flower water, and 1 sugar pounded and : 1 lb . of picked gum is aftertrards to be strained pt. tepid water to soalt th, $\frac{1}{2}$ gill of double it orinto a sugar boilor with off clean. lut the sonk gum in, which pearl degry moderate fire, who sugar, and use a clean and strained the fire, rem; then add the oraule it boils and reducs spoon to stir aud use the mixe the preparationge flower water, stir all to the small powder contaixture to cast the from the stove, skim off fether on Spanish Liced in a flat box. jujubes in levelled layers of froth, 14 oz. of sugar, Licore Jujunes.-Incre layers of starch water, and afterwards oz. of Spanish liconts: 1 lb . picked gum arabic boil it with sugar as dircined clean. First polved in a gill of hot reduced by boiling to thrected in the preced prepare tho gum and the jinjubcorico with it, remall pearl degree, ing article, and when Ingredients: in the manner o the scim from thporato the prepared and aftorvar: 1 lb . picked gum indicated above. juice, and a strained, 14 oz arbic soaked in 1 ppberny, Jujubes. foregoing a few drops of cz. of sugar, 1 gill of pint of hot water rant Jujubese, adding the raspbenal. Proceed as filtered raspberry jujubes, omiting thed in all respy and coloring last. Plated in tho Currant Jujuing the cochineal, blects as indicated for Black Curjuico beinulues. -Tho samo as black currant juico being raspberry Ingredients used and a fow drops of currant jujubing nsed. Red wards strain 1 lb. gum arabic sops of cochineal. Jubes, red currant of prepared ca, 14 oz . sugar, $\frac{1}{3}$ oz . 1 pt . of hot watery Jujubes. jujubes, but cochincal. Let the essence of roses, water and afterpowder, whi instead of casting thixture be prepared a few drops smooth'timen the preparation is in inpressions ans for other set it to dry in baking sheet to the ready, pour is int inade in starchciently dried, the screen, or hot depth of a quarter of a very clean

238 GROCERS AND CONFECTIONERS' RECEIPTS.

elastic to the touch, remoro it from the heat, and allow it to becomo cold ; the slicet of jujube may then be easily detached, and is to be cut up with scissors in the shape of diamouds.
Stick Arple Sugar.- Boil the sugar to caramel, favor with applo juice together with tartaric or other acid, pour it on a marble slab, draw it into sticks, cut them of equal length, then roll them ou a slab till they are perfectly cold ; when finished, wrap them in tissue-paper and pret them in fancy envelopes.
Currant and Raspberiy Pastr Drots,-Ingredients: 1 llb . of pulp (the currants and raspberries in equal proportions boiled, and afterwards rubbed through a sieve), 1 lb . of sifted sugar. Stir both togethor in a copper sugar-boiler or preserving pan over a brisk fire, until the paste becomes sufficiently reduced to show the bottom of the preserving pan as you draw tho spoon across it ; then procecd to lay ont the drops about the size of a florin, using a spouted sugar boiler for the purpose. Tho drops should then be placed in the screen to dry, at a low heat for an hour or so. When the drops are dry use a thin lenife to remove them from the tin sheet on which you laid them out, and put them away between sheets of paper in closed boxes, in in dry place. Damson Paste Drops.-Ingredients: 11b. of damson thick pulp, 1 lb . bruised sugar. Stir the pulp and sugar on the fire until reduced to a thick paste, then proceed to lay out the drops on squaro sheets of polished tin ; dry them in the sereen (moderate heat), and remove them in the manner aforesaid. These drops may be prepared with all kinds of plums and also with gooseberries. Pear Paste Drops.-Use 1 lb . pear pulp (made by pecling the pears, and boiling them to a pulp with $\frac{1}{3} \mathrm{pt}$. of cider or perry, and rubbing this through a coarse sieve), 1 lb . of bruised sugur. Procced as for damson paste. Apple Paste Drops.-Use 1 lb . of apple pulp (mado by peeting, slicing and boiling the apples with $\frac{1}{3} \mathrm{pt}$. cider), 1 lb . of bruised sugar. Proceed as in the foregoing cases, adding a few drops of cochineal to half of tho paste for the sake of raricty. Pine Apple Paste Drops.-Uso 1 lb . of pine-apple pulp (made by first pecling, and then grating tho pine-apple on a dish, using a clean coarso tin grater for the purpose), 1 lb . of bruised sugar. Proceed as in tho former cases.
Vases, Basikets, Figures, Animats, \&c., in Gratifed Sugar.The sugar being boiled to the ball degreo, add a few drops of acetic acid, and work the sugar with the back part of the bowl of a silver tablespoon up against the side of the sugar boiler, fetching up the whole in turns, so that erery portion may acquire ani opalized or whitish color. As soon as the sugar has been worked up to this skate, which constitutes "graining," pour it immediately into tho ready prepared mould ; and when it has become perfectly set firm in the centre, you nfay turn the rase, basket, animal, or whatever tho object may be, out of its mould, and place it in the screen or hot closet to dry, at a very moderato heat. Afterwards they may bo painted in colors to imitate nature.
Everton Taffr.--To make this farorito and wholcsome cands, take $1 \frac{1}{2}$ pounds of moist sugar, 3 ounces, of bntter, a teacup and a lialf of water, and one lemon. Boil the sugar, butter, water, and half the rind of the lemon together; and, when done, -which will be known ly dropping into cold water. when it should be quite lump into a bri.-Take ono pound of tho aud the taffy liettle. Boil it dow water, and put the best loaf sugar; dip each candying state. Whe and skin it until sugar into your proserving wish to preserve. Largo whiently boiled, liare ready clear, and ing is picces, or preserved froits white grupes, oranges ready the fruits youl very nice. Dip the fruits, taken out of theires separated into shall them in a cold place; they will the prepared suger syrup and dried, are a millies witholt Fruitrill soon become hard. while it is hot; put little; se or two; then add 41 lus 1 pint of water p rent bottlo while hot; and, whito sugar; enntin oz. alum; boil flavor yon desextict of vanilla, strow, put in half tho boiling a Prizen desiro for jelly. a, strawberry, lemon, or twenty-five graduall Honex:-Good common drops essenco of pe skimming when sugar, 5 lhs.; water, 2 lbs. bring sugar, and $\frac{1}{2} \mathrm{lb}$. less water, 1 If you desire a betterees' honey and 4 Anotimer. - Coffeo sugar, 1 lb moro honey. betterarticlo, use whito strong vine- Colleo sugar, 10 liss. watery. honey, $\frac{1}{2} 1 \mathrm{hb}$; Lubint tablespoons; white of 3 libs.; cream tartar, 2 ozs. sugar and water in's extract of honeysuch an egg well beaten; bees ${ }^{j}$ in the crean tartar suitable kettle on the find 10 drops. Put on the nearly melted put in the vinegar; add the aro; when lukewarm stir off, let it stand a fow the honey. and stir till it egg; when the sugar is sucklo last; stand ovinutes; strain, then it comes to a boil; tako it Common sugar, 4 over night, and it is ready. the extract of hones:skim. Then add pulverizel, 1 pt.; let theady for uso. Another:spoin cream of tartar, 1 oz. and, \ddagger oz. remove from to a boil, and To Kl, and it is fit for uso. and water; or extract of the fire, and 2 oz. Melt slowlys Firesif.- Rosin 2 lbe the fruit separately over the fire in an iron.; tallow, 2 oz ; bees'-max, (to prerent tho coating rub it over with pot, but don't boil. Take the solution onco, and from adhering to the frized chalk or whiting pack away carefully in hold it up a inoment fruit), then dip it into aequalled for preserving apples, boxes, or on shelves, in a coating, the: refined Drors. - Pomind and sift, pears, lemons, \&c. in a cool plice. sufficiontlgar, add slowly as minto a clean pan 8
oll a smy moist not to stick to water as will rende of donblo from the firs stove or slow fire to the stirring spoon, per the sugar lalf a mino and stir in $\frac{1}{4} \mathrm{oz}$, and stir till it hearly, place the pan it fall in suto, then dip out small aric acid. Place it on th, remoro honrs with small drops on a small quantities from th on the firo for Chocor a knife. Ready for san tin plate; removo the drons let crom, 1 patis Cream Candy salo in 24 hours. from 1 pt., best sugar, 3 ozs . Chocolate scra
egrs; whise and mill it woll; heat it nearly boiling fine, $\ddagger \mathrm{oz}$, thick cream in gis rapialy and tako; when cold, add the , then remove it cream in glasses and pile take up the froth on a whites of 4 or 5

TANNERS, CURRIERS, BOOT, SHOE AND RUBBER M'FRS, MLARBLE WORKERS, BOOK. BINDERS, \&C.

best Color for Shoe and IIarnegs Edae.-Alcohol, 1 pint; tincture of iron, 1h ozs. ; extract logwood, 1 oz. ; pulverized nutgalls, 1 oz ; soft water, $\frac{1}{2}$ pint ; sweet oil, $\frac{1}{2} \mathrm{oz}$. ; put this last into the alcohol before adding the water. Nothing can exceed the beautiful finish imparted to the leather by this preparation.
Cheap Color for the Eide.- Soft water, 1 gailon; extract logwood, 1 oz. ; boil till the extract is dissolved; removo from tho fire, add copperas, 2 oz., bichromate of potash, and gum arabic, of each $\frac{1}{2}$ oz., all to be pulverized.
Beautiful Bronze forl Leatien.-Dissolve a little of the so-called insoluble auillng violet in a littie water, and brush the solution over the leather : after it dries repent the process.
Superior Edoe Blacking.-Soft water $\overline{5}$ gallons; bring to a boil, and add 8 oz . logwood extract, pulverized ; boil 3 minutes, remove from the fire, and stirin $2 \frac{1}{2} \mathrm{oz}$. gum arabic, 1 oz . vichromate of potash, and 80 grains prussiate of potash.
For a small quantity of this, use water, 2 quarts ; extract of logwood, $\frac{3}{4}$ oz.; gum arabic, 06 grains; blchromate of potash, 48 grains; prussiate of potash; 8 grains. Boil tho extract in the water 2 minutes; remove from the fire and stir in the others, and it is ready for uso.
For tammers' surface blacking, which is not required to take on a high polish, the gum arabic may be omitted.
Sizing for Boots and Shoes in Treeing Out.-Water, 1 quart; dissolve in it, by heat, isinglass, 1 oz . ; adding more water to replaicr loss by ovaporation; when dissolved, add starch, 6 oz . ; extra of logwood, bceswax, and tallow, of each, 2 oz . Rub the starch t. first by pouring on sufficient boiling water for that purpose. it makes boots and shoes soft and pliable, and gives a splendid appearance to old stock on the shelves.
Black Varnish for the Edge.-Take 98 per. cent alcohol, 1 pint ; shellac, 3 oz. ; rosin, 2 oz . ; pine turpentine, 1 oz . ; lamplack, 4 oz. ; mix : and when the gums are all cut, it is ready for use. 'This preparation makes a most splendid appearance when applied to boot, thoe, or harness edge, and is equally applicable to cloth or wood, where a gloss is required after being painted.

Waterproof Varnish for Harness.-India-rubber, $\frac{1}{3}$ llb. ; apts. turpentino 1 gal. ; dissolve to a jelly, then take hot linseed oil equal parts with the mass, and incorporate them well over a slow fire.

Blacising for Harness.-lleeswax. $\frac{1}{2}$ lb.; ivory black, 2 ozs.; spts. of turpentine, 1 oz . Prussian blue, ground in oil 1 oz ; copal varnish, $\frac{1}{2} \mathrm{oz}$; melt the wax and stir into it the other ingredients, before tho mixture is quite cold ; make it into balls, rub a little upon a brush, apply it upon the harmess, and polish lightly with silk.
Best Harness Varnish Extant.-Alcohol, 1 gallon; white turpentine, $1 \frac{1}{2}$ lbs.; gum shellac, $1 \frac{1}{3}$ lbs. ; Venice turpentine, 1 gill. Let them staud by the stove till tho gums aro dissolved, then add swect not crack like the old varnish. Wish with Dirness orl. - Neat's-f vinegar, innt Fuencir Vannisif, 1 gal.; lampbiack, 4 oz. Nit woll powdered galls, gum senegal in powder, in, -Spirit of vine, pint; sugar in the water; ; grcen copperas, 4 oz $1 \mathrm{lb} . ;$ loaf sugar, 0 pint; put in the galls, copperns, and put ona slow fissolvo the gam and set off; and when nearly, and the alcohol; stire, but don't boll; now uso. It is applied with e cool, strain throngh firell for 1lvo minutes; Liquid Japan for leancil brash. Most flannel, aud bottle for swect oil, 1 lb .; gum Lieatier.-Moi Most superior. water; apply heat; wheu c, $1 \mathrm{lb} . ;$ Isinglass, 1 llbs ; 1 ln mpblack, 1 lb. ; improve it. Waterproon Orf-Brach acohol; an ox's gall wili India-rabber it mill diacking. Camphene, lamplack, 2 oz . dissolve; curriers' oil, 1 pint; add all the Shoemakers' Meer thoroughly by heat. 1 phit; tallow, 7 lbs.; and add powd Meel Balis, by heat.
Best Ileel bar gum arabic, 1 oz., and 8 oz.; tnllow, 1 oz.; melt, in irory black, 4 ozs, Melt together beeswax plack to color. porrdered rock tand., lainplack, 3 oz., porvders. ; suct, 3 ozs . $;$ stir or leaden moulds. 2 oz ., mix and wheu partly gum arabic, 2 oz ., Clunnellers and Shomma party cold jour into tha solved to a proper consistence inkers' Cement.-India-rubber dlsGutta perchor Lifatheron luobnershuric ether.
oil, 2 oz.; melt, and India-rubler, 4 oz. ; pind Latherer Bfitinga.; pitch, 2 oz ; slellac, 1 oz ; oil, $\frac{1}{1}$ part; mix, as before; thy-black, 1 part; molasses, 1 part. sweet w lart; oil of vitriol, 1 part; each in a mixture of thes, $\frac{3}{3}$ part; sweet blacking water before mixing them separately diluted with twice its Oil Paste Bracky, according to Lieving forms the ordinary pasto oil, 1 lb .; ofl blacking. Ivory-blachig.
Gold Varnish 3 lbs.; mix and put ins $;$ molasses, 2 lbs .; swoct tine, 2 pints. sho Turmeric, 1 drain put in tins. drams ; thin mastiac, 5 oz . ; sandar ; gamboge, 1 dram ; turpenfor fourteen days ; tharnish, 8 oz . ; digest 5 oz . ; dragon's blood, 8 Grain Black for uset aside to fine ; and poccasional agitation then take spirits twor Hanness Leat; and pour off the agitation gum shellac, This will finish 12 . ; thick paste, recram of tartar, 1 oz. in tallow ; Beautiful Standes. 12 sideduced thin, 2 quarts. Mix well' Soft water 1 pt.; oxalic Bor Boots, Shoes and Leter stronger, dissolve, and for acid, 2 tablespoonfuls Leather Goons.ormillon or drop lake ar a red color, add finely or more; if required whito. Green Yollo, king's yellow finely pulverized prized rose-pink, mixed. Preen, blue and yellow, yellow ochre, \&ce Prussian blue, before mixiple, red and blue mixed mised. Orange, red White, flake can be seling with the water and. Pulverize the ind and yellow Bridue Sted from the "Compond acid. Any other ingredients well BRIDLE STALN,-Skimmed mill 1 colors' in the next shade desired 16 ; spirits of salts, $\frac{1}{2} \mathrm{Oz}$; ; spts.
of red larender, $\frac{1}{3} \mathrm{oz}$. ; gum arabic, 1 oz ; and the juice of 2 lemons; mix well together, and cork for use ; apply with a sponge; when dry, polish with a brush or a piece of flauncl. If wished paler, put in less red lavender.

On Rubler Goods.-As many parties require to use rubber goods Who are entirely ignorant of the cheap mixtures whith are rended in large quautities, at enormous profits by mannfacturers, I havo thought, proper in this place to irradiate the subject with a little, "lighit" for the benefit of those whom "it may concern," and accordingly present the formula for compoun 'ing the different mixtures which euter into the composition of m.ay articles sold quito extensively as pure : ubber goods, but which, owing to large adulterntions, in many cases cost 75 per cent. less than the prices charged for them. The first I shall present is for

Ligit Buffer Springs.-Grind together clear Java rubber, 25 lbs. ; lara rubber, 5 llbs.; common magnesia, 10 lbs. ; pure sulphur, 25 ozs. This is brown at first, but in a fow days turns grey or white, and just sinks in water. Springs made from this compound, $4 \frac{1}{2} \times 2 \cdot 3$ $\times 1$, pressed to half an inch, showed $3 \frac{1}{2}$ tons on the dial.

Guey Packing foi Mamine Enanyes, \&c.-Grind together cleaned Java rubber, 5 liss. ; Para rubber, 25 lbs.; oxide of zinc, 16 lbs.; carbonato of magnesia, 6 lbs.; P'orcelain or Cornwall clay, 3 lbs.; rel lead, 2 lbs. ; puro sulphur, 30 ozs . It may bo proper to state that good purified Java rubber might bo substituted by engineers with good effect for l'ara rubber in the above and some other con:positions.

Rag Packing for Valyes, Bearing Sprengs, \&c.-This is mado principally from the useless cuttings in the manufuct.are of Indiarubler coats, when the gum is rum or apread on caico fonudations. Proportions as follows: grind together useless scraps, 35 lbs.; blacklead 18 lbs. ; Java gum, 16 lbs.; ycllow sulphur, 1 lb .

Composition fon: Suction Ilose foll File Engines, \&c.Grind together Java rubber, 20 ibs.; Para do. 10 lbs.; white lead, 14 lbs.; red lead, 14 lbs. ; yellow sulphur, $1 \frac{1}{2}$ lbs. This is spread upon flax cloth, which weighs 10,16 , and 32 ozs. to tho square yart.

Comimon Black Pacieng.-Grind together, Java rubber, 15 lbs . Para do., 15 lbs . oxide of zinc, 15 lbs . China or Cornwall chay, ij los.; yellow sulphur, 28 ozs.

Common White Buffei Rnas, \&c.-Grind together Jara rubber, 30 lbs ; oxide of zinc, 18 lbs . carbonate of maguesia, 6 lbs ; clean chalk or whiting, 6 lbs.; 110 m of sulphur, 2 lbs.

Vulcanite, on Ehonite.- If the amount of sulphur added to the prepared rubber amounts to 10 per cent. and the operations of vulcanizing is performed in close vessels, at a temperature exceedin\% 300 , or the heat required for Vulcantzing India-Rubier as decribed under that head, which see, an article will be produced known as vulcanin: or ebonite. It is a hlack, hard, elastic substance, rcsembling horn in its texture and appearance, and capable of taking a very high polish. It is of great uso in the arts, and is largely manufactured for making combs, door handles, and hundreds of articles hitherto made in ivory or bonc. Its electrical propertios also are verv great.
best I'une Sprina, of Wasinens.-Grind together Para gum, 00

Jls. ; ox
lbs.; Po
Comp
zinc, 5
"HyP
Jara gur sulphure garment To VE ed by th rubber fr tallic oxid bcing regr article. I cylindrical 5 to G feet at one end introduced steam is It liept up for means of t and quality under the process. experience t
To Deod
coal dust, pl
ture to 94°]
and clean th
free from all
Gutta-Pe small pieces, boiler with cohol, well s? soak. After mass, which, miy shape, w latter has bee
To Utilizid them in wate material becor by steam. It to 100 lbs. of and brought to and shoes.
DEER Skins skin, take a bl
skinor skins lie mad grain ; the scour or pound white vitriol, al will be dissolved
for 24 bours ;
ıbs.; oxide of zinc, 5 lbs.; carb. namnesia, 2 lbs.; common chalk, 3 lbs.; Porcelain or Cornwall clay, 2 llbs.; pure sulphur, 10 oz.

Companion Qtality to above.-Para rubber, 30 lba.; oxide of zinc, 5 lbs.; Porcelain or Cornwall clay, 5 lbs.; pure snlphur, 32 oz.
"Hipo"' Cloti for Waterproof Coats.-Grind together clean Java gum, 30 lbs.; i.amplack, 5 lbs.; dry clalk or whiting, 11 lbs. snlphuret of lead, 5 lbs. This composition is applied to waterprool garments.
To Vilcanize Imia Robeez.-The vulcanizing process patented by the late Charles Goodyear consists in incorporating with the rubber froin 3 to 10 per cent. of sulphur, together with various metallic oxides, chiefly lead and zinc, the quantity of the latter articles being regulated by tho degree of elastlcity \&c., required in the desired article. The gends of one large establishment are vulcanized in cylindrical wrought iron stean heaters, over 50 feet long and from 5 to 6 feet in diameter. Theso heaters have doors opening on hinges at one end, and through theso doors the goods to be vulcanized are introduced on a sort of railway carriage, then, after the door is shut, steam is let on, and a temperature of from 250° to 300° of heat is liept up for several hours, the degree of heat being ascertained by means of thermometers attached to the heaters. The valne, solidity, and quality of the goods is much increased by keeping the articles under the pressure of metalic moulds or sheets while undergoing this process. The whole process requires careful manipulation and great experience to conduct it properly.

To Deodorize Rubber.-Cover the articles of rubber with charcoal dust, place them in a, enclosed vessel, and raise the temperature to 94° Fahr. and let it remain thus for several hours. Removo and clean the articles from the charcoal dust, and they will be found free from all odor.

Gutta-Percha and Rubber Waste.-The wasto is cut into small pieces, and 100 lbs . of the same are placed in a well-closed boiler with 10 lbs . of bisulphido of carbon and 4 ozs. absolute alcohol, well stirred; then the boiler is closed, and left a few honrs to soals. After this time it is found to be changed into a soft dongh mass, which, after being ground or kneaded, is fit to he formed into any slape, when the solvent will evaporate. If too much of the latter has been used, a thick unmanageable llquid is obtained.
To Utilize Leather Scraps.-First clean the scraps, then soak them in water containing 1 per cent. of sulphuric acid until tho material becomes soft and plastic, then compress into blocks aud dry ly steam. In order to soften tho blocks, 1 lb . of glycerine is added to 100 lbs . of the material; they aro then passed through rollers, and brought to the proper thickness to bo used as inner soles of boots and shoes.
Deer Skies.-Tanning and Buffing fon Gloves.-For each skin, tako a bucket of water, and put it into 1 qt . of limo; let tho skin or skins lic in from 3 to 4 diass; then rinse in clean water hair, and grain ; then soak them in cold water to get out the glae; now sconr or pound in good soap-suds for half an four; after which take white vitriol, alum, and salt, 1 tablespoonful of each to a skin ; these will be dissolved in sufficient water to cover the skin, and remain in it for 24 hours ; wring out is dry as convenient, and spread on with a
bmsh $\frac{1}{2}$ pint of curriers' oil, and hang in the sun abont 2 days ; after which you will scour out the oil with soap-suds, and hang out again until perfectly dry ; then pull and work them until they aro soft; and if a reasonable time does not make them soft, scour out in suds again as before, until complete. The oil may be saved by pouring or taking it from the top of the suds, if left standing a short time. The buff color is given by spreading yellow ochre evenly over the surface of the skin when finished, rubbing it well with a brush.
Tanning with Acid.-After having removed the hair, scouring, soaking and pounding in the suds, \&c., as in the last recipe, in placo of the white vitriol, alum, and salt as there mentioned, take oil of vitriol (sulphuric acid), and water, equal parts of each, and thoroughly wet the flesh-side of the skin with it, by mans of a sponge or cloth upon a stick; then folding up the skin, letting it stand for 20 minutes ouly, having ready a solution of sal-soda and water, say 1 lb . to a bucket of water, and soak the skin or skins in that for two hours, when you will wash in clean water, and apply a littio dry salt, letting lie in the salt over night, or that length of time; then remove tho flesh with a blunt kuife, or, if doing business on a large scale, loy means of the regular beam and flesh-knife; when dry, or nearly so, soften by pulling and rubbing with the hands, and also with a pieco, of pumice-stone. This of course is the quickest way of tanning, and by only wetting the skins with the acid, and soaking out in 20 minutes, they are not rotted.

Another Method.-Oil of ritriol, 主 oz.; salt, 1 teacup; milk sufficient to handsomely cover ti:3 skin, not exceeding 3 qts. ; warm the milk, then add the salt aid ritriol ; stir the skin in the liquid 40 minutes, keeping it warm ; iucn dry, and work it as directed in the above.

Canadian Process.-The Canadians make forur liquors in using the japonica. The frrst liquor is made by dissolving, for 20 sides of upper, 15 lbs . of terra japonica in sufficient. water to cover the upper leing tanned. The second liquor contains the same amount of japonica, and 8 lbs . of saltpetre also. The thind contains 20 lbs. of japonica and 43 lbs . of alum. The fourth liquor contains only 15 lbs . of japonica, and:13 lbs. of sulphuric acid ; and the leather remains 4 days in each liquor for upper ; and for sole the quantities and time are both doubled. They count 50 calf-skins in place of 20 sides of upper, but let them lie in each liquor only 3 days.

To Tan Fur Skins, \&C.-To remove the legs and nseless parts, soak the skin soft, and then remore tho fleshy substances, and soak it in warm water 1 hour. Now take for cach skin, borax, saltpetre, and Glauber-salt, of cach $\frac{1}{2}$ oz., and dissolve or wet with soft water sufficient to allow it to be spread on the flesh-side of the skin. Put it on with a brush thickest in the centre or thickest part of the skin, and double the skin together, flesh side in ; keeping it in a cool place for 24 hours, not allowing it to freeze. Then wash the skln clean, and take sal-soda 1 oz ; borax $\frac{1}{2} \mathrm{oz}$, ; refined soap 2 oz . ; melt them slowly together, being careful not to allow them to boil, and apply the mixture to the flesh side at first. Boil up again and keep in a warm place for 24 hours; thell wash the skin clean again, as above, and have raleratus 2 oz ., dissolved in hot rain water sufficient to well saturate the skin; tako alum 4 oz ; salt 8 oz . ; and dissolve alio in hot
min wat out scald and hang drying 2 C finished. bing with liko a cha
Proces rrom 6 T ponica, co rith sumpl will be lim when it wi you will pu same night handling 2 to use the t kecping the daris color t skins will r calf-skins fr
To Tay kido up; the bined, make it alone a fer and nail the make it soft in the suin a shaped stick,
To Tan is to 10 gals. col pulrerized bo been salted, a than 8 to 10 phuric acid h warm soft wa warm room. time. Musk, and rub with taken off will
To Dre Fu and an immens department. I down next the the set of the f opens casily an
Frencir Finh scraps (the legs cach of salt and until they get a first application littlo soft soap, leather will be s rain water; when sufflciently cool to allow the handling of it without scalding, pat in the skin for 12 hours; then wring out tho water drying 2 or 3 times, according to dry. Repeat this last soaking and finished. Lastly finish, by pulling and med softness of the skin when bing with a pieco of pumice-stone and working, and finally by rubLiso a charm on shecp-skius, fur shind fine annd-paper. This works l'rocess of Tanning Calur, Km , dog, wolf, bear-skius, \&c. fromi 6 to 30 Days.-For a $12-1 \mathrm{~h}$ cait and Harness Leather in ponica, common salt, 2 lbs.; alum, 1 lb-skin, take 3 lbs. of terra jawith sufficient water to dissolve tho whol put them in a copper kettlo whil be llmed, haired, and treated every wave at boiling. The skin youn will will be pat into a vessel with water to as for the old process, same nifht and pint of the composition, stiming cor it, at which timo haudling 2 or 3 morming for three days, when you it well, adding tho to uso the tanning ligndily all the time tanning; yon adie wholo, kecping theso proportions by adding half the quantity cach continue dark color to tho leather for any amount. If yon desiro to givo a skins will require about 20 days will put in 1 lb . of Sicily sumac ; lip calf-skins from 6 to 10 dars at most. horso hides for harness 30 days, Mav Raw Hide. - When take
sido up; then putt 2 parts of salt, 2 parts of the animal, spread it flesh it bed, make it fine, sprinklo it crenty it alone a ferr days till dissolved; then tor tho sarface, roll it np, let and nail tho skin to the side of a barn tako off what flesh remains, in the sunt like harness leather, put neat the sun, stretch tight, to shaped stick, and it is tub ont all the oll you can with asten it up To Tan Alusiris tanned with the hair on. to 10 gals. cold soft Siine with the Fun o pulverized born water, add 8 parts of wheat i-First, for soaking, been salted, add salt, i sulphuric acid, 2 ozs. If tho old soap, $\frac{1}{3} \mathrm{pt}$. than 8 to 10 hours, 1 pt. Grecn skins should not sking hare not phuric acid haurs. Dry ones shonld soak till not be soaked moro warm soit watcr add soaking process. For tan soft. The sulwarm room Tr, add brant, $\frac{1}{3}$ bushel; stir well, and liquor, to 10 gals. time. Miusk rat on add slowly, sulphuric acid and let it ferment in a and rub with a fleshing should remain in abont 4 hours; ${ }^{2}$; stir all tho tulken off will do. Thg knifo; an old chopping knifo then take out To Dre Furs. - Anen work it over a beam until entircly dry edgo and an immense.-Any dye that will color wool will aly dry. department down next the In buying furs, examine tho density under tho dyers the set of tho skin, this can easily be dono by bisity and length of the opens casliy fur, if it is very close and dense it ing briskly against Frencri Find exposes much of the skin, reject it. scraps (tho ingsir for Leatnirr. -Take a commet. each of salt and and pates of calf-skins are bect) rooden pailfal of until they get a thick upon them, and let stand threo put a handful first application put onste ; in using, you will warm it ; then boil littlo soft soap, and ase ittlo tallow with it, and farm it, and in the leather will be soft ond it in the regular way of finishing necond timo a eather will be soft and plinble, Ho French leather.

French Patent Leather.- Work into the skin with appropriate tools 3 or 4 successive coatings of drying varnish, made by boiling linseed oil with white lead and litharge, in the proportion of one pound of each of the latter to one gallon of the formfer, and adding a portion of chalk or ochre, each coating being thoronghly dried beforo the application of the next. Ivory black is then substituted for tho chalk or ochre, the varnish thimned with spirits of turpentine, and five additional applications made in tho same manner as before, except that it is put on thin and not worked in. Tho leather is rubbed down with pumice-stono, in powder, and then placed in a room at 90 degrees, out of the way of dust. Tho last varnish is prepared by boiling 1 ll . asphaltum with 10 lbs . of the drying oil used in the first stage of the process, and then stirring in 5 lbs . copal varuish and 10 lbs . of turpentine. It must have 1 mouth's age before using it.
Cmear Tanning without Bari or Mineral Astringents. Tho astringent liquor is composed of water, 17 gals. ; Aleppo galls. $\frac{1}{3} \mathrm{ll}$. ; Bengal catechn, $1 \frac{1}{2}$ oz. and 5 lbs . of tormentil, or septfoil root. Powder the ingredients, and boil in the water 1 hour; when cool, put in tho skins (which must be prepared by being plunged into a preparation of bran and water for 2 days previously) ; handle them frequently during the first 3 days, let them alone the next 3 days, then handle three or four times in one day; let them lie undisturbed for 25 days moro, when the process will be complete.
Neif Tanning Combosition.-For harness leather, 4 lbs. catechu, 3 pts. common ley, 3 oz . of alum. For wax leather (split leather), 3 lps. catechu, 3 pts. common ley, 3 oz . alum. For calf-skins 2 lbs. catechn, 1 pt. loy. For sheep-skins, 1 lb . catechu, 1 pt. ley, 1 oz alum. The catechu by itself will make the leather liard and brittle, the ley will soften it; the alum being only used for coloring, can be dispensed with, or other matter used in its place. The mixture is in every case boiled, and the leather is then immersed in it long enough io be thoroughly tanned, for which purpose the harness leather should be steeped from 18 to 20 days, wax leather from 12 to 14 days, calfskins from 7 to 9 days, and sheep-skins from 2 to 4 days.
French Polisi or Dressing for Leather.-Mix 2 pts. best vinegar, with 1 pt . soft water; stir into it $\frac{1}{4} \mathrm{lb}$. glue, broken up, $\frac{\downarrow}{2} \mathrm{lb}$. logwood-chips, $\frac{1}{4}$ oz. of finely powdered indigo, $\frac{1}{4}$ oz. of tho best soft si.hp, $\frac{1}{2}$ oz. of isinglass; put the mixture over the fire, and let it boil ten minutes or moro; then strain, bottlo, and cork. When cold, it is fit for nso. Apply with a sponge.
Tanning. -Tho first operation is to soak tho hide, as no hide can be properly tanned unless it has been soaked and broken on a fleshing beam. If the hide has not been salted add a little salt and soak it in soft water. In order to bo thoronghly soaked, green hides should remain in the liquor from 9 to 12 days; of course the time varies with the thickness of the hide. The following liquor is used to remore hair, or wool, viz.: 10 gals. cold water (soft); 8 gts. slacked lime, and the same quantity of wood ashes. Soak until tho hair or wool will pull off easily. As it frequently happens it is desirable to curo tho hide and keep the hair clean, the following paste should wo made, viz: equal parts of lime and hard wood ashes (lime should bo slaked) and mado into a paste with soft water. This should be spread on tho flesth side of the hide and tho skin rolled up fesh side in and placed

In a tu until th skius of and the to 4 cons upon the duced, w Cumar
1 gill; sw strain, an is ready 1
Currif
pint; Cas irst paste
This will
Cumhe
of harness
yelliow, $\frac{1}{2}$
oz. ; paste
Skirtin yellow, $\frac{1}{2} 1$ oz. ; pasto will finish
Dyes fo given by ste with aluin ; wine, and wi dwarf-clder, out ; then be and wet the they will bo laying them in a liquor m lastly in the d ple is given warm water, decoction of smearing the Dark green is wine till soft, shado. (Yellozo and linseed-oil Oranye.)-Ora boiled in alum
Sky-color is glv morning warm
To Marble] deep and tho le or copper pan a age is formed ; marble slab any
Prusstan Prussian blne os
Yellow.-King's

In a tub just covering it with water. It shonld remain 10 days or until the hair will pull out casily, then scrape with a knifo. 10 days or and the principle derived from thainly of glue or gluten. This is soluble, to a considerable extent soluble; bark, tannin or tannic acid is also upon the former, chemical combination the latter is allowed to act duced, which is insoluble. 1 gill; sweet milk i pt.; boil of sizing, 1 qt. ; soft soap, 1 gill; stuffing. strinin, and add the other ingredients sin water to a proper consistence, is ready for use. Curriers' l'aste - rins pint; Castile soap, 1 oz.; make into Take of water, 2 qts. ; flour, This paste, $\frac{1}{2}$ pt. ; gum tragacanth, 1 gill; water Second Coat.-Fake of Curierers' 18 sides of inpper. 1 of harness leather, in imithtis is for finishing skirting and the flesh yellow, $\frac{1}{2}$ llb. ; yellow ochite 1 of oak taming. Take of chromo oz. ; paste 5 qts. ; mix well. Th.; cream of tartar, 1 oz . ; sodia, $\frac{1}{2}$ skirting.-For the grain to his will finish twelve sides. oz. ; paste ; yellow ochre, $\frac{7}{2} \mathrm{lbr}$; cream of tan. Take of chromo will finish twats.; spirits of turpentime, 1 tartar 1 oz ; soda, 1 Dres rowe sides.
givea by stecping the sub and Sheep Leather, -(Blue) - Bue with alum ; or it mabjecta day in urine and indigblue.)-Blue is wine, and washing thay be given by tempering the go, then boiling it dwarf-elder, then smear and erewith.-Another--Boill igo, with red out ; then boil the smear and wash the skins ther--Boil elderberries or and wet the skins inderberries as before in a solution and wring them they will be verys in the same manner once solution of alum water, layng them 2 lolue.-(Red.)-Red is given or twice, dry them, and in a liquor madeurs in gall, then wringing them washing the skin and lastly in the dye made ligustram, alnm, and verdigut, dipping them ple is given by wetting thazilwood bolled with ley. (P in water, and warm water, and when dry skins with a solution of (Purple.)-Purdecoction of logwoen dry, again rubbing them with roche alum in smearing the skin with sap-grater. (Green.) Wreen hand with a Dark green is given with sal-green and alum boiled Green is given by wine till soft, then smearedel-filings and sal-anmed (Dark Green.)shade. (Ycllovo.)-Yellow is over the skin, which is to lac, steeped in and linseed-oil dissolved is given by smearing the is to be dried in tho Oranye.)-Orange color and strained, or by infusing in over with aloes boiled in alum water color is given by smearing it with weld. (Light Sky-color is giventer, or for deep orange, withg it with fustic berries morning warmed with indigo steeped in boiling watic. (Skil-color.) To Marble lind smeared over the skin. Sig water, and the next deep and the length or Paper. - Provide a wo Dyers' Department. or copper pan any quand width of any desired sken trough 2 inches age is formed ; stquantity of linseed and water seet; boil in a brass marble slab any of the finto the trongh, and let until a thick mucilPrussian blue or the following colors ind let cool; then grind on a Yellowo.-King's indigo. Recl.-Roso-pink, verm beer. For Blue.-lelloio.-King's yellow, yellow ochre, \&c. vermilion, or drop lake. yellow ochre, \&c. White.-Flake whita.

Biack.-burnt ivory or lamb black. Brown.-Umber, burnt do.; terra di sienua, burnt do. Black, mixed with yellow or red, also makes brown: Green.-Blue and yellow mixed. Orange.-Red and yellow mixed. Purple.-Red and blue mixed. For each color you must have two cups, one for the color after grinding, the other to mix it with ox-gall, which must be used to thin the colors at discretion. If too much gall is used, the colors will spread; when they keep their place on the surface of the trough, when meved with a quill, they are fit for use. All things in readiness, the colors are successively sprinkled on the surface of the mucilage in the trough with a brush, and are waved or drawn about with a quill or a stick, according to taste. When the design is just formed, the book, tied tightly between cutting boards of the same size is lightly pressed with its edge on the surface of the liquid pattern, and then withdrawn and dried. The covers may be marbled in the samo way only letting the liquid colors run over them. In marbling paper the sides of the paper is gently applied to the colors in the trough. The fim of color in the trough may be as thin as possible, and if any remains after the marbling it may be taken off by applying paper to it before you prepare for marbling again. To diversify the effects, colors are often mixed with a little sweet oil before spriukling them on, loy which means a light halo or circle appears around each spot.
Bookbinders Varnisin. - Shellac, 8 parts ; gum beuzoin, 3 parts ; gum mastic, 2 parts ; bruise, and digest in alcohol, 48 parts ; oil of lavender, $\frac{1}{2}$ part. Or, digest shellac, 4 parts; gum mastic, 2 parts; gum dammer and white turpeutine, of each, 1 part; with alcohol (95 per cent.), 28 parts.
Red Sprinkle for Bookbinders' Use.-Brazilmood (ground), 4 purts; alum, 1 part; vinegar, 4 parts; water, 4 parts. Boil until reduced to 7 parts, then add a quantity of loaf sugar and gum; bottle for use. Blue.-Strong sulphuric acid, 8 oz ; Spanishl indigo, powdered, 2 oz ; mix in a bottle that will hold a guart, and place it in a warm bath to promote solution. For use, dilinte a little to tho required color in a tea-cup. Black.- No better black can be procured than that made by the receipt for edge blacking, in this work, which see. Orange color.-Ground Brazilwood, 16 parts; annatto, 4 parts, alum, sugar, and gum arabic, each 1 part; water, 70 parts, boil, strain, and bottle. Purple.-Logwood chips; 4 parts, powdered alum, 1 part; soft water, 24 parts; boil until reduced to 16 parts, and bottle for use. Green.-French berries, 1 part; soft water, 8 parts. Boil, and add a little powdered alum, then bring it to tho required shado of green, by adding liquid blue. Brown.-Logwood chips, 1 part; amatto, 1 part. boil in water, 6 parts; if too light add a piece of copperas the size of a pea.
Tree-Marble- A marble in the form of trees may be done by beuding the boards a little on the centre, using the same method as the common marble, having the covers previously prepared. The end of a candle may be rubbed on different parts of the board to form knots. Rice-Marble.-Color the cover with spirits of wine and turmeric, then place on rice in a regular manner, throw on a very fino sprinkle of copperas water till the cover is nearly black, and let it remain till dry. The caver may be spotted with the red liquid or potash-water, rery freels, lefore the rice is thrown off the boards.

Spotted let it ren sprinkle shake of colored ling with rery thic betreen. book is with a lit the book dash on out on th down each wash it op color. (S_{c} GoLD S_{1} houey and are very fin water clear and nothin limate in a sams, toget The edges o çreen, blue, large spots, the edges wl falling there on extra wor
To GILD NI dy, 1 part; w of the leaves, nearly dry, damp sponge the leal from burnish, obse the gold and t
Chinesf EI and dry; then according to fa liquid blue.
TO MAKE PA tion, take musi conccritrated $8 t$ it immediately,
pletc. It is no pletc. It is now
and it
becomes from 60 to 801 lb only about 25 lb To Mantrac parings and wast the tendons and obtained and ke! Spoteal Marble for Books, ctc.-After the fore-edre of the book is cut, sprinklo tho edge wress, and throw on linseeds in a regular manner, sinake off the seeds. Various colorer till the paper is covered, then ling with whithow or red before thr may bo used; tho edge may bo rery thick one. Tho seeds will make a fing on the seeds, and sprinkbetween. Japan Cent parts, with a few sligh fancy edgo when placed book is covered and dry for Leather Book-covers, ctc on the spaces with a little paste: diry, color the cover with potash etc. - After the the book between give 2 good coats of Brazil potash-water mixedl dash on copperas-water hands, allowing the bash, and glaze it; pat out on the back and on difi with a spongo furds to slope a littlo; down each board and on different parts largo dro red liquid press wash it over 2 or 3 times a fino shaded red; when, which wilf ruo color. (Sce the various des with Brazil wash to when the cover is dry, Gold Sprnimers rop jyes for leather.) to give it a brighter houey and one book ror Books.- Put in are very fine, add $\frac{1}{2}$ pin gold leaf, rub them marblo mortar $\frac{1}{2}$ oz paro water clears, pourit off, and water, and mix well ogether until they and nothing remains but the put in more till the hongether; when tho limate in a teaspoonful the gold; mix one goney is all extracted, sams, together with al of spirits of wine, and grain of corrosive subThe edges of the baottle gum water, to the when dissolved, put the green, blue, or purple may be sprinkled or cold, and bottlo for use. large spots, very rogular and lastly with the gold liguiry dark, with the edges when dregular, shaking the bottle bold liquid in small or falling thereon. This and cover them with paper to using. Burnish on extra work. To Gind the Edges of Bo dy, 1 part; white of egg to mix. -Armenian bole, 4 parts; sugar canof the leaves, previonsly firmix. Apply this composition to the edge nearly dry, smooth the surface screwed in the cutting-press; when damp sponge and pass over it, and witho burnisher; then take a burnish, obs the cushion and apply it to thie wo of cotton wool, tako the gold and the agate. place a piece of silver or India paper quite dry, Chinese Ede agate.
and dry; then take ar sponks. - Color the edge with light liquid blne according to fancy; next throw ouged with vermilion and dab on spots liquid blie.
To make Papir neto Po and finish the edge with dark tion, uake unsized paper and plunge it.-To produco this transformaconccritrated sulphuric acid combined with al pation of two parts of pletc. It is now and wash it in clean water 1 part water; withdraw and it becomes so for writing; for the acid supplies thange is comfrom 60 to 80 lbs . weight whit a strip 2 or 3 inches wident of sizo, only about 25 lbs . Weight, while a like strap of parchment will bear To Manufacture Glue - parchment will bear paringsand waste pieces of bides anticle is nenally made from the
uso, they are first stooped for 14 or 15 dass in milk of linio, and then drained and dried ; this constitutes the cleaning or the preparation. Before couversion into gluo they aro usually steeped in weak milk of limo, well worked in water, and exposed to tho air for 24 hours. They are then placed in a copper boiler ${ }_{3}^{2}$ filled with water and furmished with a perforated falso bottom, to provent them from burning, and as much is piled on as will fill the vessel and rest on the top of it. Heat is next applied, and gentle boiling continued untll tho liquor on cooling becomes a gelatinous mass. Tho clear portion is then run off into another vessel, where it is kept hot by a water bath, and all around to repose for somo hours to deposit, when it is run into the congealing boxes and placed in a cool situation. Tho next morning the cold gelatinous mass is tumed out upon boards wetted with water, and aro cut horizontally in thin cakes with a stretched piece of lurass wire, and into smaller cakes with a moistened flat knife. These cakies are placed upon nettings to dry, after which they are dipped one by one in hot water and slightly rubbed with a brush wetted with boiling water, to gire them a gloss; they are lastly stove dried for sale. During this time the undlssolved skins, \&e., left in the copper is treated with water and the wholo operation is repeated agaln and again, as any gelatinous matter is extracted. The first rumnings produce the finest and best glue. The refuse matter from the tanners and leather dressers yields on tho averago, when dried, 00 per cent of its weight in glue.

To Dye Leather Yelfow.-Picric acd gives a good yellow without any mordant ; it must bo used in very dilute solution, and not warmer than $\overline{2} 0^{\circ}$ Falir., so as not to penetrate the leatho

Green Dye for Leatier.-Anilino blue modifies picric acid to a fine grecu. In dyeing the leather, the temperature of 80° Fahr., must nover be exceeded. S'ce Aniline Dyes in Dycrs' Dep't.

Dyes for Ivory, Horn, and Bone.-Black.-1. Lay the articles for several hours in a strong solution of nitrate of silver, and expose to the light. 2. Boil the artiele for some time in a strained decoction of logwood, and then steep in a solution of per-sulphate or acetato of iron. 3. Immerse frequently in ink until of sufficient depth of color. Blue. -1. Immerso for some dilute solution of sulphate of indigo, partly saturated with potash, and it will be fully stained. 2. Steep in a strong solution of sulphate of copper. Green.-1. Dip bluo-stained articles for a short time in a nitro-hydrochlorato of tin, and then in a lot decoction of fustic. 2. Boil in a solution of veralgris in vinegar until the desired color is obtained. Red.-1. Dip the article first in a tin mordaut used in dycing, and then plunge in a hot decoction of Brazil wood $-\frac{1 \mathrm{lb}}{}$ to a gallon of water or-cochineal. 2. Steep in red ink till sufficiently stained. Scarlet.-Use lack dyo instead of the preceding. Violet.-Dip in the tin mordant, and then immerse in a decoction of logwood. Yellow.-Boil the articles in a solution of alum, 1 lb . to $\frac{1}{2} \Omega$ gallon, then immerso for half an hour in the following mixure: Take $\frac{1}{2} \mathrm{lb}$. of turmeric, and $\frac{1}{4} \mathrm{lb}$. pearlash; boil in 1 gal . water: when taken from this, the bone must be again dipped in the alum solution.

Mother of Pearl Work.-This delicato substanco reguires grant care in its workmanship, but it may be cut with the aid of saws, files and drills, with the ald of muriatic or sulphuric acid, and it is pollshed by colcothar, or the bromn red oxide of iron left after the distillation
of the a pearl is work, \&e of the acid from sulphate of iron. In all ornamental work, \&c., it to be usod, for flat surf all ornamental work, where To Polish Peat real pearl, but mother, such as inlaying, mossic into a thick pasto by - Take finely pulverized porl that is used. sulficient quantity to mading olivo oil ; then rotten stone and make rul quickly and, as make into a thin pasto appl sulphuric acid a To Polisir Ivory. -n as the pearl takes the apply on a velvet cork; be present with findemove any scrates the polish, wash it. water.-Then vash thely pulverized pumice-stone marks that may moist upon a piece of ch ivory and polish with prone, moistened with Etching FLUID for chamois leather, rubbing quiced chalk, applied muriatic acid, equal por Ivonx,-Take dilute quickly. 2 parts ; tears of parts : mix. For etching varphuric acld, dinute To arcd Ivorr,-IIntic, 2 parts : mix. and then expose it to limerse it in a sol in clean water: To Silver Ivory.-Pound a sman damp. Wash it afterwards mortar, add soft water to it, mix thein piece of nitrate of silver in a solution, let it reyn Wish to silver any together, and keep in vial clear water, and expose it turus of a dy article, immerse it in this depleture a figure, name it to the rass of thellow; then place it in pencil in the solution, and or cipher, on your irory. If you wish to turned a deep yellow, and draw tho subject oury, dip a camel's-hair sunshine, occasionally, wash it well with water ird will turn of a deep black wetting it with pure water, and place it in tho a brilliant silver. To Soften Iv water, mixed toretr. -In 3 oz . spirits of nitro days it will obey your, put your ivory to soak ; and 15 oz . of springTo Whiten Irory.-SIgers. the water, after beling decanted some lime in water ; put jour frory in and, after white. To polish it afterw tho grounds, and boil it till it powder, with wing worked, take rushoss set it in the turner's wheel ; that, heat it by turning rub it till it looks and premico-stones, subtile and when hot rub it it arainst a piece of perfectly smooth. Noxt to olive; then with a fittler with a little dryen orsheep-skin leather: soft white rag. When all dry whiting aione: finally diluted in oil of look very white. Wen all this is performed as directed tha plece of Another way to Bleach Ive it by sprinkling it with water Ivorr. -Take 2 handfuls of lime man for your purp it settlo ten minutes 3 pts. of water, and stir the water for 24 purposo. Then take yontes, and pour the water int tho and dry it in thours, after which, boil it ivory and steep it in the into a Hory in the air. press the horn into pion of Tortorsemisture on with a proper shapes, and afte.-First steam and then shell ; Take equai small brush, in imitation of the lay the following strong soap-lees; let prts of quick lime and lithe mottle of tortoiseand repeat two or threo thain until it is thorougrge, and mix with acat two or threo times if necessary. Such parts dry ; brush off,
to bo of a reddish brown should bo covered with a mixture of whiting and the stain.

To cut and folisi Marble.-The marble saw is a thin plate of soft iron, continually supplied, during its sawing motlon, with water and the sharpest saud. The sawing of moderate pieces is performed by hand : that of large slabs is most economically done by a proper mill. The first substance used in the polishing process is the sharpest sand, which must be worked with tili the surface becomes perfectly flat. Then a second and even a third sand, of increasing fineness, is to be applied. The next substance is emery, of progressive degrees of fineness ; after which, tripoli is employed ; and the last polish is given with tin putty. The body with which tine sand is rubbed upon tho marble is usually a plate of iron ; but, for the subsequent process, a plate of lead is used, with fine sand and emery. The polishingrubbers are coarse linen cloths, or lagging, wedged tight into an iron planing tool. In every step of tho operation, a constant trickling supply of water is required.

Powerful Cement yor Broren Marnle.-Tako gum arabic, 1 ib. ; make into a thick mucilage: add to it powdered plaster of l'aris, 11 lib. ; sifted quick lime, 5 oz . ; mix well ; heat the marble, and apply the mixture.

Seven Colors For Stainina Marbiee.-It is nocessary to heat the marble hot, but not so hot as to injure it, the proper heat being that at which the colors nearly boii. Blue; alkaline indigo dye, or turnsole with alkali. Red; Dragon's blood in spirits of wine. Yellow; gamboge in spirits of wine. Gold Color ; sal-ammoniac, sulpiate of zinc, and verdigris equal parts. Green; sap green in spirits of potash. Brown; tincture of logwood. Crimson; salkanet root in turpentine. Marble may be veined according to taste. 'Io stain marblo well is a difficult operation.

Perpetual Ink for Tomstones, eto.-Pitch, 11 lbs. ; lamplach, 1 lb. ; turpentine sufficient ; mix with heat.

To Clean Old Marble.-Take a bullock's gall, 1 gill soap lees, half a gill of turpentine; mako into a paste with pipeclay, apply it to the marble ; let it dry a day or two, and then rub it off, and it will appear equal to new; if very dirty, repeat the application.
'lo extract Oil from Marble ole Stone.-Soft soap, 1 part; fullers earth, 2 parts ; potash, 1 part ; boiling water to mix. Lay it on the spots of grease, and let it remain for a few hours.
To Gild Lettrers on Marble.-Apply first a coating of size and then soveral successive coats of size thickened with finely powdered whiting until a good face is produced. Let each coat becomo dry and rub it down with fine glass paper before applying the next. Then go over it thinly and evenly with gold size and apply the gold leaf, burnishing with an agate ; several coats of leaf will be required to give a good effect.
To Clean Marble-Take two parts of common soda, 1 part pum-ice-stone, and 1 part of finely powdered chalk; sift it through a fine sieve, and mix it with water ; then rub it well all over the marble, and the stains will be removed ; then wash the marble over with soap and water, and it will be as clean as it was at first.
To make a Chemical Barometer.-Take a long narrow botile, and put into it 2f drs. of camphor ; spirits of wine 11 drs. When the ater med oper pest ectly ss, is recs sh is apon cess, lingiron kling watertre, 38 grs . ; sal nad to it the follow well torior to mixing with tiac, 38 grs . Dismixturo: rater 0 drs . a very gether, cork the bottle the camphorated spo theso salts in the ing the diff aperture in the well, wax the top, buta ; then shake all weather changes appearances which a red-hot ncedle. By mako ing storm or ofes, it becomes an erich the materials Thaprens' a a sumy sky. an excelleut proguosticator of as tho drops of oll of And Anglers' Speteret for tice any wild anlma, or oil rhodium, on any Gme and Fisis.- A fetiv four dough, and sprinkto the suare trap. any trapper's bait, will ent icate fish, rendering them on the surface of ia cockle mixed with they can bo lifted in a tub insensiblo; when of still water, wired intoxmay be used without fear of fresh water to coning up to the surface during the winter season by Fish may also be cavive them, when they it with a mallet directly by watching them the caught in large numbers stuns them, and they worer where they happen the ice and striking when they are casily secured biso, belly upwards to to be. Tho shock - \quad by breaking a hole in the ice. the surfaco,

Painters, cabinetmaikers, gilders,

 ver and turps. Stecl.- Mir mirture of chromir with white paint to the vermilion, with oil and Mix cernse, Irnosin yellow and white lead Prussian blion, with oll ands. Purple.-White blue, fine lac, and carmine or tue tinged with vermips. French Gray ead, Prussian bluo Prussian or lake for vermilionion, and for the last White lead and Drab.-Whie and French yon. Drab.-White lead coat substitute oil and turpse lead with a littlo , linsced oil and turth a littlo red, in booled Dark Red, for commonsian blue and lampblact Another quality. Lig oil, with a little red perposes.-Mix Fpblack, linseed red lead in boiter Red.-Mix tored lead and lithare English Vonetian er, in oil, red lead and and turps. Imitation of parts of Vonetian red drying a dust of Venetian and rose pink. Deep Ref Vermilion. ture of orange led, or red lead. turps. Bright lead (orpiment) and Unfading Orange- vermillion with With some Fre Yellow, for floors and French or stone This is a mix. some red lead yellow, and a little White lead and lin sellow, oil and ing quality , burnt whito vitriol are chrome yellowseed oil, mixed turpentine, and color mixed with litharge, added to heighten it, boiled oil, adding to very thin. Dar equal parts of boiled it a drydrying quality to it a little red ark Yellow.-Mix Foiled oll and and white lead, Light Yellow. - ead or litharge to grench yellow in and white lead, with oil and -This is a mirture of give the paint a Another:-French yellow
254 CABINETMAEEIS, LAINTERS', \&C., RECEIPTS.

whito lead and red lead. Another.-This is a mirture of Prussian blue, French yellow, a sinall portion of Turkey umber, and a litttle burnt vitriol. Ground the same way. Another, in oil.-Mix Prussian blue and chrome yellow. Ground the same. Another Shade.-A mixture of Prussim blue and French yellow, with a small quantity of whito ${ }^{1} 3$ ad and Turkey umber; add burnt vitriol, ground the same. Ani/her, lifhth.-White mixed with verdigris. A variety of shades may be obtalned by using blue and yellow with white lead. Another. Olive.-Black and blue mixed with yellow in suel quantities as to obtain the colors or shader required. For distemper; uso indigo and yellow pink mixed with whiting or white lead powder. Freestone color.- A mixture of red lead, Venetian red, French yellow nud lampblack, (varying the shado according to taste,) with linseed oil and turpentine. Olive Gircen.-Grind separately, Prussian blue and French yellow, in boiled oil, then mix to the tints required with a little burnt white vitriol to act as a dryer. 1 cheap and handsome color for outside work, such as doors, carts, wagons, railings, \&c. Light Gray is mado by mixing white lead with lampllack, using more or less of each material, as you wish to obtain a lighter or a darker shade. Buff is made from yellow ochre and white lead. Silver or Pcarl Gray.-Mix white lead, Prussian blue, and a very slight portion of black, regulating the quantities yon wish to obtain. Flaxen Gray is obtained by a mixture of white lead nud Prussian blue, with a small quantity of lake. brick Color.-Yellow ochro and red lead, witia a littlo white. Oak Wool Color:- 4 whito lead and $\frac{1}{4}$ part umber and yeliow ochre, proportions of the last two ingredients being determined by tho desired tints. Walnut-trce Color:-3 white lead, and $\frac{1}{3}$ red ochre, yellow ochre, and umber, mixed according to the shado souglit. If veining is required, use different shades of the same mixture, and for the deepest places, black. Jonquil.-Yellow, pink, and whito lead. This color is only proper for distemper. Lemon Yellow.Realgar and orpiment. The same color eau be obtnined by mixing yellow pink with Naples yellow; but it is then only fit for distemper. Oranue Color.-Red lead and yellow ochre. Violet Color.-Vermiliou, or red lead, mixed with black or blue, and a small portion of white. Vermilion is preferable to red lead in mixing this color. PurpleDark red mixed with violet color. Carnation.-Lako and white. Gold color:-Massicot, or Naples yellow, with a small quantity of realgar, and a very little Spanish white. Olive Color may be obtained by black and a little blue, mixed with yellow. Yellow-pink, with a little verdigris and lampblack; also ochre and a small quantity, of white will produce an oliyo color. For distemper, indigo and yellowpink, mixed with white lead or Spanish white, must be used. If veined, it must be done with umber. Lead Color.-Prussian blue and white. Chestnut Color:-Red ochre aud black, for a dark chestnut. To make it lighter, employ a mirture of yellow ochre. Light timber Color.-Spruce ochre, white, and a little umber. Flesh Color.-Talic, white lead, and a little vermilion. Light Willow Grem.-T hite, mixed with verdigris. Grass Green.-Yellow-pink mive virdigris. Stone Color.-White, with a little spruce ock .th Lcad Color.-Black and white, with a little Prussian blue. White lead, stone ocnro, with a little vermilion. Chu late Color.Lampblack and Spanish brown. On account of the fatuens of lamp-
black, n Uimber, carmine red. pe -Whito Chrone Strazo Co lead and (ireen.-I hack, yel Fibesco then melt as not to 1 much Pari it up thick put in a pa your work desired shi: cautiously little on a too light, m or fix tho second coat, ruin your w he used. blite, or blac Buif or dra yellow, or mineral or P suit very we and verditer. black. For carmino. Fo if not wanted liso carmine, back and th shading, \&c., burnt umber, Colons. ${ }^{\prime}$ re thick glue to imparts a beat the work. lr^{2} ceilings, if ne mixed abont dryer as will d spoil tho subsed
I_{11} preparing walls with oil should bo used, siven to the varnisl to ench the wall receivi correctly laid ou
black, mix some lithargo and red lead. Portland Stone Color.Umber, yellow ochre, and white lead. Nosc Color:- White lead and carmine or lake. Salmon Color.-Whito lead and blue, ycllow, and red. Pearl Color.-White lead, Prussim btue, and red. Slate Color: -White lead, black, red, and blue. Pea Grech.-White lead and Chrome, or Paris green. Crcam Color. - White lead, yollow and red. strazo Color. - White lead and yellow. Peach Blossom Color:-Whito lead and vermillon. Brown.-Vonetian red and lampblack. Darki Gireen.-Lampllack and chrome green. Olive Color:-lied, green, or bick, yellow and red. Snu! 0^{\prime} Color.-Yellow, sienna, and red.
fiesco Daintivg.-Steep good glue over night in water to soften, then melt in a suitable pot or kettlo, applying the heat cantionsly, so as not to boil, as boiling will render it unfit for uso. Then talio as much Paris whiting as you think you will use for your first cont, beat it up thick with water to a perfect pulp to get rid of lumps, \&e. Now put in a pail as much of this whiting misture as will be required for your work and proceed to mix in the colors required to produce the desired shade. The colors, previously ground in water, should be cantiously mixed with the hand, and the shade tested by drying a little on a shingle or white paper; if too dark, add nore whiting, if too light, moro color. Now add enough of your melted glue to bind or fix the color very hard so as not to rise or wash up with your sccoud coat, and test this on paper or wood also, otherwiso you may ruin your work. For Yellov, chromo yollow of differeat tints may be used. Buff or Drab can be got by a mixture of yellow ochre, red, bluo, or black, and sometlmes umber is intermixed with good effect. Buff or drab colors may bo produced by yellow ochre, chirono yellow, or raw sienna, intermixed with Turkey nmber. For Gireen, mineral or l'aris greens are first class. Any good clirome green will suit very well. For Blue, use cobalt ultramarine blue, Prussian blue mand verditer. For Giray, use composition of whito, blue, red, and black. lior Red, uso vermilion, Indian red, Venctian red, lake, and carmine. For Pink; or Rose tints, nse a mixture of red with white, if not wanted briglt, uso Indian red, if a strong rich color is desired, uso carmino, lake, Venctian red, or rermilion. For llack, uso blue black and the Fiankfort, or pure ivory black. For Browns for shading, ecc., uso burnt sienna, burnt ochre, parple brown, colcother, burnt umber, Vandyke brown. For other tints, see Compound Colons. F'rench Size for Gilding Ornaments, C'eilinys, \&c. Mix thick glue to the proper consistenco, with a little pure honey, this imparts a beautiful color to the gold, and gives a splendid effect to the work. l'revious to using the distemper colors, give the walls and ceilings, if new and clean, a good coat of paint, which should bo mixed about $\frac{2}{3}$ turpentine and $\frac{1}{2}$ linsced oil, using as much Japan dryer as will dry it hard; be carcful of adding too much oil, as it will spoil the sulbsequent work.
In preparing. vestibules, halls, \&e., to stand washing, go over tho walls with oil paint for the first cont, but for the hast coat no oil sloould be used, only spirits of turpentine. A harder surface will be given to the wall by addlng 1 tablespoonful of good pale copal marnish to each 25 lbs. of paint used for the last coat. Previous to the wall receiving the last two coats, let the design or panclling bo all correctly laid out.

To prepare old wails or ceilings ; if there are any stains or cracks In the plaster, repair with size pntty, if small, or use plaster of Paris and a little putty lime if the cracks are large, dampling the places with a brush and water, then applying the plaster with a small trowel, afterwards smoothing off neatly. When all is dry and hard prepare the walls or ceilings vilis a coat of paint prepared as boforo directed, or with a preparation coat in size made of whiting with an extra quantity of melted glue containing a small quantity of alum. Give the walls a good coat of this, let it harden well, then apply another ; this oughic to be sufficient if good flowing coats are applied.

Now mix the colors to the proper tints (in oil), lay in the panels first ; then the stiles, and when dry, put on the flat or last coat (spirit color). When the work is dry for panelling, uso the following for mixing tho finishing colors: Turpentine, a Ifttlo mastic rarnish, a little white wax, and a little pale damar. Varnish, use but littlo varnish, elso too much gloss will be produced, the only use being to caise the color to set quickly to permit rapid work.

The fresco painter will find continued use for a book of desigus to illustrate the different orders of architecture, pillars, colnmus, sirolls, borders, \&c. and should make a particnlar study in the line of sketching any thing and every thing calculated to assist him in the business.

Ilouse Painting.-Prining, apply as thick as the paint will spread easily, rubbing out woll with the brush. Use litharge as a dryer. After sandpapering and dusting, putty up all the nail heads and cracks with a putty-knifo. Outside second Coat. Mlix your paint with raw oil, using it as thick as possible consistent with easy spreading. After it is applied, cross-smooth tho work until it is level and even, then finish lengthwise with long light sweeps of the brush. Outside thirl Coat. Make a little thinner than the last, rub out well, cross-smooth and finish rery lightly with the tip of the brush. Inside second Coat. Mix your paint as thick as you can work it using equal parts of raw oil and turpentine, rub this out well and carofully with the brush, cross-smooth and finish oren and nice. Inside third Cont. Mix with 3 parts tarpeutine and 1 part of raw oil, rub out well and smooth off with great care. Fourth Coat, Flatting. Nix with turpentine alone thin enough to admit of spradjng beiore it sets. Apply quickly without cross-smoothing, and finish lengthwise with light touches of the tip of the brush, losing no time, as ft sets rapidly. Dravon Flatting. Ground white lead is mixed with turpentine nlmost as thin as the last-named mixture. The lead will soon 1 ettle and the oil and turpentine rise to the top, pour it off, and repeat the mixture ratil what rises to the top is clear turpentine. The oil being all withurawn by this process, the lead is mised with turpentis'), and applied thickly and evenly with great care. This is used as a fourth cofic, and the room must be kept shut and free from draught, as the color sets as fast as it is put on. See Porcelain Finisi for Parzors. Plastered Walls. Give them a coat of glue sizo before paintisg in oil. Killing Smoly walls or Ceilings. Wash cy, the smoky or greany walls with nitre, sods, or thin lime whiterrasis, the last is the best.

Usefel IIints to Painters.-Painters" Colic. To 23 gals. spruce or table be gr add 1 dram of suiphuric acid, mix well and let it stand 3 hours. 1 tumbler full 2 or 3 times pre day is sald to bo Fry
bencfic but acic cvery il ing dry room or and face Dathe th and eithe airing the and avoid ing. Sat aumonia dissolve \boldsymbol{P} carefully, Drushes. Clcan lai forated spr of bellows, work $A_{p l}$ sand. To Prossian iron shaving as hot as cai small quant double tho in iron again siate of pota aud make suf sired, and Prussian blue prussiate of po
in water, then Chrome YE cach 5 lbs. ; di potrsh, 61 oz:
dissolved sepa matelast. Let Chroarte Gra bluo vitriol, of 6 clirome yellow, and add water, Another Green, mith a solution g the shade you w leal, $6 t$ lber ; ars thoroughly in fin and let stand thre
PISA Brown.dissolve it in hot fot water to mak the blue and the
Rose Pink. gal. of water at th

bencficial in cases of lead

 but acid, fruits, spiritnous collc. Sweet oil and milk are also sood, ing dry colors caused by paint. Avoid in vinegar should be avoided int room or paint shop. Ninking water which haling tho dust when handloand faco, and rinsing thever eat or sleep withont long in a painted Hathe the whole body overy th, cleaning well washing the haids and either wear overalls ory few days, aroid spattering under the nails. airing those yon put off or change your garmentering your clothes, and avoid sleeping in it at Keep your paing ghop clean every week, weell ing. Saturate the spots at any time. To Removean, well ventilated, anmonia until they bets with equal parts turpene Paint from Clothdissolve Paint skins become soft, then wash out with and spirits of carcfully, and dissolve thengs of Pots, Brushes, soapsuds. To Drushes. Uso turpentine fir by boiling them acic: Savo thom Clean 1'aint Pails, ditine first, then wash in in oll. To Clean forated sprinkler of a \&c. Uso strong ley, hot warm soapsuds. To of bellows, is a.first-rate cing pot attached to Sandiny. The perwork Apply on the frate contrivance for applying nozzle of a pair sand. To removo old purth or fifth coat, with ing sand to paintec? Prossun blue old putty, apply nitric orm mith another coat on thin iron shavings from thake nitric acid, an muriatic acid. as hot as can be handled the as the acid will quantity, and as mach small quantities as loned with the hand; thil dissolve; heat the iron double the quantity of as the acid will disen add it to the acid in in iron again as long as th water that there wit; then slowly add siate of potash, dissolva the acid will dissolve it of acid, and put and make sufficient of it in the hot water to mo it. 2d. Take prussired, and the blue is with the first to to make a,strong solution, Prussian blue is mado made. Another give the depth of tint deprussiate of potash, equal by taking sulprate of iron very passable in water, then mixing the parts of each; and dissolving (copperas) and Chrome Yellow. the two waters. arch 5 lbs.; dissolve thst. Tale augar potash, $6 \frac{1}{2}$ oz.: and disem in hot water lead and Paris white, of dissolved separately. dissolve it in hot water 2d. Tuko bichromate of mate last. Let stand then mix all together, putting in article to bo Chrome Green.-Takey-four honrs. blue vitriol of on. Take Paris white chrome yellow, of each 3 ; ; Num, $10.100,64$ lbs; sngar of lead, and aid add water, 1 gal 3 f bs. Mix thoronest soft Prussian blue, and Another Green, durab, stirring well, and let gtay while in ine powder, With a solution of chereme and cheap.-Take spruce three or four hours, the shade you wish. leal, 64 lbs. ; arsenic, Another Mfethod.-Blue ritue, until you give it thoroughly in fine po 2f lbw.; bfehromate of ritriol, 5 lbs.; sugar of and let stand three powder, and add water 3 potash, $1 \frac{1}{2}$ oz; mix them PEA brown-l or four hours. water 3 parts, mixing well again dissolve it in hot water. Take sulphate of copper any quantits tho water to make a strong solure prusslate of potash, quantity, and Rose 3 and the color is made. gal. of water - Brazil wood 1 lb ., and bill gal. of Water at tho end; then strain it, and for two hours, having 1 17 and boil alum, 1 lb ., in thawater until dissolved; when sufficiently cool to admit the hand, add muriate of tin, $\mathrm{i}_{2} \mathrm{oz}$. Now have Paris white, $12 \frac{1}{4} \mathrm{lb}$. ; moistell up to a kilvy consistence, and when the first is cool, stir them thoroughly together. Let stand twenty-four hours.
Patent Yellow.-Common salt, 100 lbs ., and litharge, 400 lbs , are ground together with water, and for somo time in agentle heat, water being added to supply the loss by ovaporation; the carbouate of soda is then washed out with more water, and the white residuum heated till it acquires a fine yellow color.

Naples Yellow-No 1. Metallic antimony, 12 lbs.; red lead, 8 libs. ; oxide of zinc, 4 lbs . Mix, calcine, triturato well together, aul fuse in a crucibie: tho fused mass must be ground and elutriated to a fine porrder.

Cheap Tellow Paisx.-Whiting, 3 cwt.; ochro, 2 cwt.; ground rihito lead, 25 lbs . Factitions liuseed oil to grind.
Stone Color Paint,-hoad-dust sifted, 2 cirt.; ground whito lead, $\frac{1}{2}$ ewt. ; whiting, 1 cwt ; ground umber, 14 lbs.; lime water, 6 gals. Factitious linseed oil to grind.

Glazier's l'etty.-Whiting, 70 lbs.; boiled oil, 20 lbs. Mix; if too thin, add more whiting; if too thick, add more oil.

To Immate Bnown Freestone.-First make a pretty thick oil print of the same color as the stone to be imitated, which may bo done in differcnit ways, the basis is white lead or zinc white, colored with umber and mars red, or any other pigments which snit you; put it on as usual, and while yet sucky throw common white sand against it ; this will not affect thic color and will mako a rough, sandy coat imitating the surface of the stone.

German Carmine.-Cochincal, 1 lb ; mater, 7 gals.; boil for 5 minutes, then add alum, 1 oz . Boil for 5 minutes more, filter and set aside the decoction in glass or porcelain vessels for 5 days, then decnut the liquor and dry the carmino in the shade. The remaining liquor will still deposit of an inferior quality, by standing.

Stain for Floors.-To strong ley of wood-ashes add enough copperas for the required oak sluado. l'ut this on with a mop and and varnish afterwards.

Lead Colon for Iboy.-Takelitharge and place it over a fire in a ladle i sprinkle over ic flour of brimstone to turn it dark; grind it in oil. It dries quick and stands well in any weather.

A Good Lmitation of Gold. - Mix white lead, chrome jellow and burnt sienna until the proper shade is obtained.

Beautiful White Paint.-For insido work, which ceases to smeil, and dries in a fow hours. Add 1 lb . of frankincense to 2 qts. turpentine ; dissolve it over a clear fire, strain it, and bottle it for use; then add 1 pt . of this mixture to 4 pts. bleached linseed oil, shako them weil together, grind white lead in spirits of turpentine, and strain it ; then add sufficient of the lead to make it proper for painting ; if too thick in using, thin with turpentine, it being suitable for the best intermal work on account of its superiority and expense.

For a Pire White Pannt.-Nut-oil is the best: If linseed oil is used, add one-third of turpentinc.

To Mix Common White Pans.-Mix or grind white lead in linsecd oil to the consistency of pasto ; add turpentine in the proportion if one quart to the gallon of oil ; but these proportions must lee ri-
ried a the be oil Clll y with bumt whits colorurut vitriol is the white vitriol. These colo lampblack and Bless, and, consequently, will for greens, as it is mix in bolled bright Varnisi Green, will not injure the color powerful and mork must first bo green, for Inside buind color.
dry, grind some whin painted over with a lights, Fenders, \&c-Tho about $\frac{1}{8}$ in bulk of verdigd in spirits of turpentina color, and, when oil; then nix thein verdigris, which has been orine; afterwards tako sumicient only to bind tho together, and put ingound stiff in linseed case in 15 minutes, pour color. When this is ha little resin varnish, gloss. Then go over the into the color some resi, which will be tho time. Thus you will have a a second time resin to give it a good polish. It possesses a hare a cheap and beautifui if required, a third pleted in a few hours. very drying quality, as the greon, with a high substituting mineral. The tint may be varied tio work may be conis required, add a litgreen for verdlgris ; and if according to taste, by must bo used when quite watch pink to tho mixtaro. tension. quite warm, to give the varnish. N. -This color Compround Greens.-Thig tho addition, the intensity of which mixture of whiting, indigo and fised rulos in bluo or jellow. Thesy bo increased or diminished and composition in regard to the quantitice intures will not admit of any tono he is desironey must depend ones of the matters used in their lea Green.-Tak giving to the color. taste of the artist and the of the precivitate of one pound of genui three pounds of whisepper, one pound no mineral green, one pound ounces of burnt white lead, three ounces of a half of blue verditer, linseed oil, and grind themiol. Mix the whole sugar of lead, and three pea-green paint, preserve quite fine. It will prof these ingredients in any climato, without ine a blue tint and keep ance a bright mineral color for house or ship pury, by putting weep any length of time in rith some pale boiled painting, take one pound of it. To use this ducea strong pea-green paint them rell together of the green paint by adding a prop-green paint. The tint mogether, and this wilr promay be ground in linsede quantity of whitoy be altered at pleasure, for nse. It may also beed oil, and thinned with to the green, which adding white lead and used for paintinr Veneth spirits of turpentino aforosaid preparations it will the colo: Veneth boiled window blinds, by ablo. \quad will retaln a bive tint, which is ver all the For Knotring.-One pint red lead, 1 pint of japanners' of regetable naphtha, 1 tablespoonfii of Another.-N fix in a warm place to size 7 ozs. of orange shellac, mix and apply it rarmite lead, or red lead porve, and frequently shake. White Leadm. lead is that known The most nsual meth e in strong glue mize, cast in thin gratin as the Dutch method. It of mannfacturing white and carbonic acla gs, to the combined action consists in exposing lead,
 supported a little above the
bottom of earthen pots, slmilar to flower pots, in cach of which a small quantity of weak acctic acid is placed. The pots are built up in alternate layers with spent tauners' bark, uutil a stack is formed, each layer of pots being covered with a board. Fermentation soon takes place in the tan, and serves the double placo of generating heat and supplying carbonic acid. After the lapse of six or eight weeks, the metallic lead is found converted into white masses of carbonic mixed with hydrated oxido. It is then levigated, washed, dried, and ground with oil.

To Cure Damp Walls.-Boil 2 ozs. of grease with 2 quarts of tar, for nearly twenty minutes, in an iron vessel, and have ready pounded glass, 1 lb . ; slaked lime, 2 lbs . ; well dried in an iron pot and sifted through a flour sleve ; add somo of the llme to the tar and glass, to make it the thickness of thin paste, sufficient to cover a square foot at a time, as it hardens so quick. Apply it about an eighth of an inch thick.
To Protect Wood and Brick work from Damp Weatmei. -Take 3 pecks of lime, slaked in the air, 2 pecks of wood-aslies, and 1 peck of white sand. Sift them fine, and add linseed oil suft: cient to use with a paint brush : thin the first coat ; use it as thick as it will work for the second coat, grind it fine, or beat it in a trough, and it is a good composition.

Putty for Repairing Broken Walls.-The best putty for walls is composed of equal parts of whiting and plaster of laris, as it quickly hardens. The walls may be immediately colored upon it. Some painters use whiting with size ; but this is not good, as it rises abovo the surfece of the walls, and shows the patches when tho work is finished. Lime must not be used as putty to repair walls, as it will destroy almost every color it comes in contact with.
Instructions for Sign Whiting, with the Colors to be USED For the Ground and Letters.- On an oak ground, omamental letters, in ultramarine blue, filled in with gold and silver leaf, blocked up and shaded with burnt sienna. Another.-Gold letters on a white marble ground, blocked up and shaded with a transparent brown or burnt siemna. On glass.-Gold letters, shaded with burnt sienna. Another.-Gold letters, shaded with black, on a scarlet or chocolate ground. On a rich blue ground, gold letters, double shaded, black and white. White letters ou a blue ground, sladed with black, look very well. On a purplo pround, pink letters shaded with white. Dix ultramarine and vermilion for a ground color, white letters shaded with a light grey. Vermilion ground, chrome yellow, stained with vermilion and lako, for the letters, sliaded black. A substitute for the above colors: liose pink and red lead; and for the letters, stone yellow, white lead and Venetian red. A good substitute for gold is obtained by grinding white lead, chrome yellow, and a dust of vermilion together. Mix your colors for writing in boiled oil, and use for drier gold sizo. other good grounds for gold letters are: blues, vernilion, lake, and Saxon. When your sign is ready for gilding, follow the directions given under the head of "To Gild Letters on Wood."

To Give Lustre to a Ligit Blue Gnound.-After the letten are written and dry, paint the ground over again, betiveen the letters, with the same color, and whilo wet take pulverized l'rissian blue :nd
sift or with th Gusd with je utmost, To G smooth dissolve quantity part but Writing, Iet it st Trork wit Take a le into the b : the cushio sour mout with the h your hair; letters; wh and cently the sigu wit
Hood TO USE or white su each letter to get tacky perfectly dry with oil, add and fill ip all sift on the sm part with pler
tho paint is d the paint is d
the work is id
Supen Superfine animi, powder corered metal stirring all th
sistency and st a wide mouth turpentine. TI unequalled for
Signs. 1. Copa mastic ramishi. To paint ba apon a frame,
of bleached sh of bleached sh
consistence, goo running the out For ingide work Thile the size is proceed with the
writh thick gluo, rith yellow ochre, or calc- Drying or bolled particles. utmost smoothness by grindinged ochre, and carefully oll, thickened To Gird Letrers on Grinding. Thin with carefully reduced to tho smooth as possible, go orer it woit \&C. - When your turpentine. dissolved in about four orer it with a sizing mader sign is prepared as quantity of fuller's earth thes weight of cold wade white of an egr part but the letters. Wh, this to prevent the water; adding a small writing, laying on the When dry, set out the gold sticking to any Let it stand until rou can as thinly as possible, with and commenco work with your gold lean barely feel a slight with a sable pencil. Take a leaf up on the leaf, anifo, and cushion, atickiness, then go to into the back part of pourt of your knife, after and gild the letters. the cushion as straighour cushion, and spread giting it a slight puff jour mouth to flatten it possible, giving it and on the front part of with the heel of sour it out. Now cut it into thother sliglit puff with your hair; take your linifo forwards. Now rub proper size, cutting. letters; when they aro gold on the point, and place the tip lightly on and gently rub the grold all covered get, and place it neatly on tho the sigu with clean water to tit is amooth and brigit cotton wool, ood. or white surfacts.-For a gold lettered sim, Sce Gilding on cach letter with fat oil size of letters, and ronghy out on a lead color to get tacky and ready for . This must be allown size the shape of perfectly dry, mix up (for filding. After thowed at least 12 hours With oil, adding a littlo dryer smalts) Prussinn gold leaf is lald ani and fill np all the outside with Outline carefully broe and keg lead sitt on the smalts, allowing with blue paint; then around the letters, part with plenty of sinalto the sign to lay horizontall a sinall sievo tho paint is dry. Then caref allow it to remiain ully. Cover erery Supenmine iono. nimi, powine Size for Gicding corered metal pot, ald ; bring the ofl alinot drying oil, 1 lb ; pure gum stirring all the time your gum gradualiy and the boiling point in a sistency and strain whito dissolve completely. turide mouth; lieep it warm through silk in Boil to a tarry conuncenaine. This is the celob corked; uso as required thing botte with Signs. 1 for tenacity and durailed Birminghan "secret sizning witis mastic ramispal ramish 1 part Cy. Size to fix the Pearl and is
To Paint 1., 3. Pale, quiek dranada balsnin 2 parts. 2. Purs upon n frame, finers, \&c., on Cuotig copal rarnish. parts. 2. Pure of bh frame, and finish your Clotir oht Silkconsistence shellac dissolved design and lettering. Stretch the fabric muning ${ }^{\text {go over such parts in alcohol, thinged to a size mado }}$ For inside the outlines slightly, to are to be gilded or painted proper Thile the work the white of an prevent the color frointed, overprocecd size is still wet, when egg makes a good size; appreading. with thick tho shading, paintiry, dust off tho sire; lay the gold with thick gluo, is nother, painting, \&c. A lituo hoilus gold, and

262 Cabinetmakers, Painters', aC., RECEIPTS.

Japanned Tin Sions.-Draw yonr letters on paper to suit your piece of tin, having first cleaned it with dilnted alcohol and a pleco of cotton. Thls will remove any grease or other matter that might hold the gold. Then take some whiting and rub it over the back of tho paper upon which your design is made and iay it upon the Japanned tin. Next place a weight upon the four conners of the paper, or otherwise fix It securely to the tin ; then, with a fine pointed pieco of hard wood, trace the design carefully, bearing upon the paper with the point just hard enough to canse the whiting cu the under slde of the paper to adhere to the tha and after going carefully over tho whole, you will have transferred the entire desion in fine white outline to the tin you are to finish it upon. Now size with oil size, and when dry cnough for gilding, lay on the gold leaf and dab it down thoroughly, afterwards brushing off the loose gold with your flat camel-hair brush or cotton.

Chanoeable Sigis.-Make a wooden sign in the usual manner, and hare a projecting monlding around it. Now cut thin grooves into the moulding, an inch apart, allowing each cut to reach to tho surface of the sign. In each of these grooves insert strips of tin ono inch wide ; and long enough to reach quite across the slgn board. When all are fitted, take out the tin strips, and placing them edge to edge on a level table, paint any desired words on their united surface; when dry, reverse them and paint other words on the opposite side. Now finish your lettering as usual on the wooden sign board, and when dry, insert the painted tin strips in correct order in the grooves. This will present the curious norelty of threo signs in one, as viewred from different positions.

Transparent Clotit.-Dissolve together whito rosin, pulverized, 8 ozs., bleached linseed oil 6 ozs., whito beeswax $1 \frac{1}{2}$ ozs., add the turpentino while hot. Apply to both sides of the cloth while it is stretclied tight. A good vehicie for mixing colors for painting on cloth or paper is gum shellac dissolved in alcohol.
Tinselled Letter Glass Signs.-Paint the ground-work of your sign, on glass, any desired color, but be careful to leave the lettering or design naked, after it is dry, take any of the fancy colored copper or tin foils, crumple them in your hand and apply them over the black lettering, \&c., after partlally straightening them out.

To Incrust Window Glass with Jeweis.-Dissolve dextrine in a concentrated solution of sulphate of maguesia, sulphate of zinc. sulphate of copper or other metallic falts, strain the llquid and brush a thin coat of it over the glass and dry slowly at the ordinary temperature, keeping tho glass level. For protection it may bo varnished. The effect produced is that of an incrustation of diamonds, sapphires, \&c., according to the color of the ealt used.

To Paint in Imitation of Ground Glabs.-Grind and mix whito lead in three-fourths of boiled oil and one-fourth spirits of turpentine, and to give the mixture a very drying quality, add sufficient quantities of burnt white ritriol and sugar of lead. The color must be exceedingly thin, and put on the panes of glass with a large sized paint brush in as even a manner as possible. When in number of the pancs are thus painted, take a dry duster quite new, dab the ends of tho bristles on the glass in quick succession, till yon gire it a uniform appearance. Repeat this operation till the wors appears rery soft.
and it fresh water. sulphat and dal regularl tion wilf
Painti sel. Wh oil of tur use it wit Hard you wish, very hard Paste Wheat fon
in a pail
b in a pail, b
2 ozs. Into the batter t white color, Thin with c paluted or paste, and re inttle pulveriz
of paste, but To REMOV 1 gal ; rumm It will soon lo
ther simpie me it on the fire, a Do not attempt might get more
RER

Pr | mepuse |
| :--- |
| min water, 1 g | adding oil to rea ing.

Spirit Gritan a pound of gold, tinge your whith
Strike out wour Strike out your 19
little color to sho a littlo more turp the above mention with beer, with a
be hised for glazing Oil for Grain add as much gold
it stand the comb. Put a teaspoonful mich soap as will soda mixed with Tra
To Preparis THI had mithpara Tha

CABINETHAEEIS, PAINTERS'

ders', dC., RECETPTS. fresh paintion appear 1 water. Anothe get the old ground and hate of coprethod. coat off regudab on the ${ }^{2}$, $10 z$; ; sumitits of garst by using the glaee require
 ion will be co with putty in a brush, 1 oz. mis of of vitit pearlinath Paintina complete. y; When dry shoiher mix all werliol, 2oza; y, go over them -Dab your together, oil of turpentli is melted - Take clear use it with cine sufficie, let it cool a rosin, 1 oz, $H_{\text {ard }} D_{\text {rying }}$ colors ground in theep it in a you wish, in blNG PIINT. - oil. It in a liquld stato harden; then rese very lard for colled oll; therind Velletian PAsTE FOR Pountor tops, cn thin it with red, or any ou cold, Wheat flour, sifter ${ }^{\text {Ap }}$ HANGEC.
 the batte into this pouli to break the it into a stiffran Boxms White color, and ghis all thin water, himps, then adder with cold water Thin with cond when cold time. Assing hot for pulverized water painted or cold water to cold, will make As it cooks it it the fire, alum, paste, and ramished waldapt it toreabout gof sivells and stirring little pulveritedice the malls, add fo lor easy use a pail of the loses its of paste, erized corrosir mass with thin, pulverized with the brusk paste. To Resmot alum used esublimato in gum arad rosin to erush. For 1 gal. Emove OLD Psed as abovate will eliharabic or glo each 2 quar It will soon logage all tognT. - Sal will do rery woil the keping quil A hier simpie mosen the delher and oda, 2 liss. Will. it ou the fire, method is to paint so that apply to the old $\ddagger \ddagger \mathrm{lb}$. ; hot wator, Do not attemp, and yon can sponge ore you can easild paint whililo wator, might get more to go orer then nako vour old pay remove it warm. REFUSE 2 Pore to do trer too much off the painant with bellzin Ana-
 adding oil to gal. ; corelint Skn attend to. a time, other you iske. ing. δ oil to reduce it to the refuss. - Dissolre , otlerwise sou Sprrit Grintin to proper congsistent for 2 mal soda, 3 lb., in a pound of goids siva POR OA Stinge your whiting, thinned . Two poning paling and strainlittle out your 1 g with Vand down with ens. of whiting a little mor to show the with a fite brown andirits of turng, guarter of the above mere turpentien ights. If dipped in raw siennn entine; then with beer, wientioned. Thiurpentiour lights urpentine, tingund fine. be ised for with a clein his is ind of varinsh do not appearced with n.
Oil por glazing un brush, bof graining is a good subelear, midd add as much Gainivp top-graining bere varnisilinust be brustitute for it stand theh gold siza OAK. - Ging and shishing. Strong beed over Put n tens comb. sis will set ind Vandyking. unch soappoonfoul of shonld it set tot and as much sorown in turpenting soda mixed with lill lie on gold size to half quickly, add soap as will make,
tand Praparas water and twenty-fira pint of a lut itte woiled oil. mad with rame the Groud take out tro cent piece turpentine, and oil.

$$
\begin{aligned}
& \text { and red lead, or with chrons.- Stain tan a littele } \\
& \text { yollon and white }
\end{aligned}
$$

264 CABINETAEAKERS, PAINTERS', *C., RECEIPTS.

tian red; thin it with oil and turps, and strain for use. When tho ground work is dry, grind in beer, Vandyke brown, whiting and a fittle burnt sienna, for the graining color; or you may use raw sieuna with a littie whiting, umbers, \&ec.
To Imitate Old OAK. - To make an exceedingly rich color for the imitation of old oak, the ground is a composition of stone ochre or orange chrome and burnt sienna; the graining color is burnt umber or Vandyke brown, to darken it a little. Oliserve that the abovo colors must be used whether the imitation is in oil or distemper. When dry, varnish.

To Imitate Old Oak, in Orl-Grind Vandyke and whiting in turpentine, add a bit of common soap to make it stand the comb, aud thin it with boiled oil.

To Imitate Pollard Oak.-The gronnd color is prepared ritha mixture of chrome yellow, vermilion, and white lead, to a rich light buff. The graining colors are Vandyke brown and small portions of raw and burnt sienna and lake ground in ale or beer. Fill a large tool with color, spread orer tho surface to be grained, and soften with the badger hair brush. Take a moistened spongo between the thumb and finger, and dapple round and round in kind of knobs, then soften very lightly; then draw a softener from one set of knobs to the other while wet, to form a multiplicity of grains, and finish the knots with a hair pencil, in some places in thicker clasters than others. When dry pat the top grain on in a variety of directions, and varnish with turps and gold size; then glaze up with Vandyke and strong ale. To fimish, varnish with copal.
To Imitate Motrled Minnogany.-The ground is prepared with the best English Venetian red, red lead, and a small portion of whito lead. The graining colors are burnt slemna, ground in ale, with a sinall portion of Vandyke brown, sufficient to take away the fiery appearance of the slenna. Cover the surface to be grained, soften with the badger hair brush, and while wet take a mottling-roller and go over the lights a second time, in order to give a variety of shade, then blend the whole of the work with the badger softener. Put the top grain on with the same color. When dry, varnish.

To Imitate Rosewood.-Mix rermilion and n small quantity of white lead for the ground. Tako roso pink, tinged with a littlo lampblack, or Vandyke brown, and grind very fine in oil, then take a flat graining brush, with the hairs cut away at unequal distances, and cut down the grain as if wending round a knot. When nearly dry, take a graining comb that is used for oak, and draw down the grain. This will give it the appearance of nature. When dry, varnish. Another.--The ground color is prepared with vermilion and small quantities of white lead and crimson lake. When the ground is dry and made very smooth, take Vandyke brown, ground in oil, and with a small tool spread the color over the surface in ditferent dlrections forming kind of knots. Before the work is dry, take a piece of leather, and with great freedom strike out the light reins; having previously prepared the darkest tint of Vandyke brown, of gnm asphaltum, immediately take the flat graining brush with fow fiairs in it, draw the grain over the worl and soften. When varnished, the imitation will bo excellent.

Anotier Rosewood Lartation in Size,-Mix Venetian red
white Which, this col take so
egg into on the pink, fis coat of c To Im pared wi lish Vene ing color proper co and, havi take a sRs with the bs by dabbing grain with the small h To Imita ground, by tian red. T sienna and in an even m and fro, to fo rarnish.
Cunled as
ground by mi the graining o little burnt cos grainer's crear spread the sur of a piece of by put on tho top with the white Satinwood. and small quan rery thin; then While wet, softe order to take ou brush. When th
color, put on the
to imatate y praining color g^{p} burnt sienna, with is dry, spread the
a piece of cork wi a piece of cork Wi
order to form the in the graining cold touches with a cam
and when this is ds ish Venetian red, to ta chrome yellow, and ground is a light buff, proing color is equal parts of raf the rawness of the yellomilion or Engproper consistency. Spread umber and sienne yellow. The graintak, haring some of the sam the surfaco of the ground in oil to the tako a sash tool or spongo a prepared a little work with this color, wy the badger's-hair bre, and put on tho dark seker, immediately grain with the dotting machine ore the color is dry pudes, and soften the small the camel's-liair pencil the work. When put on the ejes
To Imriearts of the wood. When the prominent dary, put on the ground, by me Curled Maple hen dry, varuibh. parts, to imitate tian red by mixing chrome yello.-Prepare a ligh sienna and The graining color is a and white lead, yellow for the in an even manayke, ground in a mixture of equal tinged with Venoand fro, to former; then with a pio; spread the surf portions of raw rarnish Curled Muple ground by mixinge in OIL fon Outsidn the graining color, chrome jellow, white lead Work.-Prepare a rich little burnt copperas in equal parts of rave and burnt sienua. For grainer's cream. Thin thrpentine, and mix sienna and umber with a spread the surface even, color with boiled with a small quautity of of a piece of buff leather, which out the light; then fill a tool and put on tho sten the edges of the must now and then the sharp edge with the white grain with burnt umbe very IIghtly, andiped to keep SATinwood, - an egg beat into it and raw sienna, when dry, and small quantitics ground is prepared When dry, varmish. ing color is anities of chrome popared with whitelead sh. rery thin; the-third of raw sienna and burnt sienna, stone ochro, While wret, wen spread the colona and whiting ground in prainorder to tais soiten, and have ready over the surface to in pale ale, brush. Whe out the lights; bay a wet roller or to be grained. color, put on the work is dry tand the whole with the big brush, in To that tho top again. Thase the flat brush, and witger's-hair graining color Yew Tree.-Then dry, varnish.
grind in ale ene ground is a red is dry, spra, with a small quanal portions of Vansh buff. For the a piece of cad the surface evantity of raw siemna. Wke brown and order to cork with a sharpen with the color, and when the ground in the grainm the fine grain. edge, rub the work soften; then with touches with color to form the ondry, dip the cip of and cross in and when this camel's-hair pencil oyes or knots, and put in thr fingers

> iry, varnish.
to Imitate Black and Gold Marble.-This description of marble is now in great demand. The ground is Ω deep jet black, or a dead color, in gold size, drop black and turps: second coat, black japan. Commance veining; mix white and yellow ochre with a smali quantity of vermilion to give a gold tinge; dip the pencil in this color, and dab on the ground with great freedom some large patches, from which small threads must be drawn in various directions. In the deepest parts of the black, Ω white vein is sometimes seen running with a great number of small veins attached to it; but care must bo taken that these threads are connected with, and run in some degree in the same direction with the thicker veins. If durability is not an olject and the work is required in a short time, it may be executed very quick in distemper colors, and when varnished, it will look well.

Red MIarble.-For the gronnd, put on Ω white tinged with lake or rermillion; then apply deep rich rods in patclies, filling up the intermediate spaces with lirown and white mixed in oil; then blend them together; if in quick drying colors, use about half turps and gold size. When dry, varnish; and while the varuish is wet, put in a multitude of the fine white threads, crossing the whole work in all directions, as the wet ramish brings tho pencil to a fine point.
Jasper Marble.-Put ou a white ground lightly tinged with bluc; then put on patches of rich reds or rose pink, leaving spaces of the white grounds; then partly cover those spaces with various browns to form fossils, in places runuing veins; then put in a fors spots of white in the centre of some of the red patches, and learing in places masses ucarly all white. When dry, use the clearest varuigh.

Blue and Gold Marble.-For tho ground put ou a light blue; then lake blue, with a small piece of white lead and some dark common blue, and dab on the ground on patches, leaving portions of tho ground to shine between; then blend the edges together with duster or softener; afterwards draw on some white veins in every direction, leaving large open spaces to bo filled up with a pale ycllow or goldpaint; finish with some fine white rumning threads, and a coat of varnish at last.

To limitare Granite.-For the ground color, stain jour whito lead to a light lead color, with lampblack and a littlo roso pink. Throw on black sjots, with agraniting machine, a palored, and fill up with white before the gronnd is dry.

Another,-A vlack ground, when hall dry, throw in vermilion, 2 deep yellow and white spots.

To Imitate Ilair Wood.-For the gronnd color, take white lead and thin it with turpentine, and sllglitly stain it with equal quantitics of Prussian blue and lampblack. For the graining color, grind in alo a mixture of Prussian blue and raw sicnua; when the ground is dry, spread a transparent cont of the graining color on the surface of tho work, and soften; then with the cork, mottle by rubling it to and fro across the work, to form the fine long grain or mottle. When this is done, soften and top grain in wary but perpendicular dircetions; varulsh when dry.

Substitutr for White Lead.-Sulphate of bargtes ground inoil and applled like paint. It can also bo used to reduco white lead th any desired extent. putin the lainplack and Dissolve the glue in in to give an inky apply to the board with a emery, stir till theire qt. of warm water, are amply sufficient. Coslround brick dust, 1 part Paint. - Finely size, set the whole near ashes, 1 part. pourover iron filligs, 1 part; together. With this paint core, and, when orer them plue-water or danger; when dry, give a second all the wood warm, stif them well incombustible. , and the wood will be rendered receive a substantial filling Kinds.-1. Work finished in ofl should whiting, plaster of paris, pumice-stong of equal parts by weight of terra di sienna ittlo French yellow asphat and litharge, to which may pentine. Grind fine with 1 part japan, 2 of balturyke brown, and it in well, let it set 20 mi mill. Lay the fill bolled oll, and 4 of tursome timo, rub smooth, nud if then rub off clean with a brush, rab the fllling is all right, finish if required, repeat the Let harden for Tipe off, and rab to a polish with linseed opeat the process. Wiar fabric. Somo fill with ins with fine cotton, and lying with a brush, White, \&c., grourd fine in rye flour, wheat four finish with any fine varnished, such filling in oil and turpentine, but, corn starch, Paris starelh 5 hellac. 2. Boiled lid previously recelve when work is to bo 3. Whiting: japan, 1 qt.; calcined oil, 1 qt.; turpentio or two good tine, $\frac{1}{2}$ pt.; 6 ozs.; Japan, $\frac{1}{2}$ pt ; magnesia, 2 oz. Mix 3 qts . ; corn Trood. On wain starch, 1 oz.: mix wod linseed oil, 4 pt. ; turphy. Vonetian red wint wood add a mix well together and ${ }^{-}$pt.; turpenboiled linseed to the above mixturo. burnt umber; on apply to the run it in well with then immediately a. On furmlture apply a alittlo the whiting with your hand or sprinkle dry whiting upon it at of For black wainus the oil, and fills stifi brush, all over thon it, and cherry, a littlanut, add a little burne pores of the wood comprace; Turned work Venetian red, \&c, burned umber to tho completely. ture can afterward cave it applied whil according to the color whiting; for ra alba is a rery been most shay good and very chiony one coat of valathe. Furniprice. 6. shamefully imposed cheap filling. Many pain. 5. Teroil, equal . Furniture Pastes, - on by parties selling thy painters have ozs.; allianet pars; melt and cool. sced oil, 5 ozs. root to color; melt aindeswax, 4 ozs. . and inseed strain and ozs.; alkanet root, $\frac{1}{3}$ oz and strain. 8. Becs. turpentine, 10 2ozs.; direst 9. Beestrax, 4 ozs, melt and add 5 ovax, 1 lb .; linthen add est until sufficiently co ozs.; rosin, 1 oz . ; oil of turpentine, and stir tillswax seraped small, 4 , then add beeswar of turpentire, omitted. 10 dissolved. If wanted ozs. ; put the vessina int dissolved, boil to a 10. (White.) White anted pale the alkanet into hot water, 3 ozs, dissoper consistency. 11 Wax, 1 lb .; liquor of root should be low wassol red in water, . 11. Beeswax, 11 b .; soan potassa, $\frac{1}{2}$ pal.; parts; linse parts; rosin, I part; alrain and boil as the last; pearlash, parts. First alkanet root, 1 part; turpentinel. First steep the alkanet in oil with tine, θ
and, when well colored, pour off the clear on the other ingredients, and agaln heat till all are dissolved. 13. F'urniture Cream.-1lecswax, 1 lb .; sonp, 4 ozs.; pearlash, 2 ozs. ; soft water, 1 gal., boil together until mixed.
To Repair the Silyfring of Mimnons.-Pony nipon a shect of thin foil 3 dm . of quicksilver to the square foot of foil. Rub smartly with a plece of buckskin until the foil becomes brilliant. Lay tho glass upon a flat table, face downwards, place the foil upoi the damaged portion of tho glass, lay a shect of paper over the foil, and place tupon it a block of wood or a piece of inarble with a perfectly flat surface; put upon it sumfieient weight to press it down tight; let it remain in this position a fow hours. Tho foil will adhere to the glass.
Pencils for Whiting on Glass.-Stearic acid, 4 pts.; mittonnuet, 3 pts.; wax 2 pts; melt together and add 6 parts of red lead, and 1 pt. purified carbonate of potassa, previously triturated together; set aside for an hour in a warm situation, stirriug frequently; then your into glass tnbes or hollow reeds.
 seedlac, 2 oz.; spirits of wine, 1 pt. Dissolvo. It shonld bo laid on warm. Avold molsture and dampuess when used. 2. F'rench Polish. -Gum shcllac, 1 oz .; gum arabic, it oz. $\mathfrak{g u m}$ copal, \ddagger oz. Powder, and sift through a pleco of muslin; put them in a closely corked bottle with 1 pt . spirits of wine, in a rery wram situation, shaking overy rlay till the gums are dissolved; then strain throngh muslin, and cork for use. 3. Polish for Dark-colored Woods.-Seedlac, 1 oz.; gum guaiacum, 2 drs.; dragon's blood, 2 drs. ; gum mastic, 2 drs. ; put in a bottle with 1 pt. spirits of wine, cork close, expose to a moderato heat till the gums are dissolved; strain into a bottle for use, with $\frac{1}{4}$ gill of linseed oil; shake together. . 4. Waterproof Polish.-Gum benjamin, 2 ozs.; gum sandarac, $\frac{3}{2}$ oz.; gum anima, $\ddagger 0 z$. ; spirits of wino, 1 pt .; mix in a closcly stopped bottlo, and placo cither in a sand bath or in hot water till the gums are dissolved, then strain off tho mixture, shake it up with z gill of the best clear noppy oil, and put it by for nse. 5. Finishing Polish.-Gum shellac, 2 drs.; gum benjamin, 2 drs. $;$ put into $\frac{1}{2 t}$. best rectified spirits of wine in a bottlo closely corked; keep in warm place, slaking frequently till the gums are dissolved. When cold, shako up with it two teaspoonfuls of the best clear poppy oil. 6. Polish for Removing Stains, Spots, and Mildew from Furniturc. Trake of 98 per cent. alcohol, $\frac{1}{2}$ pint; palverized resin and gum shellac, of each, $\frac{4}{} \mathrm{oz}$. Let these cut in the alcohol; then add linseed oll, $\frac{1}{3}$ pt.; shake well, and apply with a sponge, brush, or cotton flannel, or an old newspaper, rubbing it well after the application, which gives a nice polish. 7. Polish for Reviving Old Furnituve.-Take alcohol, 13 oz. ; spirits of salts (muriatic acld), $\frac{1}{2}$ oz.; linseed oil, 8 oz , best vinegar, $\frac{1}{2} \mathrm{pt}$. ; and butter of antimouy, if oz.; mix, putting in'the vinegar last. 8. Jet or Polish for Wood or Leather, Black, Red, or Bluc.-Alcohol (08 per cent.), 1 pt. ; sealing wax, the color desired, 3 sticks; dissolve by heat, and havo it warm When applied. A sponge is tho best to apply it with. 9. Polish for Turners' Work:-Dissolve sandarac, 1 oz., in spirit of wine, $\frac{1}{2}$ pt.; next share beeswax, 10 oz . i and dissolve it in a sufficient quantity of spirits of turpentine to make it into a paste, add the former misturo
by dog is in m appcar lb., and tho forn pentine, 11. P'ren soive. oz; cop till dissol tum; put pentino o when diss brush; sha It desired oil and tur the woode boiled oil, 1 bing briskly water, and is cut down. polish tho rrame Flini
wrell, shat nished is pre with fine pu in dark wood varnishod wit solution of wa Polish for in gum benzoin,
1 itt. Dlissolve Oil Finish sazs. ; rectisee
silts, 2 ozs. ; m the vinegar; le it into a bottle, Linseed oil, 1 pt of lavender, $\frac{1}{3} \mathrm{~d}_{1}$ oil, 1 pt. ; alkane . Linnseed oil, 1 6. Linseed oll, 1 torether ten min Fancy Figur
brush in it, and a brush in it, ang
dry, rub it well STAINS FOR W
ber, 2 parts; rose ber, 2 parts; rose
together and dis sponge, then go o 2. Ebony Stain. - by degrees to it, then with a woolen cloth apply it to tho work while it
is in motion if appear as if highly varnigh with a soft lineurag polish it. whilo it th, and $\frac{1}{2}$ of an oz, of alkniod. 10. Eurniture Polish. it. It wil pentine, of each hall colored. Then add linegether in a pipkswax, until 11. Fivench Polishes a gili, strain through a plece ond spirits of tmrsolve. 2. Shellac, 2 ibs. Shellac, 3 lbs.; wood naphtharse muslin. oz. ; copal rarnish, 1 ps.; powdered mastic and naphtha, 3 pts.; distill dissolved. 12. Bplant; spirits of wine, 1 and sandarac, of each 1 tum; put it in ajaror loottlolnut Polish, Digest in the cold pentizo or bonzole, put ine, pour over it abouse pulverized asphalWhen dissolved, strafn, and a warm place, and twice its bulk ol turbrush; should it prove and apply it to tho wood shako oocasionally; If desired to bring oute tho dark, dilute with turth a'cloth or stif oil and turpenting out the grain still more apply tho wood can be polished is better than oll a apply a mixture of boiled boiled oil, 1 part; shaked with the following: sine When the oll is dry, bing briskly. 13. To it well before using : shellac varnish, 2 parts, water, and pass repeatodly Wood.-Take a plecply with a cloth, rubs is cut down. Then tated y over the work antil tho pumice-stonoand polish the work to ake powdered tripoli and tho rising of the grain Frame Finish.-Conal vright surface 14. Clocked linseed oil, and rrell, shake often, and varnigh, 2 lbs ; linseed oil Caso anel Picture nished is prepared with place in a warm spot. Theruish, $1 \frac{1}{}$ oz.; mix with fine pumicostone thin coat of glue-rvatie wood to be varwood, a light pigment or something equivale in dark wood, a dark p, such as chaile, is added to In light-colored varnishod with the alboyment is added When to the glue-rvater; solution of war in ether, mixture, and, after ready, tho articles are Polish for White Woots thereby receiving a higling, rubbed with a gum benzoin, 1 oz. ; gums sandarte bleached shellac, 3 15. Whito 1 pt . Dissolve. $;$ gum sandarac, $\frac{1}{2}$ oz. ; spirits of wine ors.; white 4 ozs. Finisifisg. -1. Linseed oil 10 salts, 2 ozs. ; med spirits, 3 ozs.; butter of 16 ozs. black resin, 4 ozs. ; vinegar, the vinegar; let it the resin, add the oil, take antimony, 10 ozs.; spirit of it into a bottle, ad boil for a few minutes, stirring the fire, and stir in Linseed oil, 1 pt.; oil of other ingredients, shat it; when cool, put dered resin, $1 \frac{1}{2}$ oz.; rose turpentine, $\frac{1}{2} \mathrm{pt}$; rectifing all together. 2. of lavender, to dr.; rose pink, $\frac{1}{2}$ oz.; mir rectified spirits, 4 ozs. ; pow. oil, 1 pt . ; alkapet roctified spirits, 1 dr. ; linsed Acetic ucid, 2 drs.; oil 5. Linseed oil, 1 pt. root, 2 ozs, ; heat, strain, and oil, 4 ozs. 4. Linsced 6. Linseed oil, 1 pte; rectified spirits, 2 ozs, and add lac varnish, 1 oz . together ten minutes, alkanet root, 3 ozs. . ; butter of antimony, 4 ozs . Fancy Figunes on, and strain so that the oil pink, 1 oz. Boil them a brush in it, and on Wood.-Slake some oil be quite clear.
dry, rub it well with e on the wood figures to sult stalo urine. © Dip
STAINS FOR Wood, -1 of pork. to sult your fancy. When ler, 2 parts; rose pink, 1 part; Cheap Black Walnut Stain.-Burnt nmtogether and dissolve completely, 1 part; water sufficient; heat all 2. Ebonge, then go over it withe brely, apply to the work first with a 2. Ebony Stain.-Drop blact a brush, and varnish overy first with a
suffient quantity. 3. Bright Fiellow Stain.-1. Brushorer mith the uincture of turmeric. 4. Warm the work, and bruah it over with weak aquafortis; varnish or oll as usual. ©. A very omall bit of nloen $\mathrm{p} . t$ into the varnish will give a rich yellow color to the wood. 6. Extra Black Stain for Wood.-Pour 2 quarts boiling water over 1 oz, of powdored extract of logwood, and, when the solutlon is affected, 1 dr . of yellow chromate of potash is ndded, and the whole well stirred. It is then ready for use peo wood-staln, or for writing ink. When rubbed on wood, it produces a pure tlack. Repent with 2,3 , or 4 applications, till a deep black is produced. 7. Imitation of Mahogany. Let the first cont of painting be whits lead, the second orange, and the list burnt umber or sienna: imitnting the veins according to your taste and practice. 8. To Imitato Wainscol.-Let the thast cont bo white; the second, half white and yellow ochre; and the third, yellow ochre ouly; shadow with umber or siemn. D. To Imitate Satin Wood. -Take white for your first conting, light blue for the second, and dark blue or dark green fo: the third. 10. Rosecoood Stain, very hrifht shade-Used Cold.-Triko alcohol, 1 gal.; camwood, 2 oz.; set them in a warm place 24 hours; then add extrect of logwood, 3 oz. a aquafortis, 1 on ; and when dissolved, it is ready for use; it 2 makes a very bright ground like tho most leautiful rosewood; 1, 2, or more coats as you desiro. 11. Cherry Stain.-Rain water, 3 gta.; annatto, 402 . ; boil in a copper kettlo till the annatto is dissolved, then put in a plece of potash the size of a walnut; lseep it on the fire abont half an hour louger, and it is rendy to bottlo for use. 13. Rosewood Stain, very bright shade. - Equal parts of logwood and redwood clups, boil well in water sufficiout to make a strong stain; apply it to the furniture whillo hot; 2 or 3 coats acecrding to the depth of color deslred. 13. Rose Pink Stain and Varnish.- Put 1 oz. of potash in 1 gt . water, with red sanders, $1 \frac{1}{2}$ ozs.; extract the color from the wood aind strain : then sid gum shellac, $\frac{1}{3} \mathrm{lb}$., dissolvo it by a brisk fire. Used upon logwood stain for rosewood imitation. 14. Blue Stain for Wool. 1. Dissolva copper filings in aquafortis, brush the wood with it, and then go over the work with n hot solntion of peariach (2 oz . to 1 pt . of water) tlll it assunes a perfectly bluo color. 15. Boll 2 ozs. of liadigo, 2 lbs. wood, and 1 oz . alu: in, in 1 gal. water, brush woll over until thoroughly stained. 16. Imitation of BotanyBay Wood.-Boil $\frac{1}{} \mathrm{lb}^{\text {. Freach berrien (the nuripe berries of tho }}$ Rhamnus in ectorius) in 2 qta, water till of a deep yollow, and while boiling hot, give 2 or 3 conts to the worls. If a deeper color is desired, gire a coat of logwood decoction over the yellow. When nearly dry, form the grain with No. 8, black stain used hot, and, when dry, rust and varnish. 17. Mahogany Color-Dark.-1. Boll $\frac{1}{1 b}$ of madder aud 2 ozs. logwood chips in a gallon of water, and brush well over while hot; when dry go over the whole with pearlasis solution, 2 drs. to the quart. 2. lit 2 ozs. dragou's blood, bruised, into a quart of oll of turiventine; let the bottle staud in a warm ple co, shake Iroquently, and, when dissolved, steep the work in the mixture. 18. Box-wood Brown Stain.- Hold your work to the fire, that it may rocelve a gentle warmin; then take aquafortis, and, with a foather, pass it over the work till you find it clange to a fine brown (always keeping it near the fire), you may then varnish or polish it. in. Liyht lied Brown. Noli $\frac{1}{3} 1 \mathrm{~b}$. madder and $\ddagger \mathrm{lb}$. fustio in 1 gal. water:
lrush over the work, when boiling hot, until properly stained. 20. The suriace of the work being quito smooth, brushi over with a weak solution of uquafortis, $\frac{1}{2}$ oz to the pint; then finish with the following :-Put $4 \frac{1}{2}$ ozs. dragon's blood and 1 oz . soda, both well bruised, to 3 pts spirits of wine, let it stand in a warm place, shake frequently, strin and lay ou with a soft brush, repeating until of a proper color; pollsh with liuseed oll or varnish. 21. Purple.-Brush the work several times with tho logwe ded decoction used Ior No. 6 Black; and, when dry, give a coat of pearlasl solution, 1 dr. to a quart; lay it on ovenly. 22. Red.-1. Boil 11 lb . Brazil wood and 1 oz , pearlash in a gal. of water; and, while hot, brush over the work until of a proper color. Dissolve 2 ozs. alum in 1 gt water, and brush the eolation orer tho work before it dries. 23. Take a gallon of tho above gtain, add 2 ozs. more pearlash; use hot, and brush over with the alum solution. 24. Uise s cold solution of archil, and brush over with the peurlash solution for No. 1, Dark mahogany. 25. Mahogany Etain on Wood.-Tako niltric acid, dilute with 10 parts of water, and waak the wood with it. To iroduce rosewood fiuish, glazo the eame with carmino of Munich lake. Asphaltum, thiuned with turpentine, forms an excellent mahogany color on new work. 20. Mahogany Stuin on Maple.-Dragon's blood, $\frac{1}{2}$ oz. ; alkanet, \ddagger oz. ; aloes, 1 dr. ; spirits of wine, 16 ozs. apply it with a sponge or brush. 27. Crimson Stain for Mrusical Inst: nents.-Ground Brazil wood, 11 lb .; water, 3 gts.; cochineal, $\frac{1}{\text { o }}$ ounce; boil the Brasil with the water for an hour, strnin, add the cochineal; boil gently for hali an hour, when it will be fit for uso. If you wisha scailet tint, boll ar: ounce of satfrou in a quart of water, and pass over the work before you stain it. 28. Purple Stain. -Clipped logwood, 1 lb ; water, 3 qts.; pearlash, 4 ounces; powdered Indigo, 2 ounces. Boll the logwood in the water linl an hour, add the peariash and indigo, and when dissolved, you will have a beantlful purple. 29. Grcen Stain.-Strong vinegar, 3 pts.; best vardigris, 4 ounces, ground fino; sap green, $\frac{1}{2}$ ounce; mix together.
Black STains For Wood.-1 Drop n littlo sulphurio acid into a small quantity of water ; brush over the rood and hold it to the fire; it will be a fino black and reccivo n good polish. 2. For a beantiful black, on wood, nothing can exceed the blaci Jupan mentioned undor 'Thsmiths' Department. Apply two conts ; after which, varnish and polish it. 3. 101 gal vinegar, add a quarter of a pound of iron rust $;$ let it stand for a week; then add a pound of dry lampblack, and threc-quarters of a pound copperns ; stir it up for a couple of days. Lay ou five or six conts with a sponge, allowing it to dry between each; polish with linseed-oil and a soit woollen rag, and it will look like ebony. Incomparable for iron work, ships' guns, shot, \&c. 4 . Vinegar, gal ; dry lamplack, $\frac{1}{2} \mathrm{lb}$. ; iron-rust sifted, 3 lbs : mix mid let stand $10 r a$ week. Lay three coats of this on hot, and then rub with linseed oll, nud you will have a fino deop black. B. Add to the above stain, nut-galls, $1 \mathbf{~ o z}$; logwood-clilps, $\frac{1}{2}$ llu.; copperas, $\frac{1}{2} \mathrm{lb}_{.}$; lay on three coats ; oil well, and you will have a black stain that will stand any kind of weather, and ls well adapted for ships' combinge, \&c. G. Logwood-cluys, $\frac{1}{2}$ lb. ; Bmail-wood, $\frac{1}{2}$ lb. ; boil for $1 \frac{1}{2}$ hours in 1 gal. water. Brush the wood with this decoction while hot ; makea decoction of nut-galls, by gentle simmering, for three or four daye, n quarter of a pound of the galls in 3 qts. water ; give the wood iliree
conts, and, while wet, lay on a solntion of sulphate of iron (2 ozs. to a quart), and, when dry, oil or rarnish. 7. Give three coats with a solution of copper filings in aquafortis, and repeatedly brush over with the logwood decoction until the greenness of the copper is destroyed. 8. Boil +lb . logwood-chips in 2 quarts water ; add an ounce oi pearlash, rad apply hot with a brush. Then take 2 gts , of tho logwood decoction, and $\frac{1}{2}$. of verdigris, and the same of copperas $;$ strain, and throw in $\frac{1}{2} \mathrm{lb}$. of iron rust. Brush the worls well with this, and oil.

Black Walnut Statn.-Spirits of turpentine, 1 gal. ; pniverized asphaltum, 2 lbs. ; dissoive in an iron kettle on Ω stove, stirring constantly. Can bo used over a red stain to imitate rosewood. To mako a perfect black add Ω littlo lampblack. The addition of a little varnish with the turpentine improves it.

Crystal Varnish, For Maps, \&c.-Canada balsam, 1 oz. ; spirits of turpentine, 2 oz ; mix together. Before applying this varnish to a drawing or colored print, the paper should be placed on a stretcher, and sized with a thin solution ol isinglass in water, and dried. Apply with a soft camel's-hair brush.

To Ebonize Wood.-Mix up a strong stain of copperas and lon'rood, to which add powdered nut-gall. Stain your wood with this solution, dry, rub down well, oil, then use French polish made tolerably dark with indigo or fincly powdered stone blue.

Misogllaneous Stains.-Yellow is produced by diluted nitric acid. Red is produced by a solution of dragon's blood in spirits of wine. Black is produced by a strong solution of nitric acid. Green is procuced by a solution of verdigris in nitric acid; then, clipped in a hot solution pearlash produces a Blue stain. Purple is produced by a solution of sal-ammoniac in nitric acid.

Beautiful Varaise for Violins, \&c.-Rectified spirits of wine,引 gal. ; add 6 oz . gam sandarac, 3 oz . gum mastic, and $\frac{1}{2}$ pt. turpentine varnish; put the above in a tin can by the stove, froquently shaking till well dissolved : strain and keep for use. If you find it harder than you wish, thin with more turpentine rarnish.

A votimer.-Heat together at a low temperature 2 qts. of alcohol, $\}$ pt. turpentine varulsh, and 1 lb . clean gum mastic ; when the latter is thoroughly dissolved, strain through a cloth.

Varnish for Frames, etc.- Cay the frames over with tin or silror foil by means of plaster of I'aris, glue or cement of some kivid, that the foil may be perfectly adherent to the wood; then apply your gold lacquer varnish, which is made as foliows: Ground turmeric, 1 lb. ; powdered gamboge, $1 \frac{1}{3}$ ounces ; powdered sandarac, $3 \frac{1}{2} \mathrm{lbs}$. powdered shellac, 量lbs. ; spirits of wine, 2 gals. ; dissolve and strain; thell add turpentine varnisfi, 1 pt . and it is ready for use.

Dyes for Veneens.- A fine Black.-Put 6 lbs. of logweud chips into vour copper, with as many veneers as it will hold wifout pressing too tight, fill it with water, let it boil slowly for abouc s liours, then add 1 lb . of potvdered verdigris, $\frac{1}{2} \mathrm{lb}$. copperas, bruised gall-nuts 4 nzs. ; fill the copper up with vin' yar as the water envaporates; let it boil gently? hours each day till the wood is dyed through. A fins Mlue. - Put oil of vitriol, 1 lb ., and 4 ozs. of the best powdered indigo in a glass bottle. Set it in a glazed earthen pan, as it will fermint. Now put your vencers into a copper or stono trough ; fill it rathe:
moro th indigo plece of has stru nsing it root of trough ; white ho hours, o the dye in the pr fortis, ad dye) as w. lbs. ; add cover ; bc and keep lbs. of chs after patti ozs., and a color has above yell bright red T) 1 mpr acid, $\frac{1}{1}$ teas 2 days befo Strona
light brown ter, and to e inglass. Inlaid M funcy work, and cementi surffice is con black, being Wher the va and painting Another \$fe then, before black surface, the surface; pearl to form
Trangrarie. spread on a fr mixture of fine reliders the mu nearly invisible spirits of tarpen lay it ora quickly The colors used umber, Yerdigri the design is d Which tho colore
transvarency is piece of white paper or woud. Inake fine blue, texting it with a has struck through. Keep the solntion reneers remain till the dye root of ; this improves the color. Fine Yelligo a few weeks before trough ; add try to dust by sawing, which put -Reduce 4 lbs. of the white holly veneers 4 ozs. ; water, 4 gap put in a copper or brass hours, ofteu turning the liquor will cover. 'then put in as many the dye will strike thg them. When cool, add Boil them together 3 in the previous recerongh mach sooner. Brig aquafortis, 2 oz ., and fortis, add as much of to produce a yellow ; butcen-Proceed as dye) as will produce the vitriolated indigo ; but, instead of aqualbs. ; add water, 4 gals desired color. Dright Red ave, under blue cover; boll them for 3 . Put in as many veneers as the liguid dust, 2 and keop it luke-wir hours, then add alum 2 ors as the liquid will lbs. of chip logwood and until it has struck throz, aquafortis, 2 oz. after patting in your rend $\frac{1}{2 b}$. Brazil dust, add 4 gais, Purple.-To 2 ozs., and alum 2 your vencers, boll for 3 loud 4 gais. of wat3r ; and color has struck oz. ; let them boil for 2 or 3 ; then add pearlash, 9 above yellow dye whough. Orange.-Take the therery day till the bright red dye till while still wet and saturated, veneers out of the
muprove tire color penetrates throughout. reid, it teaspooufar Color of Stains. - Nithict.
2 duys before using grain tin, $\frac{1}{4}$ oz.; rain water acid, 1 oz . ; muriatic Strong Giusig, and keep your bottle well corke Mix it at least light brom glue for Inlafing on Veweril corkec.
ter, and to every free from clonds and streaks. Disselect the best uglass. For other add half a gill of the best vinegare this in waInlaid Mortmer glues seo Engineers' Department. fancy work, is per Pearl Work, on sewing ment and cementing teriormed by selecting the this machines and other surfice is covered black, being subjected sucnessive coats of Japan ; the rest of the Wher the varmishected to a baking process after rarnish, generally and painting added as thick as the shell, it is por each application. Another Ifethod. - and a flowing coat of varnish polished, the gilding then, before it is - Prepare the job with a heavy put over the whole. black surface, pressing, procure tabes of pearl and tay black Japan, the surface; then with them into the Japan until they them on the pearl to form the with colors form rines and fiomey are level with
Transparient Pody of the flower leaf, and shade up all nicing the spread on a frat Painting on Window Srupe up all nicely. mixture of fine flour secured tightly with thanss. The muslin is reuders the muslin paste, white glue, and white then sized with a nearly invisible phiable and soft. A thin cont is ar soin; the soap spirits of turpentine dry. A cont of pure linseed applled, which is hay it ori quickly and smen applied, to the whole or oll, diluted with The colors used and smoothly, to insure an erole, or part, as desired; umber, verdigris, the design is drasphaltum, or other suitablo, Paris green, sienna, which the colorawn with a small pencll with colors. An outline of transyarcncy is may be applied, more or less diluted or umber, after transiarcncy is desired. In general, the brightuted, ns more or less

274 Cabinmimažers, paiNters', \&C., neceirts.

applled first, and the darker shades over them. Theso colors menst bo laid oveuly anil smoothly with soft brushes, and should nul nart bo made too dark, the lest way is to scrape off with a stlck before tho color gets too dry. Tho best deslgns for shades consists of landscapo views, and should always ise designed to accommodnto the form aud position of the ground on which they are drawn. Stenclls will be found useful on this work, in making comers or stripes for borders.
To Paint Magio Laxtein Sides.-Transparent colors only are nsed for thils work, such as lakea, sap-green, ultramarino, rerdigris, gamboge, asphaltiun, \&c., mixed in oil, and tempered with light coiored ramish (white Demar). Draw on the puper the design desired, and stick it to the glass with water or gum; then with a fine pencil put the outlines on the opposite side of the glass with tho proper colors; theu shade or fill up with black or Vandyko browa, as you find best.

Marine Paint for Metals in Saify Water.-Red lenl bij parts; quicksilver, 30 parts; thlek turpenting, 7 parts. Mix with boiled Ilnseed oil to tho proper consistency. The quicksilver must be thorougbly amalganated with the theck turpentiue by grinding or rubbing, and thls mixture must bo ground with red lead and more bolled oil. As little oll as is necessary to mako the paint lay well must be used. To make the paint adiere more firmly, a previous coat of oxIde of iron palut may be uned.
To limtate Tohtoise Siele.-Paint a gronnd of animon color; then when dry and smoothed off, coati it over with roso pluk, mixed in varnish and turpentioo; then with a llat plece of glass, press on the aurface, and remove the glass quickiy, belng careful not to push it over the palut so as to disturid the curious fgures which the pressure will furm thereon. Varnish whea dry, anl you will flud you have a benutiful imitation of tortoise shell.
lanner Paisting.- Lay out the letters very accurately with charcoal or crayon, then saturate the cloth with water to render tho painting easy. Ou largo work a stencil will be found useful. Tako a piece of thin, lay the stralght edge to the mark, brush over witha madh tool, and by this means you will make a vary clean-edged letter. Use stiff bristio penclis in painting on canvas.

Oil Clotir Painting.-To paint canras for floors, the canvas should first be saturated with glueswater or flour pasto, and allowed to dry firet. Then puint it with any color desired. To put in tho figures, cut out desfgns in tin plates or stiff paper, and stencil them on in varions colors.

To Imitate Manbiz.-Tor ohito marble, get up a pure whito ground, then hold a lighted candle near the surface, and aliow tho gmoko to form the shades and various tints desired. This will make a very handsome imitation. Black marble imitation is made by streaking o black surfice with colors, using a feather ard pencll. Another pian is to get upasmooth black surface; then tako tho colors, green, yellow, red, whito, \&c., ground thick in gcid rizo, and streak the surlaco with a stick or pencil. Allow it to dry, and appiy a heary coat of lampblack and yellow ochre, mixed with rough stuff. Whin all is hard, rub down to a level surface with lump pumice-stove, vurnish, aud a benutiful varigated marble will be the result.
Eitcuino oy Gr,Ass,-Druggists' bottles, bar-tumblers, elgns, and

glassw

 art, by of the fluoric and he applicd ball of traced class. wiso it the flito it etches the varnglassware of every description, caa be lettered in a beautiful stylo of art, by simply giving tho article to be engraved, or etched, a thin coat of the engraver's rarnish (seo next recelpt), and the application of fluoric acid. Before doing so, the glass must be thoroughly cleaned and heated, so that it can hardly be held. The rarnish is then to bo applicd lightly over, and mado smooth by dabbing it with a amall ball of silk, filled with cotton. When dry and even, tho lines may bo traced on it by a shary stecl, cutting clear through the rarmish to the ghass. Tho varnish must be removed clean from each letter, otherwise it will be an imperfect job. When all is ready pour on or apply the fluoric acid with a feather, filling ench letter. let it remain until it ctches to the required depth, then wash off with water, and remove tho varnish.
Etcaing Fanmian.-Take of riryin wax and nsphaltnm, cach 2 oz.; of black pitch and Burgundy pitch, each hoz.; melt tho wax and pitch in a new carthenware glazed pot, aud add to them, by degrees, the asphaltum, finely powdered. Let the whole boil, simmorin? gradually, till such time as, taking a drop upon a pate, it will bronk when it is cold, or bending it double two or threo umes lietrixt the flugers. The rarnish, being then boiled enough, must be talien off tho fire, and, after it cools a littlo, must be poureit into warm water that it may work the more easily with the hands, so as to be formed into balls, which must be kneaded, and put into n piece of tafiety for usis. Tho sand blast is now in extenslye use for ornamenting on glass.
E'lcorio Acid to Make fon Etcinno lumposes.- Yoil can make your own fluoric (sometimes called hydro-fluoric) neld, by getting the fluor or Derbyalire spar, pulverizing it, and putting all of it into sulphurle acid whice: the acid will cut or dissolvo. luismich ats fluoric acld is destructi ' t to glass, it cannot ho kept in common bottles, but inust be kept in icad or gutta perclia bottles.

Glass-Gbinding ror Stons, Shades, \&c.-After you havo etched a name or other design upon uncolored glass, and wish to have it show off to better advantago by permitting tho light to pass only through the letters, you can do so by taking a plecs of flat brass sufficiently large not to dip into the letters, but pass over them when gidding upon the surface of the glass; then, with flomio emery, and kconing it wet, jou can grind the whole surface, very quickly, to look liko tho ground-gless globes often seen upon lamps, except the letter, which is caten below the general surface.
to Drill and Ornament Glass.-Glane can bo easily drilled by a steel drill, hardened but not drawn, and diven at a high velocity. Holes of any aizo, from the 16 th of an iuch nowarda, ean bo drilled, by using spirits of turpentino as n drip; aull, ezsier stlll, by naing camphor with the turpentine. Do not press the glass very hard against the drill. If you require to onnament glass by turning in a latho, use a good mill file and the turpentine and camphor drip, and you will find it an easy mntter to produce any ehape you chooso.
Gildina Glass Signs, \&c.-Cut a piece of thin paper to the sizo of your glass, draw out your design correctly in black lead-pencll on the paper, then prick thmugh the outiline of tho letters with a fino needle; tie up a little dry white lead in a piece of mg: this is a pounce-bag. Place your design apon the glass, right side up, dust it with the pounco-bag; and, after taking the paper off, tho design wiel
appear in white dots upon the glass; these will guide you in laying on the gold on the opposite side, which must be well cleaned preparit tory to laying on the gold. Preparing the size.-Boil perfectly clea. water in an cuamelled saucopan, and whilo boiling, add 2 or 3 shreds of best solected isinglass, after a few minutes strain it through a clean linen rag; when cool, it is ready for uso. Clean the glass per-fectly.-When this is done, use a flat camel's-hair brush for laying on the pice; and let it drain off when you put the gold on. When the gold is laid on and perfectly dry, take a ball of the fincst cotton wool nnd gently rub or polish the gold; you can then lay on another coat of gold if desirable, it is now ready for writing. In doing this, mix a little of the best regetable black with black japan; thin with turpentine to proper working consistency; apply this when thoroughly dry; wash oft the superfluous gold, and shade as in sigu-writing.

Glass Gilding, Anotifer Metiod.-Cleain and dry the glass thoroughly, then lay ont the lines for letters with a piece of hard scented soap, then paint the letters on the right side of the glass with lampllack mixed with oil, in order to form a guide for the work, then on the inside lay on a cont of the size mentioned in the preceding recoipt, using a camel's-hair brush, covering the whole of the letters ; next lay on the gold leaf with a tip, until every part of the lotters is covered well. Let the leaf remain until the sizo is dry, when sou will find that the letters on the front side can be easily seen and traced. This is done with quick drying black, mixed with a little varnish. Paint over the whole directly over the gold; allow it to dry; then wipe off with soap and water the lampblack letters from tho front side; with pure cold water and a clean sponge, wash the superfluons gold leat aud size from the back, aud you will have a splendid gold letter on the glass ; next, shade your letter to suit the taste, always remombering to shade to the edge of the gold, for then you have ouly one edge to make straight. The other edge may be left rough, and when dry may be straightened by scraping with a knife.

Ornamental Designs on Glass.-Ia making scrolls, eagles \&c., on glass, some painters put on the outlines and shades first, and then lay the gold leaf over all ; another good way is to scratch the sliades on to the gold leaf after it is dry, and put the colors on the back of the gold. Silver leaf may be used in the same mauner as gold, but it will not wear as well. A very pretty letter may be made by incorporaling silver with gold ; take paper aud cut any fancy design to ilt the parts of the letter ; stick it on the size before laying the leaf, n! lowing it to dry and wash off as before; then with a penkulfe raise the paper figure, and the exact shape or form of tho figure will we found cat out of the gold letter, clean off nicely, apply more size, and lay silver leaf to cover the vacant spots ; wash off when dry, and a very handsome letter will be the result. Colors may be used instead of silver, if desired, or a silvar letter edged or "cut up" with gold, will look well,

Glass and Porcelain Girding.-Dissolvo in linseed oil an equal weight either of copal or amber; add as minch oil of turpentine as will enable you to apply the compound or size thus format, as thin as possible, to the parts of the gle as intended to be gilt. The glass is to bo placed in a stove till it will silmost burn thie fingers when handled; at this temperature the size be zomes adhesire, and a piece of
gold le off the burnish the gold DriL and emi a steel d a lubric
gold leaf, applled in tho usual way, will immediately stick Sreen burniaherfuous portions of the leaf, and when quity stick. Sweep the gold and the burnisher. Drileiva Coburnigher.
and emory, moistened with, ta-To drill china nse a copper drill n steel drill tempered as luard as possiblo pentine. To drill glass, uso as possible and camphor and water as gold Lustre for Stonfivare, Ciriva, \&o.-Gold, 6 parts; agasulphur, 3 parts; oil of then add tin, 1 part ; next add balsam of inortar, and rab it until the mixturo 1 part. Mix gradually into a thrpentine, 4 parts. It is then to loe applied to hard; then add oil of a nud gum wrater, and the glass. - Porvdered gold is mixed with borax IIeat is then applied by a sotove on applied with a camel's-hair pencil. is fixed and afterwards burnished. antil tho borax fuses, when tho gold Usefol IItits for Cumished.
thrce coats of oil paint as a prige Painters. - It is usnal to apply to use, say a drying oil and priming to commence with, and it is saly ground in, about 2 ozs. to every 20 ils of with a little fine litharge priming better than patent dryer, and. of paint. This hardens the paper. When the first coating is hand works better under the sand-sand-paper and bo sure to mis hard and dry, rub down with your ircguinities, deficiencies and ride perfoctly levol work annong the
Next dust your work carefully, and withe surface of your work. the whole surface and putty up and with your putty knifo go orer hole with the hard drying puitty hevery crovice, split, crack or knotful not to overlook the silightest flaw, but mentioned. De very caresecond perfect level. Now dust off the bring overy spot to a true thick, but dog. Thin your color with work again, preparatory to down well. but, for prepor dark colors, use a dark lead covers well, nor rubs light lead color, if for suc a color as light green for the oil coats, with chrome yellow a yellow, begin with white, let the color bo Bo careful with. over each with your second over each and every part of the cont, to lay it fair, regular, and equal, careful to with a finer. quality of sand when it is thoroughly dry, mence to pive the surface perfectly sinootl not lavishly, but rub it coat (after dusting off), putting on Now comThe next step, when the well. np coats. For a good composition see and dry, is to npply the filling cirriago work. Another goond filling receint for "Rougl/ Suif", fur a small quantity of white lead, filling consists of ary French yellow, red lead, about one-sixteenth of litharge amount of whiting, a little to nearly mix it, put in a very little drying and of drving Japan enough Thin suitabla thickness to nake it apread likn and inrpentine to thin Apply this cot it can be applied easily, and fio stift coat of mint. good coat levellesition, giving the body, shafts, wh on full and free.

this coat becomes perfectly hard give it another. Tho noxt step, after this last coat dries hard, is to rub it down with lump pumice-stone, first rubbing the pumice flat upon a stone beforo commencing to uso it. In rubbling down with lump pumice use plenty of water, freels supplied from the sponge in your left hand; be very cautious to avold cntting through, and feel the parts frequently as thio work progresses, to ascertain when all is sufficiently smooth and hard, then with your sponge wash off tho work nicely, and with your wash leather wrung out, dry it off clean and smooth.
The next step is to paint the carriage. Sco to it that your colors are freshly ground, your paint mill, pots, tins, brushes, \&c., perfectly clean. Apply your color the proper thickness, expeditiously and nontly, so that the work will present a good clean appearance. The following directions will be found useful in mixing the designated colors. Dark Green, Olive Shade. Take dcep chrome yellow and powdered drop black, nix in a pot with tho drying Japan, and a little turpentino, grind all together, test to be sure that the color is right, if wished lighter, add more chrome sellow, if darker, moro drop black, grado the color to the proper thickness and apply at once. Two coats will be required. ultramarine blue. For your ground color, grind good Prussian blue in oil, and add to whito lend as much of tho blue as will make it sufficiently dark to form a ground for the ultramarine lline, two coats of this will be required. Whon hard and dry, grind some of the best ultramarine blue on the stono with o. quantity of ramish, add enough of this to your boily fiowing varnish to impart the right color. Two good coats of this beautiful color will be necessary; use sugar of lead as a dryer. Bofore giring the second cont rub down with ground pumico and water, usiog a cloth ; the next cont will flow all the better for this treatment. After a few days rub down again with ground pumico and water, wash, and dry with your chanols skin, when tho work will bo all ready for picking out and striping. Clarct or Lakic. Vernilion and rose pink, in oil, samo as the last, for first coat. When hardened dry, give another light cont, proviously rubbing down with ground pumice and wator, as directed for blue. For a rich light claret bo sparing of your rose pink in the ground color; for dark clarct, use moro rose pink. For darker shades uso more roso pink in the ground color, then use the best crimson lake, same way as for tho llght claret two good coats will do. For a purple shade of claret use vernilion, rose plak a spice of ultranarino blue, for a ground color. Then add the proper quantity of ground purple lako to body flowing varnish and apply two coats. Japan Broun. Grind drop black in Japan using enough vermilion to be visible. Chrome Greens. Grind your greens in Japan, or use greens composed of chromg yellow and Prussian blue. Carmine Color on Fire Enyines, de. Cheap method. For a ground, uso tho best English vermilion, then ndd pure carmino, ground in a littlo dryis:g oil, to your body flowing varnish, and apply two conts carcfully, This method extends the precious color so that an ounco will suffico for a carriage or machino. Oxford Brown. Uso a littlo chrome yclow, India red, best ochro, white lead, burned umber, just white enough to be seen ; yellow is tho leading color; red to warm it, and umber to impart tho lurown shade. Ilich Purple. Vermilion and Prussian
blno, yellow tnay br mw un red, as makes Stru carois, that the lines, gr color wi carriage, mixed co the carri of light 0 inch from tise black or deep o lines, prod light gree centre of pick ont w three-efigh green to gc luilion or rermilion the centro black, fino slight tint 0 centro. On White on Broons, vex
kiers Gicens or light gree ion, or high Purple, pick vernilion. Varinistin: the painting regards brus is ready, if it ramisl, and again, this tim to "flat" the water, and a ground ; then chamois leatho repair with Jal coat bo very fu A very superid application of ect.
If the serond

blno, with a littlo whito, a very cheap, nico color. Favon Color. Uen

 jeliow, red, a littlo black, a little tierra do sienna, or burned umber raw umber form a cool drab which shade. Drab Color. White and red, as may be desired. Plum Brourn be varied with chrome, or makes a very good color at a cheap rato. Drop black and vermiliou Striping ole "Piciring Our care is required in this pait of the for Carmiage Wore.-Grent that the lines may bo dmurn equidistant to carry a stendy hond no lines, grind the color in drying equidistant, cleau and neat. For fino color will do for broad or congol, as it makes the best work. Japau carriage, with heayy whecls, drse lines, on blue ground. If a largo the carriage, from three quarter inch to one inch Frankfort-black, Japan of light oranconcels, springs, spokes, hubs, ech broad, on all parts of inch from the or lif lit primrose color about three-eigh draw fine lines the black nuts and biack line, with one fine line around or a quarter or deep orance lin bolt heads. On superior work around the edges of lines, producing a res may bo drawn down the midere white, gold, light green bing a rery fino effect; on arcens, plek out wit the black centro of the black will be sufficient, if desi out with black, if a plick out with black lines. with whito, not too fino better, run up tho three-eighths of an funning very fino lines on each side dark green, green to good adyanth off the black. This also sets side of the black milion or rich orango fing On Clavets, pick out with blick a very bright rermillon line rum up the side lines, or light orange side, with verthe centro of one large be centro of the black; or fight gold line with black, fine line with vermilion line. On Oxforli Browen, plek out with slight tint of red in it ; or part inedium tint of chromo yollow with centro. On Faron Colors, piek out with line with whito down tho Wrote on each edge, or brown drab broad black, fine lino with kers' Greens pilion lino has tho best appenranco On Japan or Plums or light green. pick ont with black, with white ion, or ligh colored Drabs, pick out with black, fine lines, or orango Purple, pick out with ongo, or white centre lino for lino with vermilo remilion.an a bright tint of orange or the painting department, and Carmiages.-In this, as well as in regards brushes, pots, freedom from cleanliness is indispensable, as is ready, if it is the under carriago from dust, \&e. When your work rarnish, and when through with this aply a good full coat of carriago amain, this time using body rarnish. to "flat" the work by liglitly removing the it is hard and dry proceed water, and a woollen cloth, being care the gloss with ground pumice, ground ; then clean away all the pumicul not to cut into tho lines or chamols leather slightly wet. If pumice, and dry off nicely with the repair with Japan color previous you havo cut through in any part, coat bo very full and well lald ons to second coating. Let your second A very superior gloss will bo obtained onreful that it does not run. application of a good coat you spin them untio wheels, if after tho pet.
If the second coat is not sailsfactory, reneat the fattening process
with your pumice, cloth and water, clean off as before and varnish again.
In more costly polished work, commence with the very finest ground pumice or Tripoll, rub until you bring the work to a very gmooth state, then wash of very clean and nice, dry and dust well. Use every precaution against dust, by sweeping and sprinkling your fioor in every stage of pollshing and varuishing. The next step in polishing is to use a fine cloth for a rubber, rotten-stone, sifted fino through muslin and mixed with ollve oil; rub with this until tho gloss is restored, occasionally examining the progress of the work. This step being finished, wipe off with a perfectly clean cotton cloth, with a piece of the finest flax full of fine wheat flour or putty powder go over the work, rubbing well to polish it still farther, and remove every particle of the oil and rotten-itone previously used. Finish off by rubbing the work briskly with an old silk handkerchief, which will induce a beautiful fine gloss. In every instance when a polish and rarniah finish is required, do not omit to lay on an extra coat of varnish, as it will greatly enhance the appearance of the work.

Gilding and Oinnamentina Carriages. - English gold size is the best for this purpose. If you cannot get it ready prepared, make a substitute by using English varnish and Japan in equal parts. If the gilding is for striping yon should mix a little clirome yellow with it, to be able to see the lines the better, but for lettering no coloring is required. Rub your job down smoothlv, take a pieco of muslin and tie up in it a little whitening to form a "pounce bag;" with this dust over every part of the work where the gold leaf is to we put, to prevent the leaf sticking to the surface not covered by the size, or wash the job over with starch water, or rub it over with the raw surface of a potato cut in halves ; the juice of the potato soon dries, and leaves a thin film to which the gold will not adhere. Either of the above methods will do, and the coating will wash off when the gilding is dry. The surface prepared, take the size and put on the stripes, figures, or ornaments, and allow it to dry just enough to enable yon to pass your finger over it without sticking, but if it is "tacky" when you place your finger upon it, it is ready for the gold leat, which is to be applied in the way directed for gilding letters on wood. The gold letters may be shaded with ultramarine, carmine, asphaltum, lake, Paris green, verdigris, \&c., to suit the taste.

Bronzing.-Gold bronze is used on carriage parts for striping and ornamenting, using the same size as that used for gold leaf. For taking up and applying the brouze, take a piece of plush or velvet and make a "pounce bag," by tying up a wad of cotton, rubbing the bronze gently over the size. To vary the appearance, a mixture of copper, gold, and silver bronze may be applied. For fancy work in brouze, cut out any desired pattern on thin sheet brass, pasteboard, or paper, and apply it to any nearly dry varnished surface; rub tho bronze on throngh the apertures in the pattern.

Good Cololes for lubiness Wagons.-No. 1. Body,-Chrome green; frame or ribs black striped with white or cream color. Running gear.-Cream color striped with red, blue or dark green, or lack, and red fine line. No. 2. Body.-Yellow; frame black, striped with hlve or white. Running gear;-Light vermilion, striped with
black n! Ruminin
niny yod Mixti water ov until it nud afte Fith soan then give piece of 1 loose and method is structed
To Ble ressel as cover with weeks nuti a plilalal and polrred of To Copy ing the orn paper over Orvastes may be eas directions gi color, before milion is use ion having the best colo and oil. An would change yellow, and a as fine as po
voliatile, and Primina Fo lead with raw coat, adding of carriage parts coat of lead. and a little tar but none for th
thick paste wit) to bind the pai and a little red Mard Drrin with Japan and beating it with not in use, in w lough StuF:
lond state) (ground state),
with Japan, 2 p oughly by runui black and whito. No. 3. Body.-Carmino meo
Ruming year, - Vermilion Body,-Carmino glazo orer Indian red. niny, gear.-Light vermilion. Na. 4. Boaly,-Deep verinilion. RunMixtune to remoye ord water over the fire, then add Paint.-Dissolve 1 lb . potash in 3 pts. until it is as thick as rough etuff; ochro or somo common dry paint aud after a little it will come off ; spread this over your old paint, Fith soap and water to removo all quite casily, then wash the paint then give a coat of clean raw oil. Andotash, dry off and sand-paper. piece of iron and appiy to the paint, whimethod is to lient a lieary looseand soft, so that it may bo scraped of hich will canse it to becomo structed for direct the flame of a ppirit lamp anifo. Still another To Bleach opurpose) on the old paint, scmp (which may bo conressel as will stan.- Pour as much linseed oil into it off as it softeus. cover with a fine chat one inch deep, then pour in 6 inches of earthen weeks until the ligith, and let tho wholo stand in the sun of water,' a phial and submifted becomes thick, when it should 80 for a fow poured off and strained a gentlo hent; after which tho poured into To Copy an Oraned through a flannel cloth. 1 the clear is to bo ing the orman Ornament.- Placo the paper or paper over it, yougainst a pane of glass, ther other articlo contalnOrvasentrs, in can copy it exnctly with a lead jing a sheet of thin may be easily trate shape of decalcomine or pencil.
directious given in tranged to carriages or conches by filded pictures.
Vermilion.-To pranserring pictures. See farther on following the color, before miri prevent vermillon from fading on. millon is used foring, part of flour of sulphur fis, add to tho dry ion laving less bodyping, ornamenting or fettering. the Engllsh vertho best color body, will not cover good. Engliy the deep rermiland oil. Amer on carriage work when mixed with vermillon glves wonld change it to vermillon should not be wrou rubbing vanish yeliow, and all hean orange color ; whilo green, Indian the process as fine as possible volatilo, and penctr. Raw oil is preferable to boiter being ground phming por antes and fills the pores of tho boiled, as it is moro lend with raw oil Camiages Work. First cont wood better. coat, adding a 2 parts, Japan, 1 part, to mako of lead. Nix white carriage parts ndd a littlo turpentino to mako it proper for a thick coat of lead. Mix a ilttlo Indian black, but not tork easily. For and a llitle tarpix white lead with 1 part mot for bodies.-Second. but none for thentine, as before, adding lampblack nnd 2 parts Japnn, thick paste with tuody. - 1 Third and fourth coat Mix whirriago parts, to bind the paint urpentine, add a little oil, Japan and whito lead into a and a littlo red lead. IIARD Dred lead.
with Japan and rubbing ri-For carriage voork. Mfle dry white lead beating it with a small mallet equal parts, to tho proper cousistency, not in use, In water, to prevent it drying tho lumps. Keep it, when louah Sturf.- i'or carriage zoorying. (ground state), 2 parts dry white lead, Talse 3 parts of English filling with Japan, 2 parts, rubbing varnish, 1 part whito lead in oll. Difir oughly by running all through tho mill together. 1 mar and crush thor.

Facing Lead for Carriage Work.-Mix dry white lead with 3 parts Japan, 1 part rubbing varnisk, and thin with spirits of turpentine, adding a little lampblack to make a clean lead color, and ruin all through the mill.

Coach Painting. -The panels of such work are generally painted in color, while the pillars, top strip, quarters, deck, \&c., are always black; umber colors, lakes, greens, and blues aro some of the best colors used on this work. To prepare the body for any of these colors, a ground color is used in the place of lampblack on black work. The following are a ferv approved grounds. Lake.-Indiau red and vermilion mixed to a dark brown, but some prefer a black ground for lake. Ultramarine.-Mix a medium blue with white lead and Prussian blue. Vermilion.-A light pink color is generally used as a ground for vermilion. Green.-Green and all heavy-bodiel colors will cover well on the lead colors without any ground color. Victoria lake and black Japan makes Ω fine color for carriages.
Prepared Oil for Carriages, \&c. -To 1 gal. linseed oil add 2 lbs. gum shellac ; lithnrga, $\frac{1}{2} \mathrm{lb}$. ; red lead, $\frac{1}{4} \mathrm{lb}$. ; umber, 1 oz . 13 oil slowly as usual until the gums aro dissolved; grind your paints in this (any color), and reduro with turpentino.
lorcelain Finisis, vezay fine for Parlors.-To prepare the wood for the finish, if it be sina, give one or two coats of transpareni rarnish, which prevents the pitch from oosing out, causing the finish to turn ycllow; next, give the room at least four coats of pure zinc, which may bo ground in only sufficient oil to enable it to grind properly; then mix to a proner consistence with turpentine or naphtha. Give each time to dry. When it is dry and hard, sand-paper it to a perfectly smooth surface, when it is ready to receive tho finish, which consists of two coats of French zinc ground in, and thinned with Demar varnish, until it works properiy under the brush.

Japan Drier Best Quality.-Take linseed oil, 1 gal. ; put into it gum shellac, 3 lb.; litharge and burned Turkey umber, each $\frac{1}{} \mathrm{lb}$.; red lead, $\frac{1}{2} \mathrm{lb}$.; sngar of lead, $\mathbf{9} \mathbf{o z}$. Boil in the oil till all aro dissoived, which will require about 4 hours; remove from the fire, and stir in spirits of turpentine, 1 gal., and it is done. 2. Linseed oll, 5 gals. add red lead and litharge, each $3 \frac{1}{2}$ lbs.; raw umber, 11 lbs.; sugar of lead and sulphate of zinc, each, $\frac{1}{2}$ lb. pulverize all the articles together, and boil in the oil till dissolved; when a little cool, thin with turpentine, 6 gals. 3. Linseed oil, 4 gals. red lead and umber, of each 8 ozs ; sulphate of zinc, 4 ozs . ; sugar of lead, 4 ozs . Boil until it will scorch a feather, when it is ready for uso. 4. Nut or linseed oil, 1 gal; litharge, 12 oz .; sugar of lead and white vitriol, of each 1 oz.; simmer and skim until a pellicle forms; cool, and, when settled, decant the clear. 5. Oil 1 gal.; litharge, 12 to 16 oz. ; as last. 6. Oid nut or linseed oil, 1 pint; litharge, 3 oz. Mix; agitate occasionally for 10 days; then decant the clear. 7. Nut oil and water, of each 2 lbs.: white vitriol, 2 oz. ; boil to dryness. 8. Mix oil with powdercd suow or ice, and keep it for 2 months without thawing.
To Reduce Oil Paint with Water-Tage 8 lbs. of pure unslaked lime, add 12 qts . water, stlr it and let it settlo, turn it off gently and bottle it; kcep it corked till used. This will mix with oil, and in proportion of hall will render paint more durable.
Oil Panst.-To meduce fitir Water,-Gum shellac, 1 lb ; ; sal-
rodn, $\frac{1}{1} \mathrm{lb}$ dissolved. cool, bottl desired, u with tha 0 water to a
Asotine oz.; bring ready to be Fi.exibl mater, $1 \nmid \mathrm{~g}$ paint, 1 Painter: add of sug: quantity of consistency unfinished Shalt.duum into a hour ; powd carbonate o begins to fall silicate of po of 10 parts of conl. The p fine. It is Fictitiocs ncetate of lea Well mixed gallon. Agai

Varnismes the ; boiled o ine, 2 quarts rectified spirits lole for the es and when dis Cuach Bodies.red lead, 7 lus. Again boil unti add spts. of Mastic Varnis\% tine, 1 gallon; closo vessel till oil, 1 lb . molt nish. - Pale Afr parts. Boil the spirits of turpen mado by colorin much of these t. proper color; the lorms lacquer. kandarac, mastic boge, two parts ;
foda, $\frac{1}{3}$ lb. ; rater, 3 parts; boil all together in a kettle, stirring till dissolved. If it does not all dissolve, add a little more sal-soda; when cool, bottle foi uso; mix up 2 quarts of oil paint as usual, any color desired, using no turpentine; put 1 pint of the gum shellac mixturo with the oil paint when if becomes thick; it can then be reduced with water to a proper thickness to lay on with a brush.
A.orneff Method.--Soft water, 1 gal.; dissolve it in pearlash, 3 oz.; bring to a boil, and slowly add shellac, 1 lb .; when cold, it is ready to be adiled to oil paint in equal proportions.
Hhemide Pant foh Canvas.- Yellow soap, 23 lbs.: boiling water, $1 \frac{1}{2}$ gals.; dissolvo; grimd tho solution whilo hot with good ofl paint, $1 \pm$ civt.
Pancrens' Cream.-Pale nut oil, 6 oz. ; mastic, 1 oz.; dissolve; add of sugar of lead, toz., previously ground in the least possible quantity of oil; then add of water q. s. gradually, until it acquires the consistency of cream, wo-king it well all the time. Used to cover the unfinished work of painters. It will wash off with water.
S.inlet.-Roast cobalt ore to drivo off the arsenic ; make the residuum luto a paste with oil of vitriol, and heat it to reduess for an hour ; powder, dissolve in water, and precipitato the oxide of iron by carbouate of potash, gradually added until a rose-colored powder begins to fall ; then decant the clear, and precipitate by a solntion of silicate of potash, prepared by fusing together for 5 hours a mixturo of 10 parts of potash, 15 parts of finely-ground flints, and 1 part charconl. The precipitate, when dry, may be fused and powdered rery fine. It is mach the cheapest way to buy smalts ready made.
Fictitioes I.inseed Oil.-Fish or vegctable oil, 100 gallons: ncetate of lead, 7 lbs. ; litharge, 7 libs.; dissolved in vinegar, 2 galls. Well mixed with heat, then add boiled oil, 7 gallons ; turpentine, 3 gallon. Again well mix.
Varnisims.-Common Oil Varnish.-Resin, 4 lbs.; beesmax, 1 lb ; boiled oil, 1 gallon ; mix with lieat ; then add spirits of turpentine, 2 quarts. Chincse Varnish.-Mastic, 2 oz.; sindarnc, 2 oz.; rectified spirits, 1 pt ; close the matrass with bladder, with a pinhole for the escape of vapor ; heat to boiling in a sand or water bath, and when dissolved, strain through linen. Detallic Varmish F'or Coach Bodies.-Asphaltun, 56 lbs.; melt, then add litharge, 9 libs., red lead, 7 lbs. Boil, then add boiled oil, 12 gals. ; yellow resin, 12 lbs . Again boil until, in cooling, the mixture may be rolled into pills ; then add spts. of turpentine, 30 gals. i lampblack, 7 lbs. Mix well. Mastic Varnish. - Mastic, 1 lb .; white wax, 1 oz. ; spirits turpentinc, 1 gallon ; reduce the gums small ; then digest It with heat in a close vessel till dissolved. Turpentine Varnish.-Resh, 11 l . boiled oil, 1 lb . melt ; then add turpentine, 2 lbs . Nix well. Pale Var-nish.-Pale African copal, 1 part ; fuso. Then add liot pale oil, 2 parts. Boil the misture till is is stringy; then cool allttle, and add spirits of turpentine, 3 parts. Lacquer Vamish.-A good lacquer is mado by coloring lac ramish with turmerle and anuatto. Add ns much of these two coloring substances to the ramishas will give the proper color; then squeeze the varnish, through a cotton cloth when it loms lacquer. Gold Varnish.-Dlgest shellac, sixteen parts, gulin sandarac, mastic, of each thrce parts ; crocus, one part ; gum gimlboge, tro parts; all brulsed, with slcohol, one lundred mind furty"
four parts. Or, digest seedlac, sandarac, mastic, of each cight parts ; gamboge, two parts ; dragon's blood, one part ; white turpentine, six parts ; turneric, four parts; bruised with alcohol, one hundred and twenty parts. Deep Gold-Colored Lacquer.-Seed lac, 3 oz . ; turmeric, 1 oz. ; dragon's blood, one-fourth ounce $\dot{\text { alcohol, } 1}$ pt. ; digest for a week, frequently shaking : decant, and filter. Lai.quers are used upon polished metals and wood to impart the appearance of gold. if yellow is required, use turmeric, aloes, saffron or gamboge ; for red, use annatto, or dragon's blood, to color. Turmeric, gamboge, and dragon's blood generally afford a sufficient range of colors. Gold Lacquer.-Put into a clean 4 gal. tin 1 lb . of ground turmeric, $1+\mathrm{oz}$. of gamboge, $3 \frac{1}{2} \mathrm{lbs}$. powdered gum sandarac, ${ }^{4}$ pound of shellac, and 2 gals. of spirits of wine. When shalken, dissolved, and strained, add 1 pint of turpentine rarnish, well mixed. Varnish lior Tools.-Take tallow, 2 oz . ; resin, 1 oz . ; and melt together. Strain while hot, to get rid of specks which are in the resin; apply a slight coat on your tools with a brush, and it will keep off rist for any length of time. Gold Varnish.-Turmeric, 1 dram; gamboge, 1 dram ; turpentine, 2 pints; shellac, 5 oz ; dragon's blood, 8 drams ; thin mastic varnish, 8 oz . digest with occasional agitation for 14 days ; then set aside to fine, and pour off the clear. Beautiful Pale Aniber Varnish.-Amber, pale and transparent, 6 lbs. ; fuse; add hot clarified linseed oil, 2 gals. ; boil till it strings strongly, coola little, and adcu oil of turpentine, 4 gals. This soon becomes very hard and is the most durable of oll-varnishes. When wanted to dry quicker, drying oil may be substituted for linseed, or "driers' may vo added during the cooling. Black Coach Varnish.-Amber, 1 ib ; fuse; add hot drying oil, $\frac{1}{2}$ pt. ; powdered black resin and Naples asphaltum, of each 3 oz . When properly incorporated and considerably cooled, add oil of turpentine, 1 pt. Dody Varnish. - Finest African copal, 8 lbs. ; fuse carefully; add clarified oil, 2 gals. ; boil gently for 4.\} hours, or until quite striugy ; cool a little, and thin with oul of turpentine, 31. gals. Dries slowly. Carriage Varnish.-Senldarac, 19 oz ; pale shellac, 94 oz .; very pale transparent resin, 12$\}$ oz. ; turpentine, 18 oz . $; 8 \mathrm{j}$ per cent. alcohol. 5 pts. : dissolve. Used for the intornal parts of carriage, \&c. Dries in ten minutes. Cabinetmakers' Varnish. - Very pale shellac, 5 liss. ; mastic, 7 oz . ; alcohol, 90 per cent. 5 or 6 pts. ; dissolve in the cold with frequent stirriug. Used for French polishiug, \&cc. Japanners' Copal Varnish.-Palo African copal, 7 lbs.; fuso ; add clarified linseed oil, $\frac{1}{2}$ gal.; boll five minu es, remove it into the open air, add boiling oil of turpentine, 2 gals, ; mix woll, strain it into the cistern, and cover it up immedintely. Used to varnish furniture, and by japanners, coach-makers, \&c. Copal Varnish.-Pale hard copal, 8 lbs. ; add hot and pale drying oil, 2 gals. . boil till it strings strongly, cool a littlo, and thin with hot rectified oil of turpentine, 3 gals. and strain immediately into the store can. Very tine. Gold Varnish of Watin, for Gilded Articles.-Gum lac in gruins, gamboge, dragon's blood, and annatto, of each 12i oz.; saffron, 54 oz . Liach resin must be dissolved scparately in 5 pts. of 90 per cent. alcohol, and 2 separate tinctures must be maie with the dragon's blood and annatto in a like quantity of splits; and a proper proportion of each mixed together to produce the required shade. Transparent Varnish for Ploughs, \&c.-Dest alcoliol, 1 gal.; gum san-
darac, 2 of being the can Black Va resin, 6 o cooled, ad dissolve 1 turpentine that procu effect of go extremely Put 4 oz. be dragon's bl into 8 oz . vessels. Kc possible, fol gether such desirous of Wood.-Best or bottle in a solve quicker Canvas.-Tal them into an gum by heat. pt.; and boil Perhaps a litt Mosaic Go crucible, add $\frac{1}{2}$ is reduced to p flour of sulply leaves the tin at the bottom The sal-ammon the utmost puri
quantity of red quantity of red
Put some gold mith gum arahic the gold is redi or gum repeated left behind. Il
made from Dut price. Treat in When this inferi clear varnish, oth per Pooder is pre
nitrous acid in a nitrous acid in a,
be removed; or, off from what rem will precipitate t the liquid being off the crystals by BRONZE POWDE
the can in hot ; cork tight, shalee it frequently, occasion which admits Black Varnish for C. When dissolved, it is ready for ully placing resin, 6 oz . ; asphr Coachcs.-Melt in an iron pot amber 32 Finc cooled, add oi of tum, 6 oz . ; drying linseed oil, 1 pt. ; whe 32 oz ; dissolve 1 oz . maturpentine, warmed, 1 pint. Mort, when partly turpentine in 6 oz, spic, 1 oz. sandarac, $\frac{1}{3}$ oz. gum gambont Varnish.that procured loy dissolvs turpentine. One of the gamboge, and $\frac{10 z}{} 0$. effect of greatly heighting a little honey in thick sluest mordants is extremely well. Changing the color of the gold, aud the leaf titho Put 4 oz . best mm anging Varnish.-To imitate Gold or leaf sticks dragon's blood into gamboge into 32 oz . spirits of Gold or Silver, dc. into 8 oz . spirits of tur. spirits of turpentine; and 1 vessels. Keep them in possible, for about in a irarm place, exposed to the sur in different gether such quantities ofeks, when they will be fit for use much as desirous of obtaining will paiquor as the nature of the color Add to-Wood.-Best alcohing will point ont. Transparent Color you aro or bottle in a situnol, 1 gal. ; nice gum shellac, 2h lbs Parnish, for solve quicker than if to kcep it just a little, warm, and it the jing Canvas.-Take spirits hot, or left cold. Patent Varmish and it will disthem into an ir spirits of turpentine, 1 gal ; asphaltum for Wood or gum by heat. Whettlo which will fit upon a aspinaltum, 2 l lbs. ; put pt.; and boiled linseed disolved and a little cool add and dissolve tho Perhaps a littlo lamsced oil, 1 pt. ; when cold, it is copal varnish, 1 Mosaic Gold Popblack would make it a more is ready for use. crucible, add lo Powder for Bronzing, \&ore periect black. is reduced to pow. of purified quicksilver to it: Whent 1 lb . tin in a flour of sulphowr, till and ground, with $\frac{1}{2} \mathrm{lb}$. sal-amm this is cold, it calcined in a mat till the wholo is thorourhiy mixed leaves the tin convs ; and the sublimation of thed. They are then at the bottom of the The sal-ammoni the glass. Removo any blackordier which is found the utmost purity. Wust bo very white and clear, and the particles. quantity of red lead when a decper red is required, rrind mercury of Put some gold leaf with the above materials. Tr, grind a very small with gum arabic, into with a littlo honey, or thick Gold Powder.the gold is redu, into an carthen mortar, and pound the water mado or gum repeatedly to very small particles; then wash the mixture till left behind. When dry, it is water, and the gold in pouterer will be made from Dutch gold leaf, which for uso. Dutch Gold Powder is price. Treat in the manner which is sold in books at a yery low When this inferior powder is used, cover the for true gold powder. clear varnish, otherwise it will soon loso the gilding with a coat of per Ponoder is preparod by dissolving filing bright appearance. Copnitrous acid in a receiver. When the filings or slips of copper with beremoved; or, if filings be employed, the saturated, the slips are to off from what remains undissolved will the solution is to be poured will precipitate the copper powder Small bars are then put in, which the liquid being poured from the powd rom the saturated acid; and, off the crystals by repeated waters. Bronze Potrder of ated waters.

134 parts of copper and 23 parts zinc, of a crimson metallic lustre from copper, of a paler color, copper, and a very little zinc, green bronze with a proportion of verdigris, of a fine orange color, by ist parts copper and 1 y parts zinc ; another orange color, 133 parts copper and 24 zinc The alloy is laminated into very fine leaves with carelul annealing, and these are levigated into impalpable powdere, along with a film of tine oil, to prevent oxidizement, and to favor the lerigation.

General Directions for Bronzing. - The choice of the above powders is of course determiued by the degree of brilliancy you wish to obtain. The powder is mixed with strong gam water or isinglase. and laid on with a brush or pencil ; and, not so dry as to have still certain clamminess; a piece of soft leather wrapped round the finger is dipped ints, the powder, and rubbed over the work. When the work has been all covered with the bronze, it must be left to dry, and and loose powder then cleared away by a hair-pencil.

Bronzing Iron.-The subject should be heated to a greater degree than the hand can bear, and German gold, mixed with a small quantity of spirit of wine varnish, spread over it with 2 pencil; should the iron be already polished, you must heat it well, and moisten it with a linen rag dipped in vinegar.

Gilder's Parchment Size.-The best is made from cattings of fine parchment. Wash them clean, cover them with water, and allow them to simmer for about 2 hours over a slow fire: when brought to the proper strength or tenacity, which may be tested by the trial of a portion between the thumb and finger; if it proves adhesive pour it into a clean vessel for use. When solidified, it resembles a jelly; if rery stiff, it will require dilution with water. Some gilders use a lactometer and a deep glass to determine the proper strength of size. When the float indicates a little higher than 1, for burnish size, and near 2, for matt gold size, excellent work will result. In the United States, some gilders substitute a white glue for yarchment cuttings in the making of size. For Orl Goud Size, consult that item.

Matt Gold Size is usually purchased from dealers ready made; it is prepared for use by internixture, (in a clean vessel) over a slow fire, with parchment size, to the density of a thickish cream, and used while warm.

Burnish Gold Size is often bought ready made from the dealer. Good results may be obtained by using red chalk, black lend, and deer suet, of cach 2 ozs ., fincly ground to a stiff pacte, with 2 lbs . of pipe clay, and for use prepared like matt size.

Thick Write for application to the parts intended to be bnmished, previous to putting on the burnish size, is a composition of parchment size and whitening, about the density of cream.

Gilder's Ormolu.-Red Sanders wood 2 dra, tameric 1 dr ., garnet shcllac 1 oz., spirits of wine $\frac{1}{3} \mathrm{pt}$. : mix all together thoroughly and strain. This is added to medium strength parehment size in ordcr to impart a more beautiful appearance to the matt and oil gilding.

Clay for Gilder's Use is usually purchased from the deajers and is prepared similar to bumish size.

Thri Storping Composition used for filling holes and deficiencies in the work is a compound of size and Fhitenigg, brought to the density of putty.

To Wuites Mouldivgs.-On gilded Fork to be exposed to the weather, paint is weal ns a foundation, tud the gilding is done in oil
as burni descripti mouldius coat of fi holes, ble then appl applying 1-16th of smooth of work to en atteution t

Compos 5 pts; rosi water nutil the glue mi pour the mi mir up to tl and cover w by selecting dition (for t with the han smeared witl the mould, a side the mou screw press, mould. This the press and attached to t pose the corne backed or fille hired full tim gilder is to wa? adherent oil an
thin white to thin white to
ive parts with hard, go over smoothness wit slighted if a god dast off the won low it to dry an of clear cole is n
thinnish consiste thinnish consist
size in a warm size in a warm
the succeeding c linseed oil and oo consistency, and der pressure, squ evenly over the comes slightly sti are brought into entire surface co management ; th
his brenth, divide
as burnisherl gilding is unfit to withstand exposare. This last named description of work must have a good base of whitening applied to the moulding previous to gilding. First apply a very hot thin priming coat of fine whitening and parchment size; after this is dry, fill the holes, blemishes, and irregularities with the stopping composition; then apply a good coat of thich white, dry, and apply anotlier. After applying several coats of the thick white, which should be in all about 1-10th of an inch in thickness, pumice-stone should be applied to smooth off all irregularities and the surplus whiting. Make thorough work to ensure a fine smooth surface on the moulding, paying great attention to the different hollows, beads, \&c.

Composition for Ornaments.-Best glue, 9 lbs. 6 ozs.; water 5 pts ; rosin (white) 4 lbs.; raw linseed oil 4 pts. Boil the glue in the water until dissolved; dissolve the rosin in the oil, add the whole to the glue mixture. Boil the whole slowly for 25 minutes longer, and pour the mixture . .to a large vessel among finely sifted whiting, and mix up to the consustency of thin putty. Set away in a damp place, and cover with a wet cloth ready for use. The ornaments are made by selecting a protion of the mixture, steaming it to a soft plastic condition (for the mixture becones very hard when cold), and pressing with the hands into a boxwood mould, previously well lubricated or smeared with oil and turpentine. The composition belng fitted into the mould, a board thoroughly wet, is place : against the mixture outside the mould, and the whole is submitted to pressure in an tron screw press, which drires the mixture into the minutest parts of the monld. This done, the pressure is relaxed, and the mould taken from the press and the ornament withdrawn from it. The omaments may be attached to the frame with glue or white leau; and when they compose the corners on frames, require to have the racant space between backed or filled up with composition softened in boiling water.

Gilding in Oir.--The ornaments being properly adjusted and allowed full time to harden on the frame. the first step taken by the gilder is to wash and cleanse then, together with the frame, from the adherent oil and dust. This done, when dry, apply a uniform coat of thin white to the frame, and, after drying, fill all the holes and defective parts with the stopping described above. When this becomes hard, go over erery part of the work and bring it to the utmost smoothness with fine glass paper. This part of the work mist not be slighted if a good job is wanted, for it cannot be dispensed with. Now dust off the work and apply the clay prepared as described above; allow it to dry and rub smooth with fine glass paper once more. A coat of clear cole is now applied, consisting of parchment size diluted to a thinnish consistency with water. It is usual to apply 2 coats of this size in a warm condition. It effectually prevents the absorption of the succeeding coat of oil size. The gilder prepares the oil size (boiled linseed oil and ochre well ground together) by bringing it to a creamy consistency, and purifics it by straining through a clean rag held under pressure, squeezing out the size. This preparation is spread very evenly over the prepared surface, and allowed to stand until it becomes slightly sticky or tacky, when the knife, cushion and gold leaf are brought into requisition, and the leaf applied with the tlp to the entire surface covered. with the size. This process requires careful management; the gilder blows the gold leaf out on the cushion with his breath, divides and subdivides it with his knife to cover the differ-

288 CABINETMAKERS, PAINTERS, \&C., RECEIPTS.

ent wants of rarious parts of the work. The leat is dabbed down with a dabber of cotton wool or other soft inaterial, and finished with a badger. See Gilding Letter's on Wood. The frame be'ng now corered with the leaf, is brushed off to clear it from the small gold particles still adhering, and is tinally finlshed by applying the finish, size evenly with a hog's-hair brush over the work. The finish consists of a somewhat weak, clear size, which may be tempered with a little ormolu if it is desired to impart 2 finer color to the gold.

Water and Oil Gifding on Large, Broad Frames, \&c.-Remove all dust and dirt from the frame and ornaments, by thorongh wasling and brushing with plenty of clear water, being careful not to damage the ornaments while doing so, dry, and apply a coat of thin white, fill all holes and defects by stopping, and treat the parts intended to be burnished with three or four coats of thick white, smoothing down the last coat when nearly dry, by passing the fingers over it. When dry, go over it with glass paper, making a complete smooth job; next apply a coat of clay, and smooth down with glass paper once more. Next, apply an even coat of size, and when dry, apply another. The frame is next "put in oil" as above described, and subsequently, the parts intended to be bumished, which hare received the coats of thick white, must be thoroughly cleaned from oil by careful rubbing with a wet piece of cotton applied by the finger, turning the rag at short intervals so as to present a clean surface to the work. Guard against touching any other parts of the frame with the wet cloth, as the mistake will have to be corrected with the oll brush. To make sure that no trouble will result from grease, it is necessary before laying the gold, to apply clay to all parts intended to be burnished, in order to prevent any of the gold leaf from sticking, as it would have to be removed with glass paper previous to applying other preparations. The frame is then gilded as previously described, the leat pressed into the cavities of the ormaments, \&c., the defeets corrected, the work brushed off, and size finlshed as above. The parts to be burnished or 2 cater gilded, previously noted as being coated with clay, must now be treated to three or four coats of mat yold size, laid on evenly with a camel's-hair bruslı. When dry, polish with fine glass paper, brush down, and pass over it afterwards with a damp sponge. Now apply 2 even coats of burnish gold size, and apply the leaf as soon as the last coat becomes dry. This is applied in a manner elltirely different from that previously described. The frame being elevated at a proper angle to allow the surplus water to drain off, and the gold leaf, cushion, knife, tip, camel's-hair pencils, glass of clean water, \&c., being ready, proceed to gild the bead which passes around the frame hetween those parts which have previously been oil-gilt, by dipping a proper sized camel's-hair pencil into the glass of water, wipe it on the edge, commence at the left hand extremity of the bead, wetting it for a space of 4 or 5 inches or more down, saturating it thoroughly with the water, and apply the gold leaf (previously cut to the proper size and held in readiness on the tip) very ueatly and quickly to the spot while it is covered with water. Go over the bead, ornaments, and all parts intended to be burnished in this way, being extremely careful to allow no water to come in contact with the gilded part of the frame. When done, examine closely for faults, and repair all defects discovered, dry, and proceed to buinish by applying the curred part of the burnisher to the work, passing it hither and
thither steadyin bringing care, bri the fram tinge thr large fral ornament Brusi pts. spirit Cabin 1 oz ., gum 2 in the sp use.

French spts. campl Another:- 1 Eno Nize Stroug vinee
China blue, dissolved; by steeping i

SATINWO: pts., powdert obtain full st a fine sponge, Walnut thin sized shel
black, $\frac{3}{2} \mathrm{lb} . ;$ sl 1 coat with a
mon varuish od Cheap Bla
ack copperas, blue, $1 \mathrm{lb} ., \mathrm{lam}$ strain, and add Work.
To Gild a prime with glue ting. Smooth 0 and whenlly and on carefully and can be used to de OLD OAF Im brown ochre, 1 pa apply. A good
peariash to 1 gal quired.

Rosewood Im and a little lamp-b hogany stain is thin glue size.
bringing onta splendid by the thumbof the the pressure and care, bring out the full burnish. Go over the left. This results in the frame once more castre of the gold, cover work with particular tinge the edge of the carefully avoiding the burnished pes, finish, size large frames, the conspiciome with ochre. In bued parts; finally, ornaments, \&c., shoulpl be selected of the frame, such as gilding, on BRUsh Polish. - She selected for operation, such as the beads, pts. spirits of wish. -shellac 4 ozs., white ation.

Cabinet Marend apply while warm, with 4 ozs., dissolve in 2 1 oz ., gum sinaker's Varnish. -Gum, with a brush. 2 in the spirits, the, 3 ozs., spirits of wine, 40 ozs. 3 ozs., gum mastle use. the shellac and pour off the clear for spts. camphor 2 ozs. spts. her.-Linseed oil 1 pint, vinegar 4 ozs., Another:-Dissolve 8 ozs. shellac and $\frac{1}{2}$ az, butter of antimony, 1 ozs ., maphtha, then add 3 ozs. linseed oil. $\frac{1}{2}$ an oz. of oxalic acid in 2 lbs. Stenonized Black for Eboniz Ching vinegar, 1 gal., ext. of logwood, Moulding Frames, \&c.dissolved ; set off nut-gall, 2 ozs. Simmer over green copperas, $\frac{1}{4} \mathrm{lb}$., by steeping iron filing cool. Add to the above $\frac{1}{2}$ ats irow fire until all is Satinwood Stings in strong vinegar. An unequalled obtained pts., powdered gambor fhe Inside of Drawualled jet black. obtain full strength, and, 3 ozs., ground turmericers. - Alcohol 2 a fine sponge, saud, and strain through muslin. 6 ozs. Steep to Walnut Stain on ${ }^{2}$ when dry and varnish or Apply 2 coats with thin sized shellain on Pine or Whitewood or French polish. black, $\frac{1}{2} \mathrm{lb}$.; shak, add burnt sienna, 2 lbs., bod.-Take 2 gals. of very 1 coat with a brush dry; together and mix well in tumber, 2 lbs, lanp. mon varuish or shellac. sandpaper smooth, and a stone jug. Apply Cifeap Black Stain A fine imitation of walunt a coat of comblack copperas 1 Stain on Pine or Whicealunt.
blue, 1 lb ., lamp-b., logwood chips, 1 lb HiTEWOOD. - Water, 2 gals., strain, and add 1 oz. nut-gall; simmer over logwood, 1 lb., indigo work. 1 oz . nut-gall. A splendid a slow fire, cool off, To Grid a Wooden Flower prime with glue size, then puter on 2 Stand. - Rub the wat smooth, and whenoth over, when dry, with coats of oil paint and one of flat, on carefully and dab to the touch, it is ready fer. Put on gold size, can be used to deaden down with cotton-wool. for the leaf, which put Old Oak Imitation gold in places. A transparent glazing brown ochre, 1 partion on White Deat
apply. A good oar, mix thorotighly with.-Burnt umber, 1 part, pearlash to 1 gal. water is made by adding very thin glue size and quired. Bater, adding move water if a each of potash and Rosewood Imitation on and a little lamp-black in on White Deal.- Apply Venetian red hogany stain is Venetian red, 1 , with thin glue size. A good mulocire in thin size. Wi lnut stain on di, yellow lead, 2 lbs. ; gimix with Difre in thin size. The above on deal.-Burnt umber and mix with
soft rag or by dipping the wood into a vat containing the solution, an is done with chairs, etc., in many manufactories.

Mahogany Imitation on Beech.-Pulverized dragon's blood, 2 ozs., rectified spts. of wine, 1 qt.

Filling for French Polished Work.-A creamy paste composed of water and plaster of Paris, applied with a coarse rag to the grain of the wood forms a good filling. Apply vigorously to the wood to fill the pores thoroughly, and wipe off the surplus. Finely sifted whitening, mixed with painter's drying oil, is another good fillng composition.

Splendid Crimson Spirit Stain. - Brazil-wood, 1oz., cochineal, 1 oz., dragon's-blood, 1 oz., saffron, 2 ozs ; steep to obtain full strength, in 2 qts. alcohol and strain.

Best Mounting Material.-Good Bemnuda arrow root, 1 是 ozs; sheet gelatine, 80 grains: mix the arrow root to a creamy consistence with a spoon, in 1 oz . of water; then add 14 ozs. of water and the gelatine broken into fragments. Boil for 4 or 5 minutes, set it aside until partially cool, then add 1 oz . of methylated spirit, and 6 drops of carbolic acid, tire former quite slowly. This article has no superior and will keep for years.
To Clifan Eigiravinge. - Place the engraving on a smooth board with a sheet of clean paper between, damp the picture on both sides with a sponge and cleall water; then soak it well with the following solution applied with a clean sponge: Water, 1 pt , chloride of lime, 4 ozs. ; oxalic acid, 1 oz . This imparts a fine white appearance to discolored prints, but it must not be applied to water colors in any case, as it will certainly destroy them.

To Revive the Colors of Old Paintings.-Mix linseed oil, 2 ozs., with methylated chloroform, 1 oz .; and apply a little over the painting, previously washing it with clean water applied with a little cotton wool; wipe off the composition with a soft silk liandkerchief during the next day. The mixture possesses the valuable property of restoring the faded colors of paintings. The vapor of alcohol has a like effect.
To Preserve a Scaling or Cracked Painting.-Clean the painting very carefully with pure soft water, and pour over, or gently apply, a mixture of equal parts of methylated chloroform and linseed oil. Allow it to remain a day or two; carefully wipe off the excess of oll, and apply more of the fresh mixture, wiping it off as before. Repeat the process until the colors become fixed, and the painting becomes flexible, when it may be cleaned and varnished.
Varnigh for Paintings.-No better vanish for paintings can be had than that made from good, ripe, clean, gum mastic and rectified tarpentine, fully matured by an exposure of several months in a wido mouthed glass bottle. Cover the bottle so as to admit air, but no dust; and get it in the light, but out of the sun.

To Preserve Palintings Indefinitely.-Varnish the painting on both sides, and hermetically seal with well fitting sheets of polished glass on the front, and apply a good coat of air proof material to the back. According to Wagner, the real cause of the ultimate destruction of pictures as well as of paint, is the gradual, but continuous, yet dow, oxidation of the linoxine, resulting in the crumbling to powder of palverulent matters-pigments used ay mlors. It may not
be out 0 palut) is vantage carriage
be out of place to state that one of the best solvents of linoxine (dived paint) is a mixture of alcohol and chloroform, which may be advantageously used to remove stains of paint, and also of wagou and carriage grease from silks and woollen tissues.
To Remove Old black Varnish from Paintinge.-Various articles as soda, uaptha, spirits of wine, oil of tartar, \&c., will effect this, if carefully handled by an experieuced person, or the following mixture may be applied to the painting with a dableer of cotton wool: Wood spirits, 4 ozs. ; linseed oil $\frac{1}{2}$ pt. spirits of salts, 2 ozs. : Go over the painting, Imparting a spiral movement to the rubbing wad, keeping the picture level and the rubber clean. Watch the progress of the work, taking care not to go too far, and finish by wiping with a clean rar wet with spirits of turpentine.
To Whites Plaster Casts, \&e.-If the uncalcined plaster is immersed for 15 minutes in water containing 8 or 10 per cent. of sulphuric acid previous to burning it, it will after being calcined, set more slowly, and make splendid casts, which will be perfectly white. Scmi-transparent casts of fancy articles can be made of unbaked gypsum, 2 parts, bleached bees-wax, 1 part; paraffiue, 1 part. It is very tough and becomes plastic at 1200. Plaster casts will bear a nail driven in them without fracture if they are immersed in a hot solution of glue long enough to become saturated. To mend Plaster Models, use sandarac varnish, saturating the broken surfaces well, then pressing them together, then drying. As an application to the inside Plaster Moulds use glycerine, or a mixture of lard and oil.

To Polish Pianos, Furniture, French Polish, \&c.-The following method of polishing pianos is in use in all first class factories. The same process will answer for any other piece of farmiture, by merely substituting for the scraping, where scraping is not practicable, a filling, properly colored: First, give the work three coats of scraping or No. 2 furniture varnish, allowing each coat to become perfectiy hard before applying the next ; then scrape off the varnish with a steel scraper, properly sharpened on an oilstoue, and in scraping be careful not to cut into the wood, but merely remove the varnish from the surface, leaving the pores filled. Smooth with No. 1 sandpaper, and the work will he ready for the polishing varnish, four coats of which must be put on, allowing each coat to harden. To determine the proper time required for the hardening. I wonld say that one coat will not be ready for the next until it is so hard that you cannot make. an impression on it with your thumb nail. The four coats having been put ou, and the work having stood a few days--and the longer the bet-ter-rub down with fine-ground pumice-stone and water, applied with a woolen rag. The work must be rubbed until all lumps and marks of the brush are removed; wash off with a sponge and dry with a chamois-skin : let the work stand ont in the open air for a day or two, taking it into the shop at night. : The work should now receive two coats more of polishing vamish and a second rubbing, efter which it is ready for polishing.

Furniture may be polished after the first rubbing, and in that case the polishing is performed with lump rotten-stone and water applied with a woollen rag. Put plenty of rotten-stone on your work, with water enongh to make it wori easy. Rub until all marks and scratches are removed. Rab the rotten-ptone off with your bare hand keeping the work wet. What cannot be removed with the hand should
be washed off with a spongo. After drying with a chamois-skin, bring up the polish with the palm of your hand, moving it lightly and quickly with a circular motion, over the work. Cican up the werk with a piece of soft cotton, dipped into sweet oil, and lightly touch ail the white spots and marks of the rotten-stone. Remove the oil with wheat fiour, applied with soft cotton, and finaily dust off witi. a soft rag or silk handkerchief.

The following method is known as the Shellac or French Polish, In preparing for this process, add to one pint of Sheilac varnish two tabiespooufuls of boiled oil; the two to be thoroughly mixed. If you want the work dark, add a littie burnt umber; or you can give the work any desired shade by mixing with the shellac the proper pigment in the dry state. Apply tho sheliac thus prepared with a sinall bunch of rags held between your fingers. In applying it be particular in getting it on smooth and even, leaving no thick places or blotches. Repeat the process continually until the grain is filled and the work has received sufficient body. Let it stand a few hours to barden, and then rub your work lightly with pumice-stone and oil, applied with a rag. A very little rubbing is required, and this is to be followed by the cleaning of the work with rags as dry as possible. With a piece of muslin wet with alcolol, go over the work two or three times, for the purpose of killing the oil. Have ready $\$ \mathrm{lb}$. of pure gum shellac dissolvea in one pint of 95 per cent. alcohol. With this saturate a pad made of soft cotton, covered with white muslin, and with the pad thus formed go over your work two or thice times. To become proficient in this work, practice and close attention are required.

Walnut Stain for Wood.-Water, 1 gal.; Vandyke brown, 10 ozs.; bichromate of potash, 1 oz ; washing soda, 6 ozs.; boil 10 minates, immerse the article, or apply with a brush as desired.

Gold bronze for Fursiture.-Mix copal varnish with goldcolored bronze powder. This is made from bisulphate of tin.

To Ebonize Wood.-Mix lampblack with good French pclish and apply in the usual way. The lampblack may be collected on a tin held over a kerosene oil lamp, or lighted candle.
Keviven for Gilf Frames.-White of eggs, 2 ozs.; chloride of potash or soda, $1 \mathrm{oz} . ;$ mix well; blow off the dust from the frames; then go over them with a soft brush dipped in the mixture, and they will be equal to new.

Bad Saell from Animal Size.-T'o remove bad smell pass it throngh powdered charcoal. To preserve it, dissolve one onnce of sulphate of zinc, generally known as white copperas, in hot water, and add to everv $\&$ cwt. It will keep any length of time. Melt your size, and thoroughly mix it.

Polishing Brass and Stone.--Flate-glass may be polished by rubbing with emery and water, the emery being of a greater degree of fineness as the work progresses, until at last by employing an impalpable variety prepared by suspending emery in water for an hour or incre. Of course no scratches must exist in the work whein the polishing operation begins; such must have been removed by means of a coarser cmery flour. Stones, such as Brighton pebbles, \&s., are often cut and polished on a rapidly revolving leaden disc, the surface of which is loaded with diamond dust, emery, or tripoli, according to the stone under operation.

Soluble Glass.-I. Silica, 1 part, carbonate of soda, 2 parts; fuse tngetler. 2. Carbonate of soda (dry) 54 parts: diy carbonate of

Ntensa a fine, (dry), 15 par times it drines: Glas and rub
tine or Before pieces 0 tone of pieces in ments m must be upper sid when dry of runuln glass. T pencil, all figures.
by means
the Larnt fast colors be luid on laid on, th and bring refractory with a stro and flamo. water, nbou glass. Som with a laye and very gr it at a full h Indications watched, it When all is
Stainedred enamel (together) : cohol upon Ω flesh-color.
iron ; mix thd soz. ; pound No. 3. Brolod 3 oz. ; grind made from pe sists of borax, likerviss be ob oz. White, har
also be compo lead, such as i
estassa, 70 parts ; silica, 192 parts ; soluble in boiling water, yiclding a fine, trausparent semi-elnstio rarnish. 3. Carbonate of potassa (dry), 10 parts ; powdered quartz (or sand freo from Iron or nlumiua), 15 parts ; charcoal, 1 part; all fused together. Solable in 5 or 6 times its weight of boiling water. The filtered solution evnporatod to dryness, violds a transparent glass, permanent in the air.

Glass Sthining. - The following colors after having been prepared, and rubbed upon a plate of ground-glass, with tho spirits of turpentine or lavender thickened in tho air, are applied with a hair-pencil. Before using them, however, it is necessury to try them on smail pieces of glass, and expose them to the fire, to ascertain if the desired tone of color is produced. The artist innst bo guided by these proofpieces in using hits colors. The glass proper for receiving theso pigments must bo colorless, uniform, and difflenlt of fusion. A design must bo drawn on paper, and placed bencath the plate of glass. The upper side of the glass, being sponged over with gum-water, affords, when dry, a surface proper for receiving the colors without the risk of ruming irregularly, as they would otherwise do on tho sllippery glass. The artist draws on the plato (usually in black), with a fine pencil, all the traces which mark the great outlines or shades of tho figures. Afterwards, when it is dry, the vitrifying colors aro laid on by means of larger hair-pencils ; their selection being regulatod by the larnt specimen-tints abovo mentioned. The following aro all fast colors, which do not run, except the yellow, which must therefore be laid on the opposite side of the glass. The preparatians being all laid on, the glass is ready for being fired in a mufllo, in order to fix aud bring out the proper colors. The mufflo must bo mado of rery refractory firc-clay, ihici at its bottom, no ouly five or six inches higli, with n strong arclied roof, and closo on all sides, to exclude smoko and flame. On the bottom, a smooth bed of sifted Hme, freed from water, about half an inch thick, must bo prepared for receiving tho glass. Sometimes, several plates of glass are laid over each other, with a layer of lime powder between each. The fire is now lighted, and very gradually raised, lest the glass should be broken ; then keep it at a full heat for three or four hours, more or less, according to the indications of the trial slips; the ycllow coloring being principally watched, it furnishing the best criterion of the state of the others. When all is right, let the fire dis out, so as to anneal the glass.

Stained-GLass Pigments.-No. 1. F'lesh-color.-Red lead, 1 oz.; red enamel (Venetian glass enamel, from alum and copperas calcined together) : grind them to a fine powder, and work this up with alcohol upon \& hard stone. When slightly baked, this produces a fino flosh-color. No. 2. Black color.-Tako 14t oz. of smithy scales of fron ; mix them with 2 oz . of white glass : antimony, 1 oz . mangancso, $\frac{1}{2}$ oz. ; pound and grind these ingredients together with strong vinegar. No. 3. Brown color.-White glass or cuamel, 1 oz. ; good manganese. $\frac{1}{3}$ oz. ; grind together. No. 4. Red, Rose and Brovon colors aro made from peroxide of iron, prepared by nitric acid. The flux wonsists of borax, sand, and minium, in small quantities. Red color may likewiss be obtained from 1 oz . of red chalk, pounded, mixed with 2 oz. white, hard enamel, and a itttle peroxide of copper. A red may also be composed of rust of iron, glass of antimony, yollow glass of lead, such as is used by potters, or litharge, each in equal quantties.
to which a little sulphuret of silver is added. This composition, well ground, produces a very fine yed color on glass. No. 5. Green.- 2 oz: of brass, calcined into an oxide ; 2.02 of mininm, and 8 oz . of whito iand; reduce them to a fine powder, which is to be enclosed in a Fell-Inted crucible, and heated strongly in an air furnace for an hour. When the mixture is cold, grind it in a brass moriar. Green may; howerer, be advantageously produced, by a yellow on one sice and a blue on the other. Oxide of chrome has also been employed; to stain glass green. No. 6. A fine yellow stain.-Take fine silver, laminated thin, dissolve in nitric acid, dilute with abundance of water, and precipitate with solution of sea-selt ; mix this chloride of silver in a dry powder, with three times its weight of pips-clay well burnt and pounded. The back of the glass pane is to be painted with this jowder ; for, when painted on the face, it is apt to run into the other colors. A pale yellow can be made by mixing sulpharet of silver with glass of antimony and yellow ochre, previonsly calcined to a red brown tint. Work all these powders together, and paint on the back of the glass. Or silver lamince, melted with sulphur and glass of antimony, thrown into cold water and afterwards ground to powder, affords a yellow. A pale yellono may be made with the powder resulting from brass, sulphur, and glass of antimony, calcined together in a crucible till they cease to smoke, and then mixed with a little burnt ochre. The fine yellow of M. Meraud is prepared from chloride of silver, oxide of zinc, and rust of iron. This mixture, simply ground, is applied on the glass. Oranye color.-Taks 1 part of siver powder, as precipitated from the nitrate of that metal, by plates of copper, and washed ; mix with 1 part of red ochre, and 1 of yellow, by careful trituration ; grind into a thin pap, with oil of turpentine or lavender : apply this with a brush, aud burn in.

To Silver Looking Glassis.-A shect of tin-foil corresponding to the size of the plate of glass is evenly spread on a perfectly smooth and solld marble table, and every wrinkle on its surface is carefully rubbed down with a brush : a portion of mercury is then poured on, and rubbed over the foil with a clean piece of soft woollen stuff, after Which, two rules are applied to the edges, and mercury poured on to the depth of a crown piece; when any oxide on the surface is carcfully zemored, and the sheet of glass, perfectly clean and dry, is slid along over the surface of the liquid metal, so that no air, dirt, or oxide can possibly either remain or get between them. When the glass has arrived at its proper position, gentle pressure is applied; and the table sloped a little to carry off the waste mercury ; after which it is covered with flannel, aud loaded with heavy weights ; in twenty-four inours it is removed to another table, and further slanted, and this position is progressively increased during a month, till it becomes perpendicular.
Porcelain Colors.-The following are some of the colors ueed in the celebrated porcelain manufactory of Sevres, and the proportions in which they are compounded. Though intended for porcelain painting, nearly all are applicable to painting on glass Flux No. 1 minum or rad lead, 3 parts ; white cand, washed, 1 part. This mixture is melted, by which it is converted into a greenish-colored glass. Flux No. 2. Gray fux.-Of No. 1, 8 parts ; fused borax in powder, 1 part. This mirture is melted. Flux $\$ 0.8$. For carmines and green.

-Me't together fused borax, 8 parts, ear

No 3,1 part No. 1. Indilo blue, carcined Iints, 3 parts ; purs vinc, 2 parts. Deep azure bluc.-0xide of of cobalt, 1 part; flux copper, 1 part ; anto. 3, 5 parts. No. 2. Emerailt, 1 part; oxide of verize together, and inie acid, 10 parts ; flum la Green.-Oxide of cliromium 1 part and nelt. No. 3. Grase in No, 1,30 parts. Pul. Yellozo.-Antimen; flux No. 3, 3 parts. Tritiveen.-Green oxide of 8 perts ; oxide of sic acid, 1 part ; subsulphate of the and meit. No. 4 and melt. If this cinc, 4 parts ; flux No. 1, 36 parts peroxide of iron, 6. Fixcd yellowo for tor too deep the salt of parts. Rub up together meroe, 2 parts. Meit and ies.-No. 4, 1 part ; white diminished. No. sand may be addelt and pour out ; if not ; white enamel of com. iron, 1 part ; oxide of No. 6. Deep Nankin yelloro. withont melting. Ne zinc, 2 parts; fux yellono.- Subsuiphate of a muffle uutil it becom. Deep red.-Subsulphat, 8 parts. Triturate 2, 3 parts. Nix withos of a beautifnl vipucine red iron, calcined in fron made of a red without melting. No. 8 pane red, 1 part ; flux No. flax No. 2. A tenth brown, and mixed with three times.-Oxide of enough. No. 0. Wh of sienna earth is added to times its weight of No. 10. Deep blacthite.-The white enamel of it, if it is not deep of manganese, 1 part; fiur of cobalt, 2 parts; commerce, in cakes. and add oxide of mangan No. 1, 6 parts ; fused borar 2 parts ; oxide urate withont melting ${ }^{2}$ ese, 1 part ; oxide of copper, 2 part. Melt; tions given in another The Application-Follow the 2 parts. TritHow to Wricher part of this work, in relatio the general direcfortis to the consisten Glass in the SUN.-Disen to staining glass. of silvor. Keep thency of mill, and add to that a vo chalk in aquafrom a paper the letis in glass decanter well stop atrong dissolntion the decanter or jarters you will have appear, and ped. Then cut out ner that its rays mar, which yon are to place in thd pasto the paper on fall on the surface of thass through the spaces cnt oun in such a manthe rays pass will the tho liquor. The part of the glase the paper, and white. Do not shake black, whilst that under the giass throngh which tering jars. To Stain or Color Grat is used; blue, oxide of colvass. -For amethyst, oxide of manganese black oxide of copper ; for purp brown, oxido of iron; for green, oxide of copper ; for rohite, oxide, oxido of gold ; for miby red, subs\&c. 'These substances pure and well tin for yellow, oxide of silver, in meited contents of the glass-pot, or powdered, aro cither added to melted and cang. Fine Blue. To 10 ibs applied to the surface as prepared by putting water, add zaffer, 6 drs . flint glass, previously the action of a fire not copper into a cruclble calced copper, $\frac{1}{4}$ oz.; have the copper in acales strong enough to melt the copper exposing it to lbs. flint glases as bcales, which yon pound - il copper, and you will Gold Yellows Flint urine, $\frac{1}{} \mathrm{lb}$, purint glass 28 lbs ., of ; precipitate of calcium. 1 dr . to smore, and ady by pntting in a crucible tartar which is found in
Bottlis Glagd mainganese, 2 ozs. . coaper salts, 12 Ibs. ; wriste Dark Green. -Fused glanber-salts, 11 lbs ; cTVt ; glass-sldmmings, 22 lbs soap-ashes, $\frac{1}{2}$ bush. ; silicious sand; angs, 22 lbs. ; broken green ghass, 1 cwt.to $1 f_{\mathrm{f}}$ civt, $\frac{1}{2}$

296° CABINETMAKERS, PAINTERS', \&C., RECEIPTS.

basait, 25 lbs to to cwt. No. 2. Pale Green.-Pale sand, 100 lbs : kelp, 35 lbs . ; lisiviated wood-ashes, $1 \pm$ cwt. ; iresh do. 40 lbs. pipe-clay, 4 cwt. ; cullet, or broken glass, 1 cwt. No. 3. Yellow or white sand, 120 parts ; wood-ashes, 80 parts ; pearl-ashes, 20 parts common salt, 15 parts ; white arsenic, 1 part ; very palo. Crystal Glass.-No.1. Refined potashes, 60 lbs . samd, 120 lbs ; chalk, 24 lbs. ; nitre and white arsenic, of each, 2 lbs. ; oxide of manganese, 1 to 2 oz . No. 2. Pure white sand, 120 parts ; refined ashes, 70 parts ; saltpetre, 10 parts ; white arsenic, $\frac{1}{2}$ part ; oxide of manganese, $\frac{1}{2}$ part. No. 3. Sand, 120 parts ; red-lead, 50 parts ; purified pearlash, 40 parts ; nitre, 20 parts ; mangances, $\frac{1}{2}$ part. Flask Glass (of St. Etiennc).-Pure silicious sand, 61 parts ; potash, $3 \frac{1}{2}$ parts ; lime, 21 parts ; heavy spar, 2 parts ; oxide of manganese, q. 8. Best German Crystal Glass.-Take 120 lbs. of calcined fints or white sand ; best pearlash, 70 lbs. : saltpetre, 10 lbs . arsenic, $\frac{1}{2}$ lb. ; and 5 oz magnesia. No. 2. (Cheaper.)-Sand or flint, 120 lbs . ; pearlash, 46 lbs ; nitro, 7 lbs.; arsenic, 6 lbs ; magnesia, 5 oz . This will require a long continuance in the furnace, as do all others when mach of the arsenic is used. Plate Glass.-No. 1. Pure saud, 40 parts ; dry carbonate of soda, 261 parts ; lime, 4 parts ; nitre, 1 parts ; broken plate glass, 25 parts. No. 2. Ure's.-Quartz-sand, 100 parts; calcined sulphate of soda, 24 parts ; lime, 20 parts ; cullet of soda-glass, 12 parts. No. 3. Vienna.-Sand, 100 parts ; calcined sulphate of soda, 50 parts; line, 20 parts ; charcoal, $2 \neq$ parts. No. 4. French.-White quartz sand and cullet, of cach 300 parts ; dry carbonate of soda, 100 parts ; slaked lime, 43 parts. Crown Glass.-Nc. 1. Sand, 300 lbs ; sodaash, 200 lbs . ; lime 30 to 35 lbs ; ; 200 to 300 lbs . of broken glass. No. 2. (Bohemian.)-Pure silicious sand, 63 parts ; potash, 22 parts ; lime, 12 parts ; oxide of manganese, 1 part. No. 3. (Prof.' Schwoeiggers.)Pure sand, 100 lbs. ; dry sulphate of soda, 50 parts ; dry quicklimo in powder, 17 to 20 parts ; charcoal, 4 parts. Product, white and good.

Best Windoro-Glass.-No. 1. Take of white sand, 60 lbs. ; purified pearlashes, 30 lbs . ; of saltpetre, 15 lbs ; of borax, 1 lb . ; of arsenic, $\frac{1}{2} \mathrm{lb}$. This will be very clear and colorless if the ingredients be good, and not be very dear. No. 2. (Cheaper.)-White sand, $\mathbf{6 0 ~ l b s . ~}$ iuwpurified pearl-ashes, 25 lbs . of common salt, 10 lbs ; nitre, 5 lbs.; arsenic, 2 lbs. ; magnesia, 1_{2} oz. No. 3. Common green ruintow-glass.-White sand, 00 lbs. ; unpurificd pearlashes, 301 lbs . common esalt, in lbs. ; arsenic, 2 lbs. ; nagnesia, 2 oz . Looking-Glass Plate. -No. 1. Cleansed white sand; 60 lbs : pearlashes, purificd, 25 lbs ; saltpetre, 15 lbs ; borax, 7 lbs . This composition should be continued long in the fire, which should be sometimes strong and afterwards more moderate, that the glass may be entirely free from bubbles before it be worked. No. 2. Whito sand, COlbs. ; pearlashes, 20 lbs ; common salt, 10 lbs ; nitre, 7 lbs ; borax, 1 lb . This glass will run with as little heat as the former; but it will be more brittle, and refract the rays of light in 』 greater degree. No. 3. Washed white sand, 60 lbs . ; pariffed pearlashes, 25 lbs . nitro, 15 lbs ; ; borax, 7 lbs. If properly managed, this glass will be colorless. Windoro Glass.-No. 1. Dried sulphate of soda, 11 lbs. ; soaper salts, 10 lbs. ; lixiviated soap vaste, \& bush. ; sand, 50 to 60 lbs. ; glass-pot skimmings, 22 lbs. ; broken pale green glass, 1 cwt. No, 2. (Paler.)-White kand, 00 lbs ; pearlaslics, 30 lbs. ; common salt 10 lbs ; arsenic, 10
lbs. ; send, 0 lbs. ; a window nhid, 60 lbe , manganese, 2 to 402. lbs. : arsenic, ${ }^{\text {good pot ashes, } 25 \mathrm{lbs} \text {; comm. (Very Pale.)-White }}$ window glass, 14 lbs : manganese, 2 to 4 oz . as salt 10 . Jbs.; nitre, 5 Colozed Potters' Grazings. ture of 4 parts of massicot, 2 of tin ashes, $;$ prepare an intimate mixand $\frac{1}{2}$ part of sea salt. The mixtures, 3 fragments of crystal glass, pare vessels, when the liquid flux may suffered to melt in earthenmixture maseicot, red lead and sulpy be used. Yellowo; take eqnal sand, and $1 \frac{1}{2}$ parts of it again to powder, add then any, calcino the 3 parts massicot, of salt ; melt the whole. add then 2 parts of pure shade to be produced of salt and copper scalen; 2 parts of sund, parts sand, 1 of smalt : melt and use. Violet 1 according to the Blue; white sand and 8 part of black oxide of 1 part massicot, 3 malt. Black; black oxidesicot, equal parts of mangauese; melt. burned quartz, 1 part ; massiconganese, 2 parts s smalt, $\frac{1}{3}$ part ; bottle glass, 1 part ; mavganssicot, $1 \frac{1}{2}$ parts ; marts ; smalt $\frac{1}{2}$ part; Mortar, Plaster, \&C. -20 , 1 part; lead, 2 parts, melt ; green 8 parts; lime, 3 parts; ©C. -22 Kinds. -1 . Stonarts, melt. clean sand, 21 parts. Ann, 31 parts. 2. Mortar- I Mortar. -Cement, the mortar, which An excess of water in slar.-Lime, 1 part; sharp, oxcess of sand destroins light and porons, or sing the lime swells Brown Dfortar.-Lime, dest the cohesive properties of in drying: as lhair. 4. Brick Mfort, 1 part; sand, 2 parts, and of tho mass. 3. parts. Lime and sand, -Cement, 3 parts; lime small quantity of volume when mixed tog, and cement and sande, 3 parts; sand, 27 and tiles, 1 part; fine ogether. 5. Turkish Afort, lessen about $\frac{1,}{}$ in with water, and lay sifted lime, 2 parts; mix to 2 .-Powdered brick courses of brick ay on layers of 5 or 6 inches thick consistency buildings. 6. Interior stone. Very useful on massive between tho mortar as made for brior Plastering-Coarse Stussive or very solid by volumes, lime prick masoury, with a sinall uf.-Common lime t part. When full time (30 los. linne,) 1 part; sand quantity of hair ; or from 15 to 20 per cent: for hardening cannot sand, 2 to 2 parts; hair, cement. For the second the limo by an equal pe allowed, substitute slightly diminished. 7 . or brown coat the proportion of hydraulic to a paste with a mod. Fine Stuff.-(Lime proportion of hair may bo the consistency of cream volume of water, and afterwap lime slaked quired consistency for work then harden by evaporation diluted to coat, and when mixed with finishing coat. 8. Gauge stund or plaster of Paris, it is as a slipped volumes of fine stuff ange Stuff or Ifard Finish is it is used for the regulated loy the degree of volume of plaster of Pamposed of 3 or 4 8c., the proportions are of rapidity required in harden, in pr portiong 9. Stucco is composed equal volnmes of each, finening for cornices, volume of fine stuff or ilme from 3 to 4 volumes of stuff and plaster. coats when laid upon lathe putty. 10. Scratch of white sand to i 11. One Coat Work: - Pla, and is from \ddagger to B of Coat. -The first of 3 masonry or laths the - Plastering in 1 cont of an inch in thickness. 12. Tho Coat Work. coat and set or in a screed coring in 2 coats is done Work on well. a thoated Coat. Laying coat and set. The Screed Cother in a laying Laying the first coat in two coant Coart is also termed

298 CABENETMAKERS, PATNTERS', *C., RECEIPTS

In common work instead of screeding, when the finished surfaco is not required to be exact to a straight edgo. It is laid in a coat of about $\frac{1}{2}$ inch in thickness. The laylug coat, excent for very common work, should be hand floated, as the teuacity and firmness of tho work is much increased thereby. Screeds are strips of mortar, 20 to 28 inches in width, and of the reqnired thickness of the first coat; applied to the angles of a room or edge of a wall and paralleclly, nt intervals of 3 to δ feet over the surface to be covered. When theso have become suficcently hard to withstand tho pressure of a straight edge, the interspaces between the screeds should be filled out flash with them, so as to produce a continuous and straight, even surface. Slipped Coat is the smoothing off of a brown cont with a small quantity of lime putty, mixed with three per cent of white sand so as t) make a comparatively even surface. This finish answers trben tho surface is to be finished in distemper or paper. IIard Finish: Eino ftuff applied with a trowel to the depth of about $\frac{1}{}$ of an inch. 13. Cement for External Use.-Ashes, 2 parts; clay, 3 parts; sand, 1 part; mix with a little oil. Very durable. 14. Compositions for Strcets and Roads.-Bitumen, 16.875 parts; asplualtum, 2.0 parts; oil of resin, 6.25; sand, 1.35 parts. Thickness from 11 to 15 inches. Asphaltum, 55 lbs ., and gravel 28.7 lbs . Will cover an area of 10.75 square feet. 15. Asphalt Composition.-Mincral pitch, 1 part; bithmen, 11 parts; powdered stone or wood ashes, 7 parts. 16 . 1 sphalt Mastic is composed of nearly pure carbonato of lime and about 0 or 10 per cent. of bitumen. Whien in a state of powder it is mixed with about 7 per cent. of bitumen or mineral pitch. The powdered asphalt is mixed with tho bitumeu in a melted stato along with clean gravel, and consistency is given to pour it into moulds. The asphalt is ductile, and has elasticity to enable it, with tho small stones sifted upon it, t: resist ordinary wear. Sum and rain do not affect it, wear and tear donot seem to injure It. The pedestrian in many cities in tho Uuited States and Canada, can readily detect its presence on the sidcwalk by its peculiar yielding to the foot as he steps over it. It is also a most excellent roofing material when rightly applied, it being on record in France that a stont roof of this material withistood the accideutal fall of a stack of chimneys, with the only effect of bruising the mastic, readily repaired. 17. Asphalt for Walks.-Take 2 parts very dry lime rubbish, and 1 part coal ashes, also very dry, all sifted fine. In a dry place, on a dry day, mix them, and leave a holo in the middle of the heap, as bricklayers do when making mortar. Into this pour boiling hot coal tar; mix, and when as stiff as mortar, put it three inches thick where the walk is to be; the ground should bo dry and beaten smooth; sprinkle over it coarse sand. When cold, pass a light rollerover it; in a few days the walk will be solid and materproof. 18. Mastic Cement for Covering the Fronts of Ilouses.-Fity parts, by measure, of clean dry sand, 50 of limestone (not burned) reduced to grains like sand, or murble dust, and 10 parts of red lead, mixed with as much boiled linseed oil as will mako it slightly moist. The bricks to receive it, should be covered with three coats of boiled oll, laid on with a brush, and suffered to dry bofore tho mastio is put on. It is laid on with a trowel like plastes, but it is not so moist. Is becomes hard as stone in a few months. Caro must bo exercised not to use too much oil. 19. Cement for Tile-Roofs.- Equal parts of whit-

fing a ency for 6 to imi plaste, bricks applied 1001 bs. Seam and as in A fer Silve of light water, le boiling wv thin. Th tho glue whitewas

$16 \frac{1}{2}$ foet 1 16 inche 16.3 feet Id 18 inches 1 cubie ya fard has be Stone walls masons; ove

NTMTEBER OF

Thickness o 4 inches

Cubic yar Perch 22 To pave 1 Best Wash freshly slaked figg and dry sand, and 25 per cent, of "itharge, made into the consistency of putty with linseed oil. It is art liable to crack when cold, nor
melt, like coal for Oittside of Brick Walls - With the heat of the sun. 20. Cement to imitate stone, is made of cleanent for the ontside of brick walls, pricks of Paris, 5 parts; praistened with parts; litharge, 5 parts; applied. 21. receive two of three coats of oil befinseed oil. The 100 lbs.; quick-limer Lime at Fifly Cents per Bail before the cement is beat up with water, and use as 28 lbs.; bone ashes, 14 lbs clean sand, Seams in Roofs. - Táke and use as quick as possible, 14 los, for uso, and as much oil as will mual quantities of white lead and Cement yor in a few weeks bocome as liard into the consistence of putty. It will Silver Poisisi Kars hard as stone. of light colored gh Kalsomine. - Take 7 water, let it stand over the glue in a tin vessel containing and $\frac{1}{4} \mathrm{lb}$. bolling water over ther night to soak, then pel containing 3 pts. of thin. Then, after puttire, stirring till it is well diasolv a kettie of pour on hot water and sting the Paris white into a larged and quite the gine liquid with the stir it till appears like thick a large water pail, Whitewash brush, or a large paint brush ithoroughly and apply mithglo brush.
afrasureacent of stone or baty Tonk. 1. Perch, Masons' or Quarrymens' Neasure.
 fard has yecome the standard $\times 3$ feet $=27$ cuble feel The cnble Stone walls less than standard for all contract worle of : inte years. masons; over 16 inches thick; each additional in if 16 inches thick to NULBER OF BRICK REOUIPED

WALL Thickness of wall

4 inches

8	6	15^{2}
12	16	201
10	6	30
20	6	30
		372

	kuess	wall
2	incleas	415
38	"	803
30	*	
42	${ }^{6}$	$\bigcirc 6$

300 Cabinetmailers; patnters', ac., heceirts.

umber, 4 lbs. To be dissolved in hot water, and arplied with a brush.
Duranhe OUTside Paint,-Take 2 parts (in buik) of water lime, ground fino; 1 part (in bulk) of white lead, in oil Mix them thoroughly, by adding best boiled linsced oil, enough to prepare it to pass through a paint-mill; after which, temper with cil till it can be applied with a common paint brush. Make any color to suit. It will list 3 times as long as lead paint. IT rs superior.
Farmers' Paint.-Farmers will find the following profitable for house or fence paint : skim milk, wwo quarts; fresh slaked lime 8 oz.; linseed oil, 6 oz.; white Burgundy pitch, 2 oz.; Spanish white, 3 lbs . The lime is to be slaked in water, exposed to the air, and then mixed with about one-fourth of the mills; the oil in which the pitch is dissolved to be added a little at a time, then the rest of the zaik, and afterwards tho Spanish white. This is sufficient for twenty-seren yards, 2 coats. This is for white paint. It desirable, any other color may bo produced; thus, if a cream color is desirace, in place of part of the Spanish trhite use the other alone.

ESTIMATE OF MEATERIARS AND LABOR FOR 100 EQEAFIT FARDS OV LATII AND PLASTER,
i:

Materials and Labor	Throe coats hard finish.	Two Coats Slippeu.	$\begin{aligned} & \text { Mraterials } \\ & \text { and Labor. } \end{aligned}$	Three coltas	Two conts Slipped.
Lime.	Casks.	. $31 / 2$ casks.	WhiteSand	2% buab	
LumpLime	"		Nails.	$13{ }^{168}$	13 Jbs .
Plaster			Laborer	3 days.	
Laths.		2000	Cartago.		
Hair.	4 bushs. 6 loads.	3 bushs. C Joads.			

Panting in Mruc--Skimmed milk, f gallon; newly slaked lime, 6 oz. ; and 4 oz. of poppy, linseod, or nittoil; and 3 lbs . Spanish white. Put the lime into an' earthen vessel or clean bucket; and liaving poured on it a sufficient quautity of milk to make it about the thickness of cream, add the oil in small quantities a littlo at a ilme, stirring the mixture well. Then put in the rest of the milk, afterwards the Spanisla white finely pordered, or any other desired color. For ont-door work add 2 oz each more of oil and slaked lime, and 2 oz . of Burgundy pitch dissolred in the oil by a gentle heat.

Premium Paint without Oif or Lead.-Slake stome-lime with boiling vater in a cub or barrel to keep in the steam; then pass 6 quarts through a fine sieve. Now to this quantity add 1 quart of coarse salt, and a gallon of water; boil the mixture, and skim it clear. To every five gallons of this skimmed mixture, add 1 lb alinm; $\frac{1}{2} \mathrm{lb}$. copperas; and by slow degrees ${ }^{\text {P1 }}$ lb. potash, and 4 quarts sifted ashes or fine sand; add any coloring desired. A more dumble paint was never made.

Greey Pannt for Gardin Stands, Dlinds, mic.-Take mineral Wish with a small quantity of in tarpentinc, mix un tho qnantity yon first coat. For the second, purpentine rarnish. This serves for the Irill produce s good gloss. If Jou desire varnish in your mixture as russian blue, which will much improve the brighter green, add a littlo milk to Paint, for Bariog, any Coror che color.
use. It will aper consistenco to apply with a 1 water limo with skim mortar, or stone, well to wood, whether amoush, and it is ready to to some extent), and form has not been used (in whichough, to brick, best oil paint. It is toms a very hard substance, as duseit clenves it on who can use is too cheap to cstimate, and as durable as the using colors of a brush. Any color may bo any ono can put Venetian red with mill tinge desircd. If may bo given to it, by years.

It looks well for fifteen skimmod milk, 2 qts.; fresh slaked Lead on Orl.-Whiting, 6 lbs.; makeware vessel, pour upon it a lime, 2 oz . Put the lime into a be added; and resembling cream; the balancanatity of tho milk to of the fluid in lastly, the whiting is to be crice of the mills is then to well stirred in which it gradually sinks. At this apon the surfaco use.
ould other paint, and it is fit for
with hot wator; then take the paste water as strong as it can be mart of the powder, and add until the color or it with lichromate of po, sumficnt to form a thicls phate of copper suits your fancy, and dry ith and sulphato of copper Low. Obscrver gives a blue tinge; tho bichromato N.B.-Tho sul.
Beautirur Gis, and Joll will get it right. vitriol, and heren Paint for Whe.
solved, add 2 lbs . pen it a teakettleful of loiling 4 lbs. Moman - til the effervescen earlash, and stir tho mivoiling water. When disand stir tho whole ceases; then add $\frac{1}{4} 1 \mathrm{~b}$. pulverized with n stick unwall has not been painether. Lay it oll with a paint yollow arsenic, If a pea-green is painted beforc, 2 or cren 3 paint brush; and if tho jellow arsenic. Trquired, putin less, if an apple-s will be requisito. and looks better. his paint does not cost the quarter, more, of tho a quarter of ooil paint, bluo vitriol and $\frac{1}{3} l \mathrm{~b}$. of the ings, \&c.-Boil slowly for 3 hoars 1 lb . frequently while boiling, and also whiting in alout 3 qts . water; stir it has stood till quite cold, pour off the taking it off tho fire. When it of color with good sizo, and use it with a liquid, then mix the cake same manner as whitewash, either for walls plasterer's brush in tho 3 pint Harden Wiritewash.-To tor wails or ceilings. Ihen of flour. Pour on boiling water of common whitowash add Whitr 6 gals. of the lime water, and stir well. limoricivasif that will not Rub OFF.-Mis. up with water, ready to put on the wall; then take half a pailful of thicken it; the then pour on it boiling water, a sufficipt. four, mir it together, and it pour it while hot into the whitewasht quantity to

Slatixg.-The pitch of a slatod roof should be about 1 In height to 4 In length; the usual lap ts about 3 ins. but it is sometimes 4. Wach elate should be fastened by 2 nalls, elther of copper or zinc. A nquare of slate le 100 superficial feet, allowances being made for tho trouble of cutting the slates at the hips, eaves, round chinneys, etc. The sides and bottom edges of the nlates should be trimmed, and the nall holes punched as near the head as possible; they should be sorted in sizes, when they are not all of one size, and the sinallest size placed near the ridge. The thickness of slates varies from 3-16 to 5-16 of an inch, and their weight from 2.6 to 4.53 lbs . per square foot. The following table of sizes, ote., of roofing slates is very useful:

The uext table exlibits the comparative weight of various roof coveringe.

Plain tiles, per square of 100 sup'l feet.... Pantiles
Slating, an average
Lead, 7'lbs. per sup'l 1 feet
Coriugated fron.
Copper, or zinc, 16 ozs. per sup’ 1 feet
Tlimber framing for slated or tiled roofs
Boarding, $3 / 4$ in. thick.
Boarding, $1 / / 2 \mathrm{in}$. thick
Additional load for pressure of wind.
Gothic roofs, steepest angle
Cement for Marble and Alabaster.-Mix 12 parts of Portland cement, 6 parts slacked lime, 6 parts of fine sand, and 1 part of infusorial earth, and make up into a thick paste with silicate of soda The object to be cemented does not require to be heated. It sets in 24 hours, and the fracture can not readily be found.

Superior Blasting Compound.-The English mining engineer, Mr. W. B. Brain, has found that one of the most available blasting compounds consists of equal parts of potash chlorate, potash nitrate, charcoal, and dry oak saw-dust; 3 parts of this mixture is made to about 2 parts nitroglycerine of 1.6 specific gravity.

To Thaw Frozen Sink Pipes, \&c.-Place the end of a piece of lead pipe against the ice to be thawed, and then through a funncl in
the othe the ice : wire anc of stean done by

Exti: upon a solved in extinguis with blan In
equare
fo
fo Compa
Seabonki green, 58.3 rcan pine moned, 28.4 green, 48.12

$\mathbf{8 H z}$
$\mathbf{W O O}$

Pitch pine, Spruce.... White pine, Yellow pine

Alder.
Ash.
Birch.
Elinn.........
Horse cliostn
In shinglin bundle of 18 weather; 6 lbs Plabtere load of laths, bushels of hai liender and
nd, and 4 and, and 4 bu In lathing, dering, $1871 / 2$ y, bushals of LIal material as ren naterial as ren
1000 bricks, cleaned and loo

1 rod of brich the mortar. B_{2} cubic yard, 384 . mortar, or $1 / 2 \mathrm{bu}$ Safe Load In cast-iron colv Wrought-iron at In cast-iron gird In timber.
Stone and bricire the other end pour boiling water. Keep the pipe coustantly against the ice and it will soon disappear. Or stiffen rubber tubing with fins of steam from a small boiler over as far as possible, and direct a jet done by plumbers in many cases. Extinguishina Firines. -ases. upon a fire, extluguishes. it instantion of pearlash in water, thrown solved in hot water, and then pourely; the proportion is 4 ozs., disextinguishing kerosene fires, use no water bucket of cold water. In with blankets or rugs. Ares, use no water, but smother the flames In clapbaarding 1 .
square feet. To beladd with δ-penuy nails, to the weather will cover 26 Comparative Weigut -penuy hails.
Seabonkd states in Pound of Different Woods in Grema and greot, 88.3; do., seasoned, WNDB AND OUNCES PER CUDIC Foot.-AND, soned, 28,4 greent, 44.12 ; do., seasoned, green, 60 ; do., seasoned, 50. Amergreen, 48.12; do., Eeasoned, green, 71.10; do. Cedar, green, 32; do., seaShinkuar in Dine. Shrinkiae in Dimeirions of Timper by Seasonina.
Woods.

Woods.	Ins.	8	
Pitch pine, Sou		Woods.	Ins.
Spruce	183/ to $1881 / 4$	Cedar, Cana	
Yellow pine America	12 to 11%	Olm	14 to $131 / 2$
	18 to 17\%\%	Oat Englis	12 to 11%

Alder.

Ash 41.6 Larch...

Birch..................28.7 Mountain ash........ 48.6 . 28.3 Red pine.
Elnı..................30.8 Oak...................28.3 White oak................. 46.2
 In shingling, 1 bnndt 1 bundle of 18 -inch shingles wif 16 -inch shingles will enver 30 square $\mathrm{ft} . ; 1$ Weather; 6 lbs. 4 -penny nails will lay 33 square f., when laid $\delta 1 / 2$ ins. to the load of strrer's Memoranda.- 130 inao split pine shingles. bushels of hair; 1000 naile, $21 / 2$ ewt. of lime of lath, lay and set, require 1 liender and 'Set. -100 yarders and boy, 6 days each load of sand, and $\frac{1}{7}$ sand, and 4 bushet -100 yards requires $11 / 6$ days each.

Setting.- 375 yards requir plasterer, laborer and boy, 1 days double load of In lathing, 1 yards require $11 / 2 \mathrm{cwt}$. of lime and boy, 3 days each. dering, $1871 / 2$ yards require laths and 384 nalis will 5 bushels of hair. bushels of Liair. Floating $11 / 2 \mathrm{cwt}$. of lime, 2 double lo 6 yards. In renmaterial as rendering. 1000 bricks, closely stacked, occupy t6 onf haif as much cleaned and loosely stacked, occupy 72 cubic ft . feet; 1000 old bricks, the 1 rod of brickwork requires 126 ocuals cubic ft .
cubic yard, 384 . mortar, or $1 / 2$ bushel, nearly. Safe Load in hearly.
In cast-Iton columne
Wrought-iron atructures.....................................1/4 breaking weigh
 66

Stoue and bricks...1-10 in i"

Whiz clde exp common Any deal matter to Terra the north selected 1 clay, whi of clays, difficultics works is t first, in d advantage cotta (thant from the ti clay terma cent. To e vitrification which cont the body ha sld fire bric added in va counteract c the color under an either repol In order to m ful pugging ture when br a plaster mou for five or sev heat, and is g and prarping
ing of clays, t ness of mater well graded, cotta building struction, wit ductions are phurons fuel ed. This mate the formation leautiful desig rery cheap rato tion required a much as goodg ing stone. of stoff 11 inn inch by 2 inche inches apart Tl nailed close toget

CADINETMAKERS, PAINTERS, \&C., RECEIPTS.

 Whitewash. - The best method of alde exposure is to slakecommon salt, it ib of the $\frac{t}{5}$ bushel of lime in a whitewash for outAny desired color may bulphate of zinc, and a gallon add 1 lb . ol matter to suit see de imparted to whitewash by or siveet milk. Temra Cotta Manupound Colors. the north of Fa manubacture.-In selected by theiriand and Scotland, the purra cotta mannfacture of clay, while their color and texture, and purest lumps of fire clay are of clays, which prms near London prepared alone without any other difficultics met produce a body of better terte carefully a mixture works is the contraction thacturing terra cotta figures ond of the chief first, in drying attorn the clay suffers after figures and ornanental advantage is gained wards in firing ; By mir it has left the monld ; cotta (that is, unmird) the diminished shrinkg the clays, n forther from the time it leared) shrinks in lineal dimensage, as fire clay terra clay terra cotta shaves the mould until it leasions about IE per cent. cent. To enhance shinks 6 per cent. or less, and the kiln ; thic mixed vitrification of the mas dubility of tho body of clays shrink 3 por which contain the mass is aimed at by addin terra cotta, a partial the body harder ; all amount of alkalics which clays and substances sld fire brick, grounso vitrifying ingredients, pure as a flux to fuse added in various pround fine, previously ground, clay white river sand, counteract excessire the color lighter. In shrinkage, act as vitrifying elomer cent. They under an edge rann the manufacture the mirt eloments, and keep cither revolving or stat to the consistency of flour of clays is ground In order to mixg or stationary pans ; the formor the mills haro ful pugging is requircorporato the different cler do tho most work. ture when brought to for hot water is somets, a subsequent carea plaster mould, for five or seven dried near the kilns or othervise aistency, is placed in heat, and is graduys, during which time it is slose, an.. baked in a kiln and warping during the cooled down again. I owly brought to a white ing of clays that the firing, it is necessary order to avoid twisting ness of material the mould be shaped so as to besides complete miswell graded, the throughout, and if the tempogive a uniform thickcotta building blockogeneous body will not warp of the kilns bo struction, with conk, thay are made hollow, warp. To cheapen terra ductions are sepancrete or cement. Altho, and filled, during the conphurous fucl dar ed. This materinens and tarnishes the surface that the use of sulthe formation of thadmite of being used with the it is to be aroidbeautiful designs the most elaborate architecture greatest facility in very cheap rate. A piece on be multiplied to any rnaments and other tion required a pressure of four inch column tested at the extent at a much as good granite are of 400 tons per square fod the 1851 Exhibiing stone. Excellimit Cheap Roomire of stuff 11 by 8 inches, well supported your roof stiff, rafters made inches 2 inches, set edgeways, well nailed to thet apart, with ribs 1 mailed close togetherrds may be thin but must be rafters, abont 18 uailed close together: this done, lay down must be well seasoned; and

806 CADINETMAKERS, PANTERS', \&C., RECEIRTS.

coft, opongy straw paper used in making papor-boxes, which comes in rolle and comes very lotr. Lay in courses up and down the roof, and lap over, ualling down with common No. 6 tacks, with leather under the heads like carpet tacks. Then spread on several coatings of the following composition, previously boiled, stirred, and mixed together: good clean tar, 8 gals. ; homan cement, 2 gals. (or In its place very fino, clean sand mas bo used); resin, 8 lbs. ; tallow, 3 lbs. ; apply hot : and let a hand follow, and sift on sharp grit sand, pressing ftinto the tar composition. If wheshed fire-proof, go over the above with the following preparation; slake stone lime under cover with hot water till it falls luto a fine powder, sift and mix 6 qts. of this with 1 qt. salt ; add 2 gals. water, boil and skim. To 5 gals. of this add 1 ib of alum, and $1 \frac{1}{2} \mathrm{lb}$. of copperas, slowly while boilling, $1 \frac{1}{1}$ lbs. potash and 4 gts. of clean, sharp sand, and any color desired. Apply a thick coat with a brush, and you have a roof which no fire can lujure from the outside.

IIow to Build Gravel Houses.-This is the best bnilding material in the world. It is four times cheaper than wood, six times cheaper than stono, and smperior to either. Proportions for mixing: to eight barrows of slaked lime, well deluged with water, add is barrows of sand ; mix theso to a creamy consistency, then add co barrows of coarso gravel, which mnst be worked well and completely; sou can then throw stoues into this mixture, of any shape or size, up to ten inches in dinmeter. Form moulds for the walls of the house by fixing boards horizontally against upright standards, which must be immovably braced so that they will not yleld to the immenso pressure outwards as the material settles; set the standards in pairs around the building where the walls are to staud, from six to cight feet apart, and so wide that the inner space shall form the thickness of the wall. Into the moulds thes formed throw in the concrete material as fast as you choose, and the moro promiscuonsly the better. In a short time the gravel will get as hard as tho solid rock.

Varmisi for Plaster Casts.-White soap and vihite wax, each $\}$ oz., water 2 pts., boil together in a clean vessel for a short time. This varnish is to ve applied when cold with a soft brush.

The Bronzing of Plaster Casts is effected by giving them a coat of oil or sizo rarnish, and when this is uearly dry, appl,ing with a dabber of cotton or Ω camel-hair peucil any of the metallic bronze powders ; or the powder may be placed in a little bag of muslin, and dusted over the surface, and afterwards finished with a wad of linen. The surface must be afterwards varnished.

Sulstitute for Plaster of Parig.-Best whiting, 2 lbs.; glae, 1 lb . ; linsecd oil, 1 lb . IIeat all together, and stir thoroughly. Let the compound cool, and then lay it on a stone covered with powdered whiting, and heat it well till it becomes of a tough and firm consistence theu put it by for use, covering with wet cloths to keep it fresh. Wheu wanted for use, it must be cut in picces adapted to the size of the mould, into which it is forced by a screw press. The ornament may be fixed to the wall, picture-frame, \&c., with gluo or white lead. It lecomes in time as hard as stone itself.

Moderlina Clay.-Knead dry clay with glycerine instead of water, and a mass is obtained which remains moist and plastic for a considerable time, being a great convenience to tho modeller.

Bompar Cementr-Drift sand, 04 parts; unslaked lime, 12 Ibe.i and 4 libs. of the poorest cheese gratod ; mix well ; add hot (not boiling) water to reduce to a proper couslatence for plastering. Work well and quick with a this smooth coat.
To Polish Plaster of Paris wouk.-The addition of 1 or 2 per cent. of many salts, such as alum, sulphate of potash, or borax, coufers upon gypsum the property of setting slowly in a mass capablo of receiving a very high polish.
to make Plaster of Paris as hamd as Marble.-The plaster is put in a drum, turning horizontaily on its axis, and steam admitted from a steam boiler: by this means the plaster is made to absorb in a short eprace of time the desired quantity of moisture, which can be regulated with great precision. The plaster thus prepared is flled into suitable moulds; and the whole submitted to the action of an hydraulic press : when taken out of the moulds, the articles are ready for nse, and will be found as hard as marble, and will take a polish like it.
To take a Plaster of Paris Cast from a Prenson's Face. The person must lic on his back, and his hair be tied belind ; finto each nostril put a conical plece of paper, open at each end, to allow of breathing. The face is to be lightly oiled over, and the plaster, being properly prepared, is to be poired over the face, taking particular care that the eyes are shut, till it is a quarter of an inch thick. In a few minutes the plaster may be removed. In this a mould is to bo formod, from which a second cast is to bo taken, that will furuish casts exactly like the origiual.

WATCHMAKERS, JEWELLERS AND GILDERS' RECEIPTS, TABLES, \&c.

On Watch Cleaning.-The greatest care is necessary in taking the watch down, and scparating its parts. First, remove the hands carefully, so ns not to bend the slight pivots on which they work, next, remove the movement from the case, and take off the dial and dial wheels; next, let down the main spring by placing your bench key upon the arbor, or winding post, nud turning as though you were
going to wind tire watch until the click rests liglitly upon the ratchet; then with your scrow-driver press the point of the click away from the teeth and ease down the springs; next, drawr the screws, or pins, and remove the bridges of the train or the upper plate, as the case may be, next, remove che balance with the greatest care to a roid injuring the hair spring. The stud or small post into which the hair spring is fastened may bo removed from the bridge or plate of most modern watches without unkeying the spring, by slipping a thin instrument, like the edge of a vlade knife, under the corner of it and prying upward, this will sare much trouble, as you will not have the hair-spring to adjust when you reset the balance. If the watch upon which you propose to work has an upper plate, as an American or an English lover for instance, looson tho lever before you havo entirely separated tho plates, otherwise it will hang and probably be broken. The watch being now taken apart, brush the dust away from its different parts, and subject them to a careful examination with your eye-glass. Assure yourself the tecih of the whecls and leaves of the pinions are all perfect and smooth; that the pivots are all straight, round, and highly polished; that the lioles through which they aro to work are not too large, and have not become oval in shape; that every jowel is smooth and perfectly sound; and that none of them are loose in their settings. See also that the escapement is not too deep or too shallow; that the lever or cylinder is perfect; that all the wheels hare suffcient play to avoid friction, but not enough to derange their coming together properly; that none of them work against the pillarplate; that the balance turns horizontally and does not rub: that the hair-spring is not bent or wrongly set so that the coils rub on each other on the plate, or on the balanee; in short, that everything about tho whole movement is just as reason would teach you it should bo. li you find it otherwise, proceed to repair in accordance with a carefully weighed judgment and the processes given in this chapter, after which clean; if not, the watch only needs to be cleaned, and, therefore, you may go on with your work at ouce.

To Clean. - The best process is to simply blow your breath upon the plate or bridgo to be cleaned, and then to use your brush with a little prepared chalk. The wheels and bridges should be held between the thumb and finger in a piece of soft paper while undergoing the process; otherwise the oil from the skin will preveut thelr Deconing clean. The pinions may be cleaned by sinking them several times into a piece of pith, and the holes by tuming a nicely shaped piece of pirot wond into them, first dry, and afterwards oiled a very little with watch oil. When the holes pass through jewels, you must work gently to avoid breaking them.
The "Chemical Procisss."-Some watchmakers employ what they call the "Chemical Process" to clean and remove discoloration from watch movements. It is as follows :-

Remove the screws and other steel parts; then dampen with a solution of oxalic acid and water. Let it remain a fow minutes, after which immerso in a solution made of one-fourth pound cyanurct potassa to one gallon rain water. Let remain about five minutes, and then rinse well with clean water, after which you may dry in sawdust, or with a brush and prepared chall, as suits your convenience. This gives tho worls an excellent appearance.

To m onghly, two pou minutes. tom. P the settil before. clalk, re the same Some ope provemen adds to it ת sharper same way Pivot matcrial d met with fivot wood ters so as t Pitif fo the lest pit the time inferior:
To live loss to unde drill into th mserted an by $n 0$ mean lhard, or wh the otr r pa
To tele readily learn ing from the the roller or be just half both wrays, a las to be suI
To cirang ting on a fine catting its p change the es so much tron staff, and wit to that in whi staff, wedgo i In instances π proceed diffes lerer, file the pallets, withoi Comuect the pi some solid bn mutil the bendi tion. onghly, and then mix it with clear rain water in the proportion to
two pounds to the gallon. minutes. In this time the grir well, and then let stand about two tom. Pour the water into anoth matter will havo settled to the botwefore. The settlingsi until entirely settowly so as not to stir np chalk, ready for ings in the second vessel, and then pour off in the same way, ma soon as dried. Spanish be your prepared Some operatives add a a very good cleaning or phiting, treated in provement ; it gives a little jeweller's rouge, and polishing powder. adds to its importance in powder a nice color at we think it an imn sharper polishing in the eyos of the uninitiated same way from rottenowder is required, it may be prepared in the Prvor Wood.-Watchme material dealers. Λ small shrub nsually buy this artiele of watchmet with in the northern and wnown as Indian arrow-wood, to be 1.Not wood. It must be cut when western states, makes an excellent ters so as to throw the pith outside of siap is down, and splitinto quarPitil for Clieanivg the best pith for cleaning pinions stalk of the common mallen affords the time to gather it. Some use Winter, when the stalls is dry, is inferior
r instead of pith, but it is loss to understand that thind a pivot broken, yon will hardly bo at in drill into the end of the pinion or mode of repairing the damare is tr. mserted a new pivot, twin it down to the as the case may be; and having by no means a diffecult thing wha to the proper proportions. This is hard, or when the temper may be the piece to be drilled is not too the otr r parts of the article. To tell wien the Live readily learn whether or not a lev of proper Limath.-Yon may ing from the guard point to the par is of proper length, by measurthe roller or ruby-pin tablo; the diamettr, and then comparing with bo just half the length measured on the of the talile should always both ways, and may be nseful in cases wever. The rule will work has to bo supplied. ting on a fine watch, the besiever Escapmanent. -If you are operacniting its pivots a little to one side put a now stafi into the lever, change the escapement. Common siva, just as far as you desire to so much trouble. The usual process in thes will not, of course, justify to that in with Ω small file cut tho hole their ease is to knoels out the staff, wedgo it to you desire to move your ng in a direction opposite In instances where required position, nnd palets : then replace tho proceed differently. The staff is put in with a screw, by soft soldering. lerer, file the pin pallets, without ches to slant in the direction the pallets from the Comuect the pite changing their size on the other would move tho come solid meces as they were before, and other side of the lever. mitil the bending of you may striko lightly with lever resting on tion.

810 TATCHMAKERS, JEWELLERS', \&C., RECEIPTS.

Cosimineation Bazazoe of Chtonometims.-The balance is a mall plece of steel covered with a hoop of brass. The rim; consisting of the two metals, is divided at the two extremities, the ono diametrieal arm of the balance, so that the increase of temperature which weakens the balance springs contract; in a proportionate degren, the diameter of the balance, leaving the spring less resistance to overcome. This ocenrs from the brass expanding much more by heat than steel, and it therefore curls the semicircular ares inwards, an action that will be immediately understood, if we conceive the compound bar of steel to be straight, as the lient would render the brass side longer and convex, and in the balance it renders it more curved. In the compensation balanco, the two metals are united as follows: the disk of steel when tumed and pierced with a centril holo is fixed by a little screiv-bolt and nut at the bottom of a small crucible, with a central elevation smaller than the disk; the brass is now melted and the whole allowed to cocl. Tho crucible is brolen, the excess of brass is turned off in the lathe, the arms are made with the tile as usual, the rim is tapped to receire the compensation screws or weights, and, lastly, the hoop is divided in two places at the opposite ends of its diametrical arm. The balance springs of marine clironometers, which are in the form of a screw, are wound into the square thread of a screw of the appropriate diameter and coarseness ; the two ends of the spring are retained by side screms, and the whole is carefully enveloped in platinum foil, and lightly bound with wirc. The mass is next heated in a piece of gon barrel closed at one end, and plunged into oil, which hardens the spring almost withont discoloring it, owing to the exclusion of the air by the close platinum covering, which is now removed, and the spring is let down to the blue before removal from the screved biock. The balance or hair spring of common watches are trequently left soft, those of the best watches are hardened in the coil upon a plain cylinder and are then curled into the spiral form between the edgo of a blunt knife and the thimb, the same as in curling up a narrow xibbon or paper, or the filaments of an ostrich feather. The soft springs are worth 60 cents each, those hardened and tempered $\$ 1.23$ cach. This raises the value of the steel; originally less than 4 cents, to $\$ 2000$ and $\$ 8000$ respectively. It takes 3200 balance springa to weigh an ounce.
Watch Spring Manufacture.- Watch springs are hammered out of round steel wire, of suitable diameter until they fill the gauge, for width, which at the same time insures equality of thickness. The holes are punched in their extremities, and they are trimmed on the edge with a smooth file. The springs are then tied up with binding wire, in a loose open coil and heated over a charcoal firo upon a perforated revolving plate. They are hardened in oil and blazed off. The spring is now distended in a long metal frame, similiar to that nsed for a saw blade, and ground and polished with emery and oil between lead blocks. By this time its elasticity appears quite lust, and it may be bent In any direction; its elasticity is, however, entirely restored by a subsequent hammering on a very bright anvil which puts the "nature into the spring." The coloring is done over a flat plate of iron, or hood, under which a small spirit lamp is lsept burning; the spring is continually drawn backiward and
torman orango purciand orame into the containe handles,
To TE clear ap measure, mode of sible to f thing tool the two p quired.
To Len out Ham head file, have thus distance th snapping o down the style. To temp temper fron then take it bittle tableplace it in a sced-oil ; the let it burn n With oil and Which, plune like manner, and properly the same as
To make silver, $\frac{1}{2}$ oz. 0 hold over a the mateh he and heat the 1
To Drille stead of the in: without breaki with a little di or kerosene, in your drill. In steady ; and it nished that the with diluted ac proceed again. To Put Tem taileng or Sol tooth, square th
e is a sisting iametwhich egren, uce to ro by vards, ;e tho or tho : more ted as 1 holo 11 criass is olien, made sation ces at gs of vound r and rerrs, ightly barrel pring ur by ing is The : soft, plain edgo arrow e soft \$1.23 dan 4 orings
nered ange, chess. naned with 1 firo 1 and simiwith pears howoright done lamp and
forvard, about two or three inches at a time, untilit assumes the orange or deep blue tint throughout, according to the taste of tho ormanent and not essentioloring is considered to be a matter of into the spiral form, that it may ene last process is to coil the spring contained. This is done by a tool the barrel in which it is to bo handles, and does not require lient. with a small axis and winch To tell When lequire heat. clear space between the pallecs sligs. Arr of propfr Stze.-The measure, on the points of threes should correspond with thie outside mode of measuring for new pallets is the scape wheal. The usual sible to free its self when in motion. is set the wheel as close as posthe two , after which the measurement cau arrange it in your depquired. pleces, on the pillar plato, will show joun the pivot holes of

To Lenatien Leveps

 out Hamsering or Sord anchor-escapeacent Watches witihead file, a little back from the point at square across with a serewhise thus cut into it to a sufficient depthe the fork, and, when you distance the piece thus partially detached, bend forvard the desired down the of While bending-which, howerer, the event of the piece style.and insert a pin Euglish lever temper from the spring, and other Springas of Watcims.-Draw the then take it out and temper it it properly in its place in the watch ; place table-salt to the water will be an in-water (the addition of a place it in a sinall sheet-iron ladie or an improvement) ; after which let it buin then hold the ladle over a ligp, and barely cover it with linwith oil and bume oil is : nearly, not quite counp until the oil ignites, Which, plunge it down as before; aud so a third tid ; then ro-cover like manner, be tempain into water. Main and haire; at the end of and properly coil andered by the same process; finir springs may, in the sume as with caso-splamp to keep it in position, and then temper, To make Red We-springs.
silver, $\frac{1}{2}$ oz. of timer's Japan . mis -1 oz. carmine, 1 oz . muriate of hold over a spirit-lamp unti mix together in an earthen vessel, and the watch hand, and then lay it oned into a paste. Apply this to and heat the plate sumfiently to prod a copper plate, face side up, To Dilile into Mard Steel. produce the color desired. stead of the usual pointed shape, -Make your drill oval in form, inwithout breaking; then ronghen the temper as hard as it will bear or ker little diluted inuriatic acid, and, face where you desire to drill your drill in which a little gum canplinge of oil, use turpentine steady ; and in operating, leep the pressure as been dissolved with nished that the the bottom of the hole should on your drill firm and with diluted aedrill will not act, as sometimes chance to become burproceed again. as before; then clean out thaplens, again roughen To Put Teeth in Tratcit on tailing or Solderino.-Drion Clock Wheels without Doyetooth, square through the plate, a hole somewhat wider than the , square through the plate, a Little below the base of the tooth;
cut from the edge of the wheel square down to the hole already drilled; then flatten a piece of wire so as to fit suugly into the cut of the saw, and with a light hammer form a head on it like the head of a pin. When thus prepared, press the wire or pin into possession in the wheel, the head filling the hole drilled through the plate, and the projecting out so as to form the tooth ; then with a sharp-pointed graver cut a small groove each side of the pin from the edge of the wheel down to the hole, and with a blow of your hammer spread the face of the pin so as to fill the grooves just cut. Repeat the same operation on the other side of the wheel, and finish off in the ustal way. The tooth will be found perfectly riveted in on every side, and as strong as the original one, while in appearance it will be equal to the best dovetailing.

To Case-harden Iron.-If yon desize to harden to any considerable depth, put the article into a crucible with cyanide of potash, cover over and heat altogether, then plunge into water. This process will harden perfectly to the depth of one or two inches.

To tighten a Cannon Pinion on the Centre Arbor when TOO 100se.-Grasp the arbor lightly with a pair of cutting nippers, and, by a single turn of the pippers around the arbor, cut or raise a small thread thereon.

To Frost Watch Movements. - Sink that part of the article to be frosted for a short time in a compound of nitric acid, muriatic acid, and table salt, one ounce of each. On removing from the acid, place it in a shallow vessel containing enough sour beer to merely cover it, then with a fine scratch brush scour thoroughly, letting it remain under the beer during the operation. Next wash off, first in pure water and then in alcohol. Gild or silver in accordance with any recipe in the plating department.
reler for determining the correct Diameter of a Pinion ny measuring Teeth of the. Wheel tifat matches into it.The term Fulle, as used below, indicates full measure from outside to outside of the teeth named, and the term CENTRE, the measure from centre of one tooth to ceutre of the other tooth named, inclusive.
For diameter of a pinion of 15 leaves measure, with calipers, a shade less than 6 teeth of the whieel, full.
For diameter of a pinion of 14 leaves measure, with calipers, a shade less than 6 tecth of the wheel, centre.
For diameter of a pinion of 12 leaves measure, with calipers. 5 teeth of the wheel, centre.

For diameter of a pinion of 10 leaves measure, with calipers, 4 teeth of the wheel, full.

For diameter of a pinion of 9 leaves measure, with calipers, a litt'e less than 4 teeth of the wheel, full.

For dlameter of a pinion of 8 leaves measure, with calipers, a little leas than 4 tecth of the wheel, centre.
For diameter of a pinion of 7 leaves measure, with calipers, a little less than 3 teeth of the wheel, full.

For diameter of a pinion of ' 6 leaves measure, with calipers, 3 teeth of the wheel, centre.

For dlameter of a pinion of 5 leares measuro, with calipers, 3 teeth of the wheel, centre.

As a general rule, pinlons that lead, as in the hour wheel, should
be some shonld watches. For di half of 0 To Po barnishiz becswax. removed, the wheel will be qu clogging, square. shonld generally be somewhose that drire, and pinions of clockn watches.
proportionally than those of half of one space over 2 ton of 4 leaves measure, with call
To Polish Wheels peth of the wheel, full. With callpers, on barnishing file, waims perfectiy whecl, full. beeswax. When cold, over a spirit lamp and cont.-Take a flat removed, and with your file off as much of the coat it lightly . With the wheel while polishing thus prepared, the wax as can be readily will be quite equal to the on a piece of cork polish the wheel, resting clogging, and the edges of thest buff polish, while finish produced square.
arms and teeth will remain will bo no Breguet Spritiod of Produciva Isocir time, is the property -isochronism, from the Gisir in Flat And to accomplish their possessed by the pendulumek, meaning equa? кame space of time. In of vibration of different and the hair spring that its length be such as pendulum, the only condiplitades in tho ing to the cycloid curve to make the centre of condition required is with the forms effected ; but in the hair spring the move accordsprings, the extreme curve the spring. In the the means chango discovered by Prof. Phillip constructed after the spherical or conical will produce an Isochronipps, of the Polyt the mathematical rules these curves cannot exist thery nearly perfect ic School of Paris, 1 shall give now the rest, therefore other means must the flat spring, which can be embodied in of several years of experit be resorted to.

1. In the flat spring in the two following theorperiment and study, vibrations are Isochronal. every coil has theorg theorems : by the relative position of 2. That point of Isclly a point zohere the with the collet and stud, called two points of lsochronism is dctermined These two propositions called Points d'attache. spring; therefore thitions form the butche.
that the Isochronai proea gencrally accredited amonism in the fat incorrect, since the 10therties of a flat spring demong watchmakers to produce the Isochronism well as the 2 pring depend on its length is that would prevent the per, the only limit being of the spring is able Freedom of action being pert freedom of its action suzes of springs the spring to devel being necessary for the action.
centre, according to Fig. themselves, the spring mochmanal properties of too flat, so that even f. II. - the first coin sing must be went to the collet, would hinder the minute part of theing too near or the curre pinned perfectly tight in thechronism. Next the could touch the the regulator pins. These conditions fulfilled, the and move freely between hrength enough to keep it, the watch is run 3, Gor 12 hours with just lator and set down. Next, the the result is compared writh with just ${ }^{\text {a space }}$ of time equal to the the watch is fully wopared with a regullost generally the watch weill rist trial, the result is oup, and after in the wide ones, and couseill run slower in theit is again set down. trelve hours of its runningeqnently lose time in the pockrations than. coil has an Isochronal point, liaving set downas a procket in the last acmbering that as a general have now to deterninciple thatevery ould

814 WATCHMAEERS, JEWELLERS', \&C., RECETPTS.

mring over that point, woill cause the watech to gain th the short vibrations, and every decrease 3ack of that point will cause it to gain in the voide vibrations. This rule is correct only for certain limits, as I am going to explain. Supposing that a hair spring of 15 coils is perfectly Isoclironal with the two points a attache jnst opposite each other, as shown in Yig. III., the 14th and the 16th coil, as well as tho 15th, will produce the Isochronism very nearly at the same point. Supposing that we increase gradually the length of that hair ppring of 15 coils, pinned up so that the two points dattache are primitively opposite each other-so that its length will nowo be $15 \frac{1}{2}$ conts-the tro points d^{\prime} attache are now in the position shown in Fig. IV., or what is called pinued to the half coil. The result will be that the hair spring will cause the watch to gain in the short vibrations as mach as it is in its power to do.
But if we go further than tho half coil, re now enter the ground that belongs to the 16th coll, aud every increase of length in that hall coil will cause the hair spring to lose in the ehort ribrations, in the same proportion thatit has been gaining in increasing the length of tho first half. That change will continue until wo reach the mane point on the 16 th coil that we started from on the 15 th., the two pins opposite each other; at chat point we shall have again the Isochronism. The same operation is applicable to the 14th coil, with the same results.
Now it is immaterial whether we take that half coil to the centre, or to the outside of the spring, because both of these operations will produce the same results, viz., the change of the relative places of tho points d'attache of the spring. Therefore the artist has his choice, and is guided by the size of the spring and the reight of the balance; for taking half a coil to the centre of the spring will not mnela affect the rate of tho watch, but taken outside, the difference will be great. On the other hand, a very short cut to the centre will greatly affect the Isochronism, and at the outside, a fall half-coil will generally produce from 15 to $25^{\prime \prime}$ difference in 24 hours. If then the watchmaker wonld produco the greatest possible changes of Isochronism in \boldsymbol{a} watch, the change of position of the two points dattache of the apring of one coil around, will give him the tro highest degrees of gaining and losiug in the short vibrations.
It follows from the following pages, that if a watch loses in the hat running (short vibrations), the first thing to do is to increase the length of the hair spring from the outside; if the result is better, but not yet good, give still more length; if the resalt is worse, it shom that you are too far on the coil. Take back the whole length that you had given in the first operation, and draw more length, so asto affect the spring the other way; or if your spring is already smallor your balance pretty heavy, cut to tho centre so as to come around to the required positions.
Some springs cannot produce the Isochronism; thin comes froms defect in making the spring, or a waut of homogeniety in the metul; the only remedy is a new spring.
In thie Breguet Spring, the Isochronism is prodnced in the eame manner as the flat springings, butgreat care must be taken in makno tho curve, for if it is not mado in conformity to the prinetple of Puil liphe, the Jsoclironism will be disturbed.

For watch leugth ground loss of 1 moreovi ism..
watch watch g watch losing $7 / 1$ in the last the spring being pinned in A, and the leugth of the hair spring to the urs (short vib.), I first increase the ground belonging to the losing point B; but as I am already on tho loss of time in the last running action, the result will be an increased ism. Howin the spring to C, and then I go back to the point A, and watch gain lu jts last running the increase of length will make tho

ADjusing
0Wwatchmakrers, and therions,-This adjustment is known to but the operator considerable make it a regular business. It require and reflective powers. The

great principle is to 0 git

 to the action of the spring the frictions, so that the infots will offer generally required, viz., dial name resistance in the four positions naving inspected and corrected the up, cock up and III up. After lever should unlformly to the balance so that the motive power is tion; next the loper and shortened so pivots and jewels of tho and the slot also should be poised as as to have very little fricpolished. The balance fork where the ruby perfect as possible, have the lioles square, jewels onghit to be made shats slionld be balance plvots well burnishded inside, and perfectly phongh to balance polsed very carefully and their ends perfectly polished, the balance out of poise to obtaif. Tho English meth rounded, and tho not accepted gencrally, and is the same rate in diff of throwing tho eminent watchmakers. Th is considered a bad prerent positions is the balance, and bent. The hair spring is pad practice ly the most the same centres. The that the collet and the in its position without put under trial for 12 watch being now in cock jewel will hare fully noted. If there or 24 hours, and the rate good running order, is up, or dial up, making any difference in tho runing position carcpolished will remove the ends of the pivots evenning with the cocls up, whitch is generally the discrepancy. If the wen and equally well being rednced as much case, and the friction outh loses with XII friction when the mach as possible, the remedy is tolance jerrels throwing the hair watch is either dial or cock pp to increase the thereby adding to thring a little out of the centre of this is done by against the balance jevrelction on the pivot end, a the cock jezcel, ur, and loses with If ewels. If the watch is well regrateral pressuro III; this operationlifts ap the the sprinty a little tozuated with XII losition and diminishes ap the balance when the towards the figure case. Making the ends of thiction of the pivots in th is in losing mako the watch gain wis the pivots perfectly fint in that particular must \bar{j} clear in all positionial or cock nj. The sous a tendency to rough jewels or pivots, sans, else it indicates a frictund of the watchllow to Regulate, safety pin rubbing against th, as for instanco cal Mechod to put a Watcir in a Feew difint the roller, etc. Perfecitiy Regut a net Hauz Spring, of ties, and a Practiascertain how manyed in a Watce without Ro rigite bize and counting every other vibrations the watch beats in wina Ir. -First, regulatecl watch or vibration and comparing that in one minute, by in one hour, viz., 300 regulator. In general, Swiss watime with a welleither 16,200, or 270 in one minute; American watches beat 18,000 240 per minute. If ther minute; and the English les, either 18,000 and teeth, and ascertain is any doubt, it is better to covers, 14,400, or There rpatches will bain the right number. but the count up leares Having fonnd out the ndd numbers. for che or two out the right number, lef, and in the minutes, counting every vibratione valance carefully When one minute is up. time examining the regul golng from right to of vibrations must up. If the watch is well regulator or clock, to see 150, 135, or 120, as ondactly half of tho recugulated, the number facilitate the obse only every other vibration hr first number, viz., laft, until a perfect coinciden. If not so, move the regula recorded to

818 WATCHMAKERS, JEWELLERS', \&C., RECEIPTS.

Topick up a new hair spring, after having recorded the right number of beats-either by the old hair spring or by the numbers of the train-lay first the spring with its centre well in the centre of the cock jewel, and having ascertained where the coil will enter between the pins of the regulator, note the place. Stick to the pivot of the balance asmall round piece of beeswax; then stick it to the centre of tho spring, so as to establish a temporary but firm counection of the tivo pleces, and having plnched with the tweezers the hair spring to the place indicated by the regulator pins, canse it to vibrate gently; then count up the vibrations for one minute, and wheu you have got a spring that will produce nearly the required number of beats, pin it to the collet, aud canse it again to vibrate, moving the tweezer forward and backward, until the right number of beats is proauced; with another pair of tweezers, pinch the hair spring abont one-eighth; of an inch back of the regulating point, so as to counterbalance the gain produced by the regulator pins, and bend slightly the wire, which is the place where the hair spring must be pinned to the stud. Having then trued up the spring, proceed to put the regulator to the right place, by using the way indicated in the beginning of this article, and the work is done. Success is certain, when the operation has been carefullyperformed. The balance must be made to vilbrate on some hard and well polished substance, so as to keep up the vibmtion to about the standard of regular runniug. A little practice will soon enable the watchmaker to change a hair spring very quick, and without any trouble whatever.

Of Compensation.-A most accurate way of counterbalancing effects produced on the running of watches by differeut temperatures, is tho expansion balance, formed of two concentric rings, ono interior, of steel, and one exterior, of brass, joined together by hard soldering or smelting. The general proportiun of theso two metals is one part of steel, two of brass. The stronger dilation of brass, causea the rim of the balance to head inwardly when the heat, increasing, diminishes the strength of the hair spring; the greater contraction beuds the rim outwardly when cold comes to increase the rigidity of the spring's colls. Pushing forward or backward the screws of tho rim will affect the compensating powers of the balance, by causing their weight to be more active as they come nearer the end of the cut arm. The thinner and higher the rim, the greater the action. A fer trials will lring the balance to compensate the effect of temperature from 30° to 100° Fahrenheit. For extreme temperatures anotlicr compensation, called auxiliary, is used, but only in ship chronometers. A soft spring will be less affected by changes of temperature than a hardened one; this affords a way to compensate certain balances, where otherwise new ones would have to be used. A precaution to obscrve in compensating is to make the screws go freely on the balance, and not screw them too tight, else the action of the rim not being free, a good compensation could not be attained, untll the combined actions of dilation and contraction of the rim have freed the screws.
For watchmakers who would want to compensate a watch without having an expansion balance, I give the following process, which I have successfully used : After lhaving cut off the greater part of the regulator's arm, another arm is to bo fitted with a screv on the rim
of the regalator, so as to revolve freely around that scrov as an axis. The pins are put in the same position as on tie old arm. A ring, of two parts of brass and one ol steel, is then fastened to one end on that movable urm, and the other cud is screwed at any conrcuient place, elther ou thie regulator itself, or on the cock. See Fig. 1. By placing tho whole ring on the regulator, the latter may be inoved as in any other watch, the ring opening or olutting itself under the changes of temperature, will push backward and forward the regulator pins, and so effect the compensation which is to be regulated by varying either the proportion of brass and steel, or the sizo of the ring.
To try the running of the watches, a common refrigerator is nsed to produce the low temperature, and then an apparatus, self-regulating, will prodnce the high temperature. It is commonly a square box of tin or copper, hermetically closed, under which is a gas bnrner. A compensating arm of tho form of a U, made of brass and stecl, is fastened inside tho box, and is connected by a string with a lerer attached to tho key of the burner, and acts so that at the high tempernture, say 100° Falh., the gas is nearly shut off, the compeusating arm gradually releasing itseif and consequently letting out moro gas when the heat diminishes insido the box. Uso steel pins to secure spring to collet and stud.
To make Polishing Broacites.-These are nsnally made of irory, and used with dlamond dust, loose, instead of having been driven in. You oil the broach lightly, dip it into the finest diamond dust; and proceed to work it into the jewel the same as you do the brase broach. Unfortnnately, too many watchmakers fall to nttach sufficient importance to the polishing broach. The sluggish motion of watches now-a-days is more often attributabla to rough jowels than to any other canso.
To Polisil Steer.-Take crocus of oxide of tin and graduate it in in tho same way as in preparing diamond dust, and apply it to the steel by means of a piece of soft iron or bell metal, made proper form, and prepared with flour of emery, same as for pivot burnishers; use the coarsest of the crocus first, and finish off with the finest. To iron or soft steel a better finish may be given by burnishing than can be imparted by tho use of polishing powder of any kind whatever. The German Method of Polishing Steel is performed by tlie use of crocus on a buff wheel. Nothing can exceed the surpassing beauty imparted to steel or even cast iron by this process.
Crocus Powder for Polishing.-Chloride of sodium and sulphate of iron are well mixed in a mortar. The mixture is then put into a shallow crucible and exposed to a red heat ; vapor escapes and the mass fuses. When no more rapor cscapes, remove the crucible and let it cool. The color of the oxide of iron produced, if the fire has been properly regulated, is a fine violet; if the heat has been too high it becomes black. The mass when cold is to be powdered and washed, to scparate the sulphato of soda. The powder of crocus is then to be submitted to a process of careful elutriation, and the finer particles reserved for the more delicate Work. An excellent powder for applying to razor strops is made luy igniting together in a craciblo, equal parts of well dried green ritrol and common salt. The heat must be slowly raised and well
regulated, otherwiso the materials will boil over in a pasty state, and be lost. When well mado, out of contact with air, it has tho brilliant aspect of black lead. It requires to be ground and elutriated, after which it alfords, on drying, an impalpable powder, that may be either applied on a strop of smooth buff leather, or mired up with hog's lard or tallow into a stiff cerate.

To Remove Rust fromi Iron or Stere, \&C.-For cleaning purposes, \&ic, kerosene oil or benzine are proluably the best things known. When articles have become pitted by rust, however, theso can of course, only be removed by mechanical means, such as scouring with fine powder, or flour of emery and oil, or with very fine cmery paper. To prevent steol from rusting, rub it with a mixture of lime and oil, or with mercurial ointment, either of which will bo found valuable.

To Make Burnishers. - Procced tho same as in maling pivot files, with the exception that you are to use fine flour of einery ou a slip of oiled brass or copper, instead of the emery paper. Burnishers which have become too smooth may be improved vastly vith the flour of emery as above without drawing the temper.

To Prepare a Burnisher for Polishing.-Meit a little becswax on the face of your burnisher. Its effect then on brass or other finer metals, will be equal to the best buff. A small burnisher prepared in this way is the very thing with which to polish up watch wheels. Rest them on a piece of pith while polishing.

Rules for Determining the Combect Length of the Leven, size of Ruby-pin Table, size of tife Pallets, and defthi oy Escaprment of Lever Watches.-A levor, from the guard point to the paliet staff, should correspond in length with twice the diameter of the ruby-pin table, and when a table is accidentally losi, the correct sizo thercof may be known by measuring half the length of the lever between the points abore named. For correct size of pallet, tho clear space between the pallets should correspond with the outside measure on the points of three teeth of the escapement wheel. The only rule that can be given, without the use of diagrams, for correct depth of the escapements, is to set it as close as it will bear, and still free itself perfectly when in motion. This may be done by first placing the escapement in your depthing tool, and then setting it to the correct depth. Then by measuring the distance between the pirots of the lever staff and escapement wheel, as now set, and the corrosponding pivot holes in the watch, you determine correctly how much the depth of the escapement requires to be altered.

To Prevent Watches losing Time from Action of Prandulom Spring.- Pin tho pendulnm spring into the stud, so that that part, the part of the cyo immediately emerging frim the collet, and the centre of the collet, are in a line; then you will have the spring pinned in, in equal terms, as it is called by thoso who are versed in the ligher branches of springing. Bring the watsh to time by adding to or taking from the balance, and poise it: tiy the watch with the 12 ap for 2 hours, then with the 6 up for 2 hours, then lying down for tho same time; the trials here described will be sumcient if tho watch has seconds; keep the curb pin close so as to allow the spring only alittlo play; the vibration of tho balance shond bo 1 turn or 12 lying.

WATCIMAKERS, JEWELLERS', \&C., RECEIPTS. 821 LIST OF TRAINS OF WATCHES. HEOTKG THI WOMREP OT TETE IK

Traine tor
Traing, for soven Treoth in tho Isecapomont Whect:

$\begin{aligned} & \text { No. of } \\ & \text { Jeeth } \\ & \text { In the } \\ & \text { Contre } \\ & \text { Wheol, } \end{aligned}$	Teoth In 2d Wheal.	$\left\|\begin{array}{l} \text { Lenyes } \\ \text { in 3d } \\ \text { Whool } \\ \text { Pinion } \end{array}\right\|$		$\begin{aligned} & \text { Leaven } \\ & \text { fn ith } \\ & \text { Phel } \\ & \text { Phion } \end{aligned}$	$\left\|\begin{array}{c} \text { Tooth } \\ \text { in the } \\ \text { Eocope- } \\ \text { ment } \\ \text { Wheol. } \end{array}\right\|$		NSo. of Bente in	
60	70	6	48	7	11	6	$293+$	83
68	60	6	66	8	11	6	$288+$	40
63	63	6	60	-	11	6	289	33
80	80	8	64	。	11	8	$203+$	83
80	80	8	68	8	11	7	$203+$	$3{ }^{3}$
80	80	8	48	8	11	6	$208+$	50
80	70	8	56	7	11	7	$293+$	83
80	70	8	48	7	11	6	$293+$	85
80	00	8	48	0	11	6	$298+$	83
70	80	7	56	8	11	7	293	8.
70	80	7	48	8	11	6	298 -	83
60	80	6	48	8	11	6	$293+$	83
84	72	8	50	8	11	6	289-	33
84	68	8	60	7	11	6	$289-$	83
84	54	8	60	8	11	6	289-	83
68	72	6	50	8	11	6	289-	83
03	68	6	60	7	11	6	289-	33
84	64	8	68	8	11	6	$287+$	4:)
34	58	8	66	7	11	6	$287+$	40
84	48	8	53	6	11	6	$287+$	40
08	64	6	66	8	11	6	28%	40
68	60	6	56	7	11		$287+$	40

Trains, for Thirteen Teoth in the Escapement Wheel.

64	63	6	54	6	13	6	\% $28+$	45
66	63	6	60	6	13	6	208-	44
69	51	6	48	6	13	6	290-	48
(6)	61	6	48	6	13	6	$294+$	42
64	63	6	61	6	13	6	293-	45
58	58	6	49	6	13	6	292-	44
58	54	6	48	6	18	6	$291+$	44
67	53	6	48	6	13	6	291-	43
51	52	6	61	6	13	6	$287+$	48
51	43	6	50	6	13	6	$257+$	45
60	51	6	60	6	13	6	$286+$	45
61	63	6	60	6	13	6	232-	46
68	51	6	49	6	13	6	281-	45
67	61	6	48	6	18	6	280-	4
62	53	6	61	6	13	6	277-	48
68	52	6	50	6	13	6	$276+$	48
82	52	6	62	6	13	6	298-	45
65	51	C	61	6	13	0	287	45
63	60	6	61	6	13	0	286	48
63	62	6	48	6	13	6	280	44
16	53	0	60	6	13	6	$292+$	44
00	48	6	48	6	13	6	277	45
6	50	6	48	6	13	6	289-	43
a.	61	6	00	8	12	0	$292+$	63
66	63	7	56	7	13	6	$287+$	61
60	60	8	64	0	13	6	800	41
62	50	7	56	7	13	6	$208+$	47
68	58	7	61	6	13	0	285	60
6.3	00	7	60	7	13	0	290	60
61	60	7	60	7	13	6	285	63
91	0	8	68	8	13	c	280	$6)$
74	68	8	68	8	13	6	$286+$	60

Trafne, for Firteor Treeth in the Encapement Wheel.

2io. of Tosth Contre Wheel.	Toeth in 3d Wheel.	Iearea in 3d Whel Piniogen	Treeth in th Whee!	Leares In tith Whool Pinlon	Teeth. In the Escaper wheol	Lesivea Eacapo ment Wheal Pinion	No. of Beate in one Minute.	
64	50	6	48	6	15	6	286	48
68	48	6	46	6	15	6	290	60
48	45	6	69	6	15	6	291 -	60
48	45	8	68	6	16	6	300	02
48	45	6	57	6	15	6	288	62
48	45	6	60	6	15	6.	288	60
B6	48	6	48	6	15	6	289-	60
63	68	7	56	7	15	7	288	0
60	56	8	58	7	15	6	288	60
02	0	8	60	8	15	6	- 288	0
72	64	8	50	8	15	0	288	60
73	64	8	56		15	7	288	60
23	64	8	64		15	8	288	50
63	50	6	48	6	16	6	285	60
U4	48	6	48		15	6	288	64
73	64	8	48	8	16	6	288	60
12	80	8	64	10	16	8	288	60
72	80	8	56	10	15	7	288	60
72	80	8	48	10	15	6	288	50
68	80	7	64	10	15	8	288	60
C3	80	7	65	10	15	7	288	60
C3	80	7	48	10	15	6	288	80

Trains, for Seventeon Tooth In tho Escapement Wheol.

C4	80	8	48	10	17	6	$299+$	53
61	48	6	44	6	17	6	$299+$	6)
51	48	6	45	6	17	6	$295+$	63
64	48	6	43	6	17	6	$292+$	60
48	48	0	43	6	17	6	$200+$	68
61	48	6	45	6	17	6	289	68
64	43	6	43	6	17	0	286-	58
48	48	6	47	6	17	6	$284+$	68
61	48	6	44	0	17	6	263-	68
48	48	6	43	6	17	6	278	68
48	48	6	46	6	17	0	272	63
64	64	8	64	8	37	8	$290-$	60
72	64	8	56	8	17	8	288-	60
64	64	8	60	8	17	8	289-	68
65	56	7	66	7	17	7	290 +	68
63	56	7	49	7	17	7	286-	60
64	58	8	43	7	17	6	$290+$	63
80	80	19	0.	10	17	8	$290+$	68
80	64	10	04	8	17	8	$290+$	88
80	61	10	66	8	17	7	$290+$	6
80	64	10	43	8	17	6	$29.3+$	63
$8)$	53	13	63	7	17	7	$290+$	63
80	63	1)	48	7	17	${ }_{6}^{6}$	$290+$	63
64	80	8	64	10	17	8	$290+$	63
64	80.	8	68	10	17	7	$220+$	63

To Remova Sort Solder frox Gold.-Place the work in spirits of salts, or remove as much as possible with the scraper, using a gentle heat to enable you to get off the solder more easily. Very useful to be known where hard soldering is required, either in bright or colored work.

Traing, for Third Wheel and Patont seconde.

To. of Teoth In the Wheal	Toeth in 3d Wheel.	$\begin{aligned} & \text { Leesree } \\ & \text { insd } \\ & \text { Wheel } \\ & \text { Pinion. } \end{aligned}$	Teeth in 1th Wheel	Learee in 4 th Whee Pinion	Teoth In the Kachpe- ment Whool	Leaves 1n the Escape- ment Wheel Pinion.	No. of Beatn in one Minuta.	No. ud Seeond the th Wheel revolo ves in
60	72			12		6	800	65
60	$0{ }^{3}$	6	60	10	-	6	800	60
60	48	6	60	8	.	6	80	60
48	60	6	60	8	.		800	60
60	72	6	54	12	.	6	270 -	60
60	60	6	64	10	.	6	270	60
48	60	6	54	8	.	6	270	60
00	72	6	48	12	.	6	240	60
60	60	6	48	10	\ldots	6	240	60
48	60	6	48	8	.		240	60

Traine, for Fourth Wheel Secondeg, with Eleven Tecth In the Emcapement Uheel.

Traing, for Fourth Wheel Eeconde, With Thirteen Teoth

64	(i)	3	66	8	13	6	286	
64	C0	A 8	67	8	13	6	$290+$	¢0
04	60	8	08	8	13	0	295-	6)
64 y	6)	8	69	8	13	6	299	60
ω -	40	. 7	77	7	13	7	283	60
60	49	$\therefore 7$	66	7	12	6	286	00
60	49	$\therefore 7$	- 67	7	13	6	$290+$	∞
48	45	$\because 6$	-60	6	13	6	286	60
48	45	$\bigcirc 6$	- 67	6	13	6	$290+$	cu
48	45	\% 6	63	6	13	6	264-	60
48	15	\% 6	60	6	13	6	249	00
60	80	$\therefore 8$	- 68	7	13	0	283	60
80	60	$\because 10$	68	8	13	6	280	60
64	75	\%8	66	$11)$	13	6	286	60
48	60	? 6	00	8	13	0	283	60
48	75	6	66	10	18	6	286 .	60
45	56	6	60	7	13	6	88	W
56	$7{ }^{6}$	7	68	1)	13	B	20:-	C)

Tratn

Traine, for

Nots.-By use n pinlons, on page 81 tho correct in of the Wheel lost.

Trains, for Fourth wheel seconale, with Fiftion Teech In Escapoment Wheel.

 Teoth in Encel seconds, with

To Put Watches in Beat.-If a cylinder escapement, or a dotached lever, put the balance into a position, then turn the regulator so that it will point directly to the pivot-hole of the pal et staff, if a lever, or of the scape-wheel, if a cylinder. Then lift out the balance with its bridge or clock, turn it over and set the ruby-pin directly in line with the regulator, or the square cut of the cylinder at right angles with it. Your watch will then be in perfect beat. In case of an American or an English lever, when the regulator is placed upon the plate, you will have to proceed differently. Fix the balance into its place, cut off the connection of the train, if the mainspring is not entirely down, by slipping a fine broach into one of the wheels, look between the plates and ascertain how the lever stands. If the end farthest from the balance is equi-distant between the two brass pins, it is all right; if not, change the hair-spring till it becomes so. If dealing with a duplex watch, you must see that the roller notch, when the balance is at rest, is exactly between the locking tooth and the line of centre; that is, a line drawn from the centre of the roller to the centre of the scape-wheel. The balance must start from its rest and move through an are of about ten degrees before bringing the locking tooth into action.

To Frost Watch leates.- Watch plates aro frosted by means of fine brass wire scratch brushes fixed in a lathe, and made to it volve at great speed, the end of the wire brushes striking the plate producing a beautiful frosted appearance.
To Restore Watcir Dlals.-If the difl be painted; clean tho figure off with spirits of wine, or anything else that will render the jilal perfectly clean; then lieat it to a bright red, and plunge it into a strong solution of cyanide of potassium, then wash in soap and water, and dry in box dust. Repent if not a good color. Indin ink, ground with gum water, will do for the figares.

To Whirten Siliver Watcif Dials. - Flatten a pleco of charcoal by rubbing it on a flat stone: on this place the dial face upwards, apply a gentle heat carefully with the blow-pipe, allowing the flame to play all over the surface of the dial without touching it, so as to thoronghly heat without warping the dial. Then picklo and rinse, using acid cnough to make the water very tart, and immersing but for a fow noconds. Silver dials may also be annealed by heating them red hot ou a flat piece of copper over a clear fire.

To make a Watcir Keep Good Thie when the Crlinder Edoes ale Woin Off, by Alteiling the liscapement without Putting anew Cylinder in.-Look at the cylinder, and sce if there is room, either above or ielow the old wears, to shift the action of the wheel. If the wheel holes are brass, making one a littlo deeper, and putting \& shallower one on the other side, will perhaps be sufficient. This must be done according as you want your wheel up or down. If the holes are stone, shift your wheel on the pinion by a new collet, or tuming away more of the old one, as the caso nay require. If you raise your wheel see that it works free of plato and top of cylinder, and that the web of wheel clears the top of passuge. This last fanlt may be altered by polishing the passage a litilo wider, if the rub be slight. If shifted downwards, sce to frecdom at bottom of cylinder, \&s.
l'omana Watcul Batasice.-This may bo done with samcicat ac-
caracy by dolance is rounded ${ }^{7}$ to put a 1 in various the balano to make it To Pre place, you results fror chain. If cause, chan In cases wh rongh, you the proper s inclined to y remedy a dit outer lower will incline it have a bad ca soas to cause barrel. This, to its place. To trkakie the spring dor it upon a piect soft stecl wire, ammed with a grinder, and w Your operation other part of th able you to gri bo more rapid t hand to be caro susprect it.
To Tighten It rill become h than gum shellad To Traprer hard by hammer brass necessary t fore slaping the ing it to a cherr came as though y To Tempra G hand instead of ma meh; then, havine preas it firmly into collent temper will To Tramper Dr
our drills. In ma
dc., RECEIPTS. 327
qalance is set ining one arm of the callip
down wids with motion. This will caure the with a fle when the rounded anu e.- certainty, observing alwe the heaviest part to settle to put a balance oned at the ends. In somoys that the pivots are nicely in various positlons. Thise, in order to mases it becomes necessary the balance should be heavies for this inake the watch go equally to make it lose, the reverse. To Prevent A Chain Runyo place, you must look and ascertiva orf tint results from the chain being toan the cause of time. In the firmt chin. If it is not too large, too large, the only remenculty. If it In cases whge it end for end-that ret runs off withont any appanew In cases where the channel in the will generally make it go all right, the proper size and under the necessity of has been damaged and th inclined to work and shape. Sometin. of dressing it over with a filo remedy a difficulty of thom the body of the find the chain naturally outer lower edge of the will incline it to work on instene entire length; this, little from the have a bad case and a com instead of off. Some this, as yon can see, soas to callse the winding en watch, change the workmen, when they barrel. This, of course cand of its arbor to the standing of the fusee to its place. herwise than make the chain the the spring down it upon a piece of your remove the spring from thected by grinding soft steel wire, flattivot wood cut to fit the centre collet, and place armed with a little pued so as to pass ireely bentre coil. A plece of grinder, and with it youlverized ofl-stone and oil ween the colls, and Your operations will you may soon reduce the oil, will serve as jour other part of the sprine of courso, be eonfined to thength of the spring. able you to grind it, but will rest suffieiently against the coil, forg. be more rapid than, but this will generally ggainst the wood to enhand to be careful, one would suppose, therefore it The effect will suspect it. creful, or you may get the spring too will stand you in To Tighten a ruby pis If rill becomo hard in a fing.-Set the ruby pin in asphaltum vamish. than gum shellac, as generally minutes, and be much firmer and better To Temper Bnass, orally used. hand by hainmering or or rolling: Draw its Tearper.-Brass is rendered brass necessary to be in temp; thereforo, when you make a thing of fore shaping the article. Temp, you must prepare the material be ing it to a cherry red, and thon may be drawn from brass by heatcame as though yoll were going to simply plunging it into water, the To Tempra Gravers, Going to temper steel. than drills, may be tempered in quicicail and other instruments larger thel; then, havinguicksilver. Cut down insabove; or you may use prass it firmly into theated your instrument to a lead, say half an cellent temper will be cut. The lead will inelt a ight cherry red, To Temper Drime imparted. jour drills. In making thelect none but the finest and best nteel for nover heat higher than a cherry red,
and always hammer till ncarly cold. Do all your hammering in ons way, for if, after you have flattencd your piece oaf, you attel ${ }^{\text {nen }}$ lanimer it back to a square or a round, you spoil it. Whe- gutr drill is in proper shape, leat it to a cherry red, asd the oo it into a piece of resin or into quicksilver. Some use a outhon of cyanuret potassa and rain-water for tempering their $\boldsymbol{\lambda}-\mathrm{as}$, but the resin or quicksilver will work best.

Otier Methods tr a emper Springs.-Haring fitted the spring into the case acr--ing to your liking, temper it hard by heating and plunging jne water. Next pollsh tiue small end so that you may bo plang see when the color changes; lay it on a piece of copper or grass plate, and hold it over your lamp, with the blaze directly under the largest part of the spring. Watch the polished part of the steel closely, and when you see it turn blne, remove the plate from the lamp, letting all cool gradually together. When cool erough to handle, polish the end of the spring again, place it on the plate, and hold it over the lamp as before. The third bluing of the polished end will leave the spring in proper temper. Any steel article to which you desire to give n spring temper may be treated in the same way. Another proce to be good, is to temper the spring as in the first instance; - ' it into a sinall iron ladte, cover it with linseed oll, and hold o . amp till the oil takes fire. Remove the ladle, but let tho oil continae to burn until nearly all consumed, then blow out, re-cover with oil, and hold over the lamp as before. The third burning ox of the if will inare the spring in the right temper.
To Trmper Clianj, L.ancieta, ©c.-Clicks, ratchets, or other steel articles requiring \& sindiar d'egree of handnese, should be tempered in mercurial ointment. The process consists in simply heatiun to a cherry red and plunging into the ointment. No other mode will combine toughness and hardness to such an extent.

- To Draw the Temper from Delicate Sinel Pieces titifout Springing them.-Place the articles from which yon desire to draw the temper into a common iron clock key. Fill around it with brass or iron filings, and then plug up the open end with a steel, iron, or brass plug, made to fit closely. Take the handie of the key with your pliers and hold its pipe into the blaze of a lamp till near hot, then let it cool gradually. When sufficiently cold to handle, remoro the plug, and you will find the article with its temper fally drawn, but in all other respects just as it was before.

You will understand tine reason for having the article thus plugged up while passing it throngh the heating and cooling process, when you know that springing always results from the action of changeable currents of atmosplere. The temper may be drawn from cylinders, staffs, pinions, or any other delicate pieces, by this mode with perfect safety.

To Temper Staffs, Cflinders, or Pinions, without Springima them. - Prepare the articles as in the preceding process, using a steed plug. Having heated the key-pipe to a cherry red, plunge it into water; then polish the end of your steel plag, place the key upon a plate of brass or copper, and hold it over your lamp with the blaze immediately under the pipe till the polished part iocomes blue. Let cool gradually, then polish again. Blue and cool a second time, and the work will be done.

To Dr
Mold the tweezers, the articl duce the To BL many hol Fill it abo and then arborhole screws, bet expose the the color y To Rem of equal pal and dry in To Maki size and sha poluts into f on the face disappear in operation.
Hight blows a much sooner two small pie good way, bu on this plan a Jeweleing holo, and turn use a bone or and oil, and w mith a slight o is held. This liability to pre firm and stead. To make d with diamond ance with the c To make P_{1} about an inch 1 Shape your file tempering pass diagonally. Ter linseerl oil. Old by this process. soo slightly eut mpidly than any To Make a il able for use on a 14 or 2 inches in of your diamond faced steel hamm Dearly or quite le

Watcimakers, Jewfillers', \&C., RECEIPTS. 329

 To Draw the Temper fromp part of a Small Steel Artice Ifold the part from which you wish to draw the temper with a pair of twcezers, and with your blow-pipe direct the lame uponth a pair of tho article-till sufficient heat is communicat ilame upon them-not cmmunicated to the article to pro-To Blue Scretys many holes into the head of it-Take an old watch barrel and drill as Fill it about one-fourth full of bres desire to bluo screws at a thene. and then fit a wire, long enough to or iron fillings, put in the hearl, arborholes-head of the barrel upwards. over for a handle, into tho screws, set them point downwards, into brighten the heads of your expose the bottom of tho barrel to your lamp till already drilled, and your lamp till the screws assumo To Remove Bluing fromi Steeri.- Immerse in a pickie composed of equal parts-muriatic acid and elixir vitriol. Linse lu pure water, and dry in tissue paper. size and shapo yimond Broacties.-Make you broaches of brass tho points into fine diamond dust then, having oiled them slightly, roll their on the face of your anvil, and tap entirely covered. Hold them then disappear in the brass. Great with a light hammer till the grains operation. Do not tap heary enough to wlll be necessary in this light blows are all that will bo required, flatten the broach. Very much sooner than one would imaquine ; the grains will be driven in two small pieces of steel to imagine. Some roll the broach between good way, but somewhat more wastefe diamond dust. It is a very on this plan are used for dressing out jewelse dust. Broaches made Jewelling. - In using the brog out jewels. bole, and turn the broach rapidly witl press but lightly into the jewel use a bone or fvory point, lightly coith your fingers. For polishing, and oil, and while using it with tho one with the finest diamond dust mith a slight oscillating motion of the otherd, accompany the motion liabilit This will insure a more even polinand, in which the jewel firm and steady the jewel out of its placo in th the hole, with less To rake Di. To make Diamond F with diamond dust, as in cese.-Shape your file of brass, and chargo To with the coarse or fine claracter of the flade the dust in accordabout anke Pivot Files.-Dress up a piece desired. Shape your file broad, and glue a piece of fine of wood file-fashion, tempering pas then, as you wish it, of the best casty paper upon it. diagonally. pass your emery paper heavily acreast steel, and before linseed oil. Old by this procesid wom pivot files may bo dry red, and plunging into soo slightly cus. At first thought, one would bed over and made new mpidly than any othork well, but not so. They ded to regard them To brake any other file. able for use on Diamond Mill.-Make a brage or 1 or 2 inse on a foot-lathe, with a flat e brass chuck or wheel, suitof your diames in diameter; then place a numburface or face of about faced stecl bond dust on different parts of its of the coarsest pieces searly or quite level with the pieces of dust ail evenly ind with smooth dearly or quite level with the surface. Yust ail evenly into the brass to Your mill, thus prepared, ia

830 WATCHMAKERS, JEWELLERS', \&C., RRCEIPTS.

how used for making pallet jewels or for grinding stone and glass of any kind. For polishing, nse a bone or boxwood chuck or wheel, of simllar form to your mill, and coat it llghtly with the fllest grade of your diamond-dust and oil; with this a beautiful polish may bo given to the hardest stone.
To Make Diamond Dost.-Place a fow small pieces of common or cheap diamond on a block of hard polished steel, in a suitable ycssel, and cover it with water to present it flying or scattering, then place a flat steel punch on each picce separateiy, and strike the junch with a mallet or hammer, with sufficient force to crush the clianond. When reduced sufficiently fine in this way, the dust may be collected and dried for use ; after drying, it may be graduated for different purposes, by mixing it with a little watch oil ; when agitated, the finpast particles will float near the surfaco, while the coarsest pieces will sink at once to the bottom ; and thus by decanting the oil in which the dust floats, as many grades of fineness as desired may be obtained. The dust may be separated from the oil by pouring on a piece of smooth clean paper ; the paper will absorb the oll, or allow it to filter through, while the dust wiil remain on the surface; but to prevent waste, tho better way is to leave it in the oil and use directly therefrom as required, or the oil may be washed out of the dust with alcohol.
To frmserve Pinions on Bearinos from Cornosion and Rust. -In case of the lower centre bearing under the camon pinion corroding or rusting, when you clean the wateh, be particular to take the central wheel off. Clonn.it thoroughly; if the pivot is scratched, polish it, then make a little hollow in the top hole ; put good fresh oil on it, and the pivot will not corrode or rust for two or three years. As to the other pivots in tho watch. they should all be thoroughly cleaned, and old oil cicaned out; tria if no dust gets in, and no accident happens the watch, it will run for years.

To Clean a Clock.--Take the movement of the clock " to pieces." Brush the wheels and pinions thoroughly with Ω stiff coarse brush; also the plates which the trains work. Clean the pivots well by turning in a piece of cotton cloth held tightly between your thuinb and finger. The pivot holes in the plates are generally cleansed by turning a piece of wood into thom, but I have always found a strip of cloth or a soft cord drawn tightly through them to act the best. If you use two cords, the first one slightly oiled, and the next dry, to clean the oll out, all the better. Do not use salt or acid to clean your clockit can do no good, but may do a great deal of harm. Boiling tho movement in water, as is the practice of some, is also foolishness.

To Busir. -The hole through which the great arbors, or winding axles, work, aro the only ones that usually require bushing. Whed they have become too much worn, the great wheel on tho axle before named strikes too deeply into the pinions above it and stops the clock. To remedy this, bushing is necessary, of conrse. The most common way of doing it is to drive a steei point or punch into the plate just above the axle hole, thus forcing the brass downwards until the hole is reduced to its original sizo. Another mode is to solder a plece of brass upon the plate in such a position as to luold the axle down to its proper place. If you simply wigh your clock to run, and have no an. bition to produco a bush that will look workmanlike, about as good a

tray the

 comes to hold end of t recure thread. To Rz Worn plathem in secure th To Orl
rerge, th
the loop.
but the b
the clock. cents wonl furnishing To Man in putting should fap pirots of t tho train, t right, repea trorking pr anting on a like organ A DEFECTI at the point generally fin
Dress it out vell. Small clocks.
Figures o copper over a clear this off small quantity
Bnall-cammel shall-camel h
To DETMR Glasges. - Pla length against of rome woll-
building or wi building or wiy
the edge of yo the edge of yo
forwards until and distinct out against which ciently near, for
lens, and will lens, and will c
marked convox mariked convor
use the best gold Valuable ${ }^{2}$

WATCHMLAKERS,

 colues through the top of the phard wood between the post which to hold the axle to its proper place, and axic. Make it long enough secure by wrapping Cut notches where the pivo axle will run on the thread.plato a piece of small wiro or wom places uponin Pinion.-Turn the Tenven them in that position will be towards the arbes or follers, $s 0$ the sccure them otherwise, fi they are "rolling pirions", shaft, and fasten To Orl Properise, you had better do it with s and you cannot rerge, the steel pin upon Oil only, and very lightly a little soft bolder. tho loop of the rein upon which the verge worluy, tho pallets of tho but the lest werge wire works over the pendul, and the point where the clock-repairing oil. Though yon might be mor wiro. Use nono cents trould last yon business, a bottle costing working constantly at fumlshing establis two years at least. You can buy but twenty-fire To Mare mirn Chent. In putting up your clock sourikn Cornactill.-If not very cantions ill wrong, and thus produce will get some of the striking-train wheels should happen, pry the plates apagement in the striking. If thls pivots of the upper wheels out apart on the striking side, slip thes the train, tum them part around and haring disconnected them from right, repeat the experiment. A foud pnt them back. If still not wrorking properly. The sound few efforts at most will get them to acting on a small bellows which is cuckoo clocks is cansed by a wire liko organ pipes. Wich is conuected with two small plpes A DEFECY To LOOK AFTER.-Always examino the pendulum wiro gencrally find a small notch of the vergo wire works over it. You rill Dress it out perfectly smooth, or at least a rough placo worn thero. well. Small as this defect may our clock will not be likely to work clocks.
, it stops a large number of copper over a gas flame for a ferver Dinis.-Hold a small pioco of clear this off on to a piece of finely small quantity of oil of spilco lavend ground glass, add fat oil and a small-camel hair pencil. To Determine the Glasges.-Place the end Exact Focal Distance of Spectacle length against a smooth wall, or measure of thirty or forty inches in of some well-defined object a or other suitable ground, in plain view building or window on the onpew rods distant, as for instance a the edge of your lens on the mesite side of the street. Then place forwards until a spectrum is formeasure, and move it backwards or and distinct outlino of the distrmed, or, in other words, until a clear against which your measuro ciently near, for all practical rests. This point will on the ground lens, and will corr practical purposes, the point will represent suffmarked conver spespond in inches with the nuct focal distance of the use the best gold solder in. For monding fine steel spectacle properly Valuable Recripts in preference to silver or brass solder frames,
the oz. alloy; therefore, when you judge how much gold a plece ot work will take, componod it to the standard weight by the following directions: Assay Weight.-The weight of gold is a pound, which is divided into 12 ozs . each oz. into 24 carats, each carat into 4 grains, and, lastly, each grain into 4 quarters; theu you see the assay quartergrain, is in reality 14 grain Troy.
On Meliting And Refining.-In melting Brass Gold, urge tho fire to a great heat, and stir the metal with the long sten of a tobacco pipe to prevent honey-combing. If Steel or Iron filings get into gold while melting, throw in a piece of sandiver the size of a common nut; it will attract the irun or steel from the gold into the flux, or; sublimate of mercury will destroy the fron or steel. To cause Gold to roll well, melt with a good heat, add a teaspoonful of anl ammoniac and charcoal, equal quantitica, both pulverized, stir up well, put on the cover for 2 minutes, and pour.

To Refinf Sifeepings Containing Gold or Silver.-To 8 ozs. of the dirt, which has been washed and burnt, add salt, 4 ozs .; pearlash 4 ozs. ; red tartar 1 oz . ; saltpetre $\frac{1}{2} \mathrm{oz}$., mix thoroughly in a mortar, melt in a crucible, and dissolve out the precious metals in a button.

QUANTITY OF GTANDARD GOLD TO OOMPOUND AN OZ. OF ANY OF time followng alloys calcolated to tile \ddagger of a grais, AS FOLLOWS:

Carat, 1	Dwts.	Cits.	Qrs.	,	Dwis. 19		Qrg:
2	- 1	19	\%	\because	18	4	4
3	2	17	6		17	6	6
4	3	15	3	0	16	8	8
5	4	13	1	园	15	10	10
6	6	10	10	-	11	13	1
7	6	8	8	同	13	13	3
8	7	6	6	2	12	17	5
0	8	4	4		11	19	7
10	9	2	2	(10	21	- 0
11	10	0	0	\square	10	0	0
12	10	21	9	0	0	2	2
13	11	19	7	H	8	4	4
14	12	17	6	-1	7	6	6
15	13	18	3	\bigcirc	6	- 8	8
16	14	13	1	\mapsto	5	10	10
17	15	10	10	-	4	13	1
18	16	8	8	4	3	16	3
19	17	6	6	,	2	17	5
20	18	4	4	1	1	19	7
21	19	2	2		0	21	9
22	22	0	0				

To Fuse Gond Dust.-Use such a crucible as is generally used for melting brass; heat very hot; then add your gold dust mixed with powdered borax;-after some time a scum or slag will arise on the top, which may be thickened by the addition of a little lime or bone ash. If the dust contains any of the more oxidizeable metals, add a little nitre, skim off the alag or scum verf carefully: when melted, grasp the crucible with strong iron tongs i
and p The s nurier menns Golr carats o receire describe eilver, color, ib nlloy acc that thes dlrect fro is intent 15 dwt, , carats; $\boldsymbol{\gamma}$ 6 grs. 3. copper, 12 lituo infer nearly. tint 16 cara Sterrin grs., fine Alloys. 17 copper, 4 d silver, 4 dw Carat. Fine dwts. 19 grs. 2
Fine gold
Fing
1 ETs.-7. Ano copper, 2 dwt silver, 12 grs. joing Alloys. silver, 6 grs.fino silver, 4 d Dry, Colored 5 dwts. 12 grs., 1 4 liwts.
and pour ofir immediately into cast ir
The slag and crucibles may wo afterw moulds, sliphtly graased. meangons matter recovered from the maids pulverizerl, and tho Gold Arcors - The "N carats of fine gold and "New Standard" for wntch cases, se., is 18 receive the " Mall mark; " and cold No gold of inferior quality can filver, which will commercinl valuo." of lower quality is generally color, but the conpive a green color, or entirely may be entirely alloy according copper and silver are more uely copper for a red that these are nll the taste of the jeweller. usually mixed in ono direct from the refiner with fine gold, fino silver ane nuderstood is intentionally omitted Gold of 22 carats fino ser, anc fine copper, 15 dwt., silver, 2 ditt 18 . Gold of 18 cavats, of yeing so littlo used, carats, red tint. Gold, 18 grs., copper 2 dwt, 6 grs 020 tint. Gold 6 grs . 3. Spring gold 15 dwt., silver, 1 dwt . 18 grs. 2. Gold of 18 copper, 12 dwt the of 16 carats. Gold $10 z 16$ da., copper, 3 dwt. litilo inferior to this when drawn or rolled ver 16 dwt., silver, 6 dwt., nearly. Gold, 1 oee ; 4 Jevellers' F'ine Gold, hard makes springs tint 16 carats. Goz. silvnr, 7 dwt., copper, 5 divt. yellow tint, 16 carats
Sterling Gond 1 oz. silver, 2 dwt., copper, 8 dwt Gold of red grs., fine silver Alloy, 78s. Per oz His divt. Alloys. 17 Carat. Fint., fino copper, 12 grs . 2 me copper, 4 dwts. 17 gre gold, 15 dwts., fine silror 1 dry colored Giold silver, 4 dwts. 10 grs.-3. Another, 18 Carat 1 dwt. 10 grs., fino Carat. Fine gold, grs., fine copper, 2 dwts. 5 Fre gold, 1 oz., fine dwts. $19 \mathrm{grs} .-5$, Anotwer., fine silver, 2 dwts. $4 \mathrm{grs}-4$. Another, 18 2 dwts. 18 grs. Another, 18 Carat. Fine gold, 4 grs., fine copper, 2 Fino gold, 1 oz, fino copper, 3 dwts. 18 grs -18 dwts., fine silver, grs. - 7. Anothe, fine silver, 2 dwts. 6 grs . fin Another, 19 Carat. copper, 2 diwts 4 , 20 Carat. Fine gold, 1 oz, fine copper, 3 dwts. 12 silver, 12 grs., fine cop. Another, 22 Carat, Fine silver, 2 dwts., fine going Alloys. Take copper, 1 dwt. 3 grs .-9. Gine gold, 18 dwts., fine silver, 6 grs.-10. Af the alloyed gold you are alder for the forefine silver, 4 dwts. Alloy for Dry Colored. Rine using, 1 dwt , fine dilto. Scrap gold, 2 grs., fine copper, 4 dwts ${ }^{2}$ gis. Fine gold, 1 oz., Dry Colored Scran re, fine silver, 3 dwts., fine grs.-11. Solder for dwts. 12 grs., fine sil reducell to 358 . Gold., hine copper, 3 dwts. 12 . 4 dwts. copper, 17 dwts. 12 grs., spelter, for every 2 ozs., take thitpetre 8 gonva.-Polish your work well and all together in a black lead pot, stirring 4 ozs., salt, 4 ozs., melt dissolving. Use the fire on a forge and urge it a thin iron bar when as yon can not make it too hot. Yand urge it well with the beliows, cicaned with soda, soap, and hot. Your polished work being well anterwards covered, with a thin lay water, is dried in box sawdist, is out, and again dried in box sawderst borax ; annealed and boiled flamer wire. When the "color" in the po finally hung on platinum with hot work is dipped in for two or thet assumes a brown yellow that may adhere to with muriatic acid, which rends, and quenched color, but if it to the work. This ought to produses any "color" color, but if it docs not, repeat the ought to produce the desired

334 Watcumakers, jewhllerg', dC., meceirts.

work ocfore ro-immersion in the "color." The color-pot must be omptied inmediatoly upou the forgo, so that it maty bo roidy for future uso.

Wet Colormd Ardors.-1. Fino gold, 1 oz., fino ailver, 3 dwts. 12 grs., fline copprer, 0 dwts. 2. Fino goid, 1 oz., fine silver, $4 \mathrm{dwts} .12 \mathrm{grs}$. , fino copper, 10 dwts. 3. Fine gold, 1 oz., fine silver, 4 dwts. $12 \mathrm{grs}$. , fine copper, 10 dwts. 12 grs . 4. Yine Gold, 1 oz., fino sllver, 4 divts., fine copper, 9 dwts. 12 grs. 5 Grcen Guld for Fincy Work. Fino gold, 1 oz., fine silver, 6 dwts. 16 grs .0 . Another Green Goll Fino gold, 10 dwts., fine silver, $2 \mathrm{dwts}$.2 grs. 7. Red Gold, for fancy work. Fino gold, 5 dwts., fine copper, 2 dwts. 12 grs 8. Another Red Gold. Fino gold, 5 dwts., fino copper, 1 dwt. 6 grs. 9. Gold solders for the forefointy Alloys. Take of the alloyed gold you are using, 1 dwt., fino silver, 6 grs., or, 5 grs. silver and 1 gr. copper may be used. 10. Solder for liepairin!, Gold alloyed, 1 dwt., fino silver, 5 grs., pin brass, 1 gr. 11. Wet Colored Solder. Wet colored scrap, 3 ozs., fine silver, 10 divts., fino copper, 5 dwts. 12. Gold, 15 carat, cost 50s. or $\$ 14$ per oz. Fino gold, 1 oz .18 dwts., fi:e silver, 12 dwts. 12 grs., fine copper, 10 dwts. 13. Fino gold, 1 oz., five silyer, 8 divts. fine copper, 4 dwts. 14. Fino gold, 1 oz., fino silver, 8 dwts., fino copper, 4 dwts. 15. Fine gold, 1 oz., fine silver, 6 dwts., fino copper, 8 divts. 16. Gold solder for the last. Gold scrap, 1 oz., fino silver, 5 dwts. 17. Gold good color. Fine gold, 1 oz., fine silver, 6 dwts., fine copper, 4 dwts. 18. Golll cost C0s. or $\$ 15$, good color. Fine gold, 1 dwt. fine silver, 6 dwts., fine copper, 4 dwts. 19. Wet colored solder. Scrap gold, 4 ozs., fino silver, 13 dwts., fine copper, 6 dwts. 16 grs .20 . To reduce 22 carat into Wet colvred Gold. Gold coins 4 ozs. 8 divts., fine silver, $13 \mathrm{dwts}$. , fine copper, 1 oz .13 dwts . 21. To rechuce 22 carat to ordinary roet colored Gold scith scrap. Coins 1 oz., fine gold, 3 ozs., fine silver, 17 dwts. 12 grs., fine copper, 2 ozs .1 dirt. 12 gralns., scrap, 3 ozs, 1 dwt. 22. Another way with scrap. Coins, 3 ozs. 1 dwt. 6 grs., fine gold, 2 ozs., fino silver, 1 oz. 1 dwt., fine copper, 2 ozs .11 dwts., scrap, 1 oz .6 dwts. 18 grs . 23. Another way with scrap. Coins, 2 ozs., fine gold, 3 ozs. 3 divts. 8 grs., fino vilver, 1 oz. 1 dwt. 4 grs., fino copper, 2 ozs. 10 dwts. 12 grs., scrap, 1 oz. τ dirts. 24. To raluce 22 carat to ordinary wet colored Gold without scrap. Coins, 1 oz ., fine gold, 8 ozs., fine silver, 2 ozs , fino copper, 4 ozs. 14 dwts. 25. Another woay wiithout scrap. Coins, 1 oz., fino gold, 2 ozs., fine silver, 13 dwts., fine copper, 1 oz .11 dwts .20. Another way without scrap. Coins, 2 ozs., fino gold, 6 ozs., fine silver, 1 oz .14 dwts., fino copper, 4 ozs .2 dirts.

To Wet-Colon the foregoina Allois.- For 5 ozs. of work talo saltpetre, 10 ozs., alum, 8 ozs., anlt, 8 ozs., all pulverized and muriatic recid 2 ozs., dissolve tho ingredients gradually in a black lead pot, When it boils up, add the acid, and stir the whole with a wooden spoon. Having annealed your work and made it perfectly clean, tio in small parcels with platinum or five silver wire, and when the color boils up immerse it therein for four minutes, moving it about to e:sure a perfect contact with all parts of the surface. Then take it out and rinse it well in boiling water, then immerse in the color again for for $1 \frac{1}{2}$ minutes and rinse well once more in fresh hot water. Now add 2 ozs . of fresh hot water to the color in the pot, which will causo it to sink. When it rises put in your work for 1 minutc, rinsing is
trant in sour wo claan ho

At.I.Os Lappiry. grs. 2. ler 3 dw dwts., fin your work lor haif a minu it will begin to brighten. Now immerse clean hot watcr, when it will longer, and rinse for the last time in Alioys, continued. 1. appear of a most benutifui color. grs. 2 , Fino gold, 1 os., fine silver, 9 for coloring finamelling, or per 3 dwts, 12 grs - Fine pold 1 oz ., fine silver copper, 2 dwts. 12 dwts., fine copper 3 di, Another ditto-line silver 0 dwts., fine cop-- oz., fine silver 1 ds. 13 grs . 4. Enamelling og, fine silver to Iling Gold from Stevting gis., flue copper 2 diold No. 1-Fino cinjer 2 dwts. 6. Enlepling-Stering 1 ozper 2 dwts. 12 grs. 5. fino silver 4 gra 7 Anoelling Gold Solder-Goud rer 8 gra., fino Fino gold 12 divts. Another ditto, cost 43 f. stg Gold alloyed, 1 divt., linamelling Gold No, silver 7 dwts. 3 grs, fing or $\$ 10.75$ per oz. ver 9 dwts. 13 pre ${ }^{2}$. 2. cost 503 st!, per oz.-Fine copper 6 dwts. 8. No. 3.-Fins gold 1 oze copper 7 divts. 12 gra g gold 1 oz , fine silSinamelling fold No, 4, , Fine sllver 14 dwta., fine copper 8 dwing Golid dwts., fine copper 1 oz . - Fine gold 2 ozs. $\overline{0}$ dive copper 8 dwts. 10. -line gold 1 oz ., fino pin brass δ dwts. 11. Nis. fine silrer 1 oz .6
 filver 14 dwts, for transparent enamellinper 6 dwts. 12. En-tcork-Fine gold 1 copper 6 dwts. 13. Gollh Folder gold 1 oz., fine bolder 8 divts. 8 coz ., fine silver 1 oz ., fine colder for cnamelled -Fine gold 1 oz., ins 14. Pale Gold alloys for polis 10 dirts., silver Another, No. 2.-Fine sllver 8 dwts., fine copper 3 duty in de., No 1. per 1 dwt. 4 grs. 16 gold 1 oz . fine silver 1 divt duts. 12 grs .15. 4 lirts., fine copper 2 divts 18 Carat Gold-Fine reld 20 grs ., fine cop-$-\mathrm{Fin}_{1}$ - gold $1 \mathrm{oz}, 12$ diwts. 15 grs . 17. Another gold $10 z$. , fine silrer 8 gr 18. Pale Gold 5 , fine silver 3 divts. 8 grs Pale 18 Curat Gold 1 d \quad. Allov forl solder-Gold nlloyed grs., fine copper 3 divts. fin . . er 7 divts. 18 best Pens-Fino gold 10 oz, fing grs., fine silver -Fino gold 12 dwts., fine silver 1 divt. $;$ grs., fino silver 5 divts., 21. Medlum quality pens-- silver 7 dwts. 3 grs., fine Solder for ditto 22. Composition for the last 1 gold $10 z$., componite copper 6 dwts. 02s. 15 dwts., spelter 18 dwt ine silver 1 oz .17 dwo 1 oz., 13 dwts. $10 z$., fine silver 20 or 18 dwts. 20 grs . 23. Solder dwts., fine copper 5 Fino gold 1 oz., fine sil., pin brass 1 oz. 24. Gold for ditto-Fino goid Fino rold 1 ox, fine ilver 2 ozs., fino copper 1 oz, for common pens-. with Brass, No. 1. - Filvor 2 ozs., pinbrass 1 oz. 25. Soleler for ditto per 3 dwts. 12 grs., pine gold 1 oz ., fino silver 5 dwts. Alloys of Giola Fine gold 1 oz ., fine, pin brass 18 dwts. 27. Another (fits., fine copdwts. 28. Another diltor 4 dwts., fino copper 4 dive dilto. No. 2.13 grs, fine copher ditto. No. 3, -Fine copper 4 dwts., pin brars 16 Another alloy.- fer 3 divts. 12 grs., pin brass ig fine silver 5 dwts. 9 dwts. 3 grs., come gold 1 oz ., fine silver 3 dwts. 11 dwts. 6 grs. 24). gold 15 dwts. 9 composition 5 divts. 6 grs. 30 wts. 21 gis., fine copper ers., composition 15 dive silver 5 dwts. 19 grs ., fine copper 3 dill-Fino finest copper 1 oz, speltar 31 . Composition., ine copper 3 dwts. 21 Gold alloyed, 1 dwt., fpelter 5 dwts. 82. Solder for fare two alloysper oz.-Fine silver 2 oz. Bill $^{2} 12 \mathrm{grs}$. 33. Imitation foing alloysleeps its color very weil 8 dwts., fine copper 1 oz co Goll, costs 87 c . ozs., spelter 2 ozs . 35 . "i 34. Composition for ditto composition 7 ozs. 17 . Colifornia" Gole-Fino composition 7 ozs. 17 dwts o30. Composillon Fine "gold 5 ozs .12 dwts. 30. Composilion for "Califo:nia",-lis.

336 WATCHMAKERS, JEWELLERS', \&C., RECEIPTS.

silver, 7 ozs. 17 dwts, fine copper 33 ozs. 12 dwts., spelter $50 z s .12$ dwhs. 37. Medium Gold-Fine gold 1 oz ., fine silver 12 dwts., fine copper 13 dwts. 38. Bright Gold-Fine gold 1 oz., fine silver 7 dwts., composition marked No. 34, 1 dwt. 6 grs. 39. Common Gold No. 1.-Hine gold 10 oz, fine silver 8 dwts, composition No. 34.1 oz. 12 dwts. 41. Common Gold, No. 2.-Fine gold $\overline{5}$ dwts., fine silver 3 d wts. 6 grs , fiur copper 6 dwts. 12 grs. 42. Gold for Pins-Fine gold 1 oz., fine silveı δ dwts., fine copper 1 oz., spelter 5 dwts. 43. Dry Colored Scrap reduecid to 35s. or $\$ 8.75$ Gold-Colored scrap 1 oz. 9 dwts. 12 grs., t. e silver 2 dwts., fine copper 17 dwts. 12 grs. spelter 4 dwts. 44. Alloy for Gold Chains.-Fine gold 11 dwts. 6 grs., finesilver 2 dwts. 5 grs., fine copper 6 dwts. 13 grs. 45. Another ditto-Fine gold 1 oz., fine silver 9 dwts., fine copper 8 dwts. 46. Gold worth 45 stg. or \$11.25.-Fine gold, 1 oz. composition (see No. 22) 1 oz. 47. Solder for ditto. - Fine gold 1 oz, finesilver 15 dwts, fine copper 15 dwts. 48. 12 Carat Gold,--Fine gold 1 oz., fine silver 10 dwts., line coppor 9 dwts. 6 grs. 49. Common Gold from "California"-"California," (see No. 35) 8 ozs. fine silver 13 ozs. 16 dwts., finc copper 6 ozs. 16 dwts. 50. 29s or $\$ 7.25$ Gold.-Fine gold 1 oz .13 dwts. 6 grs., fine siiver 1 oz .12 dwts 12 grs., fine copper 1 oz .16 dwts. 6 grs, spelter 4 dwts. Stauds nitric acid very well.
ordinary bigiti gold wire, tadle ghowivg tife proporticys of Allox from 1 oz . UP to 21 oz .

Fine Gold.			Fine Silver.			Fine Copper.				Tota	
Oz.	Dwts.	Grs.	Oz .	Dwts	Grs.	Oz.	Dwts	Grs.			Grs
0	5	21	0	0	6	0	6	$2 I$	1	0	0
0	11	18	0	14	12	0	13	18	2	0	0
0	17	15	1	1	18	1	0	15	3	0	0
1	15	6	2	3	12	2	1	6	0	0	0
2	12	21	3		0	2	1	21	9	0	0
3	10	12	4	7	0	4	2	12	12	0	0
4	8	3	5	8	18	5	3	3	15	0	0
5	4	18	6	10	12	6	3	18	18	0	0
6	3	8	7	12	6		4	9	21	0	0

To Recover the Gond lost in Coloring.-Dissolvo a handful of sulphate of iron in boiling water, then add this to your "color" water, it precipitntes the small particles of gold. Now draw off tine water, being very careful not to disturb the auriferous sediment at the bottom. You will now proceed to wash the sediment from all trace of acid with plentv of boiling water; it will require 3 or 4 separate washings, witti sufficient time between each to allow the water to cool and the sediment to settle, before pouring the water off. Then dry in an iron vessel by the fire and finally fuse in a covered skittle pot with a flux as directed on page 202.

Alloys For Gold.-1. Red gold.-Copper, 60.67 parts ; pold, 33.33 parts. 2. Yellow gold.-Copper, 12.50 parts ; silver, 37.50 parts; gold, 50 parts. 3. Grcen gold.-Silver, 25 parts ; gold, 75 parts. 4. Cellow gold.-Sulver, GG.07 parts ; goid, 33.33 parts. 5. Gray goid.-

Silver, -Silver English gold coin as Ame standard
-CoppeI copper w
oz. of bra conper, 2
-Gold, 1
Jeivel
$1 \frac{1}{2} \mathrm{oz}$.
JEWELI
Spanish copper, 6 copper, 3 copper and fuse the fo Parker's 1 Jewelry. of comper. zinc, 1 part fine, or ${ }^{\text {? }}$ trated and not ouly to ductility. crucible, co Silver.-Co saltpetre, 2 in a crucib German che never discon Artifich extensively parts; zinc, ammoniac, 3 aro mixed as sal-ammonia dcgrees, in t about of an h in small grail entirely fuse for about 35 rendy for cas did polish. cxecllent sub restored by a rinc, the allor and must ult NEW Fres
\& Fontenay h

Silver, 5.89 parts ; gold, 88.23 parts ; inon, 5.89 parts. 6: Dentists' gold. -Silver, 8.34 parts ; platinum, 66.67 parts ; gold, 24.29 parts. 7. Enylish gold coin.-Copper, 8.34 parts ; gold, 91.66 parts. 8. Americar gold coin.-Copper, 10 parts ; gold, 90 parts. French gold coin same as American. 10. Alloys for Silver Coin and Plate.-English standard.-Copper, 7.50 parts; 'silver, 92.50 parts. 11. American ditto. -Copper, 10 parts ; siiver 30 parts. French, the sime.

Gildina Metar for commoit jewelry is made by mixing 4 parts copper with one of calamine brass. Sometimes 1 lb . copper, with 6 oz. of brass. Dentists' Plate.-No. 1 Gold, 20 dwts. ; sifver, 1 dwt.; copper, 2 dwts. 2. Gold, 21, silver, 2, copper. Gold for Springs. - Gold, 18 dwts. 12 grs.; silver; 6 dwts.; copper, 5 dwts.

Jewellers'Soldering Flúd.-Muriatic acid, $\frac{1}{2}$ pt.; grain zinc, 13 oz. Dissolve, and add a little common solder and sal-ammoniac. Jetverlers' Gold Compositions.-Common Gold.-Silver, 1 part; Spanish copper, 16 parts, gold, 2 parts; mix. Ring Gold.-Spanish copper, 6 parts; silver, 3 parts; gold, 5 parts; mix. Manlicim Goldcopper, 3 parts; zinc, 1 part. Melt, and stir well. Mosaic Gold.-copper and zinc, equal parts; melt at the lowest temperature that will fuse the former, then mix by stirring, and add 5 per cent. more zinc. Parker's Mosaic Gold.-Copper, 100 parts; zinc, 54 parts. For commun Jecoelry.-Copper, 3 parts; 1 of old brass, and 4 oz . of tin to every lb. of copper. Factitious Gold.-Copper, 16 parts; platinum, 7 parts; zinc, 1 part; fused together. This alloy resembles gold of 16 carats fine, or ${ }^{3}$, and will resist the action of ntric acid, unless very concentrated and boiling. Harmstadt's True Imitation of Gold.-is stated not only to reseinble gold in color, but also in specific gravity and ductility. Piatinum, 16 parts; copper, 7 parts; zinc, 1 part; put it in a crucible, corer with charcoal powdor, and melt into a mass. Do. of Silver.-Copper, $\frac{1}{4}$ oz.; brass, 2 oz.; pure silver, 3 oz.; bismuth, 2 oz.; saltpetre, 2 oz .; common salt, 1 oz.; arsenic, 1 oz.; potash, $1 \mathrm{oz} . ;$ melt in a crucible with powdered charcoal. This compound, used by a German chemist for unlawful purposes, was so perfect that ho was never discovered.

Artificual GoLd.-This is a new metallic alloy which is now very extensively used iu France as a substitute for gold. Pure copper, 100 parts; zinc, or, preferably tin, 17 parts; magnesia, 6 parts; salammoniac, $3-6$ parts; quick-lime, $\frac{1}{8}$ part; tartar of commerce, 9 parts; are mixed as follows: The copper is first melted, and the magnesia, sal-ammoniac, lime and tartar are then added separately, and by degrees, in tho form of powder; the whole is now briskly stirred for about $\frac{1}{2}$ an hour, so as to mix thoroughly; and when the zinc is added in small grains by throwing it on the surface, and stirring till it is entirely fused; the crucibie is then covered, and the fusion maintained for about 35 minntes. The surface is then skimmed, and the alloy is ready for casting. It has a fine grain, is malleable, and takes a splendid polish. It dose not corrode readily, and for many purposes, is an excellent substitute for gold. When tamished, its brilliancy can bo restored by a littlo acidulated water. If tin be employed instead of cine, the alloy will be more brilliant. ${ }^{\text {© }}$ It is very much used in Frawce, and must ultimately attain equal popnlarity here.
New Frever Patent Adioy for Silver-Messieurs Do Rnolz \& Fontenay have incented tho following alloy, which may be used

B38 Watcimakens, Jeweleers', \&C., neceipts

for almost all purposes in which silver is usaally appliod. Silver, 20 parts; purified ulckel, 28 parts; copper, 52 parts, Nelt the copper and ulckel in the granular state, then introduce the silver. The flux to be employed is charcoal and borax, both in the state of powder; and tho ingots obtained are to be rendered malleable by anneuling for a cousiderable time in powdered charcoal.

GoLD.-To find the number of carnts of gold in an object, first weigh the gold and mix with seven times its weight in silver. This alloy is beaten into thin leaves, and nitric acid is added ; this dissolves the Bilver and copper. The remainder (gold) is then fused and weighed; by comparing the first and last weights the nunber of carats of puro gold is found. This operation is always repeated several times, and if any difference occurs in the result, all is done over again.
Jewellerg' Alloys.-Soldrr, \&c. Eighteen-carat gold for ringsGold coin, 1912 gr . ; pure copper, 3 grs. ; pure silver, $1 \frac{1}{2}$ gr. Cheap yold, thoelve carat.-Gold coin, 25 gr ; pure copper, 13 h gr . ; pure silver, 7 grs. Very cheap four-carat yold.-Copper, 18 parts; gold, 4 parts; stlver, 2 parts. Imltations of gold. - 1 Platina, 4 dwt. ; pure copper, 21 dwt. ; sleet-zinc, 1 dwt. ; block-tin, 19 dwt. ; pure leud, 1 d dwt. If this should be found too hard or brittle for practical use, re-molting the composition with a little sal-ammoniac will gencrally reuder it malleablo as desired. 2. Platina, 2 par is ; silver, 1 part ; copper, 3 parts. These compositions, when properly prepared, so nearly resemble pure gold it is very diffcult to distinguish them therefrom. A littie powdored charcoal, mixed with nietals while melting, will bo found of service. Best oreide of gold.-Pure copper, 4 oz ; sheet
 oz. ; cream tartar, $\frac{7}{8}$ oz. First melt the copper at as low a temperaturo as it will melt ; then add the zinc, and afterwards the other articles in powder, in the order named. "Use a charcoal fire to melt theso metals. Bushing Alloy for Pivot-holes, de.-Gold coin, 3 dwts.; silver, 1 dwt. 20 grs.; copper, 3 dwts. 20 grs.; pailadium, 1 dwt. Tho lest composition known for the purpose named. Gold Solder for Fourteen to Sixteen-carat Work.-Gold coin, 1 dirt. ; pure silicer, 9 grs. ; pnre copper, 6 grs ; brass, 3 grs . Darker solder.-Cold coin, 1 diwt.; pure copper, 8 grs. ; pure silver, 8 grs. ; brass, 2 grs. ; miclt together in charcoal fire. Solder for Gold. -Gold, 6 dwts. ; silver, 1 dwt.; copper, 2 dwts. Soft Gold Solder.-Gold, 4 parts ; silver, 1 part ; copper 1 part. Solders for Silver. - (For the use of jervellers.) Fine silver, 19 dwts. $;$ copper, 1 dwt. ; sheet brass, 10 divts. White Solder for Silver.-Silver, 1 oz.; tin, 1 oz. Silver Solder, for Plated Mretal.-Fine illver. 1 oz . ; brass 10 dwts. Solders.-F'or Gold.1. Silver, 7 parts; copper, 1 part, with borax. 2. Gold, 2 parts; silscr, 1 part ; copper, 1 nart. 8 . Gold, 3 parts ; sllver, 3 parts ; copper, 1 part; aluc $\frac{1}{2}$ part. Thor Stlver.-Silver, 2 parts; brass, 1 part, with bomax $;$ or, silver, 4 parts ; brass, 3 parts; zinc, $1-18$ part, with borar. Gold Solders.-1. Copper, 24.24 parts ; silver, 27.57 parts ; gold, 48. 10 parts. 2. Enamel Solder.-Copper, 25 parts; silver 7.07 parta; gold, 67.93 parts. 3. Copper, 26.05 parts; einc, 6,25 parts; eilver, 31.25 parts; gold, 36 parte. 4. Enamel Solder.-Silver, 19.57 parts ; gold, 80.43 parts. Solder: - For 22 carat yold -Gold of 22 carnts, 1 dwt; silver, 2 gr . copper, 1 gr . F'or 18 carat gold.-Goll of 18 carnts, 1 dwt.; silver. 2 gr. ; copper, 1 gr. Pror cheaper golel.-Gold, 1 dwt; silver, 10
gr. ; cop copper, Bilye
silver, 5
66.67 pa parts. parts. 6 7. Tin, 6 CoLOR
2 Red
Green G
dwts. 15
filings, 5
9 gr .; silv
to the pro
per, 16 pa
ENGLibl
copper, 22
melt. Th
Fhench
Gold, 84
Jewellers' Alloy
parts; copp CoLomis
-Saltuetre each 1 oz . loo added, niac, 1 oz. 4 3. To Clea) çanide of silum. Add oz. Used b Boil the artí somo bicarb Defective co following ml of ainc, it ${ }^{2}$ into a small upon the art plate over a when they a beauti/ul hig the mixture. fine powder, 1 aio fumes ; Dissolve eithe
use as requir saltpetre, $\mathbf{C} \mathbf{~ o z}$ into a thick pi black on a pie plunge them II
gr.; copper, 8 gr . Cheaper still.-Fine gold, 1 dwt. ; silver, 1 dwt; copper, 1 dwt.
Silyer Soliders.-1. (hand.) Copper, 30 parts ; sinc, 12.85 parts ; silver, 57.15 parts. 2. Copper, 23.33 parts ; zinc, 10.00 parts ; silver, 66.67 parts. 4. Copper, 26.66 parts; vinc, 10.00 parts; silver, 63.34 parts. 5. (soft.) Copper 14.75 parts; zinc 8.50 parts: silver, 77.05 parts. 6. Copper, 22.34 parts ; zinc, 10.48 parts ; silver, 67.18 parts. 7. Tin, 63.00 parts ; lead, 37 parts.

Colored Gold.-1. Full red gold.-Gold, 5 dwts. ; copper, 5 dwta. 2. Red gold.-Gold, 6 dwts. ; silver, 1 dwt. ; copper, 4 dwts. 3. Green Gold.-Gold, 2 diwt. ; silver, 21 gr. 4. Gray gold.-Gold, 3 dwts. 15 gr ; silvor, 1 diwt. 9 gr . 5. Blue gold.-Gold, 5 dwt.; steel filings, 5 dwt. 6. Antique gold, ,ireenish-yellozo color.-Gold, 18 dwts. 9 gr . ; silver, 21 gr . ; copper 18 gr . These all require to be submitted to the process of wet coloring. 7. Fictitious gold, tery bright-Copper, 16 parts ; platina, 7 parts ; zinc, 1 part ; fused together.
Engligit Standard for Silver,-lure gilver, 11 ozs. 2 dita.; copper, 22 dwts. : melt. Silver Imitation,-Copper, $1: 1 \mathrm{~b} . ;$ tin, 10 oz , melt. This composition will roll and ring very near to silver.

Frencir Gond Plate.-1. Gold, 92 parts ; copper, 8 parts. 2. Goid, 84 parts; copper, 16 parts. 3. Gold, 75 parts; copper, 25 parts. Jevellers' Metal. - Copper, 30 parts; tin, 7 parts; lorass, 10 parts; mix.
alloy for Watci Pinion Sockets.-Gold, 31 parts; ailver, 19 parts; copper 39 parts; pallodium, 1 part.

Coloming of Jewelisy.-1. To Ileighten the Color of Yellono gold. -Saltpetre, 6 ozs ; green coppreas, 2 ozs. ; white vitriol and alum, of each 1 oz. If wanted rodder, a amall quantity of blus vitriol nust be added, 2. For Green Gold.-Saltpetre, 1 oz. 10. dwts. ; sal-ammoniac, 1 oz. 4 dwts. ; Romau vitriol, 1 oz. 4 dwts. ; verdlgris, 18 dwts. 3. To Clean ưilt Jeceling.-Boiling water in a clean Hask, it pt.; cyanide of potassium, 1 oz . ; shake the tlask to dissolve the potasslum. Add, when colt, uqnor ammonia, $\frac{1}{2}$ oz. ; rectified alcohol, 1 oz. Used by brushing over gilded articles. 4. Coloring Jewelry. Boil the articles in a dilute solution of terchloride of gold, to which some bicarbonate of soda has been added. 5. Colorine of Gilding.Defective colored gilding may also be improved by the help of the following mixture : witrate of potash, 3 ozs. ; alum 13 ozs. ; sulphato of zinc, $1 \frac{1}{2}$ ozs. ; common salt, $1 \frac{1}{2}$ ozs. These ingredlents are to be put into a small quantity of water to form a sort of paste which is put upon the articles to be colored; they are then placed upon an iron plate over a clear fire, so that they will attain neariy to a black heat, when they are suddenly plungod luto cold water ; this given them a bcauti"ul high color. Differeat hues may be had by a variation in the mixture. 6. For Red Gold.-To 40 ozs, melted yellow wax, nidd, in fine powder, $1 \frac{1}{2}$ ozs. of red ochro, ;11 ozs. vordigris, calcined tillit yielia no fumes ; and $\frac{1}{2}$ oz. of calcined borax. Mix them well together. Dissolve either of above mistares in water, as the color is wanted, and use as required. 7. F'ine color for Heavy Gilt Work:-Alum, 3 оzs. saltpetre, 6 ozs.; sulphate of zinc, 3 ozs. ; common malt, 3 ozs. Mix all into a thlek paste, dip tho articles into it, and lieat them until cearly black on a plece of sheet iron over a clear coke or charcoal fire, then plunge them into cold water. 8. Fine Color Mor Litht Plated work:Sulphate of copper, 2 dwts. ; best verdigris, 4 divts, 12 grs. ; salhammo-

340 WATCHMAKERS, JEWELLERs', \&C., RECEIPTS.

niac, 4 dwts. ; salipetre, 4 dwtis. ; acetic acid, 1 oz; pulrerize the solid articles, add the acetic acid gradually, stirring all the time. Dip your articles into this mixture and heat them to a black color on a wheet of copper. When cold, place them in a middling strong sulphuric acid plekle, which dissolves the coloring salts and induces a very fine gold color. 9. Etruscan Gold Coloring.-Alum, 1 oz . ; finu table-salt, 1 oz ; saltpetre (powdered), 2 oz .; hot rain-water, suffcient to make the solution, when dissolved, about the consistency of thick ale ; then add sufficient muriatic acid to produce the color desired. The degree of success must always depend, in a greater or less degree, apon the skill or judgment of the operator. The articlo to be colored should be from fourteen to eightecir carats fine, of pure gold and copper only, and be froo from coatings of tin, or silver solder. The solution is best used warm, and when freshly made the principle on which it acts is to eat ont the copper alloy from the surlace of the article, leaving thereon pure, frosted gold only. After coloring, wash off, first in rain-water, then in alcohol, and dry without rubbing, in fine clean eawdust. Fine Etruscan jewelry, that has been defaced or tarnished by uso, may be perfectly renewed by the same process.

For Silvirsmiths, Sterling Silver.-1. Fine silver 11 oz. 2 dwts., fine copper 18 divts. 2. Equal to Sterling-Fine silver 1 oz., fine copper 1 divt. 12 grs. 3. Another ditto-Fine silver 1 oz ., fine copper 5 dwts. 4. Common Silver for Chains-Fine silrer if dwts., fine copper 4 dwts. 5. Solder for ditto-Fine silver 16 dwts., fine copper 12 grs., pin brass, 3 dwts. 12 grs. 6. Alloy for Plating. -Fino silver 1 oz., fine copper 10 dwts. 7. Silver Solder-Fino silver $1 \mathrm{oz} .$, pin brass, 10 dwts., pure spelter, 2 dwts. 8. Copper Solder for Plating-Fine silver, 10 dwts., fine copper 10 dwts. 9. Common Silver Solder-Fine silver 10 ozs., pin brass, 6 ozs. 12 dwts., spelter, 12 dwts. ${ }^{10}$. Silver Solder for Enamelling, $\$ 1$ per oz. -Fine silver 14 dwts., fine copper, 8 dwts.- 11. Ditto, for filling Signet Rings.-Fine silver, 10 ozs., fine copper, 1 oz .16 divts., fine pin brass, 6 ozs. 12 dwts., spelter, 12 dwts. 12. Silver Solder for Gold Plating-Fine silver, 1 oz., fine copper, 5 dwts., pin brass, 5 dwts. 13. Qtick Silver Solder-Fine silver, 1 oz., pin brass, 10 dwts. bar tin, 2 dwts. 14. Initation Silver-Fine silver, 1 oz., nickel, 1 oz. 11 grs., fine copper, 2 ozs. 9 grs. 15. Another dittoFine silrer, 3 ozs ., nickel, 1 oz .11 dwts., fine copper, 2 ozs. 9 grs., spelter, 10 dwts. 16. F'ine Silver Solder for Filigree Work-Fino silver, 4 divts. 6 grs.', pin brass, 1 dwt. 17. Bismuth Solder-Bismuth, 3 ozs., lead, 3 ozs. 18 dwts., tin, 5 ozs. 6 divts.

Dead Whitr on Silver Articles.-Hent the article to a cherry red; or a dull red heat and allow it to cool, then place it in a pickle of 5 parts sulphuric acid to 100 parts of watcr, and allow it to remain for an hour or two. If the surface is not right, rinse in cold water, and repeat the heating and pickling operation as before. This removes the copper from the surface of the article, leaving pure silrer on tho surface. When sufficiently whitened, remove from the picklo, well rinse in pure hot water and place in warm box sawdust.

Picele, for Frostino and Weitening Silver Goods.-Sulphuric acld, 1 dr . ; water, 4 oz . $;$ heat the pickle, and immerse the silver in it untll frosted as desired; then wash off clean, and dry with
a soft 1 smaller
To ${ }^{5}$
solved i
use plie
with ab
Sulve suspend surface. mixed of potas brass. cyanide received
Ornas silver, an
with a sh the battel not sketcl After cle fingers, a produced

To Ext with an ec mit to a b found at To SoL shell to fit to each, th hot irons must not 1 white piece Artificl with gum, hydrofliori

Reviver and put thi rub with ch To Reco water, appl powdered si then scrape
Polishing and finely with a dry b

Sitver-P1 crystals, in 1 cyanuret of becomes clea of Paris whi liquor, and the coating p silrer nuid,
a soft linen cloth, or in fine clean sawdust, For whitening only, a smaller proportion of acid may be usod.
To Frost Poilsued Silver.-Cyanide of potassium 1 oz. ; dissolved in $\frac{1}{2} \mathrm{pt}$. of water. Do not hold the silver in your hauds, but use pliers made of lance wood or box wood, and apply the mixturo with a brush to the polished surface.

Silvering Hooks and Eyes, \&ce. The gmall iron articles aro suspended in dilute sulphuric acid until the iron shows a bright clean surface. After rinsing in pure water they are placed in a bath of a mixed solution of sulphate of zinc, suIphate of copper and cyanido of potassium, and there remain until they receive a bright coating of brass. Lastly, they are transferred to at bath of nitrate of silver, cyanide of potassium and sulphate of soda, in which they quickly received a coating of silver.

Ornamental Designs on Silvier.- Select a mooth part of tho silver, and sketch on it a monogram or any other design you choose, with a sharp lead pencil, then place the article in a gold solution with the battery in good working order, and in a short time all tho parts not sketched with the lead pencil will be covered with a coat of gold. After cleansing the article, the black lead is easily removed by the fingers, and the silver ornament disclosed. A gold ornament may bo produced by reversing the process.
To Extract Silver froat Wiste Products.-Mix your rofuso with an equal quantlty of wood charcoal, placo in a crucible aud submit to a bright red heat, and in a short time a silver button will bo found at the bottom. Carbonate of soda is another good flux.
To Solder Tortorse Sheli-Bring the edges of the pieces of shell to fit each other, observing to give the same inclination of grain to each, then secure them in a piece of paper, and place them betwcen hot irons or pincers ; apply pressure, and let them cool. The heat must not be so great as to burn the shell, therefore try it first on a white piece of paper.
Artificial Pearrs.-Are made from beads of opaline glass filled with gum, the polish of the glass being reduced by the vapor if hydrolluoric acid.
Reviver for Old Jewelry.-Dissolve sal-ammoniac in urine, and put the jewelry in it for a short time; then take it out, and rub with chamois leather, and it will appear equal to new.
To Recover Gold from Gilit Metal. -Take a solution of borax water, apply to the gilt surface, and sprinkle orcr it somo finely powdered sulphur ; make the article red hot, and quench it in water; then scrape off the gold, and recover it by means of lead.
Polishing Powder for Gold and Silver:-Rock alum barnt and finoly powdered, 5 parts ; levigated chalk, 1 part. Mix ; apply with a dry brush.
Silver-Plating Fluid.-Dissolve 1 ounce of nitrate of silver, in crystals, in 12 ounces of soft water; then dissolve in the water 2 oz. cyanuret of potash ; slake the whole together, and let it stand till it becomes clear. Have ready some half-ounco vials, and fill half full of Paris white, or fine whiting; and then fill up the bottles with the liquor, and it is ready for use. The whiting does not increase the coating powder ; it only helps to clean the articles, and sare the silver lluid, by lalf filling the bottles.

To Reduce English Soverigins to Lower Finhafess.-No. 1. 15 Carat gold, Coins, 2 ozs. ; gold, 8 ozs.; silver, 2 ozs. 3 dwts. ; copper, 5 ozs. 3 dwts. 2. Another ditto. Coins, 4 ozs.; gold, 6 ozs; ; silver, 2 ozs. 2 dwts. ; copper, 5 ozs. 2 dwts. 3. Another ditto. Coins, 2 ovs ; gold, 6 ozs. ; silver, 1 oz. 14 dwts.; copper, 4 ozs.; 2 dwts. 4.14 Carai gold. Coins, 3 ozs. ; gold, 3 ozs.; silver, 1 oz. 9dwta, 12 grs. ; copher, 11 dwts. 12 grs . 5 . Another ditto. Coins, 1 oz.; guld, 2 ozs.; siver, 13 dwts. ; copper, 1 oz. 11 dwts. 6. Another ditlo. Coins, 1 oz. ; gold, 8 ozs. ; silver 2 ozs. ; copper, 4 ozs. 14 dwts.
Steríhing Value of Gold of differevt Degrees of Fineness.

Carats Fine.

Note.-The British Standard for gold, is gcid, 22-24 of a pomid, equal to 11 purts pure gold and 1 of alloy; a pound is estimated to be divided into 24 equal parts or carats, lience the pmportion is rated equal to 22 carats. The Standard of Siiter is 2,2020 of a pormd, equivalent to 37 parts pure silver and 3 of allog. A Troy ounce of Standard gold is coined into $£ 3.17 .10 .2 \mathrm{f}$, and an onnce of Standard silver into $8 s$. $6 d$. A lb. Troy of gold yields $46 \mathbf{1 g - 2 4 0}$ sovereigns. A 11). Troy of silver 66 shillings. $£ 150,000$ in gold weighs over a ton. $£ 75,000,000$ weiglis 500 tons.

The American Standard of Gold and Silver is 900 parts of pure metal and 100 of alloy in 1,000 parts of coin, the fincness being expressive of the quantity of pure metal in 1000 parts. The value of 1 ounce of pure gold is $\$ 20.67 .183 \frac{1}{3}$, as standard gold coin it is worth $\$ 18.60 .465$. The value of 1 ounce of pure silver is $\$ 1.29 .29$., as standard silver coin it is worth $\$ 1$ 16.36-36.

To Melt Gold.-Prepare a good fire, and heat the ingot in which you wish to cast the gold, a little hintter than boiling water; next put the alloy in the crucible, add a sin il quantity of puiverized borax, and leave on the fire until melted. Cast this in a clean ingot, and after breaking the bar into small fragmente, return to the pot and remelt the gold, not adding borax this time, but when the gold looks clear and smooth ou the top, add, for erery 6 ozs. gold, a piece of saltpetre about the size of a pea, and in about a minute pour the gold. Keep up the heat after adding the saltpetre, and, previons to pouring the gold, pour a few drops of oil into the iron ingot. If the stock was elean when you commenced; the gold will roll well. Much depends on the first rolling of the stock; 18 carat should be subjected to a very heavy strain; the first and second draughts, which imparts a grain to the slock; light draughts stretch the gold on the surface, and the middle portion remaining as cast, causes the gold to crack; many good bars having been condenned, when the tronble was in
the roll original quire. giving i anneali nlot requ little sal red gold before q every ca: adinixtul

To R the gold, well with main on from the cracking. piece of ${ }^{2}$ Makin that the j phorus, w The remed treatment unfit for

To Mal breadth yo If yon plat roll a littl grade metal as much of nearly flat one face of rolled a pied and cut a paper can be Cover the su the same on between thei thickness, au gold, and squ inch or so wl charcoal fire solder; when ready to roll 18 carat, or 1 solder abouts ver or compos when the gold covered with taken in solnti tate the silver luted, a bar of
well washed dried, cas bo so that it will
the rolling. After the 18 carat has been rolled to about twice its original length, it must be annealed, then rolled to the size you require. Proceed with melting 14 carat as above described for 18 carat, giving it as heavy strains in the rolls, but not rolling so much before annealing as the 18 carat. The other carats of cheaper grade, do not require the use of saltpetre to toughen; instead of which, use a littie salammoniac, and then proceed as above. When you anneal red gold, do not quench it when red hot, but allow the gold to blacken before quenching, otherwise it will slit or seam. Melt new alloys in every cise twice; treat solder the same way, to ensure a thorough adinixture of the copper with tho gold.

To Remove Tin from the Stock. - Just previous to pouring the gold, throw a small piece of corrosive sublimite in the pot, stir well with a long picce of pointed charcoal, and allow the pot to remain on the fire about half a minute aiterward. This will take tin from the alloy; while the tin is in, the gold will not roll without cracking. To remove emery or steel filings from gold, add a small piece of glass-gall, while melting; it will collect them in the flux.

Making Bhittle Gold Strong.-Gold is sometimes so brittle that the jeweller cannot well work it ; this is probably due to phosphorus, which, being no metal, is of course not detected in the assay. The remedy is to pass chlorine gas through the molten gold, by which treatment most of the gold which had otherwise to be set aside as unfit for certain kinds of work, can be redeemed.

To Make Plated Stock.-Cast the bar you wish to plate the breadth you require, and roll to the thickness of the 8th of an inch. If yon plate on silver, cast the silver the same width as the gold, and roll a little longer than the gold. Generally the lower, clieaper grade metal, is 2 or 3 times the thickness of the dearer, therefore use as much of each as will make the desired proportions. Polish as nearly flat and stralght as possible, then file one face of silver and one face of gold, nntll they are briglit. Previous to this you havo rolled a piece of plate solder very thin, say, 36 in . round size plate, and cut a strip a little wider and longer than your gold. Emery paper cim be used to clean each side of this from dirt and grease. Cover the surface with ground borax from the slate, on each sfle; do the same on the bright faces of the gold and silver; place the solder between them, and have a piece of iron wire about है of an inch in thickness, and 3 feet long, in readiness, place this lengthwise on the gold, and squeeze the whole tightly together in a vice, and bind every inch or so with heavy binding wlre very secure. Next make a good charcoal fre in the forge, shaped so as to be like an oven, and then solder; when the solder melts on each side the whole length, all is ready to roll like any other stock. If you make gold plating that is 18 carat, or 16 carat, or 14 carat, and 12 carat, you must use a gold solder about 5 or 6 carats less than the inferior gold. If gold on silver or composition, use copper solder. The clippings from the above, when the gold is on silver, may be placed in an enamelled vessel, and covered with nitric acid, 2 parts; water, 1 part. The silver will bo taken in solntion, which must be sared in an earthen pot. Precipitate the silver from the solution, or after the solution has been diluted, a bar of copper placed iu it will collectit; this sediment must be well washed and dried, then melted. The gold after being well dried, cau be melted in a bar, a small amount of copper being added, so that it will be of the same quality as before.

344 Watcimakers, Jewellers', \&O., neceipts.

Jewellers' Armicintan Cement.-Isinglass soaked in water and dissolved in spirit, 2 oz. (thick) ; dissolve in this 10 grs. of very pale gum ammouia (in tears) by rubbing them together; then add 6 large tears of gum mastic, dissolved in the least possible quantity of rectifficd spirits. When carefully made this cement resists moisture and dries coloriess. Keep in a closely stopped phial.

Jewellers' Cempint.-Putina bottle 2 ozs. of isinglass and 1 oz . of the best gum arabic, cover them with proof spirits, cork loosely, and place the bottle in a vessel of water, and boil it till a thorough solution is effected ; then strain it for use.

Gold is taken from the surface of silver by spreading over it a paste made of powdered sal-ammoniac, with aquafortis, and heating it till the matter smokes, and is nearly dry; when the gold may bo separated by rubbing it with a scratch brush.

To Sepalate Gold and Silvei from Lace, \&c.-Cutin pieces the gold or silver lace, tie it tightly, and boil in soap ley till the size appears diminishod ; take the cloth out of the liquid, and after ropeated rinsings of cold water, beat it with a mallet to draw out the alkali. Open the linen, and the pure metal will bo found in all its beauty.

Tarnisir on Electro-Plate Goods may be removed by immersing the article from one to ten or fifteen minutes, or antil the tarnish has been removed, but no longer, in the following solution : Rain water, 2 gals. ; cyanuret potassa, $\frac{1}{2} \mathrm{lb}$. ; dissolve and pat into a stone jug or jar und closely cork. After immersion, the articles must be taken out and thoroughly rinsed in two or three waters, thein dried with a soft linen cloth, or, if frosted or chased work, with fine clean sawdust. Taruished jowelry may be speedily restored by this process ; but mako sure work of removing the alkali, otherwise it vill corrode the goods.

A Bugur Gowd Tinge may be given to silver by steoping it for a suitable length of time in a weak solution of sulphuric acid and water strongly impregnated with iron-rust.

To Refine Gold.-If you desire to refine gold from the baser metals, swedge or roll it out very thin, then cut into narrow strips and curl up so as to prevent its lying flatly. Drop the pieces thus prepared into a vessel containing good nitric acid, in the proportion of acid, 2 ozs., nud pure rain-water $\frac{1}{2}$ oz. Suffer to remain until tho:onghly dissolved, which will be the case in from $\frac{1}{3}$ an hour to 1 hour. Then pour off the liquid carefully, and you will find the gold, in tho form of yellow powder, lying at the bottom of the vessel. Wash this with pure water till it ceases to have an acid taste, after which you may melt and cast into any form you choose. Gold treated in this way may be relled on as perfectly pure.

In melting gold use none other than a charcoal fire, and during the process sprinkle saltpetre and potash into the crucible occasionally. Do not attempt to melt with stone coal, as it renders the metal brittle and otherwise imperfect.
To Refine Silver.- Dissolve in nitric acid as in the case of the gold. When the silver has entirely disappeared, add to the $2 \frac{\mathrm{l}}{\mathrm{oz}}$. of solntion nearly 1 quart of pure rain-water. Sink, then, a sheet of Clean copper into it; the silver will collect rapidly upon the copper, and you can scrape it off and melt into bulls at pleasure.

In tl
formul
the lat solutio plate a To R refine
iron ins If the might, into the of alloy
in a perf
Cold with 3 pa and well well cleas with wat metal sho wiped dry To Hal Peatina. given in t your sold 6 :immoniac hold togetl the article immediatel flame of yo done, and \mathbf{r} with copper solder for s are often u gold; and th gencral use are of so my To Sort soldering flu of solder upo upon it with from the blay brittle and ur to spring or 1 solder betwee surfaces aro t cellent job by a sheet of tin over your lam may bo made bright looking in the game w? mode was to c the latter wanld be to add the aliver, the only steps necessary to savo solution poured from the gold, and thamed proportion of water to the plato as just directed. refine silver in no respecthis process differs from the one employed to iron instead of a copper plate to tho plate to be immersed; you use an If the impurities of gold refined collect the metall.
might, after saving the silver as abore both silver and copper, jon into the solution yet remaining, and tirected, sink your iron plato of alloyed gold may be separated by these out the copper. Tho parts in a perfectly pure stato. Cold Silverina of with 3 parts of pearlash, Metals.-Mix i part of chloride of silver and well rub the mixture on the common salt, and 1 part whiting; well cleaned), by means of a picce of soft brass or copper (previously with water and dipped in thie pore of soft leather, or a cork molstened metal should be well washed in hot When properly silvered, the wiped dry. , sughtly alkalized; then Platina.-The solders to Siliter, Copper, Brass, Iron, Steel or given in the preceding part used for gold, silver, copper and brass are your solder to small particles, nud mixing operations by reducing iummoniac and powdered borax in equal ming it with powdered salhold together. Having fitted up the joint parts, moistened to make it immediately over a piece of soft charcoal, lay bour solded, you secure flame of your ler the joint and then with your soldering mixtare done, and ready to upon it until fusion takes place blow-pipe turn the with copper or brass in cooled and dressed np. Iron is the job is then solder for steel is puss in accordance with the iron is usually soldered are often used succe gold or pure silver, though process. The best gold; and the expense of it thy. Platina can only be soldered vellders general use of platina of it, therefore, contributes to thered well with are of so much importances, even for chemical purposes, where the n To Sowt Soidportance. soldering fluid; then Arricles.-Moisten the parts to be united with of solder upon thie joint and hoined them together, lay a amall piece upon it witl your blow-pipe until fuser your limp, or direct the blaze from the blaze immediately, as too fusion is apparent. Withdraw them brittle and unsatisfactory. When the hech heat will render the solder to spring or press against each other it parts to be joined can bo mado solder between them before exposing to thest to place a thin pieco of surfaces are to be soldered one upon to the lamp. Where tro smooth cellent job by moistening them with the other, yon may make an exa sheet of tin foil between them, holding thid, and then, having placed over your lamp till the foil melts. If them pressed firmly together may bo made in this way so close as to the surfaces fit nicoly, a joint bright looking lead which comes as a lining most imporcentible. The in the same way than tin foll. as a lining to tea boxes works better To Cleansis Gold Tarni
mode was to expose all parts of the in Sordering.-Tho old English

846 WATCHMAKERS, JEWELLERS', \&C.g RECEIITS.

to cool, and then boil antll bright in urine and sal-ammoniac. It is now usually cleaned with diluted sulphuric acld. The pickle is made in about the proportion of one-eighth of an ounce of acid to one ounce of rain water.

To Clear Silvfr Tarnismed in Soldering.-Some expose to a uniferm heat, as in the case of gold, and then boil in strong alum water. Others immerse for a considerable leugth of time in a liyuid made of $\frac{1}{2} \mathrm{oz}$. of cyanuret potassa to 1 pint rain water, and then brush off with prepared chalk.
Nickel Plating. -The following is the substance of the patent granted to Dr. Isaac Adauns, DIarch 22, 1870. The process Is Lilighly snccessful. "This improvement consists int the use of 3 new solutions from which to deposit nickel by the electric current. 1. A solution formed of the double sulphate of nickel and alumina, or the sulphate of nlekel dissolved in a solution of soda, potash, or ammonia alum, the three different varieties of commercial alum. 2. A solution formed of the double sulphate of nickel and magnesia, with or without an excess of ammonia. I have found that a good coating of nickel can be deposited from the solution before mentioned, provided théy are prepared and used in such a manner as to be free from any acil or alkaline reaction. When these solutions are used, great care must be taken, lest lyy the nse of too high hattery power, or from the introduction of some foreign matters, the solntion becomes acid or alkaline. I prefer to use these golutions at a temperature above 1.00° Fah., but do not limit my invention to the use of these solntions at that tenperature. I therefore claim, 1. The electro deposition of nickel by the means of solution of the double sulphate of nickel and alumina, prepared and used in such a manner as to be free from the presence of ammonia, potash, soda, lime or nitric acid or from any other acid, or from any acid or alkaline reaction. 2. The electro deposition of nickel by means of a solution of the double sulphate of nickel and potash, prepared and used in such a manner as to be free from the presence of nmmonia, soda, alumina, lime or nitric acid. or from any acid or alkaline reaction. 3. The electro depmsition of nickel by means of a solution of the donble sulpliate of nickel nnd magnesia, prepared and used in such a manner as to be free from tho presence of potash, soda, alumina, lime or nitric acid, or from auy acid or alkaline reaction."

Stalba's Nickel Platina Process.-Consists in plating with nickel, by the action of zine upon salts of nickel, in the presence of chloride of zinc and the metal to be plated. By this process, Stanlia atates that he has succeeded in plating objects of wronglit and cast iron, steel, copper, brass, sinc, and lead. It is only necessary that the size of the objects should permit them to be covered entirely by the plating liquid, and that their surfaces shonld be free from dirt. The foliowing is the modus operandi:-A quantity of concentrated chloride of sine solution is placed in a clorn metallic vessel, and to this is added an equal volume of water. This is heated to boiling, and hydrochloric acid is added drop by drop, until the precipitito which had formed on adding the water has disappeared. A small quantity of zine powder is now added, which produces a zine coating on the metri as lar as the liquid extends. Enough of the nickel nalt (the chloride or sulphato answers equally well, fis now introduced to
color the in it toge boiling. the objec ries in lu: polished, bilt affor tmins as t
To MA gether int etrips; 20 does not b very little stops befo ap again entirely eff equonful of pour off an preparation an eighth c ing about 2 To make pennyweigh silver in 30 acid and 1 p as are the of Add 1 oz . grains pure gold and cop silver. Let and refill wit operation un words, fill up the bottom of 18 carat chlor potassa, and point Shake ready for use. the impressio bat never coul plate to imitat oz. dragon's b plate, procced an ounce and and salt.
To Plate to gold solution fo pare the article strong ley mad the end of the t be taken not to polishing, as th it shoald be the

WATCEIAKERS, JEWELLERS,' \&C., RECEIPTS. 347
color the liquid distinctly green; the objects to be plated are placed in it together with some zinc elippings, and the liguid is brought to bolling. Tho nickel is precipitated in the course of 15 minutes, and the objects will be found to be completely conted. The coating varies in lustre with the character of the metallic surface; when this is polished, the plating is likewise lustrous and vice versa. Salt of cobalt affords a cobalt plating, which is steel gray in coior, not so lustrons as the nickel, but more liable to tarnish.
To Make Silver Solution for Electro-Plating.-Put together into a glass ressel 1 oz . good silver, made thin and cut into gtrips; 2 oz . best nitric acid, and $\frac{1}{2}$ oz. pure rain water. If solntion docs not begin at ouce, add a little more water-continue to add a very little at a time till it does. In the event it starts off well, but stops boforo the silver is fully dissolved, you may generally start it up again all right by adding a littlo more water. When solution is entirely effected, add 1 quart of warm rain water and a large tablosyoouful of table salt. Shake well and let settle, then procoed to pour off and wash throngh other waters as in the case of the gold preparation. When no longer acid to the taste, put in an ounce and an eighth cyanuret potassa and n quart pure rain water: after standing about 24 hours, it will be ready for use.
To makt Gold Solution for Electro-Plating.-Disolve fivo pennyweights gold coin, 5 grains pure copper, and 4 grains pure silver in 3 ozs. nitro-muriatic acid; which is simply 2 parts mariatio acid and 1 part nitric acid. The silver will not be taken into solution as are the other 2 metals, but will gather at the bottom of the vessel. Add 1 oz. pulverized sulphate of iron, $\frac{1}{2}$ oz. pulverized borax, 25 grains pure tablo salt, and 1 quart hot min water. Upon this the gold and copper will be thrown to the bottom of the vessel with the silver. Let stand till fully settled, then pour off the liquid carefully, and refill with boiling rain water as before. Continue to repeat this operation until the precipitate is thoronghly washed; or, in other words, fill up, let settle, and ponr off so long as the accumulation at the bottom of the ressel is acid to the taste. You nuw have about an 18 carat chloride of gold. Add to it an ounce and an elghth eyanuret potassa, and 1 quart rain water-the latter heated to the boiling point. Shake un well, then let stand about 24 hours, and it will be ready for use. Somo use platina as an alloy instead of silver, under the impression that plating done with it is larder. I have used both, but never could see much difference. Solution for a darker colored plate to imitate Gninea gold may be made by adding to the above 1 oz. dragon's blood and 5 grs. iodide or iron. If you desire an alloyed plate, procced as first directed, without the silver or copper, and with an ounce and a half of sulphuret potassa in place of thie iron, borax, and snit.
To Plates witit a Battert.-If the plate is to be gold; use tho gold solution for electro-plating; if silver, use the silver solution. Prepare the article to be plated by immersing it for several minutes in a strong ley made of potash and rain water, polishing off thoroughly at the end of the time with a soft brush and prepared chalk. Care should we taken not to let the fingers come in contact with the article while polishing, as that has a tendency to prevent the plate from adhering; it should be held in two or three thicknesses of tissuo paper. At.

348 Watcimakers, jewellers', \&C., Receipts.

treh tho article, when thoroughly cleansed, to the positive pole of your battery, then aflix a piece of gold or silver, as the case nay be, to the negative pole, and immerse both into the solution in such a way as not to hang in contact with eaih other.
After the article has been exposed to the action of the battery alnout ten m'mutes, take it out and wash or polish over with a thick misture of water and prepared chalk or jowellers' rouge. If, in the operation, you find places where the plating seems inclined to pecl off, or where it has not taken well, mix a little of the plating solution with prepared chalk or rouge, and rut the defective part thoroughly with it. This will be likely to set all right.
Govern your time of exposing the article to the battery by the dosired thickness of the plate. During the time, it should be taken out and polished up as just directed about every ten minutes, or as often at least as there is an indication of a growing darkness on any part of its surface. When done, finish with the burnisher or prepared chalk and chamois skin, as best suits your taste and convenience. In caso the article to be plated is iron, steel, lead, pewter, or block tin, you must, after first cleaning with the ley and chalk, prepare it loy applying with a soft brush-a camels-hair pencil is best suited-a solution made of the following articles in the proportion named :Nitric acid, $\frac{1}{2}$ oz.; muriatic acid, $\frac{1}{8}$ oz.; sulphuric acid, 1-9th oz.; murinte of potash, 1 -ith oz.; sulphate of iron, $\frac{3}{}$ oz. ; sulphuric ether, 1-bth oz.; and as much sheet zinc as it will dissolvo. This preparen a foundation, without which the plate would fail to take well, if at all.
To make Gord Amalanm.-Eight parts of gold and ono of mero cury are formed into an amalgan for plating, by rendering the gold into thin plates, making it red hot nud then putting it into the mercury while the latter is also heater to ebullition. The gold immediately disappears in combination with the mercury, after which the mixture may be turned into water to cool. It is then ready for use.
To Plate with Gold Ashalgasi.-Gold ainalgam is chiefly used as a plating for silver, copper or lorass. The article to be plated is washed over with diluted nitric acid or potashlye and prepared chalk, to remove any tarnish or rust that might prevent the amalgam from adhering. After having been polighed perfectly bright, the amalgam is applled as evenly as possible, usually with a fine scratch brush. It is then set upon a grite over a charcoal fire, or placed into an oren and heated to that degree at which mercury exhales. The gold, when the mercury has evaporated, preseuts a dull yellow color. Cover it with a coating of pulverized nitro and alum in equal parts, mixed to a pasto with water, and heat again till it is thorouglily melted, then plunge into water. Burnish up with a stecl or bloodstone burnisher.
To Make and Apply Gold-Platino Solution-Dissolve $\frac{1}{2}$ oz. of gold amalgam in 1 oz . of nitro-muriatic acid. Add 2 oz of alcohol, and then, having brightened the article in the usual way, apply the solution with a soft iprush. Rinse and dry in sawdust, or with tissin paper, and polish up with chamois skin.

To Make and apply Gold-Platina Powder.-Prepare chloride of gold the same us for plating with a battery. Add to mhen thoroughly washed out, cyauurct potassa in a proportion of 2
02. to 5 slake then 11 air till d it you pi powder of cham
An old Jlinen ra ceding th The ashe
To Mal In a glass prepared article to brush.
To Mab rer in nitri the solution way; then, table salt, bo plated When it ha case of plat or soft leath To Desth moon as poss will destroy To Wash silverware, n ance of peivt piece of soft of paste with contain gritty To Clean: makers' and soda water. part as much them.
To Cut Gl. the glass arou or graver; th lieat it red hot water just dee with its upper trie.
To Re-iblac
11 make old ru ainutes.
To Grld
Fineglass, and d
\&e. with draw
TLic blade will th
ox. to 5 pennyweights of goid. Ponr in a pint of ciean rain water then 1 lb . of prepared let stand till the chforido Is dissolved. Add air till dry, niter which paisish whiting and let it evaporate in the open it you prepare the article in the usual a tight vessel for use. To apply powder into a paste with water, rub it way, aud liaving made tho of chamois skin or cotton flannel. An old mode of mak linen mgs into solutiong a gold-plating powder was to dip clean ceding this, and having dried, to as in tho second article proThe ashes formed the powder, and were to burn them into ashies. fo alake and Apply Silver-Platino be applied as above. prepared Spanish wh. nitrate of gilver, 2 ozs. cyanuret. - Put together article to be plated as per, and 10 ozs. pare rain water. Cleanse tho brush. Finish with the preceding directlons, and apply with a soft To Make and Aprecr siois akin or burnisher. rer in nitric acid by the aid of hert-Plating Powder.-Dissolve silthe solution to precipitato the silver; put some pleces of copper into Way; then, with 15 grains of it mix wash the acid out in the usnal wo plated and $\frac{1}{2}$ dram of pulverized alum diams of tartar, 2 drams of When it has as ley and prepared chalk. Brighten the articlo to case of plating with a white appearance, expoes on the mixture. or soft leather with gold amalgam, then polish np with the bs in the To Destroy tite Efrection of soon as possible, after exposure to ACID on Clothes. - Dampen as Fill destroy the effect inmediately. To Wash Silverwape Tely. silverware, as it dulls the lustever nse a particle of soap on yonr pice of pewter than silver. Whe, giving the article more the appearpiece of soft leather and prepared chall wants cleaning, rub it with a of paste with pure water, for the reason the latter mado into a kind contain gritty particles.
To Cleanse Brusi makers' and jewellers' brusice best method of cleansing watchsoda water. When the backs is to wash them out in a strong part as much as possible ; for being are wood, you must favor that To Cot the glass around the shape Orar without a Diamond.-Scratch or graver; then, having bent a desire with the corner of a file heat it red hot and lay it upont a plece of wire in the sama shapo, water just deep enongh for the the scratch, sink the glass into cold with its upper surface. It will rarely ever fail almost on a level true. 11 make old rusty hands look as -Use asphaltum varnish. One coat minutes. as good as new, and it dries in a few To Gild CEEL-Pour some of the ethereal solution of gold into a \&c. ; with draw the ing it the blade of a new penknife, razor, lancet, Thic blade will then be found covered will a beautiful to eraporate.

The blado may bo molstened with a clean rag, or a small pieco of very dry sponge dipped in the ether, and the same effects will bo produced.
Sllvirina Shells.-Silver leaf and gum water, a sufficient quantity; grind to a proper thickness, and cover the inside of the shells For a Gold Color, grind up gold-leaf with gum water, and apply to the inside of the shells.
Liquid Foil for Sinfierné Glass Globprs, \&c.-Iead, 1 part; tin, 1 part; biamuth, 1 part; melt, and, just before it sets; add incrcury, 10 parts. lour this int the globe, and tarn it rapidly round.
Silver-Platergs Stripping Liquid.-Sulphnile aoid, 8 parts; nitre, 1 lart. Used to recover silver from old plated ware.
To Silver Clock Facer, \&c.-Old silver lace, $\frac{1}{2}$ oz.; nitric acid, 10 oz . Boil them over a gentle fire for about δ minutes in an earthen pot. After the silver is dissolved, take the mixture off, and mix it in a pint of clean water, then pour it into another vessel free from sediment; then add a tablespoonful of common salt, and the silver will bo precipitated in the form of a white powder of curd; pour off the acid, and mix the curd with 2 oz . salt of tartar, and $\frac{1}{2}$ oz, whiting, all together, and it is ready for use. To Use.-Clean your brass or copper plate with rotten-stone and a piece of old hat ; rub it with salt and water with your hand. Then take a little of the composition on your finger, and rnb it over your plate, and it will firmly adhere and completely ailver it. Wash it well with water. When dry, rub it with a clean rag, and ramish with this varnisi for clock paces. Spirits of wine, 1 pt . ; divide in three parts, mix one part with gum-martic in a bottle by itself; 1 part spirits and $\frac{1}{3}$ oz. sandarac in another bottle; and 1 part spirits and $\frac{1}{2}$ oz. of whitest gum benjamin, in another bottie; rixix and temper to your mind. If too thin, some mastic; if too soft, some sandarac or benjamin. When you use it, warm the silvered plate before the fire, and, with a flat camels'-lair pencil, etroke it over till no white streaks appear, and this will preservo tho silvering for many years.

Refining Gold and Siliver. - The art of assaying gold and silver is founded upon the feeblo affinity which these have for oxygen in comparison with copper, tin, and other cheap matals, and on the tendency which the latter metals havo to oxidize rapidly in contact with lead at a high temperaturo, and sink with it into any porous, carthy vessel in a thin, glassy, pitrified mass. The precious metal having proviously been accuratily weighed and prepared, the first procemils Cupbliation. The muffe, with cupal properiy ammiged on the "muffeplate," is placed in tho furnace, and the charcoal added, and lighted at the top by mea: a of a few ignited pieces thrown on lest. After the cupels have been expmsed to a strong white heat for about half an hour, and have become white hot, the lead is put into them by means of tongs. As soon as this becomes bright red ard "circulating," as it is called, the specimen for assay, wrapped In a emall piece of paper or lear' foil, is added; the fire is now kept up strongly untll the metnl eniers tho lead and "circulates" weli, when the heat, slightly diminished; is so regalated that the assay nppears convex, and more glowing than the cupcl itself, whilst the "undulatione" circulato in all directions, and the middle of the
metalap sorled b or, in tec suddenly followed length br ce, and month of cold, the "pliers" a small an tach adhes very accun ference bet represents case of gor tation. T pare silver one-fourth by partina into a thin 8 quarter of grarity, 1.3) Eimilar man which the go When the op strong, the m flakes or pow loss of weight inally in the For Allo
opper, sillver, lows : The all presses the am and treated wil tion, the platim
the gextion in this weight of the p hilning pallad Na.-This con,
crucible, or cupe must be done iv doubled or qua carats fine of the the ol.d Frimen 108 gr . These lt -olled into a leat to parting with Brime.) Tho re the tiverens is ro
metal appears smooth, with a margin of 1
sorbed by the cupel. When the mof lithargo, which is frocly abor, in techinical language, begins to " becomes bright and shinlug, suddenly flash across the globules, and unden," and prismatio hues followed by the metal beconing and undulate and cross each other, ch, and the prasess (called the brightening) that clear, and nt mouth of the "muffemplete. The cupels "the separation is endcold, the resulting ", and allowed to cool then drawn to the "plicrs" or "tongs" tron," if of silvers alowly. When quito a small anvil of polish from the eupels, and, is removed by the tach adhering oxde shed stecl, with Ω polished after being flattened on very accurately ference between the wei. The weight is that of pure sil, hard brush if, represents the proportight before cupellation and the silver, and the difcase of Gold, the metal has alloy in the samplo examine pure metal tation. The cupelled has next to undergo the operamined. In the pure silver (called the "rample is fused with 3 times its of quar-one-fourth of the mass weitness "), by which the gold its weight of by partisg. The alloy, and in this stato may casily reduced to iuto a thin strip or alloy, after quartation, is may easily bo removed quarter of an hour gravity, 1.3) ; and thith about 2t to 3 ozs. of nitric aciled for a similar manner, with fluid being poured off, it nitric acid (specifio which the gold is carefult 2 ozs. more nitric acid (sp gain boiled in a When the operation of poly collocted, washed in pure water, and dried. strong, the metal preserves its is skilfully conducted, the ncid not too flakes or powder. Tbe seconds spiral form; otherwiso it falls into loss of weight by parting correspond is termed the "reprise." ITho (responds to the quantity of silvidi orig. For Allois Cont
copper, silver, platinum and Platincm, which nanally consist of lows: The alloy is cupelled in tho the macthod of assaying is as folfresses the amount of copper, and usual way, the loss of weigitt exand treated with sulphuric acid, the " bution," made into a riliand tiat also of the silver present. by indicates by the 'portion dissolved gextion in thinam becomes soluble in nitting the residuum to quartio rcight of the mienstruum expressos the wec ncia. The loss aftor dilining palladum now remaining is that of pure cold metal, and tho ing.-This consists may be assayed in the same regald. Gold concrucible, orcupel in putting the pure gold ine maner. ANNEALmust bo done with and heating it to redness in the a simall, porons donbled or quadrupe utmost accuracy. The weight in Weliginis carats fine of the allpied, as the case may bo eight in grains Troy, the old Frencrialloy examined, without colculatios the number of were taken; For austrod of aseaying gold calculation. According to 108 gr . These liavin assay pound, 12 gr , the following quantitics olled into a lenf 11. to parting with $22^{2} \times 8$ inches), twisted on, the perfect. button is Bamme.) mis remoz. and $1 \frac{\mathrm{oz} \text {. of nitric a quill and submitted }}{}$ cribed. Tto remainder of the procoss is acid, sp. Er., 1.16 (200 tho firciens is reclsoned of siliver taken for the assay that abovo dowho fircems is reckoned in 1000 dhs , is 20 tho assay pound, when gri., overy real grain of

352 WATCIMAKERS. JEWELLERS', \&C., RECEIPTS.

Which represents $50-1000$ ths of fineness, and so on of amaller dirisions.
Enamelenta ox Gold on Copper.-Tho basis of all enamels is a highly transparent and fnsible glass, callod frit, flux, or pastr, which readily receives a color on the addition of the metallic oxides. Preparation.-Red lead, 16 parts; calcined borax, 3 parts; pounded flint glass, 12 parts; flints, 4 parts. Fnse in a Hessian crucible for 12 hours, then pour it out into water, and reduce it to powder in a bis-cuit-ware mortar. The following directions will serve to show how the coloring preparations are mado : Black enamels are made with peroxide of manganese, or protoxide of iron, to which more depth of color is given with a littlo cobalt. Violet enamel of a very fine hue is made from peroxide of manganese, in small quantity, with saline or alkaline fluxes. Red enamel is made from the protoxide of copper. Boil a solntion of equal parts of sugar and acetate of copper in four parts of water. Tho sugar takes possession of a portion of the cupreoas oxide, and reduces it to the protoxide; when it may be precipitated in tho form of a granular powder of a brilliant red. After abont tivo hours of moderate boiling, the liquid is set aside to settle, dccanted off the precipitato, which is washed and dried. By this puro oxido any tint may be obtained from red to orango by adding a greater or smaller quantity of peroxide of iron. 'Tho oxide and purple of Cassius are likewise employed to color red enamel. This composition resists a strong fire rery well. Green enamel can bo produced by a mixture of yellow and blne, but is generally obtained direct from the oxide of copper, or, better still, with tho oxide of chrome, which last will resist a strong heat. Yellowo.-Take one pert of white oxide of antimony, with from one to three parts of whito lead, ono of alum, and one of sal-ammoniac. Each of these substances is to be pulverized, then all are to be exactly mixed, and exposed to a heat adequate to decompose the sal-ammoniac. This operation is judged to be finished when the yellow color is well brought out. Blue.-This color is obtained from the oxide of cobalt, or some of its combinations, and it produces it with such intensity that only a very littlocen be used lest the shade shonld pass into black, A zohite enamel may be prepared with a calcine formed of 2 parts of tin and 1 of lead, calcined together : of this combined oxide, 1 part is melted with tivo parts of fino crystal and a very little manganese, all previonsly ground togethor. When the fusion is complete, the vitreous matter is to be poured into clear water, and the frit is then dried and molted anew. Repeat the pouring into water three or four times, to Insure a perfect combination. Screen the cruclble from smoke and flame. The smallest portions of oxide of iron or copper admitted into this enamicl will destroy its value. Tho artist prepares his enamel colors by pounding them in an agnto mortar, with an agate pestic, and crinding them on an ngate slab, with oil or lavender rendered riscid by exposuro to tho sun, in a slinllow ressel, loosely coverel with gruze or glass. IIe shonld havo alongside of him a stove, in wifich a moderate ire is kept up, for drying his work whenever tho figning aro finisicd. It is then passed through the muffle.

Brack Examel on Gold on Silver.--Take it pennyweight of silver, $2 \frac{1}{2}$ fennyweights of copper, $3 \frac{1}{2}$ pennyweights of lead, and 2$\}$ penyyweighia of muriato of ammonia. Melt together, and pour into is
crncib
to be il
mixtur sulphu pounde into al enamel. compou and poli
very sme is made a dish co the part as to lear plate, of plate upo then, with the plato, adhere ns face, and 1
Platina plated, eit boiling nev and granul nickel is d manner.
Elikingat muriatic aci heat until ro liquor into carbonate of mariatic acid muriatic acid articles, afte receiving a 1 liquid boiling scconds to a liquid, the red little practice duration of t gradualiy inct pilded, the art In clean water A "dead gol articles of a 20
immersion in applying a soly then expelling t Srot Gildin
nce, is done by Where you do un
crucible with twice as much pulverized sulphas to be immediately covered that perized sulphur; the crucible is then mixture is to be calcined over a smelthur may not take fire, and the pounded, and, burned away. Tho compong fire until the superfluous into a paste which a solution of muriate of is then to be coarsely enamel. The articis to be placed upou the ammonia, to be formed compound upon it e must then bo held over a a it is designed to and polished up in safety and flows. Liter this it spirit lamp till tho Silverr-Pratin safety. very smooth; then apply the parts which are to receive is made by dissoly apply over tho surface the me receive the plato a dish containing hot zinc in muriatic acid; mowiate of zinc, which the part to which it will solder, and with a swab hold this part over as to leave tho surf will adhere, brush off all supapply the solder to plate, of the right se smooth; you will now superfluous solder, so plate upon it, and rub dow cover the prepared surface 2 fair silver then, with a tinned sold the plate, which melts thering iron, pass slowly over allened with oil; adhere as firmly as the the solder underneath over all the surface of face, and finish with solder does to the iron; cansing the plate to Plating witr with buckskin. plated, either of iron, may be effected by placing the object to be and goutral solution of zinc copper, bronze, zinc or lead in a nickel is dull zinc. If the zinc soride containing a salt of nickel manner. Elkington's Patent . may be made in the samo muriatic acid, 82 oz . (avoirduping. - Fine gold, 5 oz. (troy); nitroliguor into red or yellow rapors cease dissolve by heat, and coutinue tho carbonate of suitable vessel; add distille evolved; decaut the clear mariatic acid is mada, 20 lb . ; and boil for 2 water, 4 gals.; pure bimuriatic acid (sp) , with pure nitric acid (spurs. N. B.-The nitroarticles, after being., 1.15), 17 oz .; aud distil gr., 1.40) 21 oz.; pure receiving a proper periectly cleaned -from ed water, 14 oz . Thio liquid boiling hot, and me to be suspended on scale or grease, and scconds to a minute, and moved about therein, when, dipped into tho liquid, the requisite, depending on the nem, when, in from a few little practice thite coating of gold will be ness and strength of the duration of the time to withdraw the articleposited on them. By a gradually increases imersion required to prodis readily lnown; the gilded, the articles as the liquid weakens broduce any given effect li clean water and dre withdrawn from tho by use. When properly tion of coloring, \&c. dried; after which they undution oi gold, washed A "dead yold"," articles of gold" appearance is immersion in the solution of mitratuced by the application to the applying a solution gilding liquor, or the mercury previously to the then expelling the mer the nitrate to the neacning may bo given by Spot Gildino, mercury by heat. the neroly gilded surface, and ance is didino, or gilding in supt
where you do not putting a thin coat of producing a rery fine appearWhere you do not wish the gilding to ofl on those parts of tho metal
deposited in those spots only where there is no oil, and the oil is easily removed. when the job is finished.

Watchmakers' Oil.-Put thin sheet lead into olive oil in a bottle, cxpose it to the sun for a few weeks, and pour off the clear.
Solution for Dipping Steel Articles, Pheviously to Elec-tro-Prating.-Nitrate of silver, 1 part; nitrate of mercury, 1 part; nitric acid (sp. gr., 1.384), 4 parts; water, 120 parts. For copper articles. -Sulphuric acid, 64 parts; water, 64 parts; nitric acid, 32 parts; muriatic acid, 1 part; mix. The article, free from grease, is dipped in the pickle for a second or two.
arbangemfent of Lapidaries Cutting Plates.-1. Soft itm (very thin) with diamond dust in oil. 2. Pewter, with coarse emery and water. 3. Pewter, with fine emery and water. 4. Wood with sand and water. 5. Pewter with rotten-stone and water. 6. Leather with patty powder slightly wet.
Polishing Diamonds.-The plan in use at all the large diamond cutters is simply a cast iron disc of good metal, wich a vertical spindio run through its centre, balanced, and turned, and faced true in a lathe. The disc revoives at about 1000 revolntions per minute. With a little diamond dust and oil, the stone is set in a small brass cup filled with common soft solder; it is then screwed up in the clamps and applied to the skive till the facets is formed.

RECEIPTS FOR MACHINISTS, ENGINEERS, MILLOWNERS, BLACKSMITHS, LOCOMO. TIVE BUILDERS AND METAL WORKERS OF EVERY KIND.

snstructions to Engineers-Getting up Steam.-Before lighting the fire in the morning, raise your safety valve, brushing awiy all the ashes and dust which may impair iss free action, and if it leaks steam grind it on its seat with fine emery or grindstone grit Valves with vibratory stems are safer than those with rigid stems, as they are not so liable to bind by the lever and weight getting out of true. To guard against loss by lcakage and evaporation, leave the fauge during working hours. Clean all ashes and it to the second coal over the grate bars ; pread a layer of two or turee inches of with dry sawdust, split wood on plenty of shavings over the coal, fire even and regular over the de., then start your fire. Keep tho soft coal, and about 3 inches grate bars, about 5 inches thick with minutes ging. hloderate charges or firacite, and always avoid exthe fire should best results. In getting up at intervals of 15 to 20 unequal expansio raised gradually, to avoid steam from cold water nace door open at of the iron. Do not keep the ding the boilor by heat from the fur the samo time, as the keep the damper and furthrough the door induce into the chimney, and the draught expels the wherever it strikes velocity of 12 feet per The current of air enten of the boiler plates 15.524 cubic feet for its cecond, and every 100 lbs the ash pit with a grate surfaee should its combustion. With reood coal requires about for coal burning should 1.25 to 1.4 that for coal for fuel, the area of foot of its grate surface be from 2.75, to 3 cubic feet for of furnace pyrometer has satisfact for 2000 d 4.6 to 5 cubic feet for every square That the admission of a developes a greater of a certain quantity of air behing facts. 1st. combustion and consumount of heat for raising behind the bridge always a sure sign of wasto the smoke, the existence of by assisting to the furnace increas waste. 2. A regularand contine of smoke being of air may enter behind the ling powers $33 \frac{1}{3}$ per cent. 3 pply of air furnace doors, as long as it is pre, through the bars, or through the air may vary with the nature of therly regulated. 4 . The supply of ing less air than caking conl, or the fuel; light burning coal requirmass in the furnace, excluding the air the latter becomes a compact is the reverse. 6. For perfect comburom the bars, while the latter necessary. In all cases see that combustion a high temperatare is keeping the spaking. Knock away the cling well covered and the air either by thes open between the hars, behind the bridge dampers, ashpit, furnace doorsate the supply of of, and inside the door, will stcam from a pipe rlaced by an orffice
and intensifying the heat, by yieldy assist in consuming the the top encine seam commences to blow off at its oxygen and hydrogen. cover is at rest, start your pump or injector safety valve while the the heat and allow the with a charge of ashes or freate a circulation, valve. If by neglect steam to have free egress iresh coal to absorb gerously hot, the fire sho water gets very low, through the safety Should the fire be re should either be drawn, or and the boiler danstop the engine and cory hot and the water supply absorb the heat, keeping the fire quite thicky temporarily cut off, untll the supply is reneg the nsual allowance of with ireah fuel to 3 weeks, or as often as m . Boilers should be water in the boiler after the fire has been mud appears in the prown out cvery 2 or closed, otherwise the drawn at least one water, but never until Never fill a hot boiler empty boller might be hour, and the damper Never fill a hot boiler with cold water, be damaged by the heat.
many times repeated will eventually canse it to leak. Never blow out a boiler with a higher pressure than 50 lbs . to the square inch, as stgam at a high pressure indicates a high temperature in theiron, which nuder careful management should be always let down gradually. Previons to filling a boiler raise the valve to permit the free egress of the air which might otherwise do manifold damage.
Use every possible precaution against using foul wate as it induces foaming in the boiler ; soapy or oily substances and an insufficienoy of steam room have a like effect, causing the boiler to burn on the spots where the water is lifted from it, and the glass gaves to indicate falsoly, besides damaging the cylinder by priming, carrying mud, grit, water and slush into it through the pipe, and rendering the cylinder heads liable to be knocked out. Steam from pure water at 212° Fahr. supports a 30 inch colnmn of mercury. Steam from sea, or impure water at the same temperature, will support only 23 inches.
Pure soft water derived from lakes and large streams, rain water from cisterns, reservoirs, \&c., and springs outside of limestone districts, is the bost for steam purposes. Water from wells and springs in limestone districts and small streams, hold in solution large quantities of chloride of sodium, carbonate of lime, sulphate of lime, do., besides quantities of vegetable matter in suspension. The carbonic acid in the water, which holds the carbonate of lime, te.., in solntion, being driven off by boiling, the laiter is precipitated and forms an incrustation which adheres with obstinate tenacity to the boiler plates. By continual accretion the deposit of scale becomes thicker and thicker, and being a non-conductor of heat it requires 60 per cent. more fuel to raise the water to any given temperature when the scale is $1 / 2$ of an inch thick; the conducting power of scale compared with that of iron being as 1 to 37 . The red scale formed from water impregnated with salts of iron, derived from percolation through iron ore, is still more destructive to steam boilers, and in no way oan the ovil be completely averted except by the nse of chemicale, which will neutralize the different corrosive impurities in the water. See article on Incrustation, page 368.

In tubular hoilers, the hand hole should be opened frequently and all sediment removed from over the fire; keep the sheet, flues, tubes, gauge cocks, glass gauges and connections well swept and perfectly clean, and the boiler and engine-room in neat condition. Keep a sharp lookout for leaks, and repair them if possible without delay, and allow no water to come in contact with the exterior of the boiler under any circumstances. Examine and repair every, blister as soon as it appears, and make frequent and thorough examinations of the boiler with a small steel hammer.

In case of foaming, olose the throttle, and keep closed long enough to show true level of water. If the water level is right, feeding and blowing will generally stop the trouble. With muddy water it is a safe rule to blow out 6 or 8 inchem every day. If fomming is violent from dirty water, or ohange from salt to fresh, or from fresh to aali in addition to following the above direotions, check, dranght, and oover the fire with ashes or fresh fuel.

Great watohfulness is neoessary when stemm in raised, the safety
ralve sensible heat, thus the work of an instant to xising to 12000 Fahr. boiler and destroysenorating an irresistible convert the latent into coming at the momire and property. The dore which bursts tho ralvo inducing a coment of starting thie enc destruction generally instant it touches the from a pressures the heated plates. Steam ha flashes into steam tho inch, in the short spacco. to the square inch to been known to rise ought to quicken the of seven minutes, with the 90 lbs , to the squaro explosive energy in er vigilance of every engineer to gine at rest. It at 60 lbs. pressure, is equal every cubic foot of to know that tho From avaricious motival to that contained in 1 lb . of in his boiler or to decline to empotives it has becomequite comb. of gunpowder. tent men are emploped, qualified and careful enmon to discharge, than that of the oyed because their labor congineers. Incompoorer withont notico cormer. This is too much of a few dollars less of steam power, or. Einploy good skilful men in the thing to pass If an oversight tar employ none at all, and pay in the management liable to make mist place, and the best and most decent wages. during dangerous eners, never scold, reprimand careful men aro boiler. In no casemergencies, as in the event or exact servico consideration of saving ife, linl, or property of lost water in the gent assistants. occasion was to discharce tsh mode of driving busineasing intellithe war vessels Which the English enging business on a lato racancles by installiug were built in Englind who brought out the new "Chicf" prg cheap green hands. After and supply tho produced no resint proceeded to start the enfiner getting up stean the illustrions offic, a pull at a lever was equgnes. A lift at a crank got hold of a surecal espied a bright brass cock, useless. At length he was suddenly thing this time, proceeded to and thinking he had swept the "enjimecr" saluth a jet of steam forl ive it a twist, when into the fire room ${ }^{\prime \prime}$ and his assistants out of the face, which consequent results. Dutles to the Engine ai.... engine, warm the cylinder by under steam.- Before starting the drip piston back and forth, letting atting steam so as to slowly move especialls, which should be left open all nid water flow from the Which time all plops be done during cold and night for this purpose; Tho minimum pipes and connections should rosty weather, during the maximum speed of the piston should be have extra protection. steam pressure speed 700 ft . in any encine 240 ft . per minute, and of any high pre from 80 to 90 lbs. to the e. The most economical that the loil pressure steam engine. To square inch, on the piston loss of at least pressure should be considerably ath this it is neccessary pipes and steat 30 per cent., arising from tie irrigher, for there is a liction of mam ports, by mdiation of heat, irregularity of the steam pressure, which of the effect of the governor improper packing, by the piston. :Tho lowerf entails a loss of 15 lbs . per by atmospherio ho biston. The lower the stenm pressure per. per square inch on
piston, the greater the loss of power from the atmospheric pressure; Ior instance, a steam pressure of 30 lbs. per square inch on the piston, lenves only 15 lbs per equare inch effective pressure for actual work, the other is lbs. being required to overcome atmospheric pressure.

In tightening piston rod packing, screw no tighter than merely to prevent leakage; any more consumes power by friction, and will destroy the packing. Spring packing in the cylinder should be adjusted with great care, always kept up to its place, and never allowed to become loose, or leakage will ensue, causing loss of power. On tho other liand, if it is set too tight it will cut the cylinder, and loss will result from friction. Keep your packing free from grit, sand, filings, \&c., as such substances will cut the cylinder and flute the rod. Remove all old packing before inserting new, observing to cut tho packing into proper lengths, and breaking joints by placing each joint ou opposite sides of the etuffug box. Keep the governor clean, easy in its movements, and avold excessive tight packing around the spindle. Use good oils. Avoid waste in the use of oil, as too great profusion generates gum and dirt. Use it with judgment is combjnation with conceutrated ley when it is required to remove gum or dirt from these or other parts of the machinery. Do not lubricate the cylinder until after starting the engine, and closing the drip cocks. If you have occasion to separate a rust joint, or any crank from a shaft on which it has been shrunk, the simplest plan is to apply heat, when the bodies being of different dimensions will expand unequally and separate. Iron when heated expands with irresistible force. Railway contractors know that the heat of the sun on a warm day will cause such an extension of the iron, that the rails, if laid with close joints, will rise with the sleepers from the ballast, and form arches 4 or 5 feet high and 50 or 60 feet in length. In accommodation to this law of expansion, spaces are left between the rails on railwhy tracks.

The contraction of iron by cold is equally powerful, and has been put to good use in trueing up large bulging buildings by fitting iron girders across them with strong wall plates at each end. Then, by applying gas jets ali along the girders they will expand ; the screws are then tightened up, and the girders allowed to cool, and the strain of these contractions, several times repeated is sufficient to bring the walls to the perpendicular. Again, in hoisting heavy machinery, \&c. by means of pulley-blocks, if the ropes stretch and the blocks come together too soon, wet the rope, and the object will be elevated by its contraction without any other force. These hints will be found useful when occasiou offers.

In driving the kegs on the crank-pin and cross-head, use a leaden mallet, or interpose a plece of leather, or a sheet of soft metal for protection, if a steel hammer is used.
The piston should be removed every 6 months, and the parts injured by friction, \&c. carefully ground, fitted, and if need be turned, trued, and made ateam tight. If knocking occurs in the engine it may arise by the crank being ahead of the steam ; if so, move the eccentric forward to give more lead on the valve, if caused by too much lead move the eccentric further back, if caused by the exhaust ciosing too soon, enlarge the exhaust chamber in the valve; if caused by the engine being out of line, or by hard or tight piston rod packing, these
faults mi the valve be that 1 blocks, k head, if are too th on the e Knocking der, caus remedy fo
faults mast be corrected ; if cansed by lost motion in the jam nuts on the valve, uncover the steam chest and adjust them correctly. It may be that knocking is caused by lost motion in the crank-pin, pillowblocks, key of the piston in the cross-head, or boxes on the crosshead, if so, tighten the key, or file off the edges of the boxes if they are too tight. Should knocking arise from shoulders becoming worn on the ends of the guides from any cause, replace the guides. Knocking may be caused by insumfient counterboring in the cylinder, causing derangement in the movements of the piston. The remedy for this is to re-counterbore the cylinder to the proper depth.
Keep a close watch orer the journals of the crank and cross-head, if they are loose in the boxes, or too tight, they will run badly, if tightened too much, they will heat and wear out the brass shoes, if not tight enough there is danger of the keys flying out and breaking the engine.
Be sure that your steam gauge indicates trnthfully. It ought to tell accurately the pressure of steam in the botler when the water is hotter than 212° Fahr., and indicate the variation in the pressure of steam from time to time; but many gauges are much worse than the contrivance used by the colored engineer, who, disdainfully dispensing with a gange altogether, used to ascertain the critical moment when steam was ap, or danger at hand, ly clapping his open hand on the outside of the boiler.
Steam Packnra.-Many varietics of packing aro nsed, such as metallic packing, packing composed of a mixture of duck, paper and tallow in proper proportions, soapstone and loose twisted cotton colls, asbestos, jute, ac. An excellent packing is composed of hemp in long loosely twisted colls, well saturated with melted grease or tallow, with as much pulverized black lead as it will absorb." Packing is always applied with the best effect when the parts of the engine aro cold, and its efficiency is promoted by soaking it in beeswax and tallow previous to use.
To Work Steam Expansively.-The volume of steam at 15 lbs. pressure to the square inch or atmospheric pressure is 1700 times greater than that of any given quantity of water from which it may be derived. When confined nuder pressure, as in the cylinder of a steam engine, it is always in the effort to expand itself to the fullest extent, and a vast saving of fuel is effected by cutting off the supply of steam from the piston by means of the main valve, before it reaches the end of its stroke, instead of allowing it to flow during the full length of its stroke.
The most arailable points at which to cut off steam is $\frac{3}{3} \frac{3}{2}$ and $\frac{1}{4}$ of the full travel or stroke of the piston. If steam at 75 ibs, pressure to the square inch is applied to the piston and cut off at half stroke, the average pressure, during the whole stroke, owing to the expansive quality of the steam, would be G3, lbs., or only $11 \frac{1}{2}$ lbs. less than the full presscire, althongh but half the quantity of steam is used, requiring fully $\frac{7}{\text { l }}$ less fuel.
Imagine the diagram to be a cylinder of 3 ft . in length with steam at $C 0$ lbs.' pressure, entering the open port. During the first 4 inches of the travel of the piston the steam port is open, permitting the full pressure of the steam to operate on the piston; but at the twelfth tach marked C; the steam lap on the valve V closed the port. The
imprisoned steam will now propel the piston to the end of the stroke, driving out the llberated steam through the port A into the exhaust cavity 13 , but by the time the piston reaches $D_{1} 12$ inches

from C, the original pressure of 60 lbs . per square inch will have decreased one-half, or to 30 lbs., and when it reaches E, 24 inches from C, it will havo still further decreased to 201 lbs . Average pressure 39 lbs . Two-thirds of the stroke have thus been made without any supply of steam from the boiler, and forms the saving due to working the steam expansively. The lack of this contrivance is tho true reason why some engines use more fuel and steam, than others of the same capacity and power. It has been stated that the economy of the Cirliss cut-off is such that it requires only 2 tons of coal instead of 6 tons used by other engines of the same power, but tho great trouble with that cagine is tine liability of the complex and costly ralve-gear to get out of order, entailing difficult and expensire repairs.
Table.-Showing the average Pressure of Steam on the cylinder qohen cut off at $\frac{1}{4} \frac{1}{2}$ and $\frac{8}{4}$ of the stroke or travel of the Piston, commencing with 25 lbs , advancing by 5 llbs. and ending at 100 lbs .

To realize the best results from steam, keep the cylinders, pipes, \&c., well covered with good non-conductors. Various materials aro nsed, such as common felting, asbestos felting, hair, old wool, tow or hemp carpets cut up into strips of the proper size and smeared over with a substantial composition of mortar, teased hair, \&cc. before applying to the pipes. Cover the whole with coarso canvas, finish-

- log with boilers

 brown worked mixture \&c., see well clot the latter tion arain duction 10 To Set of its strol the crank t responding cither end. justing the impinge aga justing the piston, the e amount of pausive worl trarel of theTo FIND T dead centre, movement to between the stroke of the that carries th the stroke is le To FIND TH
ric on the hea The difference the eccentric. LEAD ON TH of opening whi
is at the end of is at the end of
presents outside Which ought to k the exhaust easi should be taken
cartail the powe cartail the powe ascertain whethe the steam chest ; short batten of m scratch awl lay of
port, that will ap port, that will ap chamber that will valve on its seat, rribed on the fac ralre seat 1-10 of
boilers with a thickish compore lead orer the canm
brown paper for a bind, to provion of clay, intermise Snme cover worked up into shreds al wo prevent cracking ermixed with grey or mixture of mortar, teased la with the water und ce, the paper being \&c., see "compositioned halr, \&c. Some und clay. Others use a well clothed and jacketor covering bollers." asbestos, wood ashes, the latter when kept coted, and cased with wood Cylinders should bo tion against lose of heat bytily bright being a mor polished inctal, best absorbent and cond by rudiation. Ama most powerful protecduction 100, that of copper of heat. If wo metals, silver is the
To Set the valve or is 74, gold 53, iron 12 its power of conof its stroke, and give the AN Evgine. - Place the lead 9, bismuth 2 . the crank to the other end valve the proper amoue crank at the end responding amount of end of its stroke, and if tho of lead ; reverso cither end. if any exists lead it is correctly set. Tho valro has the corjusting tho nuts attaching the be equally divided. preponderauco nt impinge against the raling the valvo to the rod, 130 carefulin adjusting the slide valve tos, preventing it from rod, that they do not piston, the eccentrio shond cut off at any point of thg true. In adamount of lap given to tha be moved forward in the trayel of the pansive working of stenme thalve, without any in proportion to tho travel of the piston. steam, the valve must open at thence to the exTo FIND THE \&T dead centre, and Droke of the Varve movement to the make a mark on the ral- Place tho crank on tho between the two marks end and make another maten rererso tho stroke of the valve mays constitutes the stroke of the the distance that carries the eccentric bocreased as the bearing the ralre. The the stroke is lessened. To FIND THE THRow ow shorten the samo and thic on the heaviest side, then menecenntitc.-Mensnre the cccenthe eccentric. LEAD ON THE Stime of opening which the ralvalve. - The lead of a ralre is the ridth is at the end of its stroke, as anss to the steam port when the piston presents outside lead, inside lead, being the diagram at A, which rethe exhaust easily double the amount of shown into the exhaust nt B, should be taken no and thus reduce or prevel lead in order to liberato curtail the power of toliberate the exhaust too back pressure. Caro the speed slow, as in the engine, especially if soon, as it will greatly ascertain whether the egines with heavy trains o labor is heavy and the steam chest ; then exhanst opens at the right tip grades, \&c. To short batten of wood uncouple the valve from the raim not, uncorer scratch awl lay off lines lengthways on the exlinant valve rod, piace a port, that will appears on the valve seat, on each port ; then with a face of the valve and lave the valve. Next lay side of the exhaust chamber that will show on off corresponding lines on batten on the valve on its scat, and pive the edges of the ralve, on the exhaust cribed on the face of the 1-32 of an inch lead, and if replace the

does not the exhaust chamber in the ralve should bo enlarged to the sight sizo.

Lead is given to a valve to enable the steam to act as a cushion on the piston, by admitting the steam to it previous to the end of its stroke, In order to cause it to reverse its motion easily, without jar or noise, for it is not allowed to touch the top and bottom of cylinder for fear of knocking them out. The space between the top and bottom of the eylinder and the piston, when the latter is at the end of its stroke, is called the clearance, shown at C C on diagram. The term clearance is also used to designate the capacity of the connecting steam ports and passages. It is necessary to guard against too much cushion as it greatly impairs the powers of the engine, causing violent thumping or knocking, and sometimes a serious breakdown. Onecighth of an inch lead is sufficient for an ordinary freight and 1-16 is sufficient for passenger locomotives, the difference belug on account of the greater speed of the latter.
Lap on the Scide Valve.-The steam lap on the blide valve is the emount by which it extends over the extreme width of the

cyllnder ports, as illustrated in the diagram, the distance between the dotted lines B B LL, and the sides of the ports P P, being in each case the lap, the lines B B indicating the outside lap, and $L I$ denoting the inslde lap, $\mathrm{E} P$ exhaust port, E exhaust cavity in valve. V S valve seat, C C valve face. The cmission of steam into the cylinder

Is regule steain p faces of by whict known a value the explaine

T'ABL rarious p

Trat

Travel of the Vaive in inches.

Giffard's IN and reliable inve dispensing with of 2 pipes, the of ing in a third pip through an orifice
is regulated by the outer and inner edgen of the valve and of the steam ports. When the valve is so contrived that at and of the by which each face comes cover the stean ports internally, the space kuown as inside clearance. By means of the edges of the ports is valve the engine is enabled to use jts steam exsteam lap given to tho explained.

I'able.-Showing rarious points of cut off: amount of Lap on the. Sluce valve at , the travel of the value in inches.

and reliable invention for feedmg boilers, Wellers \& Co., is a novel of of 2 pipes, the one conveying steam, the and well known combination ing in a third pipe or tube, a jet of sten other water, both terminatthrough an orifice, of say, 1 inch in diam from the boiler escaping , 1 inch in diameter, with 60 lbs. pressure,
is condensed in perhaps 12 times its weight of water, which itdriven throngh the third tube, causing it to enter the boller through an orifice mach smaller than the oue by which it cscaped. The momentum of the steam impels the water with great force and imparts all its heat to the water during transmission. The following tablo slows the maximum temperature of tho foed-water admissible during differcnt pressures of steam.

$$
\begin{array}{lcccccc}
\text { Prcsusu per square inch. } & 10 & m & 30 & 40 & 50 & 100 \\
\text { Temperature of feed, Fahr. } & 148^{\circ} & 130^{\circ} & 130^{\circ} & 123^{\prime} & 130^{\circ} & 110^{\circ}
\end{array}
$$

Of tife Form, Stringetil \&c. of Steing Botlers.-Regarding the form of boilers, it is now an ascertained fact that the maximum strength is obtained by adopting the cylindrical or circular form, the haycock, hemispherical, and wagon-shaped boilers, so general at ono timo, hare now deservedly gone almost ont of use. Good boilce plate is capnble of withstanding a tensile strain of $50,000 \mathrm{lbs}$ or (i) 000 lbs . 01 every square inch of section : but it will only bear a third of this strain without permanent dicrangement of structure, and $40,000 \mathrm{lbs}$., or $30,000 \mathrm{lbs}$. even, upon the square inch, is a preferable proportion. It has been found that the tenacity of boiler-plato increases with the temperature un to 8700°, at which point the ten. ncity commences to diminish. At 320 cohesive force of a square inch of section was $56,000 \mathrm{lbs}$; at 5700 it was $66,500 \mathrm{lbs}$. : at $720^{\circ}, 55,000$ lbs. ; nt: $10500,32,000 \mathrm{lbs}$. ; at $1210^{\circ}, 22,000 \mathrm{lbs}$. ; and at $13170,9,000$ lbs. Strips of iron, when cut in the direction of the fibre, were found by experiment to bo 6 per cent. fitronger than when cut across the grain. The atrength of riveted joints has also been demonstrated by tearing them directly asunder. In tivo different kinds of joinis, doublo and single riveted, the strength was found to be, in tho ratio of the plate, ns the nimbers 100, 70, and 56.
Assuming the strength of the plate to be................... 100
The strength of a double riveted joint would bo, after allowing for the adhesion of the surfaces of the plate.........
And tho strength of n single riveted joint...................... 86
These figures, representing the relative strengths of plates and joints in vessels required to be steam and water tlght, may bo pafely relied on as perfectly correct. The accidental overheating of a boiler has been found to reduce the ultimate or maximum strength of the plates from 65,000 to $45,050 \mathrm{lbs}$. per square inch of section. Every description of boiler nsed in manufactories or on board of steamers should be constructed to a bursting pressure of 400 to 500 lbs . on the square inch ; and lo:omotive engino boilers, which are subject to much harder duty, to a bursting pressure of 500 to 700 lbs . Such boilers are usually worked at 90 to 110 lbs . on the inch, but are frequently worked up to a pressnre of 120 , and, when rising steep grades sometimes even as high as 200 lbs . to the square inch. In a boilier sulject to such an enormous working pressure, it requires the utmost care and attention on the part of the engincer to satisfy himself that the fat surfaces of the fire box are capable of resisting that pressure, and that every part of the boiler is so nearly balanced in its powers of resistance as that, rhen one part is nt the point of rupture, every other part is at the point of yielding to the same nuiform force : for fo find that, taking a locomotive boller of the usual size, even with
a pro firco crease a high. flues, on the square have th go tarte which a and we tled up actual u them by should b sion. If its strens minishea of the bo form ; an about one case exce ness of pla The force greater sas were in th As regarde that a circt sure of on and a limit mith boiler durability 1 caused by a ougineer, cs briler when often causin in the crown common. lea inserter imm relief may be ceeris that of extensive use perforated mi is composed, attained the to which varies 1 such alloys un farther on. A attached to such thicknems exceeds that or use chonld be 1 steam gauges,
${ }^{n}$ pressure of 100 lbs. on the square inch,
force within its interior of nearly 60,000 , it retains an expanding creased than diminished at a high 00,000 tons, which is rather ing a high-pressure hoiler, 30 feet lour speed. To show' the strain upon ilues, each 2 feet 3 inches diameng, 6 feet dinmeter, haring 2 centre on the square inch, wo have only trorking at a pressure of 50 lbs. square feet of surface, 1030, exply to multiply the number of the have the force of 3310 tons, which exped to prossure, by 321 , and wie go farther, and estimato the pressure such 3 boller has to sustalu. To which a well-constructed boiler of this at 450 lbs . on the square insh, and we haro the enormous force of 29,871 will bear before it bursta, thed up within a cylinder 30 feet long and or nearly 30,000 tons, bot actual use should be tested at least onco 6 feet diameter. Boilers in them by the hand feed-prump, until the a year, by forcing water into sion. If a bolled with at leaste tivice the safety-valvo is lifted, which its stren, th eher will not stand wis pressurining pressure for the occaminishec. Internat increasod or the workin is not safo, and either of the boiler, should fues, such as contain the pressure should be diform ; and, as rrould be kept as near as possible to in the interfor about one-half of whit iron will yield to a force to the cyiindrical caso exceed orj-half the rould tear it asunder, thending to crush it ness of plates they may diameter of the boiler, we flues should in no The force of comprey be congi.s ered equaily safe with the same thickgreater safety would be en being so different from the other parts. were in the ratio 1 to eensured if the diameter of that of tension, As regards the relative instead of 1 to 3 of the of the internal flues that a circular flue 18 ive size and strol gth of flameter of the boiler. sure of ono 3 feet in inches in diameter will rees, it may be stated and a limited experienco viter. Mill owners, rist dovible the preswith boilers containince with steam powor, would with plenty of room durability less chan ith many fiues, the expense do woll to dispenso caused by a large numbere there in one or two greater and tho sogineer, causing himber of fines is apt to deco only. The foam builer when he tries the belleve that there is plenty inexperienced often causing an exp the gauge cock whon tinere ty of water in the In the crown of the fumion. Some mill-owners ine is but very little, common. lead melts at 620° to indicate danger from a fusibie plug inserter immediatoly 6200°, n rivet of this meta from low water. As relief may be obtained over the fire place, will giro 1 inch in diameter, ceeds that of the resistincore the internal prove due notice; so that extensive use is madeng power of the heated plare of the steam experforated metallic disc fusible metal plates, generail In Franco, an is composed, and alise, which protects the alloy of ty covered by a attained the temperature to ooze through as soon of which the plato Which varies from 2800° to necessary to insure the fusion of steam has such alloys under the to 3600 . The reader will find of the plate, further on. Another method view of alloys and their a number of attached to eome cer method is the bursting plat their meiting heats, such thickness and duenient part of the uppete, fixcd in a frame and excecds that on the ductility as to causo rupture side of the boiler, of uso should be mate safety valve. But, beyond ail when the pressure steam gauges, glass on all boilers of a good and questiou, constant steam gauges, glass tubes, gauge cocks, good and rellable system of gauge cocks, safety valves, \&c. By means
of the glass tubes affixed to the frunts of the boilers, the lieight of the water within the boiler is indicated at once, for the water will stand at the same height in the tube that it stands in the boiler, communication boing established with the water below and the steam above, by means of stop cocks.

When dry steam is an object, the nse of the steam dome on boilers is strongly recommended; opinior s are divided as to the real value of mud drums, some reason strongly in their favor while others discard them entirely; but there can be no question as to the true economy of hisating the leed water previous to emission into the boller; it should alway be done when practicable to do so, ly means of some one of the many contrivancen for that parpose which are now in the market. Regarding the poocer of bollers, it may be stated that a boiler 30 feet long and 3 foet in diameter, will afford $30 \times 3 \times 3.14 \times 2-141.80$ square feet of surface, or steam for 14 horso-power, if 10 feet are atumed for ons horso-power. Two short boilers are preterable to one loug cne, on account of having more fire surface,-it being always necessary to have me much fire surface as possible to make the best uso of the fuel-as the hotter the surface in kept, the less fuel it tales to do tho fame amount of work. When there is a largo furnace it gives tho fireman a better chance to keep the steam reguiar, for when clearing out one part of the furnace, he can keep a hot fire in the other. For cach horse-power of the engine there ought to be at least one squaro foot of grate, and three feet would bo better. In setting a boiler, arrangement should be made to carry on combustion with the greatost possibie hest. This requires good non-conductors of heat, such as brick, Fith which to surround the fire. If these bricks are of a white color, the combnetion is more perfect than if of a dark color. The rool, as well as the aides, of the furnace should be of white fire-brick. Tho. bars of the furnact should be 18 or 20 inches below the boiler or crown of the furnace. They should siope downward toward the hack part, sbout hall an inch to the foot. A crack is n boiler plate may be closed by boring holes in the direction of the crack and insertiug rivets with large heads, so as to cover up the imperfection. If the top of the furnace be bent down, from the boiler having been accidentally allowed to get short of water, it may lie set up, again by a screw-jack, a fire of wood having been previonsly made beneath the injured plate ; but it will in gereral be nearly as expeditious a course to remove the plate and introduce a new one, and the result will be more matisfactory. There is one object that requires very particular attention, and which must be of a certain size to produce the beat effect, and that is the flue leading from the boiler to the chimney, as well as the size and elevation of the chimney itself, Every chimney should be built several feet above the mill house, so that there is no obstrucSon to break the air from the top of the chimney. In England a factory chimney suitable for a 20 horse-power boiler is commonly made about 20 inchea square inside, and 80 feet high, and these dimensions are correct for consumption of 15 lbs, coal per horso-power per hour, a common consumption for factory engines. In the Dominion of Canaria and the United states chinnoys of sheet iron, from 30 to 50 foet high, are in quite common use by owners of asw, and other mills, and they seem to answer every requiremeut.
Pmorortion or Steac Bolwens,-Cylinder Bollers. The longth

Iano
tion abont 9 lb ft. and arate require from of grate per h

MACEUNISTS, ENGINEERS', \&C., RECEIPTS. 36\% should never exceed 7 times its diameter ; the unit for it is 12 geating surface horne-power ; a fair evo of a square foot of grate surfece 12 aq. ft. , xis on oif Tabular Boiler. water for 1 lb of coal

Very long cyinder boil
should have on inclination of 1 inch in evertiral support. All boilers off end. Thestur Boilers-Length 4 times utie ft. towards the blow-

Iancashire Zoiler.

tion abont 9 lbs , of water to 1 ft. and grate surface, $\frac{1}{2}$ square of coal. Heating surface 15 sqnare of of grate per horse-power. Evaporgtiting suiface, and $\frac{1}{2}$ square ft .
coal. Length of fiue boilers should not excerd δ times their diameter, diameter of flucs not more than 12 to $14 \mathrm{in}$. ; if mado larger, use heavic: iron than that used in the shcll of boiler, aud construct with butt joints. Cornish and Lancashire Boilers. In Eugland, Cornish boilers are known as those furnished with one internai flae, and are usually of great capacity and power, having plenty of stcam room. Iarcioshire bollers lava 2 flues. Return Filue Boiler. When a boiler is fittod with a flue curving round at the rear, and returning to tho front, it is called a return tluo boiler. Sce diagrams of Vollers.
Boiser Shecks.-For a boiler of 48 in . in diameter, to carry 90 lbs. per square in. pressure, nso $\ddagger \mathrm{in}$. to $\mathrm{g}_{\mathrm{in}} \mathrm{in}$. good plates. Wrought irou heads for ditto to to thel. Tubs Shicets and Crmon Shects for ditto. a to ${ }^{3}$ inch. Rivets on boinirs up to 42 in . diam. and $\beta \mathrm{in}$. iron, should be of in. for curvilinear, and if in. fer longitudinal rirets for single vivete:i veork. On, conible riveted vrors, in. rivets will answer for both kinds of seams. For 6-10 iron down to 3-16 ins. smaller rivets will answer. Drilled rivet holes are preferablo to punched. It is highly beneficial to heat the boiler plates beforo rolling to form the shell of the boiler. The fibro of the iron should always run around the boiler, never across it. 1 steel shell boiler 4 ft . In diam. and in. thick, is as strong as an iron hoiler of aamo diam. and 8 in. thick, and will evaporate 25 per cent. more water, bestdes being more free from incrustation and corrosion. Tho workfing pressure of boilers should be 5 thmes less than the bursting pressnre.
Cosmposition for Coverisa Borens, \&c.-Road scrapings, freo from stones, 2 parts; cow manuro, gathered frum the pasture, 1 part; mix thoroughly, and ndd to cach barrowful of the mixturo 6 lbs of fire clay ; $\frac{1}{2}$ lb, of flax shoves or chopped hay, and 4 ozs, teased hair. It must bo we:l mixed and chopped ; then add as much water as will oring it to the consistency of mortar,-the moro it is worked the tougher it is. It may either bo put on with tho trowel or duubed on with the liand, the first coat aivent 1 inch thick. When thoroughly dry, another tho samo thickness, and so on, three inches is quite enough, but the more the bette:. Let each cont wo scored liko plaster, to provent cracks, tho last coat light and smooth, so as to receive paint, whitewash, se. The boiler, or pipes, must first wo brushed with a thin wash of the misture to lusuro n cateh.
On the Prevention of Scale in Steam Bollerg,-It ie well known that all natural waters contain more or less imparities, and also that these impurities work to disadvantage in steam bollers. But there are very fow steam uisers who fully realize how far the disadvantages of ihose impurities extend.
We tind that 170 boiler exploaions are on record for the year 1880 , by whioh 259 persons were lilled and 555 were injured, and we think the following reporta, given by the Hartfora Steam Boiler Inspection and Insurance Co. for the same year, will show that 80 per cent. of thaso explonions were oaused either directly orindireotly by impurities in the water. The following is the report.: -
Furnaces defeotive, 1105. Fractured platen, 2075. Barner plater, 1105. Blistered plates, 344. Cases of sodiment and deposit, 2754.

Irern groov Intrastation and seale, 3891 grooving, 234. Water-guages defaes of corrosion, 8188. Internal 200. Bafety valves overionded, 258. 408. Boilers condemned, 37\%, 258. Defective brtaing and staying, The above report thow management of the stoam boiler necessity of care and experience in the what is lont by deposits of sediment: the following figures will show Mr. Hsm, Master Mechanio of thent.
in a report, at a meeting of the of the New York Central R. R., statem tion, held at Lovinville, Ky., in 1871, Mailwater Mochanicn' Astocia, to $\$ 75,000$ for Many solvents hyudred locomotives, on his road, would amount tion of boilents have been introduced of the merite of ale, but from a soientific in the removal and prevenscale, wo have a ricles sold for the removal estigation recently made ap of refuse matter, streiagth or sotcer, the bulk being no more or lase articles are made which are dso-called virtue consisting of pows than water; the But an artioleging and debiructive to the boiler. refune acids, by Geo. W. Io nnown as Lord's Boiler Compor.
also in several differiladelphia, Pa., is highly indo, mannfaetured pound highly reoommendedzs on Steam Engineering Lord's fond Roper, in his H mended. article on Corrosion, paok of Land and Marine Engineering, in an to be the only know, remedy, thaya that Lord's Compound appears against its fearful effects. satisfactory results to possess the necersan", ingrediente to produce injurious action upondor all circumstances. It is fonnd to have no 3 tendenoy to protect the iron of boilers, but on the contrary to have of the plates by corrosion. A olose in by corrosion. year 1880, given in this artice Hartford Inspector's Reporte for the remedy can hardly lo entimated whill show that the true value of such Averiar Proportion oraj Pipe should be 1 the diameter of crices Parts of Evarnes, -Steam Exhaust Pipe should be ter of cylinder, but varies on largo engines. should be of the diameter of the diemeter of cylinder. Piston Rod steel. For high speeds, steol piston ry if of tron, and smaller, if of rary according to speed, fro piston rods are tho best. Steam Porls foot of should possess an area of $\frac{1}{2}$ square area of piston. Siffety. foot of grate surface, and should bo square in. of surface for stiory thems, for the renson that they aro not so constructed with looso ribrawory Rur with rigid stems. Bule for size for a 2 -horse beam encindern. -The requisite diameter of cylinder The nominal horse-power of any inches, and about 5 feet stroles. tiridollowing formula:- For any sized cylinder can be found by divide the area of cylinder by 25 , pressire or beam engines, borse-power. For high pressure which will give the number of
area of cylinder's diameter by 12.5 , which will give the number of horse-power, including all fiction.

Stroke of Snaines. - The stroke of an engine taries according to circumstanceis, which the designer must tate into consideration; but the general rule is to make the stroke about twice the diameter of the cylinder. The diameter of the fly-wheel should lo about 4 times the stroke of the engine, and the rim ebould weigh about 3 owt. per horse-power.

Rule to find the Horse-Powez of Stationame Enoinks.Multiply the area of the piston by tho average premare in lbs. jer square inch. Multiply this product by the travel of the piston in feet por minate; divide by 33,000 , this will give the horve-powrer.- Hoper.

Exaziple:
Diameter of cylinder 12 12

144
7854
Area of pliston
113,0076
Premure, 70 ; Δ rerage pressure, 50
Travel of plston in fect per min.
8631.880
$33,000) 1606464.000$
Balance Wireels. - Every balance wheel shouid be ppeeded up no as to run twice or three timen as fast as the crank shait it is intended to balanco. When a balance wheel is applied in this way it makes the machine run a great deal more steadily, for, when tho balance wheel is geared into the crank shaft, and rous two or three times faster than the crank shaft, it forms a power of itself when going over the centre, which propels the crank shaft until it reaches tho quarter, where it again takes its power from tho machine. Although it takes an additional shaft and gears to apply a balance wheel in this way, the saring of metal in the belauce wheel fully compensates for the extra libor; for, when a balanco wheel is speeded three times as last as the crank shaft, it needs only sac third of the metal in it that it would were it not speeded up at anl, and if bolance wheels were applied in thls way generally it would make all cugines run far more steadily.
To Reverse an Enc:ne.-Make a legible m ok on the eccentric near the shaft, make a similar mark on the shaxt at the same place. Now place ono point o! the callipers on the mark made on the shaft, and with the other point ascertain the ceatre of the shaft on the opposite sidc, making another mark there also. Next unscrew thio eccentric and movo it in tho direction in which you wish the engine to run, until the mark on tho occentric comes into lime with the secend mark on the shaft, then screw the eccentric fast assd the engine will run tho roverse way.

Marine bear elyine, being the teamers. The 1 of a cross, surro by a powerful wr conform to the ca led to recelve the eta for the main resting on the fra,

engine, being the ENGINL, The above cut represen
tteamers. The Woind 80 frequently seen on river iss marine beam of a crosa, surrounding-heam, W, is a masiver, lake, and coasting by a jowerful wrought, strengthened, and stoyed casting in the form conform to the castint-iron strap, forged in stryed, in every direction ad to receive the end, whlch contains sock one plece, and shaped to ets for the main centre journals, besides containin each extreinity fitresting on the fiamere anci air pamp joumining intermediate conkstout beams of wood, forming 2 :
triangles as shown at DD in cut. These again rest on massive beams atyled keelsons, shown at KK, and are braced and rigidly secured to the vessel and inachinery by other powerful timbers, kuees, strape, and iron fastenings. The guides are shown at \mathbf{B}.

The main link is shown at A, the connecting rod at C , the value stem at V, and the cylinder at F, in a vertical position over the condenser.

The steam cylinder F, is usually a massive casting, aunular in form, bored and finished very true for the easy movements of the piston. It rests on a round flanged casting contalning the lower steam port, called the cylinder bottom, which intervenes between it and the condensor S, and is securely attached to each, by bolts and steam tight rust joints. The elevated end of the cylinder is immovably braced to the fruming above. The valve chest is shown at EE, the air pump at I, the hot well at G, the boiler feed pump at R, and the dolivery pipe at P.

The condenser S, in which the exhanst steam is reduced to a liquid form, is of the same shape and diameter as the cylinder, flanged at both ends, and its contents should be 13-30ths of the space througit which the piston moves during one stroke. The wooden frame which sustains the main beam is attached by stout bolts and keys to stroug flanges which project from the condenser, the upper part is cast close and the lower end is open and fitted accurately on the bed plate to which it is attached by a rust joint and bolts.

In the method known'as "surface condensing" the process is effected by causing the steam to pass through au arrangement of tubea submorged in ruming cold water ; the other method, known as "jet condensing," and by far the cheapest arrangement, consists in bring. ing the steam in contart with a jet of cold water ns shown in the following diagram, where J represents the jet; E, the exhaust pipe, P,

the injection pipe; II, air-pump cylinder; $\Lambda \Lambda$, air-pump valres, V, air-pump rod; D, dellvery valve; H, hot well.

The next cut represents Sewali's surface condenser, in which the exhanat steam enters at B and is liquefied by contact with the exterior surfaces of the tubes; the injection water is admitted at the opening K , passes through the foot valves L. I L and is driven through the delivery valves S. The water of condensation passes through the delivery valves N, O, P, and is driven through the delivery valves I and
the out by the ends of any sho cistern.
pump d cistern. the two. the cond

trary, the sur that it may b this way maj frequent blow the plates of t oxhaust valve into the cond former to such tance owing to fied by applyin starting the en
The piston o packing, and is per and lower
the outboard J , into a cistern from which the bollers are supplied by the feed pumps with their water. The apertures D F, are the euds of a pipe connecting the fresh and salt water cisterns, so that any shortage in the feed water may be furnished from the latter cistern. I represents the end of a pipe through which the auxiliary pump draws water, and A is an air chamber for the salt water cistern. The jet condeuser is the lightest, simplest and cheapest of the two. only it has the fault of supplying salt water to the boilers, as the condensed steam and the sea water jet intermingie; on the con-

trary, the surface condenser preserves the water of condensation so that it may be used in the boilers many times in succession, and in this way maintains its freshness, dispensing with the necessity of frequent blowing off in order to avert the danger of salt deposits on the plates of the boilers. Care should be used to keep the steam and pxhaust valves steam tight in order to prevent the leakage of steam into the condenser while the engine is at rest, thereby heating the former to such an extent that the injection water cannot find admittance owing to the pressure. In such cases the trouble may be rectified by applying cold water to the exterior of the condenser, or by startling the engine and moving it a few strokes.
The piston of the marine engine possesses the nsual form of spring packing, and is powerfully braced by diverging arms cast on the npper and lower tlanges, the cylinder head is similarly strengthened

374 MACIINISTS AND ENGINFERS' DEPARTMENT.

intemally, while the exterior or outaide is turned and nsually kept highly polished. The steam chests contain the usual appliances of the receiving and exhaust steam passages, valves and valve seats; the lower chest contains the outlet or exhaust port commnnicating with the condenser, while the higher chest embraces the throttlo valve pipe connected with the supply pipe, commnnicating with the bollern. The steam chests are very accurately fitted and atrongly secured to the cylinder, and the valve bounets and piston rod glandn are turned and kept bright. The valies which control the flow of the ateam are of the description styled double-balance valres, because the downward pressure on one valve is almost bulanced by an opposite pressure on the other, the two being connected in pairs, and being retained in their seats, by the highest valve in the pairs on the induction side and the lowest valve of each pair on the exhanst side being eomewhat larger than the others, thus inducing a very slight unbalanced pressure. The valve gear embraces the lifter rods, and lifters, the rock-shafts and their levers. The lifter rods, four in number, have a vertical movement up and down on guides attached to the steam chests and side pipes, and to these rods, eight projecting arms, called lifters, are attached by keys. Four of the lifters connect with the extremities of the valve spindles, screwed, and fitted with donble jam nuts, the other four are set vertically over the levers on the rockshaft, which imparts their motion to them. The rock-shafts, two in number, one for the induction and the other for the exhaust valres, are operated by distinct eccentrics. There are four levers on the shafts, operating and raising the rods and lifters, and to in ${ }^{-1}$ uce a smooth movement, they are bent or inflected on their working i ces. Cast iron side pipes polished, turned, and ornamented, connect the steam chests, and are fitted with expansion rings of sheet copper to accommodate or compensate for the unequal expansion or contraction of the metal.
The lifter rods with the valves, are alternately elevated and depressed, by the rocking or reciprocating movement of the shafts. The length of the exhaust levers is so adjusted as to impart the exact amount of lift and lead, and are so regulated on their rock-shuft that the elevation of one rod commences at the very instant the other is completely depressed. The induction or ateam levers are longer than the last noted, and are placed on thin rock-shafts so as to incline to each other, so that a space intervenes between the elevation of one rod and the depression of the other, during which time both valres are down, and the steam comection stopped. This mechanism forms the expansive cut off gear, and may be partially changed by varying the fixture or position of the eccentrics on the shaft, the pin in the eccentric lever, and the levers on the rock-shaft; the rec, uired lift of the valves may be adjusted by changing the position of the eccentric pin.
The trip, or rock-shaft is a wrought iron shaft moring in solid bearings on the lower steam chest, and is fitted with substantial projections connmensurate with similar ones on the lifter rods, which when in motion elevate and depress the valves, operating in the same way as the large rock-shafts. The rock-shaft is fitted with apertures for the insertion of the starting bar, which in starting has to overcone the weight of the valves, lifter-rods and their comectlons.
Duties to Marine and otien Engines.-Among the raried
tacks tance t parts of everyth looseuea the eve fillugs, ressels, to heat. where m pumice In troubl and subs
If delay the faces, of the pi by regrind tightuess use of the abould be tions from proper amc on the top place, in or at the prop
The lint:repaired an ined us op cover must pose. The guard again seriously der be made of openings and ficicut tubes the vacuum the condense cause. If the jection water. denser with tlame will be in searching 0 covered. Thic can, when asc Fedges, or us noted in this w useful occasio have happened long royages a condenser had sion, or otherw in a reservoir finding its way ing the steam,

MACHINISTS AND ENGINEERS' DEPARTMENT. 375
tagks that devolve on the engineer, none of them are of more importance than the imperativo watchfuness required to see that all the parts of the eugine are properly adjusted, iltted, and regulated; that everything is kept in efficient order; that there is neither daugerous looseuess or extreme tightness about the keys, nuts, bearings, etc. In the event of the crank-pin heating, apply a mixture of tallow, leadfilinge, and black lead, or sulphur, black lead, and oil. In steam ressels, the crank-pin and the pillow-blocks are the points most liable to heat. The latter may be treated with the cooliny compound elacwhere mentioved, or water mixed with Bath brick dust, or pulverized pumice stome, may be poured in through the holes in the bearings. In trouble caused by grit, the application of concentrated potash lye, and subsequent lubrication, has good effoct.

If delayed in port, the piston should be removed and examined, and the faces of the rings, where they compose the joints with the flange of the piston-head and follower-plate, tried, and accurately fitted, by regrinding, etc., and the spring-packing properly adjusted. The tightuess of the repairs may be tested by the admission of steam, the use of the indicator, und a lew turns of the engine. The steam chest should be uncovered, the valves, seats, etc., examined, and any variations from truth corrected by careful fitting and scraping, and the proper amount of lead inuparted to the valves, by piacing the crank on the top and bottom centres, adjusting the po-ahead gear in proper place, in order to determine whether or not the valves open and close at the proper time.
The link-motion should bo inspected and all derangements adjusted, repaired and corrected. The valves of the air-pump should be axamined as opportunity offers, and all necessary repairs effected; the cover must be taken off and the bucket elevated for this express purpose. The screw-shant shonld be kept true, and great care taken to guard against the glands or any other parts becoming damaged or seriously deranged in any way. Close and frequent inspection shonld be made of the condenser, which should be tested by removing the openings and pouring in cold water; and should any ooze out, the deficient tubes should be cither repaired or renewed. The condition of the vacuum may be ascertained by the vacunm guage connected with the condenser. If derangement exists, search ont and rectify tho cause. If the tempernture of the hot-well exceeds 1000 , add more injection water. Test the joinlngs of the parts connected with the condenser with a lighted lamp or candle; it the union is imperfect, tho tlame will be inhaled by the internal suction. Make thorongh work in searching out leaks, and repair them well whenever they are discovered. The entrance of air into the coudenser and its connections, can, whon ascertained, be stopped for a whille, by eutering in thin wedges, or using some of the numerons impervious compositions noted in this work. In the event of leakage into the condenser, it is useful occasionally to admit water through the aperture. Instances have happened where water-tught tanks have been fabricated (during long voyages at sea) between the side keelsons, in cases where the condenser had become inadequate to perform its use through corrosion, or otherwise, thereby submerging the air-pumps and condenser in a reservoir of water supplied by the ocean, excluding the air, and finding its way into the leaks, assisting the injection water in condensing the steam, the aperture of the injection-cock being partly shat; to

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716)872.4503

in
conform to the amount of internal leakage. In the event of a violent storm imparting a rolling motion to the vessel, and consequent irregularity in the movement of the engines, owing to the alternate elevation and depression of the wheels or propeller, the machinery is liaite to bestopped by a surplus of water in the condenser, and in all such cases the supply of injection water should be curtailed. As opportunity offers during occasional detentions, search out and close all leaks coinnected with the injection-cock or air-pump, which may cause the condenser to fill with water, causing much delay and annoyance in starting the engine. Whenever this is anticipated, the sea-cock should be shut at the same time the injection-cock is closed. When the indications of the steam gauge exhibit any excess of pressure over the atmosphere, raise the valves and permit the steam to flow through the pipes into the cylinder, to expel the air, heat the cylinder, and prevent the liquefaction of the steam on the starting of the engine. Daring temporary stoppage, the cylinder drip-cocks on stationary engines should be instantly opened, in order to permit the water of coudensation to flow out, and they should not be closed until after starting up. Previons to starting an engine which has been stopped for some time, you shonld, as a precaution against danger, work the engine a few turne with the starting bar, and warm the cylinder by letting in stesm. Lubricasts should not be applied to the cylinder or valves until after the engine is started up and the drip-cocks closed, otherwise waste is sure to result from the expulsion of a portion of the vil or tallow through the drip-cocks. On the production of steam equivalent to produce a ve caum, and work the air-pumps, the injection-cock should be slightly ouened, the eccentric-hook discounected, and the valves moved alternateiy hither and thither, with the starting-bar, or the link, as either is convenient, in order to effect an 'interchanging movement in the piston. The engine should then be finally tested by "turning over" three or fonr times for the purpose of making sure that all is right, and everything trim for the anticipated voyago; after which, if everything is correct, the engine is brought to a stand, and all the parts lubricated in readiness for the start.
Previous to getting under way, the bollers should be filled with water to the upper gauge-cock. This can be easily effected, when the boilers are in the hold, by simply opening the blow-cock, and the Water will flow into the boilers by gravitation, through the vessel's bottom, from the sea. In boilers otherwise situated; the filling may be performed by the hand-force pump, or a pump worked by a donkey engine, etc. On starting the fires, slightly elevate the safety valve, in order to permit the air to escape from the boilers; but on the emission of steam, which indicates the complete expulsion of the air, close them at once. In stopping an engine, shut off the steam, open the furnace doors, close the damper in the chimney, curtail the supply of injec-tion-water, work the valves by hand, and unship the eccentric. To back or reverse an engine fitted with the link-motion, all that is requisite is to change it to tile reverse-motion; but where only one eccentric is arailable, shut off the steam, throw the eccentric hook out of gear, and, with the starting-bar, apply the steam to the other end of the piston.
On Marine and other Boilers.-In steam vessels, it is neceseary, in order to maintain a proper equilibrium, that the boilers should be placed equidistant from the reelsons on either side; any

deffection from perfect truth in this arrangement entails much trouble in adjusting the proper balance of the slip. To this end they ought to be secured by rigid fastenings to the hull, with the lower face of the boilers and the extension of the flues ranging or conforming with the load line in each direction. In some places it is usual to place them on a substantlal platform composed of 3 inch plank orer the keelsons; on which the boilers are placed, the planks being previously coated to a depth of $1 \frac{1}{2}$ inches or more, with a tenacious mixture composed of drying oil and whiting, which affords a hard impervious protection to the boiler against water and rust. Another way, which has the advantage of presenting an opportunity for making incidental repairs, consists in placing the boilers on cast iron saddles attached to the boiler supporters. Boilers should be properly protected by a proper clothing of non conductors, such as asbestos, hair felt, \&c., corered with a lagging of wood ; or some of the other materials elsewhere noted in this work, may be used instead. Marine boilers demand the greatest attention and care in repairing, testing, cleaning, blowing off,

GANG OF STEAM BOILERS PROPERLY SET.
and water supply. Especial care should be used at all times to keep the brine at a low degree of strength when sea water is used, by blowing off evcry two hours at least, frequently testing the strength of the brine by the saline hydrometer, an instrument constructed to indicate by gradatious the number of ounces of salt held in solution in each gallon of water. Sea water contains 3.03 parts of its weight in saline matter, or nearly 1 lb . in every 33 Ibs . of water; and saturation is complete when it contains 36.37 parts. When by evaporation the proportion of salt increases to 4 lbs . in 33 lbs . of water, the formation of scale is imıninent, and should be guarded against by blowing off, and the repletion of the supply by additional fresher water. While in port, as opportunity offers, the hand-hole plates above the furuaces ouglit to be removed in order to permit the removal of any saline deposits on the crown sheet, and as dampness is inimical to the interior of the boiler, the bottom hand hole plates should also be removed when a long detention is anticipated, in order to permit the water to drain off, and air to circulate, so as to dissipate any dampness, which otherwise might result in the rapid oxidation of the boiler plates. If
this c
have
h tronnd they e lower onformsual to k over ng prenixture ervious , which idental ched to d by a c., covewhere and the ing off, cted to ation ins eight in uration tion the cmation ing off, Vhile in uruaces y saline ae intoemored vater to , which tes. II this cannot be done, it is better to keep therartant. 379 have them partially so.
Scale is not the boilers full, rather than by the reports of the y danger to be guarded against, for it is attested Company that almost half Steam Boiler Inspection and Insurance bccane such by reason of the dethe sum total of imperfect boilers than 40 per cent. more hazardous cases sediment, there being no less scalment cansing the plates to be burn resulting from the deposit of cipitited, and water is used, the limed, or overheated, than from obstacle to t.:e tran deposit becomes coucreted held in solution is prethe plates exposed to the of the heat to the forming a terrible or seriously weakened. action of the fire liable to be burnt through In setting stationary boilers, it would brough of 2 or 3 inches intervene between the be well to have an air space entire work, and, fire-clay is every way boiler and the surrounding venient aperturesgs. Arrangements should be mado mortar for the removal of dust at suitable places in order to made to hare conthe effective action, ashes, and other inpedimernit access for the good way of setting of the fire on the lower parts of therfering with to their middle and long stationary boilers is to arts of the boiler. A placed on brick foundations; th, having them about 12 cast-iron knees on a solid seat. would expansion of the boilersiase ample provision for the substantial rolls unequal settling. mon strains resulting from shown, when their great cost called mud drums, past experienca has that the benefits to be derived short duration are taken into account, water, retain a as they impart but a slight use, are, to say the least, the boiler, but only of the ruinous carbonate ant of heat to the feed while the cost of renewuddy matter held in sispensinduce acale on heary. millimetres in diameter, tapering at on recommends a copper pipe, 5 with a flexible india-rubber tube, by whe and, and fitted at the other a 3 ft . woodeck of the boiler. when ry which it can be connected with the fire-box. In use, the should be long, The pipe is mounted on right arm, and the nozzle wooden handle is hogh to reach through the tube to be cleaned . rubber tubing. cleaned. Steam is then turned on thinch or so within Steam-Pipe Jacketivg. Fool for clothing steam-pipes The Stettin Vulcan Works make use of pipe, and the space between, which A lead cylinder is laid aromind the ermly with wool. The lead cylinder bis about $1 \frac{1}{2}$ inches, is filled the exposed is tied down with wire, and beinally drawn back, is filled the up
whole.
Cemer is sewed wo Chment.-Sifted peroxide of and sufflcient soluble glass (commeganese und zinc-white, equal parts; immediately. This cement will resist a to form a thin paste. Apply Flanges to Stand Brazing.-Copper 1 -heat, water, and oils. Gedoe's Metal.-Copper 60, zinc 38.2 , Iron 1.8 . $\frac{10}{2}$ oz., lead Ion.

Enginerrs' Tools. - The mechanical appliances represented abore, should be kept within easy reach, and, if arranged on a vertical table of thick plank, fitted with recesses conformed and adapted for the reception of each tool, it would not only prove a great convenience, but alwo a striking ornament to the engine room.

Fire Paris w mix to ready f

Marine E Gauges.-Th ble to Loco Borler, B, x cats, togethe counter and c ous kinds. tains a mecha which impart of figures or n dial, as to exh lormed by th pressure of ste tabes, or sprini, wo presen ou locomotives, steel or nected phon or gutta p pressare of the not pressed by

MACHINISTS AND ENGINEERS' DEPARTMENT

Fire and Waterproof Cement.-Pulverized litharge 5 lbs., fine nix to the density of thice ochre 4 ozs., hemp cut into shreds $\frac{y}{2}$ oz., ready for use.

Marine Engine Counter, 0
Gauges.-The Gauge A, B Rloock, Vacuum Gauge, and Stead ble to Locomotives.- A, Bhows the pean adaptation applicaboiler, B, the Spiral Spring and Gradit of connection with cats, together with the following ones, rated Scale. -The above coanter and clock, together with steam and resent a Marine engino tainginds. The counter, inclosed in an and vacnum gauges of varitains a mechanism connected by suita annular box of cast-iron, conwhich impart such a correct mechanical attachments to the engine, dial, as to or numbers displayed throngh movement to a regular series formed by the at a glance the exact the narrow apertures in the pressure of stean engine. The steam ganges uer of revolutions pertubes, or springs, operate either by the inse of used to determine the cuts we present, and several of these ada of mercury, thin metallic on locomotives, the used on stationary boilers, for are shown in the tabe connected; the mercurial gauge is formed of an cannot be ased steel connected with a cistern of mercury formed of an upright glass phon or gutta percha; ou marine engines it consist on a round plece of pressure of bent in the form of a U, with consists of an inverted sinot pressed by steam, and the other open to the end exposed to the tical table for the relence, but
the syphon, but as the pressure rises, it will act with increasing force on the mercury exposed to the action of the steam, and forces it to rise in the limb exposed to the air, and will determine the amount of the steam pressure over aud above that of the atinosphere, the indications being exhibited on the gauge, the gradations on which are one inch in length, consequently every inch that the mercury rises in the tube shows a change of 2 inches in the level of the mercury contained in the tube, and each inch of mercury on the scale represents 1 lb . pressure of steam.

Many excellent gauges, nearly thirty in all, are in use in the Unitel States and Canada, among others, that of the American Steam Gauge Co. and Bourdon's, or, as it is better known in the United State, Ashcroft's gauge, from the name of the manufacturer, the interior of which is shown in the cut. It is composed of a thin circular metallic tube, a, closed at one end; the steam from the boiler is introduced at b. The result of the steam pressure on the interior of the circular tube is to enlarge the circle more or less in proportion to the pressure, the elastic properties of the metal operating to contract the circle to its original position on the removal of the pressure. The sealed or closed end of the tube is united by the link c, to the lever d, which operates a segmental gear or rack placed at che upper end in gear with a pinion, which imparts

gine.
pressux
lbs, an above. band wi site dire Care placed o gauge in their adh
Steam and then pipes may filling the teased hai SUbstit earth well allow it to swers very Watch leaks, weal defects witl and the tub replaced or end and bin tabe fitted \mathbf{x} the "Strong smeared on nsed adranta ing bnilers. plate to be pa the weak par and chip its e the places for White paint, d remore the de Fell with tap dioll (after be sood cement), ind secired to - of hemp 1 a prevent lea Dineviler ex Dimensions Patencine. tack, 8 ft 10 Diameter of 60 we, 8 ins. D movement to a hand on a graduated circular scale as shown in cuts above. The same invention, when fitted to a condenser by the pipe A_{1}
cut above, will indicate the state of the racuum in a condensing 500 lbs . 2 nations. The cut above, will indicate the state of the vacuum In a condensing
gine. In this case the indications are caused by exterior atmospherie pressure, the gauge is graduated to extend ouly from 1 lb . up to 15 lbs., and the eutire action is reverse from that of steam, as described abore. On the opening of the tap \mathbf{C}, as the vacuum enlarges, the band will be flattened and the haud on the dial will move in an opposite direction from that caused by the action of steam.

Care of Steam Gauges.-A little glycerine, or sulphuric acid, placed on the surface of the mercury will keep a mercurial steam gauge in good order, by lubricating both glass and metals, preventing their adhesion.
Steam Pipes.-Ruptured steam pipes may be repaired by heating and then soldering them. The condensation of steam in subterranean pipes may be prevented by enclosing the pipe ingide a larger one, and filling the vacant space between the two with a mixture of clay and teased hair, or plaster-of-Paris.
Substitute for Fire Clay for Boilikr Furnactes.-To common earth well mixed with water, add a small quantity of rock salt and allow it to stand until the salt dissolves, then use as fire clay. It answers very well.

Watch the Leaks.-Engineers should keep a vigilant eye for leaks, weak spots, \&c., and apply a prompt remedy by repairing all defects without delay. See that all the seams and rivets are tight, and the tubes and tube sheets in good order. Leaky tubes should be replaced or stopped, by driving a tightly fitting wooden plug at each end and binding them by means of an iron-rod passing through the tube fitted with broad washers at each end, and screwed up tight with the "Strong cement for Steam Joints" (see page 422) plentifully smeared on nnder each waslier. A mirror or bright tin plate may be used adrantageously to reffect light into obscure places while repairing bollers. To apply a hard patch, describe the proper size on the plate to be patched, allowing from 14 to $1 \frac{1}{2}$ ins. of good iron beyond the weak part or flaw. Now drill the rivet-hoies thirough the patch; and chip its edges. Next, apply the patch to the boiler, and mark the places for corresponding holes by meaus of a small brush with white paint, drill the holes in the shell with a brace and ratchet drill, remore the deflcient part of the shell, rivet on the patch, or secnire well with tap bolts. A soft patch, is applied over the weak part of the dell (after being previously coated with an intermediate layer of sood cement), being fitted in the same manner as above described, mod secnred to its place by means of nuts, bolts, and washers, with-a What of hemp nnder the washers and bolt heads to ensure security, prevent leakage. The first method is decidedly the best for paits the boiler exposed to the direct action of the fire.
Dimensions and Capacity of First Class Aurosieag Steam Pmekcine. (See Cut.) Height from floor to top of smoka tack, 8 ft . 10 ins Length over all, including tonque, 23 ft .8 ins. Diameter of boiler, 2 ft 8 ins . Diameter of pumps, $4 \frac{1}{3}$ ins. Stroke of meme, 8 ins. Diameter of steam icylinders 75 ins. Number of disharye gates. 2. Capacity in yals. per minute, 900 gals. Weight, $5,500 \mathrm{lbs}$. The boiler is an upright tubnlar, very simple in its com(nation, and for strength, aafety, durability, and capacity for generaThg steam, 'unsurpassed. Starting with cold water in the boiler, in orking head of steam can be generated in less than five minutem rom the time of kindling the fire. The engine "Amoskeag," owned
by the city of Manchester, has played two streams in three minutec and forty seconds after touching the match; at the same time drawing her own water. The following instructions to engineers, giren by the Amoskeag Co., for running their cngine, may be easily adapted to efficient use in the case of steam fire-engines constructed by other builders.

1. In laying your fuel in the fire-box, first lay plenty of sharings, then light, dry kindling wood; filling your furnace full, which in most cases will give you steam enough by the time you arrive at a fire to commence work, provided you light your fire when you leave the house, which, as a general role, is advisable. 2. If you use coal, be careful to keep a thin fire, and not clog it. Use the coal in as large lumps as possible, and do not break it up unnecessarily in the furnace. The best coal for this parpose is a clean Cannel, in lumps, free from dirt and dust. 3. Be careful not to let so much fire collect under your engine as to burn the wheels;-when working for a long time at fires there is a danger of doing so. 4. The Amoskeag boiler is an upright tubular body, with a submerged smoke-box and fire-box surrounded with water. When the cngine is running, the water in the boiler should be carried so as to stand at the third gauge-cock, which is placed near the top of the tubes, and it should never be carried below the centre of the tubes at which point the first gange-cork is located. 5 . Avoid using an unnccessary amount of steam. The tendency is to use more than is required. From sixty to eighty pounds is as much as you will generally require to do good fire duty. 6 Theengne nas two suitable feed pumps for supplying the boiler with water. One of these pumps should be worked nearly all the time, 1 m order to keep the water in the boiler at the proper height, and to preserve an even pressure of steam. 7. If brackish water is used for supplying the boiler, or if the boiler becomes foul from loug use without being blown off, it is likely to foam or prime. If foam. ing oceurs while the engine is working at a fire, it may be prevented or diminished by opening the surface blow-off cock, which is located between the third and fourth gange-cocks, and blowing off from the surface of the water the scum and oily matter which usually canses foaming. In this way the difficulty can generally be prevented without any serious interruption in the working of the engine. While doing this the water in the boiler should be carried as high as the surface blow-off cock. After the engine is returned to the house, the water should be blown entirely out of the boiler through the blow-off cock near the bottom of the boiler, with a steam pressure of about twenty pounds, and the boiler refilled with fresh water. This process may be repeated until the boiler becomes clean. 8. The pump upon the Amoskeag Engine is a vertical double-acting pump, with the cylinder surrounded by a circular chamber, divided vertically outside the cylinder, so as to answer both for the suction and discharge chambers of the pump. It has a separate valve-plate at the top and botton of the pump, carrying both the suction and discharge valves; the suction valve upon one side of the plate, and the discharge valve upon the other. Each of these valve plates can be reached by taking off the top and bottom of the pump, which is so constructed as to bey readily removed. The discharge and suction parts of the waterchamber, surrounding the cyliuder, are connected by a valve in the vertical partition, which is called a relief valve. 0. With a single by other sharings, which in rive at a on leave use conl, oal in as ily in the n lumps re collect or a long ag boiler 1 fire-box water in uge-cock er be car-uge-cock m. The to eighty fire duty. the boiler ly all the ar height, water is from loug If foamprevented is located from the lly cankes ted with-
e. While gh as the louse, the e blow-off of abont This proThe pump with the ly outside rge chamad bottom ; the sucalve upon taking of as to bo 18 water ve in the a single

long line of hose, it may be necessary to open your relief-valve a little, but at all other times be particular to have it closed, except when you want to feed your boller withont forcing any weter through the hose. 10. In tho smoke-pipe, directly over the upper flue-slieet, a valve is placed, which is called the variable exhaust-valve. By operating this valve the size of the aperture for the escape of the steam from the steam-cylinder is increased or dimuished, thus regulating the draft of the chimney and the heat of the fire. This valve should be closed, when the engine is started, until a fair working pressure of steam is obtained, after which it may be opened. 11. Care should bo takell to have the suction hose and its connections air-tight. 12. Open your discharge-gate and cylinder drain-cock before starting your engine, 13. Don't let the flues of your engine get filled up. 14. Bf, particular to take your engine off the springs before you work it, and to place it on the springs again when done working. 15. With a long line of hose on, be particular to open your throttle gradually. If you open it too suddenly you are liable to burst your hose. 16. The pumps of the engine should be examined at least once in six months, to see that all the valves and parts are in good condition. 17. The pump-valves should have a lift of about three-eighths of an inch, and the suction valves the same lift. 18. The inslde of the steam-cylinders and the steam-valves should be oiled or tallowed always after the engine has worked at a fire, and as often as may be necessary to keep them well lubricated; and all the parts of the engine, where liable to friction, should be kept well oiled. Be particular to use an abundance of oil on the " link-biock," where there is more friction than in any other part. 18. The running-gear and every part of the engine liable to disarrangement or accident, should be thoroughly examined every tlme after the engine has been out of the house, whether it has been worked at a fire or not. 19. Whenever your engine is repaired, try to help to do it yourself, as by so doing you get a familiarity with it that you can in no other way obtain.

Besides the above noted, the Amoskeng Co. manufacture self propelling steam fire engines capable of attaining a continuous speed of 16 miles per hour. Steam fire engines of perfect workmanship and immense power, are also made at Seneca Falls, N. Y., Portland, Maine, Pawtucket, R. I., Boston, Mass. and many other places throughou the United States.
A. Fireman's Respirator,-Consisting of an iron cylinder attached to a mask, and packed with cotton wool, glycerine, and charcoal

MACIINISTS AND ENGINEERS' DEPARTMENT.

has been exhlbited in London, by Prof. Tyndall; the wearer is enabled to remain in an atmosphere of smoke, which he could not otherwise bear, for a quarter or half an hour.

An Improved Fire Escare,-called the Jenke-Richard's fireladder has been adopted in many places. It is a permanent fixture to the buiiding, and is attached to the cornice of the house, and comes down when the alarm is sounded, giring the inmates a chance to exrape when other exits are cut off, and the firemen a plan to a.cend with the hose, and right the fire at the greatest possible advantage.
Cast Iron for Stram Cylinders-eery hatd. -Scrapiron, 300 lbs Scotch pig, 40 lbs., charcoal pig, No. 3,40 lbs. Another, very strong and close grained. Scrap iron, 100 lbs ., Scotch pig, 100 lbs ., charcoal plg No. 5, 80 lbs.
Cylinders should be bored in a vertical position whenever possible, removing a heary cut at first and gradually cutting to within $1-32$ of an inch of the flilshed size, and finally brought down to the proper dimenslons by removing the balance with a cutter embodying in it 3 form a combination of the circular and diamond pointed ghapea. Some manufacturers used a mass of lead (cast in the cylinder to give it the proper shape) together with emery and oil between the abrading surfaces, for finishing their cylinders, the latter revolving slowly, vile the operation continues.
Rule for Thicinness of Steam Chinder.-Divide the Ci meter of cylindor plus 2 by 16, and deduct a 1-100 part of the diameter from the quotient ; tho reniamer will be the proper thrckness. The depth of the pistou rings should bo equal to \ddagger the diameter of the cylinder, and the follower plate should be equal in thickuess to the cylinder. The following tible gives very g od results.

Diameter of Cylinder.	Timerness.	Diameter of Crlisider.	Thicrness. ${ }^{\text {a }}$
8	$5-8$ $11-16$	14	
	11-16	17	$\begin{array}{ll}1 & 1-16 \\ 1 & 1-8\end{array}$
10	13-16	18	13 -16
11.	$7-8$.	- 119	114
12	- $15 \mathbf{1 6} \mathbf{1 6}$	21	138.

Add to the foregoing dimensions 1-16 of an inch, when the piston need exceeds 300 feet per minute.
Pisron Rings.-To prevent rapid wear in the cylinder, the piston tings should be formed of some material softer than the latter; cast Lon is much used for this purpose, as it soon attains a fine smooth mrface, hat great endurance, and generates little friction. They thould be fitted with judgment so as to more easily between the flange of the piston-head and the follower plate, in order that they may adjust or conform themselves to any slight unerenness in the cyilnder. To open piston rings, hammer them lightly with a roand pene hammer all round their inside faces, and, as they become leaky and corrode around the edges, remove them from the cylinder and true them up in a lathe, grind, and refit them to the flange and follower plate. Piston springs are in the great majority of cases, too stiff and
rigid to render them in every way satisfactory, as in many instances they entail orreat loss of power by unnecessary pressure against tho cylinder. Steam pistons possess the merit of low first cost, very little friction, simpiicity, and after a proper adjustment by a competent person, give very little trouble. Solid pistons produce scarcely any Iriction, and when the cylinider is bored perfectly true through its whole length, produce excelleut results, if the $\frac{7}{}$ are properly fitted, but are irreparable when they become worn out, as they cannot be re-adjusted. The piston speed of small stationary engines ranges from 200 to 250 feet per minute; average speed 225 feet, that of large stationary encines, 275 to 350 feet; average speed 312 feet; that of Corliss Engines 400 to 500 feet per minute; average speed 400 feet; that of locomotives and Allen engines 600 to 800 feet per minute, average 700 ; that of engines of river steamers 400 to 500 feet, average 450 feet; that of ocean steamers 400 to 600 feet, average 500 feet. If the piston rod ylands become tight, ease by revolving and sliding the gland back and forth on the rod, applying a little oil to the rod at the same time. In trueing up a gland, it should be chucked in the lathe by the flange, to ensure the turning of the bore and outside diameter at one chucking, without depending on the accuracy of a mandrel. Piston rods should be secured to the cross head by means of a well fitted key instead of by the screw and jam nut arrangement used in many cases. Piston rods are usually made of wrought iron, but steel is to be preferred on account of its great endurance, small friction, and extreme hardness, which render it less liable to be fluted by grit in the packing, \&c. The cross-heads should, in every case, possess the essential element of strength, to resist strains of every kind, and also capacious antifriction bearings on the guides, to resist the wear and tear of protracted running.
The guides should be powerful enough to withstand any degree of speed without springing or flinching from duty in the slightest degree, and, on horizontal engines they should be made moveable, so that they may be easily replaced by others when they become worn out.

Cuank pins are usually made of wrought iron, although for obrious reasons, steel is the best material. Owing to excessive friction the crank pins are liable to becone hot, and for this reason they should receive close attention from the engineer. A mixture of a little sulphur in oil, or plumbago and oil, formis a good cooling lubricant in such emergencies. The diameter of the crank pin should be from . 2 to .25 that of the cylinder, and the length from . 275 to .35 the diameter of the cylinder, or for a cylinder 12 ins . In diameter and 30 ins. stroke, the length of crunk pin should be 3.3 to 4 ins.; and the diameter 2.4 to 3 ins.
The Steam chest should be capacious enough to furnish sufficient room for the valve gear arrangement, the transmission of stam to the piston, \&c., but not unnecessarily large to induce weakness in the parts, loss of heaz by radiation, \&c.

Valve rods should be constructed of substantial material to withstand the varied strains to which they are liable ; they are usually of wrought iron, but steel is to be preferred for various reasons. The length of valve rods may be correctly ascertained by placing the ralve in a central position over the steam ports, and the rocker or intermediate bearings in a vertical position, and measuring from the centro of the rocker stud to the centre of the valve.

instances

 gainst tho very little ompetent rcely any rough its itted, but be re-adfrom 200 tationary 8 Engines omotives ; that of t; that of iston rod back and time. In lange, to hucking is should nstead ofPiston ferred on lardness, \&c. The ment of uns antirotracted
tegree of t degree, so that rn out. or obvliction the y' should ittle sulricant in e from .2 diameter s. strole, neter 2.4
sufficient steam to ess in the
to withsually of ns. Tho the ralve intermee centro

EPARTMENT.
a twisting movement or rock shaft-bearing, should be, if suljected to shaft, if not so subjected, or torsion, $\frac{1}{3}$ or $\frac{1}{2}$ the diameter of the engine swer. The diameter of the rock diameter of the engine shaft will anto 1 f the din; but if it is au overhanging ought to be no less thanEtcentric rods of valve stem. ficiently stiff and should be substantially mat they are liable , rigid to withstand the made of good stock, and sufa steady movement with being subjected to mbonifold strains to which and they are all the may be imparted by the eccentribation, so that To adjust an eccentter for being long. the eccentric to the valve, and the eccentric at right angles withe crank at the end of its stroke, eccentric-straps and adjust the wocker in crank. Now regulate tho tric-catch to either side Ths itself to the rocker be determined if tho eccenthe centre of the erangth of the ecceutric without moving the latter ter is vertical. crank shaft and that of the rod is the space between The eccentric rod may b ine rocker pin, when the latpering, to adapt it to a suitabtached by tuming the end of the rod tastraps of the eccentric, to which hole in a sleeve cast on the forward another way is to insert the rod it may be secured by a p proper key nuts. The diameter of the ecceotric the slecve and fasteu with key; that of the valve rod, and shouldic rod, should, at the with jam eccentric. The pillowo blocks or main bearings of the jects of close attention on the partings of an engine should be the ob excessive friction and vear the part of the engine should be the obto become hot and cause much tear at this vital point, owing to the use of the following Cooling Compound ion plumbago, 6 ozs ; sugar of lead Heaty Bearings.-Tallow, 2 ibs heat, and add the other ingreadieut ozs ; melt the tallcar with 2 gentlo ing gearing, wooden cogs, thin inixture of soft soaps, and , nothing better need be For hnbricatwill prove useful to engineor black lead. The followinged than a To Prevent Spermioners and machinists in many ing processes will greatly assist in proil Gumming.-The a many cases : with 4 parts chloride of preventing gumming ; rumion of kerosene oil bity of the decoction of lime, and 12 of water, rummage 100 parts of terstill remaining, and ak-bark to destroy all traces add a small quandear part with a itthd allow the impurities to settle of gelatinous matmone the acid, which sulphuric acid, settle oncttle. Noxt, agitate the wed on machinery. If should never be permitted more, and wash to tend a little bi-cary. If cll becomes rancid, boil to exist in any oil bses its power to redden of magnesia for 15 minutes ang with water Wachinery Ledden litmus paper. 20 minutes or so, until it hr lubricints Lobricants.-A pate ${ }^{2} \mathrm{C}, 25$; sulphur, 20 ; The-glue, 15 ; water, 32 ; or paraffin, 20. Sect, graphite, 35 parts ; The Crank shaft r, 32 ; sulphur, 12 ; war Second, graphite 30 parts; wier, should, in all ceing the primary agent or paraffin, 11.
rective duty and resist the well proportiuned in orransmission of and resist thie shearing and twisting order to proporform 4 to which
it is subjected. They are often made of cast iron smoothly turned, and should be 5 -10 the diameter of the cylinder for efficient use, or the diameter of the shaft may be 4-10 that of the cylinder when wrought iron is used, aud the length of the crank shaft bearing should be equal to $1 \frac{1}{2}$ times its diameter, or, for massive machinery, twice the diameter will be required.

The area of the cranki at the central part should be exactly that of the shaft ; the thickness should be equivalent to that of the shaft journal multiplied by 6: the thickness of the web of the crank should be equivalent to 3 times the diameter of shaft journal. The boss of the crank, if of wrought iron, should be equivalent to the diameter of the shaft journal or pin multiplied by 4 , and if of cast irom, should equal double that of the shaft journal, and the depth should equal that of the crank journal multiplied by 7. The diameter of comk at the pin should equal twice the diameter of pin, and its depth at the same part should be equivalent to the dianeter of the pin maltiplied by 12 .

The Governor should be kept perfectly clean and froe from all gummy deposits, or old dry packing which may retard, or impede its movements in any way whatever. The best of oil only should be used, and thorough duty should be performed when the governor spindle works through stuffing boxes, to have the boxes carefully packed at regular intervals.

To find the Diameter of Governor-Shaft Pulley.-Multiply the number of revolutions of the engine by the diameter of the engine shaft pulley and divide the product by the number of revolutions of the governor.
To find the Diameter of the Eingine Shaft Pulley.-Multiply the revolutious of the gevernor by the diameter of the governor sliaft pulley, and divide the product by the number of the revolutions of the engine.

Facts for Steam Users.-A fair horse-power in a steam boiler is an evaporation of 30 lbs . of water per hour, from a temperature of 2120. Ten pounds of water, evaporated from a temperature of 212° for each ponnd of coal, is high economy. Six pounds is fair work, and above the average. IThder the best conditions, a horse-power can bo licd from an evaporation of less than 20 lbs . of water. Every owner of steam power should weigh the water evaporated in his boiler, and alse the coal used to produce such evaporation. A measure of some kind that will show the weight of feed water, passing into a boiler with accuracy, should be used with all boilers wher economy is an object. It slould be the duty of a fireman to know the weight of the fuel used as well as the weight of water. No man has any right to find fault with the economy of his boiler until he knows the amoturt of water evaporated per hour and the amount of coal required to produce the same. In getting the evaporative power of a steam boiler, it is necessary that the steam should be dry to get a fair result. A boiler that carries out water with its steam may show a large npparent evaporation, but the steam, being wet, is of less value in the engine. A boiler should give dry steam in all cases. Superheating is benoficial. Boilers that aro overworked, necessarily waste fuel. A boiler taxed to its full evaporative power, evaporates, sef, 5 lbs, of water to 1 lb . of coal : double the size of the boller, and you will get the same amount of steam, with probably 30 to 50 jer ceuth
tarned, t use 01 er when y should ry, twice y that of he shaft 2e crank 1al. The o the dirast iron, b should meter of its depth pin mal.
from all apede its bo used, r spindle acked at
-Multher of the f revolu-

- Multigovernor volutions

Im boiler rature of e of 212° ir work, ower can - Erery ed in his A meas, passing ers wher to know No man - until he mount of ive povier iry to get may show less value Super. rily wasto ates, scy, , and you per cent

less fuel. A boiler may generate steam with great economy, and, owing to the steam being wasted by improper application to the work, through the engine, the result in work be very unsatisfactory, and the boiler blamed unjustly. When steam is used expansively, under the best conditions, it will give double the power for the same amount of steam that can be got from it worked at full stroke, or without expansion. When steam is used in non-condensing engines at low pressure, the loss is great, owing to the pressure of the atmosphere (15 lbs .) being a greater percentage of a low than of a high pressure. The loss for piston-not boiler-pressures is as follows:Atmosphere. Pressure steam. Total pressure on piston. Loss.

15.................. 10....................... 25........................ 3-515. 15. 30.................... . 1-2 $_{35}^{\text {35. }}$

15.................. 45.

60. $1-1$
61. 60
62. 1-j
15 1-b
63.

\qquad 1-7

The steam, made from a certain weight of water, used through a non-condensing engine; at 10 lbs. per square Inch pressure above the atmosphere, without expansion, would give only about one quarter the power that would be got from the same steam if used at 75 above the atmosphere, and with the best expansion. Boilers can scarcely be too large ; 20 -horse power can be obtained in a 40 -horse power boiler more ecouomically than in a 20 -horse power. John. B. Root.
A prominent authority verifies the astounding statement, that a record of Boller Explosions that have occurred in the United States extending over about five years, shows the appalling results of nearly 600 explosions, about 3,000 killed, over 1,000 wounded, besides an intmense loss of property. Fire insurance does not cover the loss by explosion, unless fire occurs, and, even then, litigation often ensues" The infliction of this terrible aggregation of suffering, loss of life and property, might have been averted by the exercise of common sense in the selection of boilers which possess the elements of strength and endurance in such a degree as to put the question of safety beyond a peradvent.ars. Setting aside the beclouded theories of self-styled experts, regarding certain explosive gases, mysterious chemical changes, electricity, etc., in the boiler, the simple truth is reached when wo come down to the solid basis of cause and effect; and in every case of boilur explosion we will find that the true cause is simply imperfect strength in the boiler. The deficiency may arise from defective material, or faulty workmanship, overheating, overpressure, orertiring, burning of the boiler-plates, cansed by shortness of water, or the tolerance of scale or deposits in the boiler, or by criminal negll. gence. These are only different forms or phases of expressing the truth just noted, and whoever constructs a boiler absolutely free from liability to destructive explosion, has achieved an ongincering triumph which entitles him to recognition as a public benefactor. As one who is cognizant of much suffering arising froin the causes enumerated above, the writer can truthfully arer that he is moved by no motires
my, and, the work, tory, and ly, under e amount r without es at low mosphere pressure.

Loss.
..... 3-4 3-5 1-2 3-7 3-8
..... 3-93-10 1-4 1-u 1-1 1-7 hrough a above the e quarter 75 above - scarcely se porer Root. t , that a ted States of nearly les an inne loss by ensues." 4 life and non sense ningth and beyond a styled es. I changes, when wo ivery case imperfect defective re, orerwater, or nal neglissing the free from triumph sone who umerated o motires

MACHINISTS AND ENGINEERS' DEPARTMENT. other than those of humanity in making favorable mention of

The Root Wrought Iron Safety Boiler.

These boilers, made by the 4 b

pay of New York, are constructed on \& Root Manufactiring Comrhat is known as the sectional syon correct scientific principles, on rrought iron lap-welded tubes, which are ting composed entirely of rthree square inch, and are said to be are tested to a pressure of 500 orthree times that pressure. These tupe capable of withstanding two Weet in length, are lap-weided, conseges, 4 inches in diameter, and plats, thereby enhancing their conseguently they have no rivetted tatirely of these uniform and intergth. The boiler is constructed rom explosion, easily enlarged or diminisheable parts, perfectly free lomble, assible for cleaning, repairs, or red in slze, all parts being 0,00 horse-power generator of steam. be purchasers. The next mostructed cut represents the Renshaw messited by Dougherty \& Broome Wast Iron Sectional Boiler, i generat a perfect constellation of m York, which embodies the an explosion of steam power, among othe excellent requirements dinlv perm. As to the capacity, ete, of thers, complete immunity P. H. Van der winsertion of the following th boller, limited space rilder: "We have th which steam mave had the pleasure of witne Mranufacturer and 35 horse-nower may be raised in a boiler witnessing the rapidity. Nome, 143-147 Bank the establishment of Messris, in one rated come, 143-147 Bank street, New York of Messrs. Dougherty \&信

394 MACHINISTS AND ENGINEERS' DEPARTMENT.

cold, and in half an hour there was a pressure of 70 pounds, and the engino started. As the water used was for the purpose of measurement inclosed in a tank of 2 by 4 feet, and 3 feet high, we could easily measure the evaporating capacity, and found it to be 600 pounds per hour, for which duty the furnace consumed 50 pounds of coal. This

The Renshaw Cast Iron Sectional Boiler.
agreed with the testimony of the engineer, that $\frac{1}{4}$ ton of conl wasused per day of ten hours, while it slowed the capacity of the boiler and furnace to be the evaporation of 12 pounds of water with 1 pound of coal. This is a very high ratio, when we consider that theoretical maximum, when 10 heat whatsoever is lost, is 14 , pounds of water for 1 of coal, (see "Theory of Steam-Engineering," on page 26 of our February number for this year)."

Proportion of Land Boilers-For each nominal horse power a land boiler requires : 1 cubic foot of water per hour; 1 square yard of heating surface; 1 square foot of fire grate surface; 1 cubic yard capacity; $\boldsymbol{3 8}$ square inches of flue area; 18 square inches of area ored bridge wall.

For Cylindrical Double-flued Boilers-Length multiplied by diam eter divided by $6=$ nominal horse power.

Tubular looilers require for each Horse Ponoer-1 cubic foot of water per hour; 10 square feet of heating surface; $\frac{1}{2}$ square foot fin grate; 10 square inches sectional area of tube; 13 square inches flu area; 7 square inches chimney area; 8 cubic feet total boiler caps city; 2 cubic feet of steam room. Diameter of tubes 1-30th of the length.

The number of square feet of heating or flue surface required evaporate a cubic fout of water per hour, which is equivalent to ${ }^{2}$ actual horse power, is in different boilers as follows: Comish Boiler 70 square feet; Land and Marine Boilers, 8 to 11 square feet; Lod motive Boilers, 5 to $\mathbf{6}$ square feet.

Marine getting unde takes charge directed to h come the sou tpecting the thickness of t 2. The state 0 water gauge, seneral plan i its real thickn far thicker at thickness camn Way in which
when 1 he area of Valve, Levecessary to put on a Levtr the arca of valve by the pressure in pounds. ARE KNown.- Multiply: this product by the distance of the lever per square inch; maltiply: then multiply ther by one-half its length (or its fulcrum; multiply the fulcrum ; add theight of valve and stem by centre of gravity); sum from the first product two products together their distance from of lever; the quotient wil, and divide the remer, and subtract their

Example:

nal was need boiler and 1 pound of theoretical of waterfor e 26 of our
e power s are yard of cuble yard ff area oret
ed by diam-
bic foot o re foot fir inches thay ooiler capa th of the
required aleut to: ish Boiler feet; LOC getting under Steam, by a Pes to machinery uchen in Harbor before dires charge of the machinery oftical Engineer. When an engincer come the surs boilers; for, being the source first attention ought to be apecting the boil great danger if not prope of power, they may bethickness of the plat, three things require serly looked arter. In in2. The state of the above the fires and other plactention, 1. The water gauge che stays. 3. The position of places of importance. general plan is to its real thickne to drill a small hole through Respecting the first, a far thicker at th, for it is often the case the plate, and thus find thickness cannot aeams than in the middle. At boiler plate may bo way in which they always be correctly ascertaint the seams the proper diy which they aro canlsed, by which and on account of the
siderably thicker than it really is. After the hole has served its purposo, it is tapped and plugged tlghtiy up again.
As regards the stays, they require a great amount of attention; for they are very apt to get eaten through, near the plates by oxidation. The gange cocks are often placed just above the highest row of tubes. Now thts is a very dangerous practice, for it is possible for an engineer to lose hls water, let him be over so careful, when great danger follows; while if the cocks were placed a littlo ligher, the loss of water would not be attended by so much danger.
Duties to Machinery when Steam is getting up. Tho water in the boiler when the fires are lighted ought to be just above the bottom of the glass. In a large or even moderate sized boiler, the water will cxpand, and there is also not so much water to heat at first; and wo lnow, by reason of conduction and radiation, that small bodies of water are heated comparativoly more rapidly than larger. On first lighting tho fires thoy should not bo kept too large, but just sufficient to cover the bars. A large thin surface of fire is found to be the most effective in getting under way. When the fires are lighted, and tho steamer is going on a long voyage, it is the practice to rub the polished parts of the engine over with a composition of tallow and white lead. This prevents any rust forming on the rods, etc., from water dropping on them which may haro been used for keeping the bearings cool.
Tho discharge valve is also opened now, or clse on starting tho engline something will give way. Several accidents have occurred by neglecting to do this.
The safety valres are now to be inspected to And whether they aro fast or corroded to their seatings. If so, they must be freed and mado ready to act before starting.
It is a good plan and one much practisod, to givo the engines a good blowing through whilst the steam is getting up. This warms the cylinder and tries any joints that may have been made since tho cugines were worked last. It also saves the steam, for if not done now (when the engine is starting) a great amount of steam is wasted in lieating the cylinder, instead of imparting its elastic force to the piston.
Starting the Engines.-All steamships are now fitted with the double eccentrics or "Stephenson's Link Motion," by which tho engines are started, or rather by this the slide valves are under the control of the engineer, and can be worked back or forward as command is given, by cither a bar, lever, or gencrally, in large cugines, by a wheel.
The handles, by which steam is turned on and off, with the injection cock handles, are placed beside the wheel, so: that ono man can now generally start the engine.
Some large ships have a steam piston so fitted that it rises and falls ly steam admitted above or below, thus raising or lowering the link in its motion: This is what is called steam starting gear, and is very landy when the link is of great weight. There is always hand gear fitted as well, which can be used in cases of emergency. In giving injection to a common condenser, it should be opened just after tho steam is turned on to the cylinders, or else if going slowly the condenser may become too full of water, and the air pump not able to perform its work properly.
 Ging requiring attention befored with surface condensers, tho onily communicating with the sea above going on, is to open both valrea Duties whenen circulating pumps and delirelow the condenser, viz. lovel. This is somer Steam.-Always keep from them. require the water totimes a source of creat anxietry at the water high they will not keep kept at a certain fixed level, for some boliers too fast. Some boilers reanm; and if too low the steam water be too can determine it. A equire a high waterlovel: nothim will generato two thirds full. Blowing rafe rule is to keep the nothing but practice two or threo hours. Practice marine boilers shont flass gange about account of not so much Practice has proved this to be practised every and thereforo the steam water being required to be be ngood rule, on cxtent.
is not reduced to a very great supplied to the boiler to surface condensers, a littlo sea water is jackets, caps, in the condensers, etc. for the loss in tho steam pipes boiler if not counterbalanced some. This in time masteam pipes, in thew ont about two or three ine way or other. The general rule is The fires rers is never allowed to reacery twelve hours. The water with a heavy fire much consideration more than 230 of saltness. front. The fresh fut not too heavy, thicker furnace is best worked back after being theol should be placed in towards the back that: the fires should be croughly heated. Erery front, and then pushed adhere to the fire bars ont, as large clinkers hours (at the least) burn dead, especially to and prevent the draurs or refuse of the coals the slag will stick fast to ards the back of the fht, making the fircs it. This causes a great a furnaco bar, and cannot bace. Sometimes tho fire bars are occasiononnt of troublo, as in trying to reved from grenter part of tho firs falluy palled ont of thying to remove it, danger. The principal thing to pay atter much waste and often stam, is to keep the bearings contion to when the engines are under is gencrally used for keeping bearing the glands steam tight.. Oil found to answar a jet of water is kept playing when larger ones aro have had time to rery woll when the water is phing on them: This is allorred to gethented. It should not be nsed afted on before they 1 good stream of wat, for it may crack them by after they, hare been from the time of starting should bo kept rumuing sudden contraction. iato it before starting, keeps this with the tallow, on the thrust block of the thrust block reqnineps this all important which is always put tightly it' is almos requires great care in adjusting ing cool. The cap krewed down sufficiure to heat, or fire as it is term screwed on too aperienced in our screly tight the unpleasant is termed, and if not chand at the stern screw ships is snre to follow jumping shake so often ight and well tallowed. should be well looked after packing of tho In paddle-whoel tall looked after, and kept quite dien about the onter bearis thero is frequently not snfficient caro roper means provided forings of tho shafts. In not snmeient caro wmencement of a vorage, lubricating these jmpurtant fow ships are .
often put down, scrowed up, and left to look after themselves as best they may. Very few ships, indeed, being provided with tubes leading down from the paddle boxes to the oil holes of the blocks, or in which means are provided for their lubrication.
The cools in the bunkers must be carefully watched, to prevent spontaneous combustion. The stoppers over the holes should bo kept open as much as possible, and care taken not to keep damp coals longer in the bunkers than can be avoided; for it is only damp coal that is liable to spontaneous combustion.

In new fast running engines, castor oil is a very good thing to nse on first starting. When new brasses have been fitted into the bearings, till they form a good bearing for themselves, the same should be used. It appears to have a much finer body in it to lubricate than other oils have. The difference in the cost of the oil is not very much, corrse castor oil being very little dearer than good machine oil.

Duties to Machinery when the Ship has arrived in Port.-The whito lead and tallow should be rubbed off with a piece of oily waste, and then the bright work of the engines will give no trouble by rusting. The engines should have a good blowing through to drive out all water in the condensers, then the Kingston's valves communicating with the sea, should be shut, next open the condenser drain cocks, which let out all water left in them. This is allowed to run into tho Dilges, which can be pumped out by the donkey pump, or the hand pump if no steam is left in the boilers.
Some engineers always blow out their boilers aftor steaming, others do not, the latter only let the fires out and shut the valves in tho stcam pipes; both plans have their advantages and disadvantages. Perhaps the niajority keeps the water in the boilers, only blowing out wheu repairs or an examination of tho boller is required. An engineer should always examino for himself, whether all the fires are properly out, and not take the word of the stokers for it. A great amount of damage may be done by the fire not being properly put out in the ash pits. A frequent practice is to get a lheap of hot ashes together and dash some water over it. This makes it black outside and leares it burning inside. The ashes should rather be spread out evenly, and the water thrown over gradually aud gentiy, to put out the fire offectually, and to create as littlo dirt and dust as possible.

To find the amount of Lap on the Slide Valves (before setting tho slides). Take a batten of wood, and place it on the cylinder slide face at right angles to and over the ports. Mark off on it the edges of the steam and exhaust ports with a square and scriber. By placing this on the face of the slide valve, the amount of lap can at once be found.
To Set the Slides.-Put the piston at the top or bottom of its stroke. If the eccentric is rightly fixed on the shaft, simply fasten the slide ralve on the spindle with the required amount of lead. Theu turn the engine to the other end of its stroke, and see if the lead is tho same; or in some engines more lead is given at the bottom than at tho top (as in vertical engines). If the engiue is fitted with the link motion, the reversing eccentric is then connected and the valve tested in like manner. Also with the link motion, the slide rod is placed in the centre of the link; and although the position of the eccentrics ou the ghaft ought to destroy any motion of the valve, yct there is a littlo
with a short link. This is tested to see that the steam ports are always closed and thus the engines can be stopped, even if thic full pressure of steam be admitted to the back of the slide by the stop or throttle valves.

PORTARLE CONDENSING BTEAM ENGINE.

The above cut represents a portable condensing steam engine of a pattern quice common in Europe. A, Working-beam; b, Stean piston; C, Cylinder; c, Upper Steam port; d, Lower Steam port; E, Throttle valve; F, Fly-wheel; i, Crank; K, k, Eccentric and eccentric rod for working the steam valves; l, Steam valve and valve casing; n, Condenser; o, Injection cock; q, Hot well; r, Shifting valve to cause a vacuum in the condenser previous to starting the engine; S.S, Feed pump; t, Cold water pump for supplying the condenser cistern; u, Governor; V. Connecting rod; vo, Air pump; X. X, The parallel motion; y, Condenser.

Sterro Metal. -Copper, 55 to 60 parts, zinc, 34 to 44 parts, iron 3 to 4 parts, tin, 2 to 4 parts. Sterro Metal is used for the pumps of hydraulic presses, \&c. It is capable of withstanding a pressure of from 43,000 to 85,000 per square inch.

Steam Fire Engines are or should be constructed with steel boilers and blast tubes, copper tubes and large water spaces, together with a good fit out of gauges, safety valves, injectors, \&c., with facility of getting up steam in from 6 to 10 minutes from cold water, and in
about 5 minntes from waterat 1300. Theso machines as now constructed are of great elegance and power, some of them having projected a continuous, solid stream ol water over 300 feet, through 100 leet of hose, fitted with 1.5 inch nozzle. Steam pressure about 80 lba . per square inch. The principle is that of a steam pump, being fitted with the usual air chamber to iuduce a continual steam. Sco diagram of fire cngine with horses attached.
Portable Engines are constructed as light as possiblo, consistent with proper strength of parts, in order to reuder them available for easy transportation. Sometimes they are mounted on wheels, and are in quite extensive use for driving light saw-mills, threshing, brick-making, pumping, chaff-cutting, \&e.
Cornish Engines. - Are usually single acting beam engines which use the steam at a very carly "cut off," and only on one side of the piston, making great use of its expansive property, and are used entirely for pumping water in mines and cities. Stenm is used in effecting the Cownward movement of the piston, being the stroko which lifts the water, the upward movement is caused by the weight of the plungers, rods \&c., at the pump end of the beam. Cornish engines aro usually very massive and powerful, but the first cost is enormous, and there is quite an outcry against them in some places.
In the line of pumping machinery, possibly the largest engines in the world are those doing duty at Hearlem Luke, Ilolland. The engines, three in number, drain a surface of 45.230 acres, an averago lift of the water, depending on the state of the tides, being 16 feet. Each eugine lifts Gi tons of water per stroke to a lieight of 10 feet; When pressed, each lifts 109 tons to that height. Running economically, each lifts $75,000,000$ lbs. of water 1 foot high for 94 llbs. of Welsh coal. Diameter of cylinders (annular in form), 12 feet, with inner cylinders 7 ft . diameter.
Instructions to Engineers and Firemon on Locomotives.Keep the fire evenly and uniformly spread over the grate without clevations or depressions. Fire from large coal, as it leares wider openings between the lumps for the admission of nir, may be deepor thian when the coal is small and lies close together. Remove all incombustible material and clinkers from the furnace as soon as possible, they prevent the draught from producing proper results. The bulk of fuel on the grato should always be in proportion to the quantity of fuel consumed. The dampers in tha front and rear of the ash-pan regulate the dranght admitted to the furnace, and require very careful attention, as the stream of air issues with a velocity of 72 ft. per sccond when the dampers are open and train under full headway. At a speed of 60 miles per hour the pressure of the current of air amonnts to 9 lbs , on every square foot. One ton of bituminous coal requires 300,000 cubic feet of air for its combustion, of Which 100,000 is required to consume the gases evolved From it. Anthracite coal requires 310.480 cubic feet of air per ton for its conbnstion. It burns without smoke, requires a good supply of oxygen and intense heat to burn it, but makes a very fierce fire. Good practice requires complete combustion of the carbou and hydrogen available in the fuel ; insufficent air causes a dense black smoke to issue from the chimney, and the loss of heating effect, and too much air, lowers the temperature of tho flame and dissipates the heat. of

good coal, 02.2 por cent. po to form

 piractice ovaporate $7 \frac{1}{1}$ lbs. of water steam, and 1 lb . will in good is 83 power of 1 Jb . of coke is $9,1 \mathrm{lbs}$. of practice the greatest evaporaof coke as coproducts of combustion, ashes, etc. steam, 22 per cent. $14: 12$. The tupared with that of coal is in the. The heating power hottest part of the firure produced by the comb proportion of about The temperature prodic box, may bo estimated at 1 coco coke in the grade, (100° Ccutigroduced by wood is nsnally at 1606° Centlogrnde. bustion of coal rigrado is equivalent to 2120 l less than 1111° Ceutithe grate, the rigequires the admission of air rahr). The proper comgascous componeuts proportion depending apon the through and abovo may be admitted through coal: In the combnst percentage of tho 000 cuble fect of air gigh the grate only, 11 b . of cole of coke the air the emission of tho for receiving the best effecterequiring about order to promote complete from the furnace shonld from the fuel, this reason the grate surfecombustion under high be retarded, in a slower current, and thace should be as large as temperature, for Enhaled should be in tho weight of the steam as possiblo to induco smoke, engineers usuruery case, the same. For the prevention alr fire donr, vith casially rely on the damper, the ail prevention of formation of smokorul stoking. They endeavor to 1 min and the grate, adjusting it exa controlling the admission of nir prevent tho door for the admiexactly to the demands of the fecl air through tho pices of coal, and dsion of air abore the fuel, by firing by the firo shallow fires for deep fires for heary duty, and small with largo the duty, and at nili ter duty, by firing moro frequaller coals with prerent excessivo local dmes by keeping the bars corered y to lighten we thrown on under draughts thirough the grate covered with fucl to burned, pushed former firo door directly inside Fresh coal shonld inclined, it will forward towards the tubes; but when, when partly boiler with cold qcater downwards by gravitation wen the grates aro tho rrater out; never blow always allow it to cool off ferer fill n hot stances, as the heatod plates a boiler while hot off before running into a compact acale of will be sure to bake nnder any circumdeposits will settlo down great tenacity ; if allowed to cosits of mud and water. Frequent in a soft mass easily sper to cool, theso deposits of foreign mithty shonld be made of out with a hoso and from tho cron matter from the barrel of of washing out all using bad water and sheets between the crown the boiler, the tubes, hard brass, shor, and after heary rains ; and sers, especially whilo bor, to permit tha be fitted to every boiler near terr-pluzs, mide of To avert danger uso of a hose with water for the sides of the firo free circmianger from intenso heat, to sar this parpose. boiler will loso, engineers should adjust the injectond keep up a injector is keep a ittle water while running bet injectoz go that the sated, and Ω full work during stoppages, this been- stations, if the and prerenting expply always kept np, absorbing will be compenlook out for img explosion. Incessant watchfing the surplus heat cngine driver, whing danger in every posainess is necessary to watchfulness, while on duty, should relar his enerection, and no rigilance and decision, and presence of mind for a 26 necessary in any business or call.ing, most certainly they are of paramount importance in this abore all others: See that the safety valves are properly acting, and that

the fidications of the steam gauge are correct. In experiments made with a loconotive boiler, the fire bejng kept regular, and the engine
in valve. F cut represen the saddle-p or sector. When fully the ralve Fr

In valve. F ditto in valve seat. P P steam ports. F lead. The thin cut represents the position of the valve wh ports. E lead. The thind the saddle-pin and the reverse latch in the on the link is exactly under or sector.: V, V chows the lap. Fuli steame outer notch in the quadrant When fully open, and the engine in moteam is the position of the ralvo the ralve when it has just closed motion. Cut-off is the position of steam. Angular Advance is the angular magainsit the admission of angular measurement of the arc de-
scribed by the centre of the eccentric while passing from the place it oc: cuples when the valve is at half stroke, to that which it occupies at the commencement of the stroke of the piston. Linear Advance is the distance which the valve moves while the centre of the eccentric in describing the above angle. Seediagram of Eccentric, Linit and valv; motion

A majority of railways allow for the travel of valves, on Express Passenger Engines, 5 inches, for outside lap, $\frac{1}{8}$ inches, for inside lap, $\%$ inch. for lead in full gear $1-10$ inch. On Express Accommodation Enyines, for travel of value, 5 finches, for outside lap, $\frac{8}{4}$ inch, for inside lap, $\frac{1}{8}$ inch, for lead in full gear, 1-10 inch. On Heavy Freight Engines, for travel of valve, 5 inches, for:outside lap, $\frac{8}{8}$ inch, for inside lap 1-16 inch, for lead in full gear 1-16 inch.

Power of Engines.-Horse-power in steam engines is calculated as the power which would raise $33,000 \mathrm{lbs}$. a foot tigh in a minute, or 90 lbs. at the rate of 4 miles an hour. One-hce power is equal to the lifting; by a pump, of 250 hogsheads of wave ten feet in an hour. Or it would drive 100 spindles of cotton yarn twist, or 500 spindles of No. 48 mule yarh, or 1000 of No. 110, or 12 power looms. One horse power is produced by 19 lbs . of Newcastle coals, 50 lbs . of wood, or 34 lbs. of culm. Coals 1, wood 3, and culm 2, givo cqual heats in the production of steam.

Sixteen lbs. of Newcastle coal converts 100 lbs. of water into steam. A bushel of coal per hour raises steam to 15 lbs. the square inch, whose velocity is 1350 feet per second, and 2 bushels raise it to 120 lbs., or velocity of 3800 feet per second. A horse-power requires from 5 to 7 gallons of water per minute for condensation of steam. Λ steam engine whose cylinder is 31 inches, with 17 double strokes per minute, performs the constant work of 40 horses with 5 tons of coal per day. One of 19 inches and 25 strokes, of 12 horses, with 1 f tons per day. They raise 20,000 cubic feet of water 24 feet for every hundred weight of coals - One bushel of good coals mised from 24 to $32,000,000$ lbs. one foot per minutc. Four bushels of coal per hour with cyllinder of $31 \frac{1}{3}$ inches and $17 \frac{1}{2}$ strokes of 7 feet per minute, is a force equal to 40 horses constantly. A rotative double engine, with a cylinder of 23.75 inches, making 21.5 strokes of 5 feet per minute, is a 20 horse-power; and a cylinder of 17.5 , making 25 strokes of 4 feet, is a 10 horse-power ; the consumption of coals being proporional.

Phopohtion of Locomotive Boiriers, \&c,-Boiler sheets, best cold blast charcoal iron $\frac{8}{8} \mathrm{in}$. thick, or best cast steel $5-16$ in., double rivets; along horizontal seams and junction of fire box to be double riveted. Waist formed of 2 sheets rolled in the direction of the fibre of tho iron or steel. One longitudinal seam in each, above the water lino , RECEIPTS rivets placed 2 inches from centreets $\frac{8}{s}$ in. thick, riveted with $\$$ inch riveted with of inch rivets, placed centre. Steel plates $5-16$ in, thich Extra Telt pieces, riveted to side of 13 inch. from centre to centre.

ncss of metal for stud bolts and expransion braces. Fiurnace Plates, If of iron, $\delta-16$ inch, if of copper $\frac{1}{2}$ in., if of steel, crown shects, 8 in., side and back sheets (steel) 5 -16 in., flue sheets (steel) $\frac{1}{2}$ in., water space 3 ins., sides and back, 4 ins. front. Stay Bolts, I in. diam. screvred and riveted to sheots, $4 \frac{1}{3} \mathrm{in}$. from centre to centre. Crown Bars, mado of 2 pleces of wrought iron $4 \frac{1}{2}$ in. by $\mathrm{f}_{\mathrm{E}} \mathrm{in}$. set $1 \frac{1}{2} \mathrm{in}$. from centre to contre, and secured by bolts fitted to taper holes in crown-sheets, with head on under side of bolt and nut on top, bearing on crown bar. Crown Sheets braced to dome, and outside shell. Furnace Door opening formed by hanging and riveting together tho outer and inner sheets. Tubes, 11 feet long, and 2 in. diam. set in vertical rows sis of all inch apart, givo tho best results. Grate Bars, for burning wood or soft coal, should lave $\frac{1}{2}$ in. openings. Smoke Stack for wood lurning engines should hava the " bonnet stack," from 5 to $5 \frac{1}{2} \mathrm{ft}$. diam. at top, with wire netting ; for engines burning soft coal, a much smaller area of cone is required; butior engines burning anthracite coal, use a plain open stack withont cone or netting. Safety Valves. Every locomotive should be provided with tivo safety valves fitted to brass seats, and secured by springs of sufficient elastlcity to allow a lift of the valve adeguate to permit the emission of all the steam the boiler will generate after if exceeds the maximnm pressure. The bearing or mitre on the yalro face should not exceed of in. Pfud Pluys should be provided on the side of the shell on a level with the crown sheet. To avoid weakening the bolier, rivet a welt on the inside of the shell in the line of the holes. Steam Room, 6 to 7 cubic feet per squaro ft. of growth surface. Good work has been obtained from boilers possessing 1 cubic foot of steam room to 1 square foot of water surface, and a water surface 1-13 that of heating surface.
Averagi Proportion of the Various Parts of Iocomo-Tives.- Cylinders of locomotives vary in sizo, ranging all the way from 8 in. up to 20 in . diam. Crank Pin should be of the diam, of cylinder. Valve Stems shouid be 1-10 the diam. of cylinder. Piston Rods should be the diam. of cylinder. Pump Plunger should be 1-9 the diam. of cylinder. Main Steam Pipe. Area should be from to $\frac{1}{8}$ the diam, of cylinder. Steam Ports.' Area should be 1-12 the area of cylinder. Exhaust Port. Area should be equal to the area of cylinder. The width of bridges for different sized cylinders of locomotives rary from 8 to $1 \frac{1}{f}$ inches. Chimney. Height should not exceed 14 ft ., diameter a little less than the diam. of cylinder. Diam. of Boilers vary from 3 ft . to 4 ft . 3 in . Tubes vary in number from 100 to 220 , top row should bo 8 inches under water. Heating surfuce. Total should be from 1000 to $1: 00$ square ft. Fire Grate Surface ranges from 12 to 30 sq : ft., usual rule 15 sq . ft. with about 90 sq . ft. of lieating surface in fire box. Evaporative Power should range from 100 to 200 cabic ft. of water per hour. Proportion of heatingl surface to each sq. foot of grate, should be from 68 to 80 feet. Petticoat Pipg should be the diam. of the inside pipe of the stack. Ash Pans, should be 9 inches below bottom of grate for wood burning engines, 10 in . for soft coal, and 12 to 14 in . for anthracite coal burners, and should be as nearly air tight as possible when dampers are slut. Dampers, should when shut stand at an angle of 35° from perpendlcular. Smoke Box, diam. should equal diam. of boiler, length from fuve shcet to inside of front door 13 times the leugth of the stroke of the the ares of find the Horse-Powr page 413.) be taken as a of aiston by the pressure of a locomotive.- Multiply number of revolutions poiler pressure ; multiply thinch, which should of the stroke in feet or per minute. Afultiply this by product by the 12), multiply this product ines; if in inches this by tivice the length bo the power of the locomotive, - Ropivide by 33,000 ; the divided by
ExanPLE: engine weigh 6 toe engine should consume railway. The stipulations the pressure on tha, it must draw after it 20 own smoke; (2.) If the safety valves, the gauge not to exceed 50 llons, 10 miles an hour; rest on 6 wheels, theine and boiler must be supp. (3.) There must be 2 top of the chimnt the height of the whole ne supported on springs and weight preforred, which (4.) must not weigh to exceed 15 ft . to the may have 4 wheels. (5 .) may drav a less weight than 6 tons, less Dimensions-Boiler. The price not to exceed eb50 4 in. Cylinders, two dieylindrical in form, length 6 4 tongs 5 cwt . With wo, diam. 8 in , stroke $16{ }^{2}$ in CWt. Chimney, diam, 12 in the boiler, with loaded Weight of Engine, boiler contained 25 cop. 12 in. Meating surface, 117 tender 7 tons, 9 tubes with coke for fopper tubes, 3 inches in diameter: square ft. The his fame. The cylinders gained Stepher son his victory the use of those 450 , this proved a poor arrore set inclining to thictory, and established lifted the boiler up and arrangement, as the joe rails at an angle of 4 ft .8 in . Highest and down on the springs jolting motion slightly tance of 11 miles. Speed during trial, 24 . Diving Wheels, diam. provement on Stephe "Racket" with all its des per hour, for a disIn 1814, and used to "s is first engino constructe, was a great imtransmitted to the wh lead coals" from the ted at Killingworth, gearing.
intervention of cranks and toothed recent construction. Sometwreen the "Rocket" and locomotives of Soigh 66 tons, having 4 cylinders engines are now in uso, which driving wheels 9 ers 20 in . diam. With 212 coupled driving wheels.

English express engines have attained a speed of 73 miles per hour, between Holyhead and Londou.

The illustrious Stephenson is well deserving of double honor as tho worthy ci:ampion of the loftiest description of mechanical progress, at a time when it might truly be sald that he was opposed by almost the entire nation. In interference with the old state of affairs nearly every one, high and low, seemed to see visions of bankrupt coach companies, deserted hotels, muined landlords, roads overgrown with grass, buildings and mansions burned to the ground by flying sparks from the engine, commerce ruined, and man and beast everywhere run over and crushed under the car wheels. During Stephenson's memorable examination before the-committee of the House of Commons, one of the questions put to him was-"Would it not be an awkward thing for an engine to run over a cow?" The honest Northumbrian's reply is well known, "Yes, it would be awkward for the coo."
Frre Cement.-Fire clay, wet, 100 parts, white lead, 3 parts, powdered asbestos, $\frac{1}{2}$ part, mix all together and use as mortar.
Railway Train Speed Table.-A train going 1 mile an hour travels one and soven-fifteenths-say one and a half foot per second. To form a table of speed from these data is a mere matter of multiplication. Example:-A train going 70 miles an hour travels per secoud 1 and $7-15 \mathrm{ft}$. multiplied by $70=102$ and two thirds feet
T_{1} cut. exhi keye conn the V linkduce a leve series of the

the offeo valve-st reverse I at H , sh would be the levex mediate 1 more or The 10 should, w knows should be should be the tank. ascending stoppage, be added should be like a tru: lever, and ready to ac in any of i an easy m sometimes ful patent imperfeet n winter, in causo of $n 1$ anxiety to increases in exhibited on page 402. In the arrangement of the present day, as keyed on the driving-shaft B, \mathbb{C} is the A A represents the eccentrica connected with the eocentrics by the rink, and D the "strap-link" the valve and G the valre-rod working rods E E , as shown in cut, F is link-block. The elevation or depring slide-valve and connected with duce a baokward or forward movemaion of the link, necessary to ina lever handle H, fitted with a cement of the engine, was effected by series of notches in the sector I; this which could be dropped into a of the reaching-rod K; and the oonnter-handle operating by means

valve-stem into operation with either eoblock connecting with the reverse movement of the engine might eccentric as the forward or at H , shows the link in full gear for revequire. The lever as shown would be shot off, as the valve would reversing; at I (mid-gear) steam the lever would be in full-gear would cover both steam-ports; at M mediate positions between -gear for running forward, and in intermore or less expanaion of the steam but gesp the effect would be The locomotive, with it entire but never the full power. shonld, while on the road, be the object of eotions and surronndings, knows no weariness, Before eterting of a care and vigilance which should be closely inspected to be sure thom a station. the engine thuld be well replenished with water, and all is right; the boiler ascending grades injector should be closed before surplus stored in stoppage, or whi, but should bo opened to adere starting, and whilo be added at the descending a down grade if requireed water during should be either same time. In descending down ed, and fuel may like a trusty se partially or entirely shut off and grades, the steam lever, and with all the be always at his post, withe engineer should, ready to act in all the facultien of his body and mind hand on the in any of its response to signals, or on the first mind on the alert, an easy matteriod forms. Modern improvements hation of danger sometimes happo. stop an engine at very short notice readered it ful patent brapens, on critical occasions, that eort notice, although it imperfeot meake have proved inoperative some of the most powerwinter, in cold anical adjustment. Broken railsing to complicated or causo of numa climates, like that of Canada and mere especially during anxiety to therous disasters, severe loss, and Russia, are a fertile increases in propgineer. The frequency of much solicitude and increases in proportion with the rigor of the climate breakages always

The valve gear and eccentrics should be frequently eximined, and if found defective in any way, no time should be lost in adjusting them by following the directions given elsewhere. Use clean water; by so doing much trouble and danger will be averted. Keep tho tubes well swept, and if one should burst, plug both ends of it with as little delay as possible; if impeded by the emission of steam or water, an ample supply of cold feed water will decrease the pressure and permit work. If the leak is very serions, it would be the best plau to quench the fire in order to secure proper access to repair the defective tube. Every engineer should make a point of having on hand all those appliances which experience has shown to be neccssary for use during possible emergencies, such as plugs for the tubes, screw jack, wrecking tools, wrenches, hammers, signals, wedges, files, rope, buckets, chisels, waste, oil, tallow, \&e.

Railway Signals.- A red flag by day, or red light by night, is a signal of danger. Hoisted at a station it is a sigual for a train" to stop." Hoisted by the road side, it is a signal of danger on the train ahead. Carried unfurled on an engine, it is a warning that anothor engine or train is on its way. One short sound of the whistle is the slgnal to apply brakes; tivo, to let them go; three, to back up; four, to call in the flagmen; five, for road crossings.

A sweeping parting of the hands on a level with the eye is a signal to go ahead. A downward motion of one hand, with extended arm, to stop. A beckoning motion of one hand, to back.

A lantern raised and lowered vertically, is a signal for starting; when swung at right angles, or across the track, to stop; when swung in a circle, to back the train.

One stroke of the alarm-bell slgnifies stop; two, to go ahead; three, to back.
Speed of Passenger Trains.-In the United States, the Newspaper Express train, between New York and Philadelphia makes the daily trip of 93 miles in 13 hours, inclusive of four stoppages.

The
plishe

from

 utes 1merat
the dis
that th stoppi full sp Great hours the "na per hou by som miles in with th tains 51

London 1
London
York to
Granthan Newcastl New Cros Carstairs Oxford th London to Rughy to London to Kentish T Holyhead Wigston to Carlisle to
Besides running 78 as 84 miles

THE FOLLO
Locom
Rails :
During fros During mist During wet The adhe
ving 6 d

The most remarkable feat of railway travel on record, was accomplished June 4, 1876, by a fast special train, which made the joumey from New York to San Francisco, a distance of 2900 miles in $26 \mathrm{~min}-$ utes less than 84 hours, being at the rate of 40 miles per hour.
Regarding English railways, the following table embraces an enumeration of trains which run over 60 miles without stopping, shows the distancerun, and the average apeed per hour. It will be seen that the London and Northwestern run the longest distance without stopping, as their engines suck up water on the way while running at full speed. The fastest is the $11.45 \mathrm{~A} . \mathrm{M}$. from Paddington over the Great Western, which runs from Loudon to Exeter, 194 miles in 41 hours on the "broad gauge," The Great Northern, though running on the "'narrow gange," maintains an average speed of more than 50 miles per hour, and the 10 A. M. Express from London to Edinburgh called by some of the country people'the "Flying Scotchman,", travels 188.2 miles in $4 \frac{1}{2}$ hours, from London to York. The Great Northern R., with their new engines, having 8 ft . driving wheels, sometimes attains 51 miles per hour.

Besides the above, there aro well attested cases of passenger trains ruming 78 miles per hour with 16 coaches attached, and even as high as 84 miles per hour have been attained.
the following table exhibits the mffective admesion of LOCOMOTIVES PER TON DURING DIfFERENT WEATHERS, ON THR nalls :

Lbs.
Lbs.
During frost or snow. 200 - During damp weather. 400
During misty weather...... 350 During fine dry weather
760
During wet rainy weather. . 600
The adhesion of a locomotive with 4 wheels, compared with one having 6 wheels, is in the proportion of 5 to 8.

412 MACHINISTS AND ENGINEERS' DEPARTMENT.

Experiments have demonstrated that trains (properly fitted with good brakes), moving att the rato of 33 miles per hour, can be stopped within a distance of 57 yards, and within 273 yards if moving at the rato of 60 miles an hour, the resisting power of brakes being about 129 lbs. per tou of train. Resistance caused by defects of roads vary from 5 to 40 per cent., and strong side winds resist to the extent of 20 per cent. Resistance increases with the speed in about the following ratios:-

 and high winds....................|131/4 $141 / 4|18 \% / 201 / 4| 261 / 4 \mid 341 / 4$
Effective Pressure of Steam on Plston, with different degrees of expansion, boiler pressure being assumed at 100 lbs . per wquare inch.

Steam cut off at ${ }_{\text {a }}^{3}$ of stroke $=90$ effective pressure.

		"	免			$=80$		6
6	6	"	$\frac{1}{8}$	${ }^{6}$	6	$=69$	6	6
	6	6	1	${ }^{6}$	"	$=50$	"	${ }^{6}$
	"	6	2	*	6	$=40$	${ }^{6}$	6

In experiments wich Locomotive No. 47, North London Railway, it was found that in two 17 inch cylinders, 24 ins. stroke, lap of valve, $\frac{7}{7}$ in., lead, $\frac{1}{2}$ in., position of gear, 4th notch from middle gear, drivers, E.ft. 6 ins. diam., with boiler pressure 160 lbs . per square inch, the actial horse-power of bothi cylinders was. 840.552
"That the friction of both valves was..................... 54.352
" eccentrics.
74.336

Total friction of ralves and eccentrics.
129.251
or 15 per cent. of the power of the engine required to more them.
Revolutions of Driving Wheris per Mile.

Diam. in ins.	Rev. per mile.	Diain. in ins.	Rev. per mile.	Diam. in ins.	Rev. per mile.
42	480.4	54	373.5	66	306
43	469	55	367	72	280
46	439	60	336	78	258.6
48	420	62	325.4	81	249
50	403.5	63	320	84	240

The average life of a car whicel under a load of 3 tons, is 45,000 miles. The weight of iron rails per mile varies from 78 tons, 11 cwt , 48 lbs., to 157 tons, 3 cwt ., 84 lbs., according as the rails range from 50 lbs. to 100 lbs. weight to the yard.

A rise of 60° in the temperature of a 25 ft . rail lengthens it to 23 ft . $\frac{1}{i}$ in. The last table refers to No. of rails required for single track.

1 with opped at tho about s vary ent of ollow-
 MLDND

414 MaCIINISTS' AND ENGINEERS DEPARTMENT.

The iron energy, indomitable perseverance, sterling integrity, and thorough practical sagacity for which this Father of Railways was noted, have indelibly enrolled his honor ad name among the benefactors of the race. Of the first raiway, that between Stockton and Darlington, George Stephenson was both surveyor and contractor, laying out every foot of the road, nd Aking the sights through the spirit level with his own hands and eyes. On his persistent recommendations, the intended plan of a wooden tramway was set aside and iron rails substitnted, and reluctant permission given him to place upon the road, which had been intended only for horse-draught, a steam locomotive. The trial day was fixed for the 27 th of September, 1825 , which may be regarded as the natal day of railway trarel. A great throng of people was present to witness the new-iangled and much ridiculed affair, the multitude being ready to applaud tho suc-

ENGI
cess or d to canont The vete cession o flour ; a wagons, 1 gine No. procession rode befol was not e: sults follo and on fo distanced, leave tho ished its j carried am passenger nnlike any several yea (the traffic the locoms Committee ing its use. conceded ol locomotives The play through Par difficuities at last the cl

ENGINE NO. 1.-STOCKTON \& DARLNNGTON R. R.-1825.
cess or deride the fallure of the man whom they were equally ready to canonize as the wisest, or condemn as the craziest man in England. The veteran was fully prepared to withstand the ordeal. A long procession of velicles was formed, consisting of 6 wagons, loaded with flour ; a covered coach, contalning directors and passengers; 21 coal wagons, fitted up, for and crowded with passengers. Locomotive engine No. 1, represented in the cut, driven by our hero, headed the procession, which was preceded by a precursor on horseback, who rode before to herald the coming of the train, the velocity of which was not expected to exceed 4 or 5 miles an hour. But different results followed. An immense multitude of people, both on horseback and on foot, accompanied the train, bnt not long; they were soon distanced, the man on horseback who heralded was compelled to leave tho track, and the first train that ever carried passengers finishcd its journcy at the rate of 12 to 15 miles an hour. The load carricd amomited to 90 tons, including 450 passengers. The railway
and was facand ctor, the comaside n to ght, temarcl. and suc- passenger coach which formed part of the procession was totally unlike anything now in use, and was drawn by horse power. It was several years before passengers were drawn over the road by steam (the traffic being confined to freight only), as the terror inspired by the locomotive was such that the Liverpool \& Manchester R. R. Cominittee pledged themselves not to require any clanse empowering its use, and as late as 1829 the Newcastle and Carlisle Act was conceded on the express condition that it shonld not be worked by locomotives, but by hoises only.

The plans of the Liverpool \& Manchester R. R. were fought through Parliament by the indefatigable Stephenson in the face of difficcilties which would have appalled any common man; and when at last the charter was obtained, and the work began, he personally

supervised it from begimning to end
with his own hands, living on hor, getting his breakfast of oatmeal progress of the work, supervising the pack, personally finspecting the Robert, the younger hands the working pay-rolls of the men, and perVictoria Bridge coming off the victortreal, treading in his engineer of the famons Rocket, as shown on at the noted contest at pr's footsteps, and the Novelty, Sanspareil, previous page, eclipsed the performan the Manchester R. \sim. wren, and Perseverance. Soone performance of proved, as locom. Was opened with the Rocket the Liverpool \& illustration exhibits the rining at the rate of 30 miles aned and imas now to be seen in the Soaket, as remodelled after an hour. The

A verage number THF Locomotive.-(IIl. Cent. R.) Ruel cto ton of coal, 39.87. Ditto run to 1 cord of wood, 43.98 riel, etc. Mechanics' wages, 62 per cent pint of oll, 13.83. Cost of Ditto to 1 per ceut. : Superintender cent. Materials-Iron, steel, of Repairs, enst per mile, in cents, 35.42. 2 in cents, for passenger engines, 20.10 , cent. Average Fiench Locomotives. A Dor freight, do, speed of passenger trains withe actual power exerted, 450 horses freight trains; 18 miles, mixed 15 vehicles, is 24 miles per hour ;

American Locomotive mixed engines, 20 to 30 miles per per hour ; totill weight, 30 tons 9 cwe.-A 10 wheeled engine, 20 miles per hour. (4 eight on drivers, 22 tons, on freading
27

it h twic mile the 0

A, stean through wh regulating t Worked by t ing the reser conical open justed by th for operating mosphere, in
pipe through twice that distance; the usules, although neme have run more than miles per annum. The lifetime of an engine is from 15,600 to 25,000 earnings about cangs about $\$ 25,000$. aded cars,
ins. by 10 1 n grade ade, at 10 al ; stenn
tes 35 the eigit with all items out when

A, steam-pip GIFFARD'S INJECTOR.

 throngh which e connecting with boiler. regulating the passam passes into the space b, tube or cylinder, worked by the handig of steam through circular C, screwed rod for ing the reservoiror hle shown above. E, water conical space c, and conical opening or hot-well with the small cham supply plpe connectjusted by the or discharge plpe, the dimamber m. C, I, circular. ior operating the cylinent of the tube or cylinder C of which is admosphere, intervenlinder C. H, opening, in corne. G, hand wheel pipe through which thg between discharge pipe and the the at: water is forced. I, tube through receivingwater is passed to the boiler. K, valve for preventing the return of the water from boiler when the injector is closed. . L, overflow or waste-pipe.

Method of Oreration. - Turn the wheel so as to allow a little water to flow into the injector. Open the tap connecting the instrument with the boiler; the admission of the steam will create a partial vacuum, into which the water will flow witil rapidity. The steam condenses as it mingles with the water, and as it rushes forward it carries the water along in its course, driving it into the boil : with great force. The quantity may be increased or diminished by means of taps fitted to the steam and water supply-pipes, and any surplus water will escape at the overflow or waste-pipe. This invention effects great economy in the transmission of hot water to the boiler, for not the slightest particle of heat is lost.

Samuel Rue's injector, a most valuable invention, is well adapted to operate as a boiler feeder on land or water; but may be considered as indispeusable on marine boilers, as from its peculiar construction, with steam of from 40 to 80 lbs. pressure, it is capable of forcing water against a pressure of over 200 lbs . per square frich.

In 40 years the miles of railway in the United States have increased from 3 miles to 60,000 miles.

Railivay Cross Ties, No. per mile, ${\underset{\|}{6}}^{2}$ ft. centre to centre, 2.641

	"		${ }^{6}$	2		'6	"	2.348
"	"	"	"	2		"	"	2.113
"	"	16	"	2	;	"	"	1.921
"	"	،	4	3		"	6	1.761

The usual dimensions of railway ties are 9 feet long, 10 ins. wide $\times 5$ ins., average life time, 7 years; best material, seasoned white oak. If ties are preserved by Burnettizing they will last 15 years.

The test for new steel car axles, is 5 blows of a ram, weighing 1,650 lbs., falling 30 ft . on axle placed on supports 3 ft . apart. The test for new iron axles, is 5 blows of a ram, welghing $1,650 \mathrm{lbs}$., falling 20 ft ., on axle placed on supports 3 ft . apart.

Non-Conductor for Steam Pipes and Cylinders.-Good clay, 50 lbs., finely sifted coal ashcs 50 lbs., hair for a bind 12 ozs., mix all thoroughly with water to the consistence of mortar, and allow it to rest for a few hours, but just previous to use, add 50 lbs . plaster of Paris, working it in well. Now apply it to the pipes, \&c., while warm, in a thin coat, and when dry, add another, continuing until the proper thickness is secured, whitewashing or painting over all.

Evaporative Powers of Fuel, etc.-

Stationary engines use from 3 to 7 lbs . of coal per horse power per hour.
Locomotive passenger engines 25 to 30 lbs. coal per mille. ${ }_{\text {frelght }}$. 45 to 55
Wood-buming " 1 cord of wood to 42 miles.
Julk of coal is 6 times less than its equivalent in wood.
60 bush. Newcastle coal will make 92 bush. of coke.
1 bush. anthracite coal weighs 86 lbs ; bituminous coal $=80 \mathrm{lbs}$; alarcoal $($ hardwood $)=32 \mathrm{lbs}$.; coke $=32$ lbs.
turn of flow or a little instrue a pare steam ward it \therefore with means surplus, vention boiler, sdapted sidered ruction, forcing
creased
2.641
2.348
2.113
1.921
1.761

2s. wide d white ears. veighing rt. The bs., fall-
od clav, mix all ow it to aster of le warm, ae prop-

THE FIRST RAILWAY PASSENGER COACH.
The magnificent caravan represented by the cut conr
idea of railway passenger travel and accommodations conreys a good the use of steam power for that purpose. .

M. W. BALOWIN'S LOCOMOTIVE "IRONSIOES"-1832.
3. W. Baldwin's locomotive " ironsides" -1852 . The engine represented abore, constric founder of the Baldwin Lo above, constructed by M. W. Baldwin A., was first run on the Pocomotive Works, Philadelphia, Pa., U. S and proved to be the pioneer of elphia \& Norristown R. R., in 1832, United States. pioneer of successful railway locomotion in tho The average 100,000 trains of 150 tons and rail is $15,000,000$ of tons, or equal to Barnet, the life of an iron rail On the Great Northern Railway nit fast tralns, and $38,303,028$ tons of slow trans, with $13,484,661$ tons of haif worn ont with $95,577,240$ tons traffic.

Latemp Heat of Steam. - Take 2 bmall vessels connected at their tops by a tube. Let one contain 1 lb . of water at $32^{\circ} \mathrm{F}$ hr., the other 5. lbs, at the same temperature. Apply a spirit lamp below the vessel containing the 1 lb . of water until it is all boiled away and its vapor condensed by passing through the tube and mingling with the $5 \frac{1}{2}$ lbs. of water in the other vessel. At this point the heat absorbod by the 5. l lbs of water will raise the tomperature to 212° Fahr. or boiling heat, and the combined weight will be $6 \frac{1}{2}$ lbs. instead of ..$\frac{1}{2}$ lbs., as placed in the vessel at first. The whole of this heat has been transferred from the 1 lb . of water held over tie spirit lamp, although at no time has its hcat oxceeded 2120. Inasmuch as this heat cannot be measured by any known instrument; it is called latent heat The 1 lb . of water made the $5 . \frac{1}{2}$ lbs. to boil; and from this we know by calculation that the combined latent and sensible heat of steam is about 1200°.
The pressure of steam is measured by atmospheres. Stenm of 15 lbs. pressure is steam of one atmosphere, of 30 lbs. pressure, of 2 atmosphores, \&rc. It is frequently used as high as 6 or 7 atmospheres. Steaw $\because+2$ atmospheres is called low pressuic steam; and all pressure \quad hish pressure steam. Ileat, by expanding water, impart a to the gulf stream, when transformed into steam it evolves sufficient power to drive the rolling mill, cotton and other mills, the machine shop, the locomotive, aud impel the steamship ove ino treckiess ocean. As the temperature of water falls below 1000 Cent s "de $\left.{ }^{\prime}{ }^{\prime}.\right)$ the boiling point, it will contract or occupy a smaller space cutilit descends to 3 . 8 Centrigrade, when it will contract no more, as its greatest density is then reached. From 50. 8, as the water becomes colder, it expands, till it reaches the freezing point 0°. Centigrade, so that is specifcally lighter than water, and fioats on tho surface, being about 10 per cent. lighter. Were it not for the interposition of this merciful law, and were ice to sink in water, many of the lakes, rivers and streams within the temperate zones would be rendered incapable of navigation during the greater part of the year by reason of the ice at the bottom.
application for Burns and Soalds. The following has been tested in the severest cases of burning and scalding from railway and steamboat accidents. Glycerine, 5 ozs. ; white of egg, 4 ozs. ; tinct, of arnica 3 ozs . ; mix the glycerize and white of egg thoroughly in a mortar and gradually add the arnica. Apply freely on linen rags night and morning, previously washing with warm castile soap suds. In urgent cases, if nothing better can be had, clap on a mud poultice, a favorite and very effectual remedy with schnol boys who are stung while making war on hornets' nests.

Clment to mend Leaky Boilers.-Powdered litharge, 2 parts, very fine sand, 2 parts, slaked quick lime, 1 part. Mix all together. To use, mix the proper quantity with boiled linseed oil and apply quick. It gets hard very soon.

Strong Cement for Steam Jonnts.-White lead ground in oil, 10 parts, black oxide of manganese, 3 parts, litharge, 1 part. Reduce to the proper consistency with boiled linseed oll and apply.
Crment For IIoles or Cracks.-Red lead ground hit oll, oparts, white lead, 3 parts, oxide of manganese, 2 parts, silicato of soda, 1 part, litharge, $\frac{1}{2}$ part. all mixed and used as putty. of salphar, 2 lbs.; irou borings, 80 lbs.; mix to a paste with water in quantitles as required for immediato use.
 206 lbs.

> AIR AND Water micit Cement for Melted glue, 8 parts, linseed oll, 4 parts lits Casks and Cistrimas.litharge; hardens in 48 honrs.:, 4 parts, boiled into a varnish with mix, and add 20 parts in ribber 1 part, coal tar 12 parts, heat gently heat to about 2500 . Axotrer Ditto.-Glue 12 parts, water sufficient to dissolve, add onghly together. parts; melt then add tarpentine 4 parts, mix thorCement for External Use-Asies 1 part; mix with a little oll, very durable 2 parts, clay 3 parts, sand Cerant to Resist Red very durable.
parts of clay, thoroughly dried and pul Boizing Water.-To 4 or 5 filings free from oxide, 1 part of peroverized, add 2 parts of fine iron common salt, and $\frac{1}{2}$ part of borax. peroxyde of manganese, 1 part of wator mie, then reduce to tilick paste with thoroughly, render as finc creasing almg well; use immediately, and apply necessary quantity of Cemg almost to a white heat.
a paste of pure oxide of lend of Cast-Inon Wheels, ec.-Minke Unrivalled for fastening stone, litharge, and concentrated glycerine. Varisish for boiners - to stone or iron to iron.
Soff Cement for Steant-boilum dissolved in turpentine. white lead, in oil, 4 parts; iron borings, 2 treanr-pipes, \&C.-Red or Hand Cement.-Iron borings and salt o 3 parts. of cal-ammoniac, with fresh water.

Sopers : Cement. - Mix toge and Venetian red, 3 parts.
Prumnens' Cement.-Biack resin, 1 part; brick dust, 2 parts, Copperpsintig, by a melting heat. together into a patty, are oftein - Boiled linseed oil and red lead mixed to secure joints ; tho washers used by coppersmiths and eupineers this mixture in a pasty state. Compositions to pastry sta. In solution with 4 parts dry clay. in Castings.--Mix 1 part of borax manganese, mixed with a strong solntion : Pulverized binoxide of clay) to form a thick paste. Cast Iron Ceme pasto parts ; sal-ammoniac, 2 - parts borings, or turnings of cast iron, 16 well together in a mortar, and ; flour of sulphur, 1 part ; mix them use, talse of the mixture, and keep them dry. When required for oughly, and add a snfficient part; clean borings, 20 parts ; mlx thordust added improves the cement. quantity of water. A littlo grind-stone CEMpent for Sten empont. Whito lead, mired, 2 prits ; Joints, etc., titit faced Flangers, Wise mix them to a consistence of tead, dry, 1 part ; griud, or othertogether. nd apply
with 1 or 2 thicknesses of canvas, or ganze wiro, as the necessity of the case may be.

Cement yor Joints of Iron Pipes on Moles dr Castings. Take of iron borings, coarsely powdered, 5 lbs.' ; of powdered salammoniac; 2 oz ; of sulphur, 1 oz ; and water sufficient to moisten it. This composition hardens rapidly, but, if time can be allowed it sets more firmly without the sulphur. Uso as soon as mixed, and ram tightly into the joints oi holes.
Best Cement for Aquatita.-One part, by measnre, say a gill of litharge $; 1$ gill of plaster of Paris; 1 gill of dry, white sand ; fa gill of finely powdered resin. Sift, and keep corked tight until required for use, when it is to be made into a putty by mixing in boiled oil (linseed) with a little patent drier added. Never nse it after it has been mixed (that is, with the oil) over fifteen hours. This cement can be used for marine as well as fresh water aquaria, as it resists the action of salt water. The tank can be used immediately, but it is best to give it three or four hours to dry.
Asother.-Mix equal quantities of any white lead and red lead to a paste with mastic varnish and use as soon as mixed.
Cement for Beliting. Waterproof.-Dissolve gutta percha in bisulphide of carbon to the consistence of molasses, slice down and thin the ands to be united, warm the parts, and apply the cement, then hammer lightly on a smooth anvil, or submit the parts to heary pressure.
To Repair Learages in Fme Evgine Mose.-Pass a ronnd Jar of iron into the hose under the leak, then rivet on a patch of leather, previously coated with marine glue.

To Repair Rubber Hose.- Cut the hose apart where it is defective'; obtain from any gasfitter a piece of iron pipe 2 or 3 inches long, twist the hose over it until the ends meet, wrap with stroug twine, weil waxed, and it will last a long time.
Pomtable Glue for Draughtsmen.-Glue 5 ozs.; sugar 2 ozs.; water 8 ozs. ; melt in a water bath, cast it in molds. For use dissolvo in warm water.

Cementing Emerx to Wood.-Melt together equal parts of shellac, white resin and carbolic acid in crystals; add the last after the others are melted.
To Coat Iron with Emery.-Gire the iron a good coat of oil and white lead, when this gets hard and dry, apply a mixture of glue and emery.

To Clean Cotron Waste.-Pack the whaste in a tin cylinder with a perforated false bottom and tube with stop-cock at bottom. Pour on the waste bisulphide of carbon sufficient to cover, and allow to soak a few minutes, then add more bisulphide, and so on for a time or two, and then squeeze out. By simple distillation the whole of the bisulphide, or nearly all, can easily be recovered and so be used over again. This will free the cotton completely from grease.

Frence Putty.-Seven pounds linseed oll and 4 lbs . brown nmber are boiled for two hours, and 62 grammes wax stirred in. After removal from the fire of $_{2}^{2}$ lbs. fine chalk and 11 lbs. white lead are added and thoroughly incorporated; said to be very hard and permanent. treme end of the crack, to provent its further extension, at each cxurine, caulk the crack and, with fine iron filings saturated with part of iron filings made into parts of pulverized clay and ono applied hot is a good cement for the with boiling linseed oil and whiting mixed Imon Rusting.-Give it a purpose. and will preservegether in the form of a paste of linseed oil and Glue fon Labiron from rusting for years. It is easily removed ized borax, 2 labelling on Metals. - Bion attaching labels to gum shellac, 4 ozs. Boil till dier, 1 gt. $;$ pulverand dust or dab metals, or it will do to write tissolved. Used for the bronze. wder over it, varuishing over part of caustic soda and 5 of Laspes.-Boil 3 parts of resin with 1 with half its weight of plas water. The composition is then mired hour. It is of great adhesiver of Paris, and sets firmly in $\frac{1}{3}$ to $\frac{8}{4}$ of an conductor of heat, and but superfer, not permeable to petrolemm, alow For LUTE, or cement for supricialy attacked by hot water. plaster with water to a soft paste ang joints of apparatus, mix Paris a red heat. To render it impervious aply it at once. It bears nearly Roman Cement.-SIaked lime 1 , rub it over with wax and oil. fine gravel sand, $\frac{1}{2}$ bush. Dissolve th bush., green copperas, $3 \frac{1}{2} \mathrm{lbs}$., all together to the proper consistency copperas in hot water, and mix and keep stirring it with a stick whil for use; uso the day it is mired Vicat's Hydraulio Cime n mixture of 4 parts chalk and 1 is prenared by stirring into water in a circular trough, letting it 1 part clay ; mix with a vertical wheel soon takes place which is form out in a large receiver. A deposit ing dried in the sun, are moderatelo enall bricks, which after bowhen mixed with water. Glue to Reniswate.
ochre, 2 parts, mix with ture.-Glue, 5 parts, resin, 4 parts, red Cement to Fasten Leature possible quantity of water. PISinglass 2 Is ozs., dissolve each on Tor Rolleras.-Gum arable, 29 Parchment Glue.- Parchment separately in water and mix. To Atracived, strain and envaporato to right lb., water, 6 qts. varnish, 15 parts pentine, 2 parts; drying oil, 5 parts; turpen Plate Glass.-Copal add 10 parts of slakeduefied glue, δ parts. Mrett 3 parts; oll of turTurners' Cement lime. melt, and stir in fine brick dust. 1 oz ; resin, $\frac{1}{2} \mathrm{oz}$. ; pltch, $\frac{1}{2}$ oz.; bank Note Glue-Disolt. evaporate it till most of the water of fine glue or gelatine in water; sugar, and pour it into moulds. Cement roi Melt together 5 lbs. of resin and 1 lines and Galvanic Trougers.red ochre (highly dried and still 1 lb . of beeswax, and stir in 1 lb . of frothining the heat a little abore warm) and 4 oz . of plaster of Paris calcined ceases, or (for troughs) rosin, and stirring constantly till all calcined plaster of Paris, $\frac{1}{2} \mathrm{lb}$.; linseed oil, $\frac{1}{2} \mathrm{lb}$. dried red ochro, 1 lb ,

Architectural Cement-1. Reduce paper to a smooth paste by boiling it in water; then add an equal weight of sifted whiting and good size; boil to a proper consistence. 2. Paper pasto and size, equal parts; fincly powdered plastor of Paris to mako it of a proper consistence. Use it as soon as mixed. Can be used in making architectural busts, statues, columus, \&c. It is light, receives a good polish, but will not stand water.

Alabaster Cement.-1. Finely powdered plaster of Paris, mado into a paste with water. 2. Melt yellow rosin, or equal parts yellow rosin aud beeswax, then stir in half as much finely powdered plaster of Yaris. The first is used to join and fit together pieces of alabaster or marble, or to mend broken plaster figures. The second is to join alabaster, marble, and other similar substances that will bear being heated.

Frencr Cement for Rooms.-A coat of oxido of zinc, mixed with size, made up like a wash is first lald on the wall, celling, or wainscot, and over that a coat of chloride of zinc applied, prepared in the same way as the first wash. The oxide and chloride effect an immediate combination, and form a lind of cement, smooth and polished as glass, and sald to be superior to plaster of Paris for coating the walls of rooms.

Cement for Cloth or Leatier.-Talso ale, 1 pt. ; best Russia isinglass, 2 ozs , put them into a common glue kettlo aud boil until the isinflass is dissolved; then add 4 ozs. of the best common glue, and dissolve it with the other ; then slowly add 13 ozs. of bolled linseed oil, stirring all tho time while adding, and until well mixed. When cold it appears like India rubber. To use, dissolvo what yon need in a suitable guantity of ale to havo the consistence of thicls glue. It is applicable for earthenware, china, glass, or leather ; for harncss, belts for machinery, cloth belts for cracker machines for bakers, \&c. If for leather, slave off as if for sowing, apply the cement with a brush while hot, laying a weight to keep the joint firmly pressed for 6 to 10 hours, or orer night.

Cotlens' Cement.-Black rosin, 41 lbs ; bceswax, 1 lb .; melt together and add 1 lb . finely powdered and dried brick-dust. Used for fastening knives and forks in their handles when they become loosened by use.

Cement for fastening Fibrous Materials to Metals.-This can be effected by dissolving glue in vinegar by heat and adding ouethird of its volume of white pine pitch, also loot.

Good Paste that will Keep A Year.-Dlssolve a teaspoonful of alum in a quart of warm water. When cold, stir in as much flour as will bring it to the consistence of cream, behng particular to break up all the lumps ; next, place it on the fire and allow it to cook gently for a fer minates, stirring well meanwhile ; add 2 teaspoonfuls of corrosive sublimate, a few drops of carbolic acid, and a teaspoonful of oil of rosemary, or cloves, or lavender, or any other essential oil, stirring in well. This paste will keep for any length of time in prime condition.

Mucriage. - Put 3 ozs. of gum arabic in an earthen-ware vessel containing $\frac{1}{2}$ pt. of cold water. If the liquid is occasionally stirred, the gum In 24 hours will be dissolved and ready for use.

Cement to Fasten Rubeer to Wood or Metal.-Soak pulverized gum shellac in 10 times its weight of ammonia; in 3 or 4 weels a slimy mass is obtained which will become liquid without the use of hot water; this softens the rubber, and becomes, after volatilization of the ammonia, hard aud impermeablo to gases and fluids whenever it is used ou rubber counected to wood or metal, as in steam, or other apparatus.

Imperishable Putty.-Linseed oil, 7 lbs.; brown umber, 4 lbs ; boil together two hours; stir in 2 oz. beeswax, remove from the fire, and mix in $5 \frac{1}{2}$ lbs chalk aud 11 lbs . white lead, mixing thoroughly.

Cheap Gold Varnish for Ornamental Tin-Ware.-Turpentino varnish, 2 gals. ; turpentine, 1 gal. ; asphaltum, 1 gill ; umber, 8 oz .; yellow aniliuc, 4 oz .; gamboge, 1 lb . Boil and mix for 10 hours.
y boilo d size; ; finely so it as itatues, water. do into w rosin Paris. narble, baster, ed with sot, and way as mbinand said

ia 3 sint

 he isinlissolve ring nil ars like itlty of arthen, cloth off as if eight to
ogether

 stening use. .-This ng oulenful of : is will ;all the ra fer lve subof rosein well.sel conred, the verized a slimy water ; umonia, rubber the fire, y.

Temporary Repairs in
 on the Road.

That tho lo
tion, jars, and heavy, in its long and rapid trips, with continual oscillawith siluosities, twisting first oue uneven rails, passing around curves wond irequent break-downs, is a way and then another, shonld meet munity from they do not occur morer of small wonder. Tho real men to whom thecient is doubtless owing to quickened to they are intrusted, whose perceptie watchful care of the which beset them wouderful barree of activity tions and intuitions aro locomotive engineer their caling. Among tho by the peculiar dangers

1. Bursting of the Tubes called to act, the followgencies in which the to drive a tapering plubes or Fiues. - The temporary may be noted: ming it with the end of of pine wood into she rary remedy for this is plug should be driven into iron bar. When a ruptured tube by ramwhere the action of thinto the tube so as to a simplo leake oxists, the and correct the trouble steam will swell the cover the fractured part, the plugs formed a trie. The timber used should cansing it to fit tight the moisture will do the too small for tho tube be well seasoned, and should bo followed up the rest. With bursted tithe expansion due to To do this comfortap by tapering iron plugs drinbes the wooden plugs furnace by covering the fire will bo necessary to ren tight into the flues:
2. Throwing off a Dre fire with fresh fuel from repress the heat in the queutly the case, anst iving Wheel. - When the the tender. box and substitute in outside the driving-axle box reak occurs, as is freas a journal bearing for place a substantial piece of remove the drivingso as to sustain the axle axle. Adjust this timb timber fitted to use management, disconnecting the centre of the peden the pedestal cap opening the cylluder cocks as valvo gearing, securistal. By cantious wards its destination. 3. Where a Wheel Tire is ing may blowly todismantled wheel from tho track by Off, the best way is to elevate the engine cin of the driving-box; why fitting a block of timber into the ing the tireless wheel to tod machine to the rene connect with another 4. Heated Axle-Boxes.-This the rails. repair shop without allowodor of burning oil Ines.-This trouble duced, and the boil. In this case the spis frequently detected by the brisk jet of cold waterely lubricated; but if should, if possible, bs ife by means of a small rubbom the tank should be directed of no avail, a for such emergencies. of the brasses becoming $\frac{1}{}$ avert all danger from thys be kept on hand should be kept moving brazed to the journal of the fused lining metal stop until the trouble is very slowly, and not allowed axle the engine
3. When the Piston- Past. gland sufficiently to perinit the fres Heated, the remedy is to loosen the inder through the packing. Lree emission of steam from the engine the hose as above noted, while runuing slowly freely and apply water with cyl6. Broken Crank' Pin. - Where slowly. broken prank or coupling rods on both side crank-pin is broken remove rod at the sam belongs to the driving wheels the elugine, and if the curely block the time, open the cylinder waste-move the connecting engine are not cross-head. If the parallel waste-water cocks, and sobreaking the remaining chere is imminent dang on both sides of the breaking the remaining crank-pins on the oppanger, while running, of
4. Driving out the Front Cylinder-head.-Remove the connecting-rod on the disabled side of the engine, and detach the valve motion, elther by taking down the cccentric rod straps or at the rock-shaft arm. Next, sct the valve in the centro of its travel, so as to overlap and cover both of the cylinder steam ports, bit with the oxhaust port open. Thea crowd the back towards the tender as far as it will go and proceed with the sound cylinder.
5. Breaking of the Piston-rod.-The provisional remedy for this, where the cylinder-head is not driven out, is to proceed as directed in the last noted emergency. Open the waste-water cocks of the disabled cylinder to check any leakage of steam past the slide valve from gaining admission to the cylinder and forcing the piston against the cylinderhead and driving it out. Block the piston securely by means of pleces of timber fitted between the gaide-bars, so as to extend between the guide-yoke and cross-head.
6. Broken Spring or Spring-Hanger.-Apply the jacks and raise the engine uutil the axle-box of the driving-wheel is nearly in the centre of the pedestal, then place a suitable piece of iron crosswise of the upper part of the driving-axle box, but between it and the engine frame, so as to rest the weight of the engine on the frame and relieve the spring. To prevent the movement of the equalizing bar, and to permit the operation of the spring at the other end of the said bar without moving it, a piece of iron should be placed between the bar and the top of the engine frame.
7. Breaking of Piston-Rod from the Cross-Head.-In this case the piston may be removed from tho cyllnder, or immovably braced against the front cylinder-head, as may be most convenient. It matters not if it does leak a little steam.
8. Breaking a Lifting Link or the Saddle Pin Connecting the Reverse Shaft to the Slot-Link.-The temporary remedy for this accident is to fit a piece of wood and fasten it with stout twine on the top of the die orlink-block. It should be of sufficient length to keep the link in proper position for duty in rumning the train. Next, secure another piece of wood (by the same means as the last noted) in the link-slot below the die or sliding-block, to fasten that block in the right position to allor the engine to run. As the engine cannot bo reversed on the disabled side, the driver must exercise double caution in stopping.
9. Slipping of the Eccentrics.-The provisional remedy for this accident is as follows: Place the reverse lever in the end notch of the sector forward and place the driving crank-pin or engine-crauk as nearly on a dead centre as possible, opening the waste-water cocks at both ends of the cylinder. Now detach the rocker-arm from the slide-valve spindle, and move the latter until the opening of the cyllnder steam-port, corresponding to the end of the cylinder at which the piston stands, will be shown by the emission of steam through the waste-water cock at that end of the cylinder; the throttle-valve being slightly opened to admit a small quantity of steam to the cylinder and steam-chest, for if a large supply entered it would be liable to pass through leaks in the piston and thence throngh both of the waste-water cylinder-cocks. The position of the valre being now ascertained, the eccentric is next moved upon the driving-axle, and adjusted so that the valve-spindle will connect with the rockerarm without being moved, or moving the valve at all. Still allother temporary remedy is this: Set the reverse lever in the forward notch, place the crank on its forward dead centre, and slacken the set screw of the eccentric Which connects to the upper end of the link; the forward ecceutric. This eccentric mnsi now be moved round upon the axle until the slide-ralre causes the steam-port at the front end of the cylinder to open sufficiently to afford the required amount of

ralre

movec
being means rerge centric moving backwa of valve How is in eve tined, th the wate must be seas, she tremend and follo ocean to hurricane iron stean have prov is sustaint possiblo k quickenin. ressel. TI work ; it closest calc If a ves steam, and There is a of a first-c collier, yet The char determined, pieces of w chosen. Th leugth. An next selected chosen. The reneer betw pressure, so a the designer for as both sid than one-half be nsed in ord hall of the f structed to oc seen from this
safety, \&c., de signerin calcu of water, drau future vessel b late the proper propeller, as ei other minor de
valve lead. To accomplish the desired results, the eccentric must be moved as it operates when the engine is going ahead. The eccentric being thus properly adjusted in position, it should be firmly secured by means of its set-screw. If the rear eccentric becomes loose, place the rererse lever in the backward notch, and elevate the link so that the eccentric connected to the lower end of the link may bo properly adjusted, moviug it around on the axle as it operates when the engine is rumniug backwards, until the rear cylinder-cock is open to the required amount of valve lead, when it must be secured as above noted.

How to Sifaife A Sailing Vessel or Steamers. The model of a versel is in every case determined by the nature of the traffic for which she is destined, the motive power by which she will be impelled, and the character of the waters she is intended to navigate. For shallow ports and rivers, she must be fat-bottomed and of light draught. If she is to navigate northern seas, she must be constructed to encounter and ontride the fearful gales and tremendous storms of frequent occurrence. If she is to visit tropical climates and follow the great marine highways of commerce in deep water from ocean to ocean, she must be equally adapted for conflict with the tropical hurricane and the freezing gales of the north. It is a fact that the first-class iron stcamers which ply between New York and the various European ports have proved themselves abundantly capable, where no serious derangement is sustained by the machinery, of coming safely into port through the worst possible kind of weather. Even contrary winds have the bencficial effect of quickening the draught of the furnaces, and thus increasing the speed of the ressel. This wonderful endurance and nice adaptation to duty is no chanco work; it is the result of design-the carefnl adjustment of forces, and the closest calculation on the part of the designer.

If a vessel is to be impelled by the wind, she will have one ehape ; if by steam, and with paddles, quite another ; and still another if a propeller. Thero is a vast discrepaucy between the graceful curves and swe!ling lines of a first-class excursion steamer and the unwieldy, cumbrous form of tho collier, yet each vessel is specially designed for its particular vocation.
The character, cost, length, width, depth, and capacity of the vessel being determined, the first step is to make the model. To do this a number of pieces of well-seasoned, select pieces of wowd, of a uniform thickness, aro chosen. The size may be from 4 to 7 ins. wide, and from 18 ins . to 3 ft . in leugth. An equal number of pieces of veneer, of a corresponding size, aro next selected, of a color contrasting with that of the boards previonsly chosen. The boards are now carefully adjusted over cach other, with n reueer between each, and the whole are glued together, and submitted to pressure, so as to make a solid, compact block of the whole. From this islock the designer forms the model of one side of the hull of the projected vessel, for as both sides will be exactly alike, there is no use for representing inorn than one-half of the hull. The greatest care and the nicest calculation must be used in order to render the form of the block an exact counterpart of the hull of the future ship, as in building the latter every part must be constructed to conform, in the minutest particnlars, to the model. It will be seen from this that every thing relating to the ship's capacity, speed, draught, safety, \&c., depends upon the ability, forethought, and prescience of the desiguer in calculating every possible contingency relating to the displacement of water, draught, buoyancy, the force of the wind and waves, \&ic. If the future vessel be intended for a steamer, the designer must be able to calcuhate the proper degree of immersion for the paddles or submersion for the propeller, as either of the two may be used for propulsion, with numerous other minor details.

Among the betefactors of humanity, whose labors have conduced to render the latent forcen of nature subservient to the nseg of mankind, the namo of James Watt holds prosminent ranic. The following epitaph is inseribed on the pedestal of Chantry's statue of. Watt in Westminster Abbey:

NOT TO PERPETUATE A XAME, WHICR BUBT ENDURE WHILE THE PEACETOL ARTS FLOUAISE, BUT TO 日HOW THAT MANKIND HAVK LEARNT TO HONOR THONS WHO ESAF DEEERVE THEIA GRATITUDE, THE KING, HIS MINISTERS, AND MANY OF TRE NOBLEG AND COMMONERS OF THE RRALM, BAIBED THIS MONG: MENT TO JAMES WATT, wHO DIRECTING THI FOROE OT AN ORIGINAL OENIUE, EARLY EXERCIGED IN PHILOSOPHIO REBEARCH, TO THK-IMPROVEMENT OF TH S'CBAM ENGINE, ENLARGED THE RESOURCES OF HIB COUNTET, INCREASED THE POWER OF MAN, AND FOBE TO AN EP: TNENT PLACE AMONG THE ILLUBTRIOU!, HOLLOWERS OT BCIENCE AND THE REAK BENEFACTORS OFTHE WORLD. BURM

In 1764, Watt constructer the frat steam engine of real prictical value ever made in England, and in 1786 he patented and introducell the frst non-condensing engine. This improvement consisted in his discovery of the power of cold water to condense steam, and he applied thin means in a reparnte vessel. Four onnoes of water will, in a second, condense 200 feet of atemm, and reduce their expansive forco to one-fifth.

Tha Waserous Engine Wones Co.'s Hioh Pressure Enoine, represented in the cut, is in very extensive use in Canada, and is credited with firstclass performancea. The improved Governor used on this engine is superior to most of the best kinds now mauufactured in its controlling and regulating action, combined with easy odjustment. Outer bearings are added to the vaive spindlen, and brass glands to the stuffing boxes, which are held to placo with a cap screwed on, thus obvlating any llability to got out of line. The platon

MACIINISTS: 'AND. ENGINEERS' DRPARTMENT. 431

rods and crank-pins are of steel, and all vaive spindles and engine bolts are made of Lowmoor iron.

Tho alovt noted engine must not be confounded with tho 20 and 25-horse power direct action portable engines manufactured by the same company, so well known and so extensively used in driving saw mills, and performing work connected with ship building in tho Maratime Provinces, and other parts of the Dominion of Canada. These engines and mills are considered by many who use them as marvels of perfection, several parties having sent in attestations of having performed nearly double the work guaranteed by the company.

RICHARD'S INDICATOR, BY ELLIOT BROTHERS, LONDON.
The above cut represents a Richards Steam Engine Indicntor, consisting of a eylinder containing an accurately adjusted plston, the upper side of which is always exposed to the downward pressure of
the a to res benea of ap pressı down placed ated so and th able pa slon of ward effected ing the is attac and ver stiff and pressure definito pressure and thus indicator the uppe the stean indication and the i cup is ins through t upwards ing in posi is attached the engine piston hea diminish o extent to connection rel will co piston, in al when the ec barrel, oper this motion if now allo straight hor sion of stea motion will ment, just a sterm or dow ancy; and th outine, comp each point in depression ab in that part 0 turn ftroke. tracing the at beneath. The indications of the the steam when it operates from of a pencil connected with the pe instrument are exlibited by means pressure of the stean, whereby tiston and operated by the fluctuating down in a vertical direction, and pencil is compelled to move up or placed on the card barrel or drum describe a line on a piece of paper. ated scale, the drum in the meantime show in the cut, with the graduand thither on its axis by means of a cord compelled to move hitherslon of a spring engine operating to draw it connecting it with a suitward movemeit ofring the forward stroke ofe way against the teneffected by the of the drum towards its of the engine, the backing the return stroke of the spring while original position being is attached, is very of the engine. The piston cord is relaxed durand very limited motight, has very little friction to which the pencil stiff and rigid, and so pressure of 1 lb . to the square ind in strength that a vart being quite definite part of an inch. Tuare inch will force the pencil uation in the pressure of steam in the The indicator is intended to up or down a and thus show the ate cylinder at every part of thed to exhibit the indicator to horizontal actual or indicated horse-power piston's travel, the upper side, near the cylinders, the proper place for in applying the the steam ports, as the ends, but arerted as muclior insertion is on indications. Vertical rushing steam has a tendency possible from and the indicator cal cylinders should be tapped at to derange the cup is inserted may cocs screwed in, or the apertut the upper end, through the side of ?e used for that parpose; for the which the oil upwards for the the cylinder, and insert; for the lower end, drill ing in position, a cord (fine of the indicator cock. is attached to a "reducing wire is preferable), from the indicator bethe engine frame; anothg wheel," which is secured the paper barrel piston head; the interver cord connects the reducing to some part of diminish or reduce the lonig of this wheel is necessary in with the extent to conform to thong movement of the piston to a sufer to connection being complete small size of the instrument used. The rel will commence to revolve with engine in motion, the paper barpiston, in antagonisin to the tension the forward movement of the When the cord is relaxed by the retur the coiled spring above noted, barrel, operated by the spring return stroke of the piston, the paper this motion will continneas long as resume its original position, and if now allowed to press upong the may be desirable. The pencil, straight horizontal line, called the moving paper, will describe a sion of steam by turning the tap atmospheric line. On the admismotion will suddenly change into of the indicator, this horizontal stent, just as the piston in the in an upward or duwnward movestenm or downwards by the atmosplicator is driven upwards by the outi; and the pencil will describe outline, compounded of the two motio the moving paper, a space or each point in the conrse of which will detelled an indicator diagram, in that part aove the atmospheric line, the exact by its elevation or turn stroke of the cylinder during each part of amount of pressure tracing the atmosphy prefer to trace the indicator the forward and re-

434 MACHINIJTS AND ENGINEERS' DEPARTMENT.

In diagram E, the atmospheric line A B,-described by the peucil without steam, is equivalent to the stroke of the piston, which may be divided into as many aliquot parts as there are inches in the stioke. of the piston. Perpendiculars raised on this line wiil cut the diagram at points indicating the corresponding pressure. The curved line A. B, traced by the pencil, exhibits the varying pressure bi the stoam daring the steam stroke, in the direction A B, aud during the return stroke B A; the continuation BCA represents similialy the back pressure due to incomplete exhaust. The curve is thus arranged to begin and end in itself, and it plainly represents the pressure of the steam on one side of the piston during a double stroke. Divide the base line luto inches of stroke, say 20 , and at each division draw vertical lines; similarly draw lines parallel to the atmospheric line at equal distances, of say 10 lbs. pressure by the indicator scale ; the force of steam at all points of the stroke will be obvious.

To Compute the Ponoer of the Diagram-Set down the length of the spaces formed by the vertical lines from the base, in measuroments of a acale accompanying the indicator, and on which a 10 th of an inch usually represents a pound of pressure; add op the total length of all the spaces, and divide by the namber of spaces, which will give the mean length, or the mean pressure upon the plstou in pounds per square iuch; maltiply the area of the piston in square fiches by the pressure in pounds per square inch, and by the speed of the piston, in feet, per minute, and divide by 33,000 , which gires the actual number of horses' power.

MACHINISTS AND ENGLNEERS' DEPARTMENT. 430

At such times a register should be used to count the number of rerolutions per minute. Note the size of the ports, the form and kind of engine, the lap and lead of the valve, the exhaust lead, the pressure of steam in the boiler, diameter of cylinder, number of strokes per minute, the diameter and length of steam pipe, the pnint of cut-off, the height of the barometer and temperature of the engiue room; and the racuum by gauge, the temperature of the hot-well, and that of the injection water, if the operation has been performed on a condensing engine To take a diagram with absolute truth it is necessary to operate at each end of the cylinder.

Power Required for Various Purposes.-
To drive a 20 to 30 inch circular saw, 4 to 6 horse power.

POWER NECESSARY TO GRIND GRAIN WITH PORTABLE MILLS.

Horse Power.	Size of Stones.	Revolutions per Minute.	Bushels Corn Ground per Hour.	Bushels of Wheat Ground per Hour.
2 to 4	12-inch.	300 to 900	. 1 1to 4	
4 to 6	20 ":	650 to 700	- 5 to 8	4 to 6
6 to 8	30	550 to 600	10 to 15	7 to 10
8 to 12	30	4.50 to 500	18 to 25	12 to 18
12 to 15	48	$3 E 0$ to 400	25 to 35	15 to 18

Saiv Macuine For Stones.-Soft Sand Stome: Breadth of sawcut, $\frac{t}{}$ inch; time required to saw 10 square feet, 5 minutes 25 seconds; power expended, 4.54 horses, Hard Sand Stone: breadth of cut, finch; time employed to cut 10 square feet, 1 hour 37 minates; power required, 2 horses. In sawing stone the labor on calcareous stones is as 45 to 50 ; on granite, as 500 to 700 ; on porphyry 1,200 . A marble saw requires half a horse power.

Water Works.-(Molesworth.)-1 gal, of water $=0.16$ cublc ft. approximately; 1 cubic foot of water $=61 / 4$ gallons approximately.

Consumption of toater in towns. 16 galions per head per day in nonmanufacturing towns; 20 gallons per day in manufacturing towns. The main should be large enough for double the usual quantity. Impounding reservire to contain about 120 days' supply in the less rainy districts 11 England. Service reservoirs to contain 3 days' supply; On the average. about 6-10ths. of the rainfall is available for storage. L oss from overfiow of storm-water, about 10 per cent. Evaporation is 50 per cent. less on fat country than on an undulating rocky country.
Influtration, in England, in winter......................... 33 per cent.

Average of the rear........ antumn.." " "
Filters for Watre Works.- 1 square yari of fiter for every 700 gellons in 24 hours; formed of 2 ft . 6 ins , of ente sand, 6 in . of common sand, 6 ins, of shells, 2 ft .6 ins. of gravel.-

Perforated pipes to be laid in the lowest stratum.
To Unite Water Pipes.-An excelient material for uniting water pipes is prepared by combining 4 parts of Portland cement and 1 part of unslacked lime, mixed together in small portions in a stout mortar, adding enough water to permit it to be reduced to a goft paste.

THE ALLEN HIGH PRESSURE CUT－OFF ENGINE．
The engine represented above is constructed in the best manner，and valuable improvements have been introduced with a view to attain a very high speed and thus ensure immense power in a limited space． The travel of the piston is from 600 to 800 ft ．per minute，and the engine is constructed of the best material，and is of excellent design throughont．

Hampson and Whiterile＇s Higit Pressure Engine．－This massive and powerful eugine（sce cut）is in quite extensive use，and is noted for its substantial construction，its excellent valve arrange－ ment，powerful governor，economical expansion gear，and many other va＇uable points．
The following Table shows the Dimensions，Power，Weigit， \＆o．，of different kinds of Portable Steam Enaines and Boilers．－Haswell．

Power．		Cylinder．	Driving or Fly Wheels．		Weight of Engine aud Boller．
Nom－ inal．	Act－ ual．	$\begin{gathered} \text { 胃 } \\ \text { 品 } \\ \text { 日 } \\ \hline \end{gathered}$	官	Revolu tions．	
4	4.7	4×10	$\begin{aligned} & \text { ins. } \\ & 21 / 2 x \end{aligned}$		1 lbs 2,800
5	7.3	5×10.	$\begin{aligned} & 21 / 2 x \\ & 3 \\ & \hline \end{aligned}$	175	2,800 3,200
7	10.5	6×10	$31 / 2 \times$	175	4,200
12	114.3	7×10	323／3 $\times 8$	175	4，900
12 15	19.2 24.3	8× 8×12	4×8 $\times 8$ $\times 8$	150	6，100
$\stackrel{15}{20}$	24.3 30.9	9×12	5×9	150	6，900
25	36.3	10×16 11 $\times 18$	6 $\times 10$ $\times 10$	116	11,200 12,300
30	43.2	12×18	6×12	100	13，800
40	68.8	14×18	7×14	100	16，700

＊Computed at 60 lbs．pressure．All the Portable Engines have two fly wheels，or Driving pulleys．

3.

ner, and attain a d spaco. and the t desigu
E.-This use, and arrangeny other

Neigrt, res And
two fiv

The Baxter Portable Steam Engine, as manufactured by
the Colt Arms Co. of Hartford, Conn., is made of five sizes, embracing two, four, six, cight, and ten-horse power, respectively, is certainly one of the most complete, unique, simple, and economical portable engines ever constructed. It is too well known to require a detailed descri on; but two illustrations are presented herewith, the first showi g a frout view of the exterior part, and the other exhlibiting a sectional view of the plain boiler for the two-horse power engine.

tenr re boller i engino compon nished rendere speed of the same most col

Girif engine 1 features, mum of vertical and jlippr novelty scription, vents the cylinder horizonta The who ments are efllicent th 275 revolu

The largest gize has a bursting strength corresponding to 800 lbs . to the square inch, whereas the worling pressure is about 70 lbs.; the emallest size a jursting strength of 1000 lbs., and a working pressure of about 90 lbs . All the heating surfaces are below the water line, which ensures safety to the boiler. The circulation of the water within the boiler is perfect, thus holding the sediment in suspension, so that it may bo expelled by blowing out. The cylinder and its parts aro kept hot by immersion in the steam, so that no caloric is lost, and the piston has a vertical movement, so that there is but little weai and

800 lbs. lbs.; the ressuro ter line, within so that arts aro and the pai: and
tear resulting from friction. It is hardly possible to explode the boller in any contingency, and 100 lbs. of coal will rum a four-horse engine for 10 hours. The whole machine is composed of about 130 component parts, all interchangeable, so that cach article can be furnished by the manufacturer, as it may be required to effect repairs rendered necessary by wear or breakage. The engine has a piston gpeed of about 200 fect per minute, the diameter of the piston is about. the same as the length of the stroke, and the valve arrangement is most complete.

Griffith and Wedge's Vertical Portable Engine.-The engine represented below presents a combination of many valuable features, among others, the minimum of friction, owing to the rertical position of the cylinder, an improvement which is quite a novelty on engines of this description, and effectually prevents the unequal wear of the cylinder and piston to which all horizontal engines are Hablo. The whole mechanical arrangements are most complete, and so eflcicint that it can be driven from

griffith and wedge's vertical portable engine.
for saw mills, to 460 revolutions per minute, without overtasking the boiler.

THE PIONEER OF STEAM NAVIGATION IN AMEILCA.
While Robert Fulton was in England, converting a speculation into a reality, he was on friendly intercourse with Sir R. Phillips, to whom lie wrote a triumphant letter on the evening of his first voyage on the Hudson. This letter was shown to Earl Stanhope and four or five eminent engineers, but treated with scorn as descriptive of an impos sibility. Sir R. Phillips then advertised for a company to repeat on the Thames'what had been done on the Hudson, but he obtained only two ten-pound conditional subscribers, after expending some pounds in advertising! He then printed, with commendation, FiciTon's letter in the Monthly Magazine and his credulity was generally reprobated. Then, for several years, the American accounts were treated as falsehoods, till a man ruined himself by lannching a vessel
on the was, ho and intr the Clya rention, treatines generous thousand genius b ago, duri was a lau a relation accidenta they had owner, an
Sugar long, 30 i engine of of canes in tons of can juice stand The produl the caues, constructed the canes, shall travel to separate is reabsorbe drons are I the sugar, 2 densers, and boiling the 1 boilers, each fugal machir of crushing r Ohi, Mili of the vertic 10 minntes, 5 in oil in 12
Hyprost pressure cylir team, 50 l bs. minute; Pre diam., 2 ins.;

Fulling each piece bel 127 lbs ., the f requires 2 ho doring that tir
indelible tqual parts of c np with linse lised for writil bleached out. on the Clyde. Three Scotchmen afterwards made experiment was, lowever, a mere speculation until taken up by Experiments. It and introduced on the American rivers. Thence by Fulton in 1806-7, vention, being first every one derided the inventor introduced it to treatment accordraid to trust themselves on the as well as the ingenerous Fulton, is Anerica to the memory of her The ignoble thousunds now avail blot most foul upon her banner poble son, the genius brought to liphemselves of the great invention Hundreds of ago, during his life timt, on the waters and wharention which his was a laughiug stocime, the name of the por urves where 70 years a relation appeared in thd a bye-word. It is but a feiv days agrentor accidental discovery of his New. York Sun, giving an days ago that they had been grauted a te bones in a vault, where, as we now leare owner, and finally forgotten Slgar mill for cane. long, 30 ins. diam., and making - 3-cylinder mill, with rollers $5 \frac{1}{3} \mathrm{ft}$. engine of 2π to 30 horse power, $24+$ turns per minute, driven by an of canes in 12 to 15 hours. An acrexps the juice out of 100 tons tons of canes, according to the are of land produces from 10 to 20 juicestands from 8 to 12 of the sace and locality of the canes. The The product in sugar varies from 6 to 10 , according to the locality. the canes, according to the locality and per cent. of the weight of constructed mills give in juice from 60 to mode of manufacture. Well the canes, and one main condition of 70 per cent. of the weight of shall travel slowly, as with too great a efficiency is, that the rollers to separate itself from the woody rea speed the juice has not time is reabsorbed. To defecate 330 gals of juf the cano, and much of it drons are required, 4 scum presses, and juice, 6 boiling pans or cantthe sugar, 2 vacuum pans, 6. feet dind 10 filters, and to granulate densers, und it is better also toet diam., are required, with two conboiling the liquor in the vacuum pans is pumps. The steam for boilers, each 6 ft . in diam. To whiten the generated in 3 cylindrical fugal machines, driven by a. 12 h. p. engine whar, there are io centriof crushing rollers.-Bourne. h. p. engine, which also drives a pair Oif Mill.-Weight of ed
of the vertical spindle per edige runners, 6,000 lbs. ; number of turns 10 miuntes, b5 lbs. : weight of tee, 6 ; weight of seed introduced erery in oil in 12 hours, $1,320 \mathrm{lls}$. ped crushed daily, $3,300 \mathrm{lbs}$; product Hydrostatic Press.- 30 power expended, 2.72 horses.
pressure cylinder), 10 ins. diam ofes of cotton per hour. Engine (high Hfam, 50 lbs. per square inch. full stroke of piston, 3 ft ; Pressure of minute; Presses, 2, with 12-inch stroke; Revolutions, 45 to 60 per diam., 2 ins.; stroke, 6 ins.-Inch rams; stroke, 45 ft .; Pumps, 2 ; Fulling Mile - in filingevell.
ach piece being 220 yds. Inling the cloth called "Beauchamps," 127 lbs. , the fuller makes 100 and .66 wide, and weighing from 121 to reqnires 2 hours to full it, and 120 strokes per minnte; each piece dnring that time.-Bourne, and the expenditure of 2 horse power Indelible Rep Iurne. equal parts of coped Ink for Cotton and Woollen Mills.-Use ap with linseed oil with cinnabar, both in fine powder, sift, and rub lised for writing or stamping muller; then squeeze through cloth. beached out.

442 MACHINISTS AND ENGINEERS' DEPARTMENT.

Wind Mills.-The length of an arm (whip) is divided into seren parts, the sails extending over six parts. The force of wind at 10 miles an hour, is hall a pound per square foot; at 14 miles is a pound ; at 20 miles 2 lbs ; at 25 miles 3 lbs. ; at 35 miles 6 lbs .; at 45 miles 10 lbs.; at 60 miles $17 a^{2}$ lbs. ; and at 100 miles is nearly 50 lbs . Tho drip. ing shaft of a wind mill should be set.at an elevated angle with the horizon when set in low localities, and at a depressed augle when set on elevations. These angles may range from 30 to 35°. To give the fnllest effect to the force of the wind, the sails are inclined to the axis from 72° to 75°. The tips of the sails often move 30 miles per hour, or 44 feet per second. From tip to tip is about 70 fect, and the breadth from 5 to 6 feet. The periormance of such a mill is equiralent to the power of 34 men.

Experiments prove, 1st, That in a vertical wind mill employed to grind corn, the mill stone usually makes 5 revolutions to 1 of the sail. end, When the wind is 19 feet per second, the sails will make from 11 to 12 revolutions per minute, and the mill will grind 880 to 990 lbs . in an hour, or about $22,000 \mathrm{lbs}$. in 24 houls. 3 d, With the wind at 30 feet per second, a mill will carry all sail, and make 22 revolutlons per minute, grinding 1984 lbs. of flour in an hour, or $47,690 \mathrm{lbs}$. in 24 hours.

From the experiments of Smeaton, it appears that the following positions are the best. Suppose the radius to be divided into 6 equal parts, and call the first part, beginning with the centre, 1, the second 2, and so on, the extreme part being 6:-

French Flour Mill.-Diameter of millstones, 70 inches; num. ber of revolutions per minute, 70; quantity of corn ground and sifted per hour, 260.7 lbs.; power consumed, 3.34 horses, as tested by the dynamometer.

Exalish Flour Mill.,-Diameter of millstones 51.18 inches: revolutions per minute, 110; corn ground per hour by each revolving millstone, 220 lbs.; power required for two revolving stones, 5.64 horses. Power consumed by one winnowing machine and two bolt ing machines, with brushes sifting 1,650 lbs. of flour per hour was 67 horses. In another mill the number of turns of the millistone was 40% per minute, the quantity of corn ground by each horse power was 120 lbs., of which 72.7 per cent. was flour, 7.8 per cent. was meal, and 19.5 per cent. was bran. In a portablo flour mill, with machinery for cleaning and sifting, the total weight was 1000 lbs.-Bourne.

Enalish Flour Mill near Metz.-Diameter of stone 51.18 inches; number of revolutions per minute, 110 ; weimht lstone, 1 ton; com ground per hour by each pair, 220 lbw. $\pi \quad$, pairs of millstones aetiug, 1 bolting and 1 winnowing machin opower con sumed was $8 \frac{1}{3}$ horse power.-Bourne. 5 bushels of thern, and 4 bushals of Southern wheat, are required to make 1 barrel of flour; liss. of wheat make about 3 liss of brend.

The Lerf This celebrate of Springfield about 8,000 in ets, one a vert trom each oth rets of bucket by their arran consistent with und at the sam scured. Thus empared w. power by fri Globe cast-iron dially for the sn of er, varyin mithstood in 4 tisking the pla with an extreme
into serea at 10 miles pound ; at 45 miles 10 The drip. le with the e when set To give the to the axis s per hour, et, and the 1 is equiva-
mployed to of the sail cke from 11 , 990 lbs. in wind at 30 slutions per in 24 hours. e following into 6 equal the second

WITII TH: F Motion. 8 deg.

8 "
6 "
$2 \frac{1}{2}$ "
"
ches; num. l and silted sted by the
nches; rev1 revolving stones, 8.64 d two bolth cour was 6 one was 486 ver was 120 meal, and chinery for

The Leffel Improved Double Tcrabine Water Whieel This celebrated wheel (see cut), manufactured by Jas. Leffel \& Co., of Springfield, Ohio, and New Haven, Conn., of which thefrel \& Co., ets, one a vertical, and thes two independent sets and there are now trom cach other in the principle a central discharge, differing entirely pets of buckets are so combined as action apon the water. The two by their arrangement admit the greateste really but one wheel, and consistent with economical use to greatest possible quantity of water tad at the same time the greatest any given wheel of whatever size, ocured. Thus, the surface of the area for the escape of the water is nenmpared with the quantity of wheel is reduced to a minimum, Gpower by friction is quanided of water used, and a very great loss biall cast-iron casing is coming to connection with these wheels the dally for the smaller wheels. Many almost aniversally used, espeor er, varying from 80 to 240 feet, them are placed under heads of taking th in the most admirable m, and the tremendous pressure oltaking the place of an over-shot manner. The severest test, that hith an extremely limited supply of water, is rep a very high fall, and herery instance with the most completer, is repeatedly applied, and most complete succeps. For over 12 years

444 MACHINISTS AND ENGINEERS' DEPARTMENT.

this wheel has stood the severest practical tests, developing the utmost power from a givel quautity of water, in all places and under all circumstances, from the magnificent cotton mill down to tho humble frontier suw and grist mill.
tanle of Spouting Velocity and Disciarge of Water fok Gate Orifices.

1	17.64	0.62	11	58.51	2.03	21	80.84	2.81	31		
2	24.95	0.86	12	61.11	2.12	22	82.75	${ }_{287}$	32	${ }_{99} 80$	3.46
3	30.55	1.16	13	63.61	2.21	23	84.61	2.93	33	101.34	52
4	35.28	1.22	14	66.01	2.29	24	86.43	3.00	34	102.87	3.57
5	39.45	1.37	15	68.33	2.37	25	88.21	3.06	35	104.37	3.63
6	43.21	1.50	16	70.57	2.45	${ }^{26}$	89.96	3.12	${ }^{36}$	105.85	3.67
7	46.68	1.62	17	72.74	2.53	27	91.67	3.18	37	107.31	3.72
8	49.90	1.73	18	74.85	2.60	28	93.35	3.24	38	108.75	3.77
${ }^{9}$	52.92	1,84	19	76.90	2.67	29	95.00	3.30	39	110.17	3.82
10	65.79	1.94	20	78.90	2.75	30	96.63	3.65	40	$111.58 \mid$	

The above table gives depth in inches from 1 to 40, as noted under columns B. Columus E represent the velocity per secoud, in inches and decimals of an inch. Columns Frepresent the number of cubic feet per minute for each square inch of orifice.

Illustration.-Suppose the opening under a forebay gate, requirud to pass the water of a stream, is 48 inches wide and 3 inches deep, with a head of water (B) in forebay of 28 ins. ; to find the rater discliarged, run down the columne marked B until you come to 28 ins. (head given in this example); then run across to column F, and you will find 3.24, the number of cubic feet of water discharged by an orifice 1 in . square, under 28 ins. head. The area of the opening given, 48 ins. by 3 ins. is 144 . square inches; this multiplied by 3.24 gives 466.56 cubic feet that the above cpeniug will discharge per minute. This table gives the actual and not the theoretical discharge.

In the measurement of large open streams, first ascertain the mean velocity in feet per minute, and also the area of cross section of the stream in square fect, when the product of these two quantities will give the required quantity of water afforded by the stream. The velocity of such strean can be estimated by throwing floating bodies on the surface of near the specific gravity of the water, and rating the time accurately required in passing a given distance. It is generaily best to ascertain the velocity at the centre, and from this ascertain the mean velocity, which has been found by accurate and reliable experiments to be 83 per cent., or abov four-filths of the relocity of the surface of the streain. The cross section may be estimated by meastring the depth of che strian at a number of points, at equal distauces apart (these points being in a lise acioss the stream), adding the depths together, and multiplying their sum by the distance apart in feet of any two points. This will give the result required in square feet of cross section, when the product of mean velocity in reet per minute and cross seci on in square feet, obtains the quantity of water that the stream affords in cubic feet per minute. Leffell's Wheel Book.

Saw and Grisi Mill.-A Waterous $40-\mathrm{horse}$-power engine wim drive a 60 inch circular saw, capable of cuting 20,000 feet of ship plank in 12 hours, edger, trimmer, shingle machines, lath machine, and:bolter, and 2 run of stonas in grist nill.

To find the b, as two in radius req a designated p opposite to the of teeth.
Wheres Ge a section of a plaue; they a
ag the utand under wn to the ATER Fok

E|T 98.223 .31 99.80 3.46 101.34 3.52 $102.87{ }^{3} .57$ 104.37 .3 .63 105.85 3.67 107.313 .72 108.76 3.77 $110.17{ }^{7} 3.82$ 111.58|3.87 ted under in inches of cubic
gate, red 3 inches the water e to 28 ius. , and you ged by an e opening ed by 3.24 per minbarge. the mean onl of the tities will m. The ig bodies ating the generally ascertain Hable exity of the measurdistances Iding the apart in in square reet per of water 's Wheel
gine wit of ship nachine,

MACHINISTS AND ENGINEELS' DLPARTMENT. Pitch of Wherls, being a Table of Radil of Wherig in eter, or the dia compute tie Pitger for a desianated DiAyTreth. Radiun. Teeth. Reringor a Degignated Pitche.
 a bection of a patro, Construction Tereth plane; they are lnof gears whose teeth act on each other represents The largest is a ppum mortice
wheel, fitted with wooden cogs. A shows the equare wooden cogs, generally driven into mortice. wheels previous to being laid off with the dividers and dressed down to the exact pitch and outhine, as shown

in the shaded part representing the finished tooth. The teeth of the amall wheel (called the driven, the large one with the cogs being known ar the driver) are iron, being cast with the wheel, and are suffiently stiong if but half the size of cogs.

The pitch line (sec Aotied lines extending from B to C, and from D
to E) ber 0 the p great of t
of a diam feet ; the q inches of ci Ginning cans, and if Threshin hour; 6 to thresher an
to E ）is a circle of sufficient dimenslons to permit the requisite nam－ ber of teeth and spaces to be laid out on it．
－The length of a tooth should be：7 of the pitch， 4 of it being below the pitch line，and 3 above，as shown in cut．As a geueral thing，the greater the breadth of a tooth across the surface tho longer it will Wear．

By the pitch is understood the space between the middle or centres of two adjoining teeth，as shown by the arrows at F F，or the breadth of a tooth and a space，as shown by the arrows at $G \mathrm{G}$ ．The semi－ diameter runuing to the pitch line is called the pitch radius．

The true or chordial pitch is a strajght line drawn between the centres of two adjoining teeth，and is that by which the dimensions of the teeth and speed of wheel are computed．

The radius is the space between the centre of the wheel and the periphery of a tooth，or lialf the diameter of the wheel．

The line of centres，shown at \mathbf{H} ，passes throngh tho centres of two wheels，and on this line the pitch circles of the wheols should merge into each other（as shown in cut）when they are properly regulated for operation．
paoportion of Teeth of Wheels－．
From pitch lino to top of tcoth
Total depth of tooth Thickness of tooth on pitch line
$=$ Pitch $\times 0.33$
Thick \equiv Pitch $\times 0.75$
Space between teeth on pitch Jine 三Pitch $\times 0.55$
Thiciness of rim of wheel \equiv Pitch $\times 0.45$
Thickness of arms in flat 三 Pitch $\times 2.50$

Mortice wheels to be wider than fron whoels by twico the thickne of the rim；rim to be double the thickness of iron wheels．
 different Materials．－

The number of arms in wheels shoult be as follows ：－

Fly Wheels．－Weight of rim should be 85 to 95 lbs．per horse power，momentum of wheel being 41 times that of the piston；dia－ meter 3 to 4 times that of the stroke of the engine．Single－acting engines，fly－wheel to be 5 times heavier thinn in double acting engines．

To Compute Weight of Rim－Multipl－tie mean effectivo pressure npon the piston，in pounds，by its stroke，In feet，and divide tho pro－ duct by the product of the square of the number of revolutions，the diameter of the wheel，and 00023 ．For a light wheel multiply by －0003；for a heary one by 00016.

To Compute Dimensions of Rim－Mnitiply tho weight，in pounds， by 1 ，and divide the product by the mean diameter of tho rim，in leet ；the quotient will give the sectional area of the rim in equare iuches of caist irou．
Ginning Cotton－ 4 harse power will drivo n gin of from 40 to 00 sarss，and for every additional 20 saws add 1 horse power．

Threshing Grain－4 horse power should thresh 80 bushels per hour ； 6 to 8 horse power will drive the ordinary 10 to 12 horse thresher and separator．

BORING MACHINE FOR SUBMARINE TUNNELS.

The above engraving represents a back view of the tumnelling of boring machine intended to be used in perforating the proposed tunuel under the Euglish Channel, between France and England. Operatlons hive already been commenced on the French const, and fervent hopes are entertained that no insurmountable obstacles will be encountered. The chalk formation through which it is proposed to drive the tunnel, is 400 feet thick on the English coasi and 300 feet on the French ; and, an the Straits of Dover are in no part deeper than 186 feet, it is confidently auticipated that the proposed enterprise will
be su
the to soil to that a of sted all the steam nel, b pulley, gearing front cated, i stitute movabl exteude triple f further and ano vance fr the tunn 23 miles whelmin the advic nel throu are supp which ev The only enterprise the prese That a vai the follow the cost of

Loca
Black Roch wacke sls Blaisley, F Blisworth, clay, line Blie Ridge

Railwa Fithont lini per lineal ya cublic yard, Shafts. yard in dept and 139 in d cubic yard, 8 Black Rock'
The Ingl powerful and
the tunnel to the soil to be penetrated consists only 18 feet in diameter; and, as the that all the operations can be conducted withalk beds, it is thought of steel drills or blasting operations, as simple resorting to the nes stean engin be requisite. The power will boring tools will be nel, by means of at the mouth of the shaft or transmitted from a pulley, as shown in the rope conuecting with entrance to the tungearing, \&c., communicatest, which then, by means of int wheel or front of the machine entes motion to a series of cutter intermediate cated, it is most probable thould this arrangement prove too borers in stitute for steam power. That compressed air will prove too complimovably braced by mer. The machine, as represil be used as a subextended against the arci of two uprights, fitted with above, is imtriple flanges, fitted arch above, and four projecting stout rollers, further secured by tinto temporary rails belowecting wheels with and another below, two heavy jack-screws, one alo whole being vance from the top, pressing on proper bearings above the machine the tunnel, if driven th bottom of the tumnel. It is einst the contri23 miles long ; ben through the lower chalk form is estimated that whelming quantities the event of serious obstacleation, will be about the advice of Professor water breaking in, It is not impg from overnel through the Poessor Prestwick may be follow not improbable that are supposed to leozoic rocks (the lowest fossilifed : to drive a tupwhich event the length abut 600 fcet below the snrous strata), which The only question in would somewhat exceed thrice at Dover, in enterprise, is merely onnection with the prosecution of this enormate. the present day put one of money, as the scientific appliances of That a vast amount of money will be req the work beyond a doubt. the following table, compiled by Major required, may be manifest from the cost of tumuels in various localities prior to 1855, U. S. A., Ahowing
 withont lining, per lineal vard, sandstone, in the United States, cost, per lineal yard, $\$ 7.10$. Ordinary, 888 . In loose ground, thick lining, cabic yard, $\$ 8.50$. Ordinary brick lining, including centering, per Sinarts.-Bla sard in depth, $\$ 13011$ Tunnel, clay, chalk, and lonse earth, cost, per and 139 in depth, hard slatepest, 646 ft . Black Rock; 7 ft . in diam. cubic yard, \$18.72. The time cost, per yard in depth, $\$ 79.50$, or per Black Rock Tunuel for $1782-5$ feet, was to drive the hending of the
The Inaeriole Rocre Drice, was 23,387 turns of 12 hours each. powerful and effective mechanical apresented in the cuts, is a most

450 macilinists and engineers' departaent.

ments of tuunelling, mining, submarine blasting, \&c. It works on the percussion principle, and is operated either by steam power, as illustrated in the cut, or by compressed air, acting on a piston within a cylinder, secured by clamps to a vertical or horizontal column or tripod. It can be adjusted to perforate the rock at any desired angle, and, on open quarry work, the large drill (they are made of different sizes), is an equivalent to tho work of 25 men , and has often doue the work of 40 men for successive days. In railway tunnels and other subterranean places prosenting impediments to active work, of course the progress is considerably less. Tho average boring done in hard rock, per day, of ten hours, is from 70 to 80 feet. In underground work, where foui air ex. ists, the employment of compressed air becomes a necessity, as it not only dissipates all danger from explosive gases, but drives the drill equal to steam power, cools the atmosphere, aud dispenses fresh air to the workmen. Considered in all its bearings, it is a most wouderial machine. with 600 grs . litharge incly pulverized, and free froun grains of the ample size, and set off 7 grs . of charcoal; melt all suphurets; mix and the gold will be fof to cool. Break thelt all in a crucible of at the bottom. To ascund in a small button cracible when cold, stance, select a small composed of calcined sample, weigh it, and melt in metallic subleaving the gold and silver ashes. This absorbs the a small cupel, melted once more in the exposed to view. The re common metal, and then rolled into a the proportion of gold, 1 pesultant button is solves ont the silver, and band and boiled in 1 part, silver, 3 parts, gold can be removed, and leares the gold pure ntric acid, which dissalt. \quad, and the silver subsequently precipitated the

Gold Assay with a move half of it, so as to leare Horn Spoon.-Take an ox hom and re3 ins. wide; pulverize the rock to open part 7 or 8 ins. long and about instead of a pan, wash out a few onne tested very fine, and using it In The, or a "color" perceived, as a rule some particles of gold roasted until it cereof Rock Containing it will pay to work it. of the powder with 300 evolve sulphurous fumes thes, it must bo grs. litharge, 300 grs , gris. carbonate of soda, 300 grs mix 600 grs . a crucible, and treat as disd borax, and 15 grs .' chagrs. charcoal, 300

Silver Assay as directed above. -3. charcoal; melt all in grs. of the pulverized ore with 300 . If no lead is present, mix 600 litharge, and 12 grs . of charcoal in grs . carbonate of soda, 600 grs . of borax over all, put on the furman in a crucible, add a slight coat of oo settle the metal, let it cool, and renct, take off, give it a few taps To Assay Argentifercues and remove the button. 30 gix 300 grs. of the pulverized ore with , or lead bearing silver ore. 30 grs. charcoal; melt in a crucible 190 grs . carbonate of soda and dust which abso and remelt the button in a furnace, and treat us de-
Test ror Iron the lead, leaving the silver purpel made of bone mineral rock on on Copprer Printes, pilver pure.
hammer it is gold anvil; if it becomes fint a sample of the place some of the dout if it scatters into fragmender a blow of the aeld over a flame doubtful material, pulverizgments it is pyrites; or come stained or tine until it evolves dark red vap, in a cup with nitric Silver Assar inged if pyrites are prescut. pors: the acld will beof the powdered with Testing Tune nitric acld in quantity to to fill one inch of sace in the tube enough over a flame untily to occupy 2 ins. moro space, and on this pour ever silver may be the acid boils. The acid and bold the mixture Ing paper to renove present, and mast be pasill dissolve whatNext add a few dre extraneons matter, be passed through filterthat may be present dill water saturated with returned to the tube. Drain off the acid will be precipitated in a cloudt ; any silver or lead minutes, if it containe the preclpitate in tho $\begin{gathered}\text { porm to the bottom. }\end{gathered}$ be again liquified by silyer, it will turn to a sunlight, and in a fow tube is formed of the addition of spirits of purple color, nud may diam. ; lottom and sidn glass, about 5 ins. longmonia. The testing log, a cup may be used instequal thickness. Where thess than 1 ing. ag, a cup may be used instead.

Prospecting for Quartz.-The first step co be taken is to ascertain the direction of the strata of the bed-rock and quartz veins inbedded therein. Then take a common pick, shovel, and good ironpau, and prospect the surface dirt slong, and just under the break of the veins every few yards, then following the vein as far as it slows itself, either by its outcrop or loose fragments; and if gold is found in the surface along the vein, it in a good presumptive evidence that the vein is gold bearing; Then ascertain the point on the vein that gives the best "prospect", and make a cut across it deep enough to show the vein as it is inclosed in the bed or wall rock; then make a careful examination of every part of the vein, so as to determine what part of it is gold bearing. The casing of the vein where it joins the wall rock should be carefully tested also ; it frequently occurs that the easing is richer than the vein itself. The best mode of testing the rock is to pound it up finely in a hand mortar, and wash it out in a pan or horn wpoon. If a satisfactory result is obtained, then sink a shaft so as to cut the vein at the point where the prospect is obtained, and follow it down, say 40 or 50 feet. The character of the "wall rock" should be closely observed, to ascertain the "line of its texture." The smooth faces that separate the vein from the wall rocis should be carefully examined; the smooth faces have numerous small ridges upon them, that show "the line of its projection,", or the direction from which the vein was forced up between the walls enclosing it. The ridges and fine grooves on the faces of the veins will, in most cases, be found to have the same direction of the texture of the wall rock; and the rich section of the vein will most generally continue rich in the "line of its projection." It is frequeutly the cass that a vein will havea section of a few feet that will be rich, and all the balance of it be poor; therefore, it is very important to learn the "line of its projection," for the rich sections always follow the course indicated by the "line of projection," and the "line of texture" of the wall rock.-J. E. Clayton.

To Prospect a River Bar.-The prospector should, during the season of low water, select the bend of a stream below where it emerges from a deep gorge, and, noting the spot where the eddy usually exists during high water on the inward bend of the stream, he will proceed to dig to a depth of 2 or 3 ft .; as near the water's edge as posEible, but distant enough to keep the hole dry on reaching the rock. Now fill the pan nearly full with the bottom dirt from the rock, take it to the stream, immerse it in the water and agitate the mass, breaking up the lumps of clay, \&e., if any exist. Keep the pau under water, with the side next the operator slightly elevated; shake from side to side; the muddy water will flow out, as the clear water flows in, carrying away the dirt; the pan is now raised from the water, and the shaking continued, with the lower side still more depressed in order to allow the light sand to pass over the further edge; the stoues are removed by haud, and the operation continued until but a few dregs are left; the particles of gold, if any existed in the sample, will be found in the pan, and a search for them will decide the question of value.

To Probpict in a Gullix.-Select a bpot soon after a rain, when water is abundant, and if possible let it be a level place over a vein of slato with vertical, or nearly vertical strata, presenting its ragged edges towards the adjaceut acclivities in such position as to intercept
the gold in its downward progress. Fill the pan with dirt froin the slaty bed, make a dam across the stream and pan out in standing water.

In Prospectina Flats, examine the surface for the indications of old channels, and the beds of aucient streams or brooks, and expiore the most promising spots by digging down to the bed rock, and test by panning out a portion of the dirt. In mining districts, the high elevations containing gravel and clay should be well tested by the panning out of numerous samples, as they frequently contalu vast stores of golden woalth.

To Prospect with a Knife. - Sclect a suitable spot in a ravine in an auriferous district, remove the earth to the vicinity of the rock, making a hole large enough to afford room to admit the prospector to overiaul the dirt with the point of a knife. The particles of gold are carefully picked as they are discovered, and the rest is rejected; the seams and crovices in the rock should be thoroughiy scraped out and the coutents closely examined, as these places often contain the most precious doposits.

Placer Mining, Board Sluice Process. -The board sluice is a trongh from 50 , to 1400 or 1500 ft . loug (composed of $1 \frac{1}{2} \mathrm{in}$. boards, length of boards from 12 to 14 feet,) coustructed in sections or boxes of the same length as the boards. The sections composing the trough are made to fit into each other, and usually rest on trestles elevated from the ground, but with an inclination of from 12 to $18 \mathrm{ins}$. in overy 12 feet of length. The box may be from 12 to 50 ins. wide, and half as deep as it is broad, more or less as desired. By placing division boards edgeways along the centre it may be divided into two parts, thus adopting it for the use of two parties, or for keeping up constant work in the washing department on the one side, while cleaning is going on in the other. The bottom of the sluice is fitted with lougitudinal riffe bars from 3 to 7 ins. high, and from 2 to 4 ins. wide, weli secured from 1 inch to $1 \frac{1}{2}$ ins. apart, by means of wedges, two sets of riffle bars beiug fitted into each box.

The labor of from 5 to 18 or 20 men is required to fill the dirt into the sluice, and a stream of water, say from 15 to 40 inches or more, is admitted at the upper end and emerges at the lower, carrying along the mud, gravel, stones, \&c., in its course. A vessel coutaining quicksilver is placed at the head of the sluice, and, about 2 hours after the washing commences, the liquid particles are allowed to trickle throngh an aperture in the side of the vessel into the stream, which hurries thiem ouwards and downwards through the slnice, where they miugle with the gold particles and lodge together against the rifle bars. The precious metals being heavy, alway trend towards the bottom, and lodge against these interposed obstacles, the riffle bars. The aane effects may be seen on our streets and roads any day after a shower, the dirt is washed away, and the heavy articles, as nails, buttons, horseshoes, \&c., remain. This furious torrent "or run" of Water, gravel, stones, mud, \&cc., is continued through the sluice for 6 or 8 days, by which time the riffle bars are usually worm ont, and the cleaning up process is commenced by raising 6 or 7 sets of the rifle bars towards the head of the sluice, and the auriferous matter found lodged against them is removed with scoop and pan. Another lot of riffe bars is then raised and the same operation is repeated until they are all cleaned out. An amalgam plate, inserted in the last box of
the sluice, is very effective in arresting the fine gold on its downward course. To prepare the plate, place a shcet of copper, say 3 feet or more, in length, and the mame width as the box, very even and flat on the bottom. Make a tight, close fit on the upper edge, and secure each side ly nailing down narrow strips of board. Next, take nitric acid, 1 lb ., add to this, water, 1 lb ., and apply the mixture to the copper plate with a rag ou the end of a stick; drop on some quicksiver, and wipe it all over the plate untll it is completely silvered. This is the amalgam plate. Now get a sheet of stout plate irun, equal in dimensions to the copper plate, and perforate with numerous slits $\frac{1}{2}$ inch long and $1-16$ inch wide, crosswise of the plate, not in regular rown, but as it were with broken joints, like bricks in a wall, muged with their ends out of line on every half inch, in order to permit the easy entrance of fluid material nt all points. Tho perforated iron plate, being now ready, is laid in the box inmediately over the amalgamated plate, and resting on the narrow boards, which hold the latter in place, and is firmly secured in this position, but so as to bo easily detached when required. The sluice box is now adjusted or placed at the same grade as the others, but so that the iron plate will be on a level with the bottom of the box nbove. It will be found that while the gravel, stones, and gross material will easily pass over the fron plate, part of the fluid portion, with the fine atoms of gold, will fall through the crevices on the amalgamated plate below, when the latter will be arrested at once. Each day, for the first week or less, the iron plate shonld be removed, the copper cleaned from a green substance which adheres, and more quicksilver added. A riffe bar should be placed below the plate to secure the surplus quicksilrer, The gold may be removed at proper intervals as it accumulates. The value of the cateh will be enhanced by admitting a small quantity of water into the sluice just above the plate.

The water used by miners is generally sold by water companiesant a certain rate per inch; it is delivered from an orifice in the side of a flume, which in many cases conreys the water from distant mountains over hills, ravines, plains, and along excavations on the sides of precipitoun mountains, \&c. An inch of water is estimated to bo the quantity emitted through an aperture an inch square under a head of 6 or 7 inches, and the price per inch varies from 12 cents up to 40 cents per day, according to the locality, demand, \&c.

Hypravlic Mining.-The operative power in hydraulic mining is derived from a reservoir of water placed at Ω high elevation abovo the point of action, from whence the water is conveyed through a hose, and projected with terrific force under n nressure of from 80 to 200 feet, against the dirt above the bed roek. The effect is equal to the combined labor of several hundred men; the force exerted being literally equivalent to the removal of momntains, as the superincium. bert masses of earth and rock frequently comes tumbling down in quantities of hundreds of tons at a time. The dirt thus loosened is conveyed into and washed down the sluice. To fortify the hose to withstand the fearful pressure of the water, it should be stontly banded with strong galvanized iron riugs about 2 ins. broad, secured around the hose at intervals of aboint 2 ins. apart. The quantity of water required by a hydraulic claim varies from 50 to 300 ins.

Trie Long Tom, at one time in quite extensive use by miners in California, is a trough ranging from 8 to 14 ft . in length, generally 16
ins. wide at the upper end where the dirt is deposited, 30 ins . Wide at end is composed of a sieve or riddle of perforated shect iron, with a small rittle box, or trough with rittle bars placed underneath. The water entering in at the upper end, flows through the eutire length of the tom, washing the dirt in its passage, but is prevented from forcing it over the lower end by an upward erection at the lower end of the riddle. The gravel, sand, and small stones escape throngh the perforated iron, while the large stones are tossed out with the shovel, and the gold is caught in the riffle box below, quicksilver being used occasionally to asslst in securing the finer particles.

Quartz Crusiing by Stamps.-The rotary atamp is very highly commended as the most efficient stamp in use for the crushing of quartz rock. The square stamp is vertical, with the main part or shaft about 8 ft . long, and from 5 to 8 ins. equare, shod with massire iron welghing from 100 to 1000 lbs. They are clevated by cams projecting from a horizontal shaft, which effect a lift of from 6 to 18 ins . at each revolution, when the stamp falls with all its force into the battery or the quartz below. The quartz, previously broken to pieces the size of a hen's egg or less, may be crushed in a dry state, or in a wet condition, with a sinall etream of water constantly flowing through the battery, which is enclosed by n wire cloth or perforated plate of sheet of iron, to permit the egress of the quartz when sufficiently triturated. The separation of the gold from the quartz is effected by washing, etc., as in placer mining; much of it is caught by the use of coarse blankets laid in troughs, through which the quartz is washed as in asluice, and many use the amalgam plate, made as described above, to secure the gold.

In amalgamating in the battery, 2 ozs . of qnicksilver to 1 oz . of gold is tho best proportion for use, and produces the most effective results in securing the gold.

Mining Machinery (Moleswonth).
Speed of crushing rolls at periphery......... 60 ft . per minuto.
Diameter of " " "...... 24 to 30 lins.
Breadth of " 6 12 to 15 ins.
Roller shaft. ... 6 ins. squaro.
Tumbling shaft.. $4^{1 / 2}$
Sifting sereen shaft.............................. $13 / 4$ ins. diamoter.
Rolls crushed together with a force of..................... 60 tons.
Weight of stamper heads, from. $11 / 2$ to 5 cwt.
Lift of ditto .. . 12 to 12 ins.
Number of lifts per nilnute... 45 to 60 .
Exposed area of cast gratings about.................. 9×10 ins.
Number of holes to the inch for tin.............................. 140.
Area of stamper bottom, generally...................... $\times 10$ ins.
Irumps for deep mines, usually................ 8 to 10 ft . stroke.
Each lift.from 150 to 200 ft.
Horse power of pumping engines :-
$0=$ quantity of water raised per minute, cubic feet.
II = height in feet.
Actual lorse puwer $=.0021 \mathrm{H}$ Q.
In Smelting Silver, fifty per cent. of lead is added to silrer ore, or lead ore containing that proportion of lead, will do as well. Add 10 per cent. of iron, and meltall together; the silver is then permitted to cscape through an orifice in the lower part of the furnace. The
silver is onco more put in a fumace and boiled until all impuritiesare driven off.

In the Salt Solution Process, five per cent. of salt is added to the ailiver ore, and the mixture is roasted until the salt is converted into a chloride. When in this atate, and still red hot, it in thrown into a very strong solution of boiling brine, th dissolve the chloride of silver. The briue is filtered at a temperature of 212° and the silver is precipitated by adding small pieces of copper, trgether with a small quantity of murlatic acid.

Artificiar Meerschacm is made with very fine sifted plaster of Paris, baked for a few hours and thrown while warm into melted wax or linseed oil; the resemblance may be jucreased by a coloring solution of gamboge aud dragon's blood.

Tem ezs. ; p saltpetr per. moniac, plungo pulveriz
2ozs. ; 8 Water, 4 4 teaspoc 6. Water handfuls ness to th to adhere 7. Tempe 02s. ; hart niac, 3 oz hoof. Th preparatio cse soft w Temper pressly for hanumer w than a dar finishing it, until the ste pores of the pals. of rain by dipping f Heat your p point, and $\frac{p}{w}$ the bath and take it out, sure to heat To Tempe red and quen rings, \&c., at the eud of the mechanical department.

oza.; prussic actd, 1 nz . -1 . Water, 3 pals; soda, 2 ozs.; maltretre, 3
 per. 3. Water, 4 gals.; saltpetre of each 4 ozs., and draw no tem. moniac, pulverized, 1 oz.; salt, 3 and lss . 1 He of each, 4 ozs.; sal-ampalverized borax, 1 no temper, 4. Water, 4 to a cher, cherry, red and 2 ozs . ; salt, 3 pax, 1 oz ; pulverized sal-ammoniac ; saltpetre, 1 oz ; Water, 4 gals. ; salt, Do not hammer too cold, 10 oz. ; white vitriol, 4 teaspoonfuls; never heat orers; saltpetre, 2 ozs. ; pulrerized aigh. 5 . 6. Water, 2 gals. landfuls; when dissol corrosive sublimate, 1, nor draw any temper. ness to the steel, dissolved it is ready for ue 1,02 ; common salt, 2 to adhere to the, while the lattergives the hardne Tho first gires tough7. Tempering Liquid, which otherwise wonld be repallsing the water ozs. ; hartshom 3 oil for Mill Picks.-Water be repelled by the heat. niac, 3 ozs. ; salt, 6 ozs; whito ritriol, 3 ozs.; alu gals.; spts. of nitre, 3 loof. The ; salt, 6 ozs., with 2 handfuls. ; alum, 3 ozs.; sal-aminupreparation shond to be heated to a cherry of tho parings of horses' lse soft water in be kept corked tight, in order to large jug of this Tempering in all these tempering liguids. pressly for mill pil Picks.-Get donble refi hammer with picks. In drawing out the picl cast steel made exthan a dark cherrh faces, and be careful not pick, use an anvil and finishing it, but hamm. Do not strike the to heat the stecl higher until the steel is quite it on the flat side pick on the edge when pores of the steel. quite dark, letting the blows striking light and often, gals. of rain water from a dozen picks are ready to as to close the by dipplug a hater from which the chill should be to temper, get 2 Heat your plek pron into it; add 2 lbs. salt, and taken, if in winter, point, and when gradually fronn the centre; and it is ready for use, the bath and hold is a dark cherry red, dip let the heat run to tho take it out, and cool the When the heat has left pint vertlcally into sure to heat and hamme balance of the pick in ordinary watersed, To Temprer a Demer well.
red and quer a Drifl very Ifard red and quench it in mercury. This will deat your drill to a cherry mercury: - This will drill hardened steel.

Concceition tor Tempemina.-Rosin, $7 \frac{1}{2}$ parts; whale oll, is parta; pulverized charcoal, th part; tallow, t part. Dircetions.-Very small tools should be dipped in this mixture the same as in water, then polish and draw the temper as usual. Large tools should ise dipped, then heated up again aud temper as usual. Thls compositiou will also restore burnt stra? as good as new. If small tonls, dip ouce. If large, dip two or three times; no hammering. is required.

To Make iron take a Bright Polish like Steel.-Pulverize and dissolve the following articles in $14 t$. hot water; blue vitriol, 1 oz .; borax, 1 oz. ; prussiate of potash; 1 oz. ; charcoal, 1 oz. ; salt, it pt.; then add 1 gal. linseed oil, mix well, bring your Iron or steel to the proper heat and cool in the solution. It is sald the manufacturers of the Judson govemor paid $\$ 100$ for this receipt, the object beling to caso harden fron so that it would take a bright polish like steel.
dippino Tools when Hardiening. - To harden a pen-knife blade, jancet, razor, chisel, gouge-bit, plane, spoke-shave, irou shaving knife, three or four square iles, and round and flat files, dip the:n ondwise or perpendicularly. This keeps them straight, which would not be the caso were they dipped in the water obliquely.

Sunstitutr for Borax.-Alum, 2 oza. ; diluto with water and mix with 2 ozs. potash, boil in a pot half an hour over a gentlo fire, take it out of the water, add 2 ozs. gem salt in powder, as much of alksline salt, 3 lbs . honey, and one of cow's milk, mix all together, set it in the sun for 3 days and the borax is ready for use. This will go twice as far in a blacksmith's shop as commor. borax.

Welding Cast Steel.-Silver sand 2 lbs., plaster of Paris, 1 lb .; mix thoroughly. Heat your article and dust it with the above, place it in the fire again untll you get a red heat and it will weld.

Respirator.-An excellent respirator may bo made of a thick pheet of carded cotton wrol placed between two pleces of nuslin. Unequalled for erresting dust, steel particies, \&cc.

Annealing Steel.-For small pieces of steel, take a piece of gas pipe 2 or 3 Inches in diameter, and put the piecta in it, first heating one end of the pipe, and drawing it together, leaving the other end open to look into. When tho pleces are of a cherry red, cover the fire with, save dust, usc a charcoal fire, and leave the steel in over night.
To drycl Mardened Steel.- Cover your steel with melted beeswax, when conted and cold, make a hole in the wax with a fine pointed necdle or other article the size of hole you requiro, put a drop of strong nitric acld upon it, after au hour rinse off, and apply again, it will gradually eat through.
To Marden Metals.-Iton, $\mathbf{C 0}$ parts; chrome, 40 parts; form a composition as hard as tho diamond. A high degree of hardness may also be imparted to iron or steel by adding $\$$ part of siliver. Copper may be externally hardened by the fumes of zinc and tin The specula of Lord lloss's telescepe is 1 part tin and 1 part copper, this is as hard as steel, and takes a very high poliah; it more than this be added it will scarcoly cohere.

Wridino Cast Steri. -Roek maltpetre, $\ddagger \mathrm{jb}$. dissolve in $\ddagger \mathrm{ib}$. il vitriol; and add it to 1 gel. water. After scaring the steel, get it hot; and quench in the preparation. Then weld the same as a

MACIINISTS, ENGINEERS', \&C., RECEIPTS.

 inted netof stroug in, it willpiece of iron, hammer it rery quick with light blow
purpose much better than borax; cork it ing Dows. It answers the for jears. Anothcr:-Borax, 15 parts it in a bottle, aud it will koep ide of potassium, 2 parts; dissolve all pallammoniac, 2 parts; cyano all in wator, aud evaporato the Gervan Weldina
parts, borate of iron, 2 parts; water, 1 part Temperina swords and Cuter, 1 part. copeo, Mass, after many costly experim.-N. B. Ames, late of Chimeans of tempering oworls and experiments, found that the best S. Government test, was by heatintlasses that would stand the U. in pure spring water, and drawing the tomperarcoal fire, hardening belalan Welding Pownwn g the temper in charcoal'flame. parts; balsam of conaibn, or other ron filings, 1000 parts; borax, 500 niac, 75 parts. Mix all well together, hous oil, 50 parts; salnammoThe surfaces to bo welded aro nowdered hent, and pulverize completely. then brought to a clarry red heat, at with the composition, and the portions to be united are heat, at which the porvder melts, whon pieces to be welded are too large to from the fire and joined. If the one can bo first heated with the welde both introduced into the forge, iuld tho other afterwards to a whito powder to a cherry red heat,解 Composition ral-ammonlac, 1 part; grind Welina Cast Steric-Borax, 10 parts; fuse them in a metal pot orer a pound them roughly together; then lient until all spume has disappenred firo, taking care to continuotho liquid appears clear, the compposited from tho surface. When the cool and concrete; afterwardsposition is ready to be poured ont to ready for use. To use this being ground to a fing powder, it is raised to a heat which may bo oxprosition, tho steel to lie welded is then dipped among the relding porrder by "bright yellow " it is nutil it uttains the same degreo of Leat as before: it is the in tho firo be placed under the hammer. Leat as before: it is then ready to to Restore Burnt Ste
3 ozs. ; sal-ammoniac, 8 ozs. ; prassinto of inver Poon Stersl.-Boras ozs. ; resin, 7 lb.; water, 1 gill; alcohol, potash, 3 oss. ; bluo clay, 2 and simmer till it dries to a powder. The gill. Put all on the firt,
To Restore Bund afterwards hammered. thb; prussiato of potagh CAST Steel.--Borax $1 \frac{1}{3}$ lbs.: sal-ammonico adron a gill cach of water and alcohol, 1 oz. Pound the above fine, iron kettle. Do not boll too long, or it will all to a stiff paste in an slightrnt steel is dipped whilo quito hut become hard when cool. pmy hammered restcring burnet Stept stecl may be almost instantanooit is not generally known that burnt in cold water, and hammering it wisly restored by plunging it whilo hot log it no as to hammer all over it, agaight strokes on the anvil, turnrepeating the ham :3aring process again dipping in the cold water, and ceed the first timc. Will soons do before Try it; if you doa't suc. Composition ta will soon do so.
ings; 10 parts callow: 1 dions Burne Stienc. Two parts hom al1 part moda; pulvesizo the sal-ammoniac, 1 part pulrerized charconl; part moda, puivesio tho hard ingredient puiverized chaid mial
thoronghly with tho tallow. Bring your burnt steel to a chicrry red and dipit in the mixture; when it gets cold it may bo hardencd in the ustal manner.

Composition to Truairen Sterl.-Resin, 2 lbs.; tallow, 2 lbe.; black pitch, $1 \mathrm{lb} . ;$ me.c together, and dip in the steel when liot.
Burgear and Drill-Phoof Diamond Chill,-Take 1 gal. urine, and add to it 1 oz . borax and 1 oz . salt.

To Re-sharpen Old Files.- Remove the grease and dirt from your: files by washing them in warm potash water, then wash them in warm water, nud dry with artificial heat; next, place 1 pt. warm water in n wooden ressel, and put in your files, add 2 ozs. of blue ritriol, finely pulverized, 2 ozs. borax, well mixed, taking care to turn the files over, so that each oue may come in contrict with the mixture. Now add 7 ozs. snlphuric acid and $\$$ oz. cider vinegar to the abore mixture. Remore the files after a sliort time, dry, sponge them with olive oil, wrap them up in porous paper, and put aside for use Coasso files require to be immersed longer than fine.

Substitute for Borax.-Copperas, 2 ozs.; saltpetre, 1 oz.; common salt, 6 ozs. ; black oxide of manganese, 1 oz ; prussinte of potash, 1 oz ; all pulverized and mixed with 3 lbs. nice welding sand, sud use the same as you would sand. High-tempered steel can be welded with this at a lower heat than is required for borax.

To Soften Iron or Steel.-Either of the following methods will maks iron or steel very soft:-1. Anoint it all over with tallow, temper it in r gentle charcoal fire, and let it cool of itself. 2. Take a little clay, cover your iron with it, temper in a charcoal fire. 3.' When the iron or steel is red hot, strew helleboro on it. $=4$. Quench the iron or steel in the juice or water of common beans. 1

Temperino Steel, Springs,-The steel used should be that called "spring" for the large work; for small work, "double shear" After hardening in the asual way, in water, or, as some prefer, in oil, dry the spring over the firo to get rid of lts moisture, then smear it over with tallow or oil, hold it over the flame of the smith's forge, passing it to and fro, so that the whole of it will be equally heated, holding it there until the oil or tallow takes firc. Take the articlo out of the fire and let it burn a short time, then blow it out. The process may be repented two or three times if the operator fancies that any portion of the spring has not been reduced to the proper temperature, or rather raised to it.
Trmperino Saits.-A lato improvement consists in tempering and straightening the saws at one operation. This is done by licating the saws to the proper degreo, and then pressing them with a suaden and powerful stroke betwean two surfaces of cold iron. A drop press is employed for the purpose. The mechanism is quite simple and inexpensivo. Its nse effects an important economy in the mannfacture of nearly all kinds of saws, and also improves their quallty.

Tempreirga Spiral Spatngs.- Place a piece of round fron inside the spring, largo enough to fill it; then make the epring and iron red hot, and, when loot place them quickly into cold water, and stir ther: about til cold; afterwards rub them with oil or grease, aud move them abont in a flame till the grease takes firo; the epring will then bo reduced to its proper temper.

To Temper Small Sprages,-In Large Quantities.-First, harden them in the usual manner of hardening steel; then place as many as conrenient in a ressel containing oil. Heat the oll contaning the springs until it takes fire from the top, then set off the vessel and let it cool. The springs will then be found to possess the required temper.
Tempering.-The article after being completed, is hardened by leing heated gradually to a bright red, and then planged into cold water: it is then tempered by being warmed gradually and equably, cither over a fire, or on a piece of heated metal, till of the color corresponding to the purpose for which it is required, as per table bolow, when it is again plugged into water.

Corresponding Temperature.

Temprincic Razors, Cutlert, Satts, Ec.-Razors and penknives are too frequently hardened without the removal of the scalo nising from the forcgolng : this practice, wohich is never done with the best works, cannot be too much deprecated. Tho blades are heated in a coke or charcoul fire, and dipped in the water obliquely. In tempering razors, they aro laid on thei: backs upon a clean fire, about half-- -dozen together, and thay are removed olle at a time, when the edges, which are as yet tinick, come dousn to a pale straw color. Should the backs accidentally get heated beyond the straw-color, the biades are cooled in water, but not otherwiso. Pen-blades are tempered a dozen or two at a time, on a plate of iron or copper, aboat 12 inches long, 3 or 4 inches wide, and about $\&$ of an inch thlik. The blades aro arranged close together on their back and lean at an angle against each other. As they come down to the temper, they are picked out with small pliers aud thrown into water if necessary; cher blades are then thrusi forward from the cooler parts of tho plate to take their place. Axes, adzes, cold chisels, and other cdge tools, in which the toiai pulk is considerable compared with the part to tie hardened, are only partially dipped; they aro afterwards let dor, 4 by the heat of the remainder of the tool; and, when the color indicative of the temper is attained, they are entirely quenched. Ith the view of removing the loose scales, or the oxidation acquired in the fire, some workmen rub the objects hastily in dry salt before plunging them in the water, in order to give them a cleaner and brighter face.

Oil, or resinous mixtures of oll, tallow, max, and resin, aro nsed for many thin and clastic articles, such as needics, fish hooks, steel pens and springs, which require a milder degreo of harduess than is giren
by rator. Gan lock-sprinma are somotimos fried in oil for a consillerable timo over a fire, in an iron tray; thie thick parts are then sure to besumiciontly reduced, and the thin parts do not becomo the more softened from the continnunce of tho blaxing heat. Saws and eprings are generally hardened in various compositions of oil, suct, wix, \&e. Tho maws aro heatod in loug furnnces, and then inmersed loorizontally and edgeways into a 1 , ing trough containing the comjxinition. Part of the composition is wiped off tho savs with a piece of leather, when they aro removed from the trough, nud heated one ly one, until the greaso inflames. This is called "clazing off." The composition used by a largo saw mauufacturer is 2 lbs. suet. nand i lb. of beeswax, to erery gallon of whale oil; tho seare boiled togother, and will serve for thin works and most kinds of steel. The addition of blaak resin, about 1 lb . to ench gallon, makos it servo for thicker piecen, and for thoso it rofused to hardon bofore; bat remin should lio added with judgment, or the works will bocome too hard and brittlo.
To Improve Poor Inon.-Black oxide of manganese, 1 part; copperas and common salt, 4 parts each; dissolvo in soft rater, and boil till dry; when cool, pulverize, and mix quito freely with nico welding sind. When you have poor iron which you cannot affoni to throw away, heat it, and roll it in this misturo; working for a timo, relieating, ©c., will noon freo it from all impuritlow, which is the causo of its rottenness. By this prooess you can make good horso naila out of common iron.
Cabe-Ilardening for Inon.-Cnasi iron may bo case-hardenod br heating to a red heat, and thon rolling it in a composition composed of cqual parts of prusslato of potash, sal-ammoniac, nnd maltpetro, all pulverizeci nad thirronghly mixed. This mnst be got to ovory part of the surface; then plunged, while yot hot, intor bath contalning 2 ozs . prussiate of pewash, and 4 ozs. mal-ammoniac to cach gallon of cold water.
Moxon's Case-IImpentina Procerss. - Covis homs or hoofs aro to bo baked, dried and julverized in order that moro may bo gotinte the box with the articles, or bono dust auswers vory well. To this add an equal quantity of bay salt; mix them rith stalo chamber ley, or white wine vinegar; covor the iron with this miriure and bed it in the samo in loam, or enclons it in' an iron box, lay it on the hearth of the forgo to dry and harcien; then put it into the firo, and blow till the lump has a blood red heat, and no lilhher, lest the iron mixturo ho burnt too much. - Tako tho iron out and throw it into cold mator.
For Mratieanle Inon:-Put tho articles in an Iron box, and atrato Ify them among animal carbon, that, is, pleces of horns, hoofs, skins, or leather, just suliciontly burnod to bo reduced to powder. Lute the box with equal parts of sand and clay; then place it in the firo, and keep at a light red heat for io length of timo proportioned to tho depth of stecl required, when tho contents of the hox aro emptiod into water.

Anotner for Wrovent Inon.-Tako prnseiate of potash, finely pulvorized, and roll the article in it, if its shape admits of it; If not, eprinkle the porfder upon it freely, while tho iren is hot.
To Trarrer Spmajas.-For tempering cast-ateel trap springs, all

that

that is nocessary is to heat thom in the dark;, just so that rou can sce that they are red; then cool them in luko-warm water. Yoll can obrerve a much lower degree of heat in the dark than ly daylight, and tho low heat and warm water givo the desired temper.
Case-Hardentra Compound.-Irussiato of potash, 3 lbe. ; sal-ammoniac, 2 lbs.; bone dust, 2 lbs.
Cosmposition ror Weldina Cast Stret_-Pulrerized borax any quantity, and slightly color it vith dragon's blood. Ileat the steel red hot, shake the borax over it; place it ngain in the fire till the borax emokee on the stcel, which will bo much below tho ordinary welding heat, and then hammer it.
To Weld Cast Inos.-The best way of relding cast iron is to take it at Ω very intenso heat, closely approaching the melting point. In this state it will be fouad sulfciently malleablo to stand welding by tho hammer. Thero aro other methods, but most of them are attended by alnost insurmountablo difticulties.
To Teaper Tars or Reamens withont apringing, relect your steel for the job, and forge the tap with a littlo more than the usual nllowance, being careful not to heat tho hot nor hammer too cc'd; after the tap or reamer is forged, lient it and hold it on one end on the anril. If a large ono, int it with the aledge; if a mmall ono, tho hammer will do. This will causo tho tap to leend alightly. Do not straighten it with the hammer, but on fuishing and hardening the tap to will become straight of its ornn nccord.
lu ILarden and Temprer Cast Sterl.-For raws and aprings in gracmil tho following is an excellent liquid; Spermaceti oil, 20 gals. ; beof suet rendered, 20 lbs. ; neat's-foot oll, 1 gal. ; pitch, 1 lb. ; black resin, 3 lbs. The las! two articles must bo previously melted together, and then added tc itho other ingredients, when tho wholo must be heated in a proper inon vessel, with a close cover fitted to it, urtil all moisture is eraporated, and the composition will tako fire on a flaming body being presented to its surfaco.
Water Anmalino.- lleat tho ateel to a red heat, and let it lio a few minutes, until noarly biack hot; then throw it into soap-suds; stecl in this way may be anncaled softer than ly putting it into the ashes of the forge.
Tc Soften Malleable Iron.- When jont furnace is charged rith fuel and matal, get the firo up to a dull red lieat, then pour flugrie acid all orer tho coko; uso it pt. to 1 pt. or oven 1 qt. rdding a landful of fitor spar; it will ma'co the mietal much softer.
Workina Steri for Toozs.-In working ateel ior took, grent care should be taken to hammer all sidea oiike, for if one side is lammered more than another it will causs, it io popring in laarden'ug. Again, stoel, when being hammered, should bo lieatod as hot as it mill stand, until finishing, and should then bo hammored until almost black hot, for the reason that it sets the grain finer, and fire the tool a better edge. The roason for heating the steel so fot while hammering is simply because it makes the steel tougher when lindened, and softer when annenled, while if it were worked at a low red heat, the contiuued percnssive shocks of the hammer would no harden it as to make it almost impossible se annenl it, and nt the same timo render it brittle wh:n hardened.

To Make, Harden, and Temper Tools.-Experience has proved that all steel cutting tools should be hardened at a low red heat, or the lowest degree of heat compatible to yield efficient results, not forgetting that large tools require more heat than small ones, for the reason that they retain the heat much longer in the cooling process. Very small tools such as some surgical, and dental instruments, all springs, centre drills, needles, etc., should be hardened in oil, as cold water is apt, by cooling them toc rapidly, to render them brittle and worthless. Too much heat imparts a course grain like cast iron, to the steel, and makes it liable to break when in use. A heat sufficient to raise scales should never be taken unless with an implement too large to temper, without it, for it is sure to result in injury to the steei, even though the temper is drawn to a straw color. Tools such as citters and reamers which require to be hardened without springing, should be accurately turued to within inch of their finished size, and then amealed previous to finishing. In annecting steel, it should be heated very slowly to a red heat, being careful to keep it under the scaling degree, then allow it two days or more to cool in. In making taps, you should have immediately under the square head, a place accurate size of the outside of the thread, so that you will have no trouble in getting dimensions of the thread wherever an odd number of flutes exist. Cvery tap should be the accurate size of the bottoniof the thread to within about $\frac{1}{2}$ an inch of the square head, shaping it this way, when a strain comes in the work it will twist instead of breaking. The threads on V taps ought to be cut with a tool exactly three square, (unless the thread is rounded on the top), and theu fiuished with a sharp tool without polishing, as this produces a glaze on the metal while being tapped. In making a tap for common machine screws or for bolts, measure with callipers, the lower part of the thread of one of the screws, and proceed to cut your tatp at the bottom of the thread the exact size of the measurement. Strong tapa for square thread screws ought to be cut $\frac{1}{2}$ the depth of their pitch, so if the thread is five to the inch, cut one-tenth of an inch decp. The threads luing 5 to the inch, leaves a space between the threads of one tenth of sul inch, and tine thread being one tenth in depth and one-tenth wide, would make the thread square. In square tlireads required for wear, the cut should be ${ }^{3}$ the depth of their pitch.

In hardeniny a tap, use a clear, bright fire; a fire of charcoal is the best; heat to a cherry red, and holding it by the upper end immerse the entire thread-part first, keeping it stationary until the smooth part attains a dark red color; then gradually dir the whole tool, holdfug it stationary until cold. Brighten the tlutec parts and proceed to temper the tool by heating a piece of an iron pipe ta a bright red; remove it from the fire, place it in a vertical position, and insert the tap in the centre of the tube (but not tonching any part of it) with tho threaded part outside. The interior of the tube should bo iwice the diameter of the tool, and the length but half. Revolve the talp in the hot pipe until the smooth part is warm enough to slightly pain the hand, keeping it in motion endways, back aud forth through the pipe and tuming it until the thread is tinted to a deep brown, and the rest of the tool to a brown purple, modify any irregularity in the color by holding the light colored parts longer in the tube, or if any parts cclor too deep, cool off with a little oil. The squares of taps should be tempered to a deej) blue color.

Fig. 1. Tool for cutting square thread screws, sc.
Fig. 2. Lathe tool for boring.
Fig. 3. Tool for cutting interior screws.
Fig. 4. Left hand Nde tool, top view.
Fig. 5. Tool for cutting V thread screws.
Fig. ©. Diainond-point tool, to turn mall shafiling, te. 30 turn heavy shafting. \&e.

To Dif or Temper Half-round Files or Reamers-On account of the unequal surface presented to the water by half round tools, it is necessiry, in order to keep them straight, or neariy so. while tempering, that they should be ingerted with the semicircular sid 320° leaning toivards the water. To dip a futed reamer, iusert it th an inct beyond the tluting, dipping and withdrawing it several times in snccession. This ensures a reliable temper in the tool and will assist greatly in preveatin'; fructure, and breakage.

To Set a Lathm to Tubn Tapebing. - Cuiculato a certain umount of taper to the foot or the extension of the piece to be turned, for instance with a shaft one foot long with a thickness of 1 inch at one end larger than the other, set the puppet-head over $\frac{1}{2}$ inch, and you will obtains the desired taper of 1 inch per foot. With ashaft 10 Ins. long, you will obtaln a taper of 2 ins. over its whole length, by setting your lathe over 1 inch.
To Set a Latie to Turn Shafting. - Find out if your centres are true, and adjust them correctiy if they aru not, using a square end tool, keeping them true to a three-square gauge, otherwise you will be apt to ruin your work. Now set your puppet-head so that it will turn the shaft true and straight, and if without a straight mark upon it, turn one end of the shaft for about an inch, next, without stirriug your tools, take the shaft from the lathe, run the carriage down to the main head, and if the tool comes in contact with the spot you have turned, the machine is straight, if not, screw over the puppet head, and keep adjusting it until the tool touches the place turined at beth ends of the lathe.

On Keys, Planiva Key Wais, \&c.-To ensuro an easy entmnce, apply oil to the key way and cutor the key, marking where it binds, avoiding extreme tightness at the sides, and socuring the lock by a proper tapar at the rate of about $\frac{1}{\text { 最 of an inch to the foot of length. }}$ To euse hardened lecy roays and slots, use a strip of copper as a file on the surface of the metai, together with cmery and oil. To plane a key way in a shaft, drill a hole the size of the way the depth you wlah to plane; then piane the key way slightly narrower than the intended size ; this is done with a square point tool, afterwards finish with a tool of the desired size; this method ensures a much nester finish, than the use of one tool only. To ensure true cutting in adjusting a twol for cutting a key way, test each side of it by a square set on the planer bed, to see that it i's perpendicular. To plane a T shaped slot or vay, plane to the desired depth with a rinare point tool, then plave the upper part of the way to the proper width. Now plane the bottom part of the way with two tools, eaci being bent to a different angle, one to the right and the other to the left. Shallow vays may be cut out, the upper width and proper depth, then finished with one tool shaped the desired form of the way. Powerful toola should be used in planing large ways in order to avoid breakling, and shonld cat easily on each of the three sides. Use a sheet iron gange and planis the way to conform to it. To plane a gibe reat or slide, plane it all over, omitting the slide, on both sides; then set the planer head at an angle of 30°, and finish the slide with a taper point tool. In planing thin cast fron surfaces, the outside being harder than the inside, it is necessary in order to prevent springing owing to the expansion of the scale, to plaue over a cut on each side previous to tinishing either. ther.

Fig. 8. Side view of right-hand slde tool.
Fig. 0. Tool for cutting V threads, side view.
F!z. 10. Tool for planing a key-way.
Fig. 11. Enil vlow of a fluted tap or reamer.
Fig. 12. Sldo tool for squaring the ends of wrought iron work.
Fig. 13. Tool for partling or cutting brass apart.
Fig. 14. Side tool for cast Iron, wrought iroh or steel, left hand form.
FIg. 15. Parting tool for iron or steel work.

Cars of Lathes, Planers, Drille, \&c.-In order to utilize your lathen, \&e., for nice fine work, and keep your waye, arbors, and centres in order, it in necessary to keep them clean by brushing away the rubbish from the ways, feed gears, and other working parts; clean well by frequent rubbing with cotton waste, and keep them in easy working order by regular oiling.

Tools yor Turning.-1. For turning balance wheels, or squaring up large surfaces, use a round end tool constructed well tapering to cut from the side. 2. The best tool for turning small shafting is a diamond point tool; for heavy shafting use a round end tool, shaped to stand high like a dinmond point and to cut full and free from the side. 3. For cutting off a shaft, use a tool shaped thin and having the tapering down the reverse of turning tools. 4. For cutting a V thread screw nese ΩV thread tool, with the points gronnd to lean down when finished, so as to prevent running and destroying both the tool and the work. 5. For critting a square threud screw, the best way is to use a square point tool about $\frac{8}{2}$ of the thickness of the thread you intend to cut, and finish with another the exaci size of the thread. In cutting a thread within a hole apply the same method. G. For boring out a hole use a lathe boring tool with the end turned on a right angle to the left, and the point tumed up hooking.

The side toolshown in Fig. 12, should, for light work, be hardeued right out; temper to a atraw color for heavy work. For heavy work on a slotting machine, temper to a brownish purple, and grind so that the cutting edge first strikes the cut near the buty of the tool, and not at the point ends; use at a speed of about 10 feut per minute.

The parting tool for brass, Fig. 13, should be made to conform to the shape as represented and hardened right out.

The side tool for iron. Fig. 14, camot be made too hard; and should be used at a speed ranging from 20 to 30 feet per minute, with feed from 20 to 30 revolutions for each luch ent, varying as the dimensions of the work ranges from 1 inch up to 12 inches in diameter, the speed decreasing as the size of the work increases.
The parting tool for iron, Fig. 15, sloould be tempered In accordance with the size of the tool and the nature of the work to be done; it may be hardened right out, or hardened to a dark striw, or, for a weak tool, to a purple color.

The roughing tool for wrought iron, Fig. 16, when used on large work, should be tempered to a light atraw, but for work of 5 inch diameter or leas, it shonld be made us hard as possible and not tempered at all. The cotting speed varies from 15 to 35 feet per minute as the size of the work varies from 1 irch to 20 inches or more in diameter; feed \&c., ranging alont as follows:-

Diameter of Work in Inches.
1 or less.
1 to 2
$2: 5$ 5 " 10 10" 20 20 and upwards
In handening and tempering the boriny tools represented by Figs. 17, 19, $20,21,22$ and 26 proceed, according to the directions given eiscwhere; making them very hard.

The side tool for brass, Fig. 18, should be hardened as much as fire

Feed feer Inch Culting Speed Feet
per
Ilinute:
$\begin{array}{ll}35 \\ 25\end{array}, \ldots . \quad 25$.
24
20
17
16
19
19
14
12
12.

Fig. 16. Tool for roughing out wrought iron work.
Fig. 17. Boring tool for hesvy work on wrought iroll.
Fig. 18. Side tool for brass work.
Fig. 13. Boring tool for heary outting on wrought iron.
Fig. 20. For boring on cast Iron where tool in llable to ribrate or tremble.
Fig. 21. Stout Anishing tool on cast iron. The back part of tho tool is formed for ecraping only, the front corner doing the cutting.
Fig. 22. Tool to cut out a straight corner at tho bottom of a hole in wrought iron. Fig. 22. Boring tool for wrought iron or steel.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

716) 872-4503
and water will permit, and may be used at a cutting speed of from 150 to 350 feet per minute on work ranging from 1 inch up to 20 inches in diameter, with a feed of 30 and 25 revolutions to each inch turned.

The boifing tool for wrought iron, etc., Fig. 23, should,- if slight, be tempered to a light straw color; otherwise, harden it right out, and when in use lubricate well with a mixture of soft soap 1 lb ; boiling water, 1 gal
The finishing iool for cast iron, Fig. 24, should be hardened right out; the cutting speed on the lathe is about 25 to 30 feet per minute on amall work, and 18 feet on large work, with a coarse feed of say, 8 revolutions of the lathe per inch of travel.
To make a counter boring toot, (Fig. 25), adjust the handle to a proper collet and turn the governor, which ought not to be over a \ddagger of inch in length- next turn a spot for the lips about $\frac{8}{8}$ of an inch, on small tools and about $\frac{3}{4}$ inch on large ones. Above this spot, turn it about $\frac{1}{8}$ larger than the governor and straight up to the handle, by leaving the place for the lips short, thus saving filing. Next file 4 spiral lips in them, resembling a drill; afterwards dress off the back back side of the lips on the end to an edge with a file, and harden.
Miliinut tcols or cutters, (rig. 27.) ought to be chucked to fit loosely on the arber, so that they may not prove to be too small after hardening. Now wry them to within a 32nd. of an inch of the required thickness, und again heat previous to finishing. This second heating renders thom less apt to spring when heated for the final hardening.
'ithe riont tool for brass, Fig. 20, should be hardened right out, and the apeed and feed should be abont the following :-

Diameter of Work
in Inches.
1 or less,
2 to 5 ,
5 to 10 ,
10 to 20 ,

Culting speed ft .
${ }_{345}$
Amount of Fced 345
245
195
150

The tool for cutting square thrects, Fig. 30, should be made quite herd, and formed as shown in cut. The same remark applies to the tool for hard metal, shown at Fig. 31.

The boring tool for brass, Fig. 32, should be made as hard as fire and water will make it, and used with a quick speed and lightfeed.

The finishing tool for wrought iron, \&c.. Fig. 33, should be hardened right out, and used at a eutting speed of from 18 to 38 revc.lntions per minute, as the size of the work varies from 18 inches, or more, down to 1 inch in diameter, with a feed from 14 to 30 revolu. tions for each inch cut, as foilows :Diameter of Work
in Inches.
Cutling Speed ft. per minute.

Amount of Fced.
1 or les - 38

1 to 2 , 29 24

4 to 10 ,
24
19
22
19
10 to 18,
19
16
18 and upwards,
18
In addition to these instructions, earlh tool requires to be ground in such a way as will best adapt it for the performance of the varions kinds of work that may be lu hand.

Spiral Drills, Fic. 35. shonld be annealed and turned to $1-50 t h$ of an inch larger than the finished size; then heated again, and an-

FIg. 24. FI
FIg. 25. Cc
Fig. 20. Ts
accoun
Fig. 27, Fl

Fig. 24. Finishing tool for cast Iron.
FIg. 25. Counter boring tool, end view.
Fig. 20. To be used on wrought iron when the tool is liable to spring on nccount of distanco from the tool post.
Fig. 27, Fluted milling tool or cutter.
nealed in a vertical position, among lime, ashes, or soap-suds; the shank is then turned to fit a proper collet socket, and afterwards the point may be turned to the desired dimensions and slaped. Next measure from the point and finish the turning, by making it tapering to the exteni of 100th of an inch smaller for every 2 inches of the length of the drill. The spiral grooves are cut on a machine constructed for the purpose, containing a spindle, which imparts the double movement of sliding and revolving slowly while the spirals are being cut. The spindle contains a screw, on which a clmek to hold the drill is adjusted. The drill being inserted in the chuck, proceed to elevate the sliding block beweath the drill, so that it will touch it, adjusting it so as not to raise it too high ; then insert a cutter, which should be one-half the diameter of drill, and groove your drills, which should, for a drill 1 inch in diameter, be cut 1 to the inch, and down to within a 32 nd cf the centre ; for $\frac{1}{2}$-inch drills, cut the grooves $1 \frac{1}{2}$ to the inch, down to within a 64th of the centre; for $\frac{1}{2}$-inch drills, cut the grooves 2 to the inch, down to within 100th of the centre, computing as you would in cutting a screw in a lathe, the index plate giving you the two starting points at which to commence the work.

Fluted Reamers, Fig. 36, should be carefully turned to a 32nd of an inch of the finished size, then heated and allowed to cool in a perpendicular position, previous to finishing. The treatment removes the strains and the occasional hardness made by the hammering, so that they will not spring in the operation of heating for tempering. The lips of a reamer should be made uneven; otherwise, when it chatters, it leaps from one lip to the other. In reamers fiom 1 inch to $1 \frac{1}{4}$ inches in diameter, the flutes or channels should be 9 in number, and 11 in reaners of from $1 \frac{1}{4}$ to $1 \frac{1}{2}$ inches in diameter. Keamers from $\frac{1}{6}$ to 8 of an inch in diameter, should have 5 flutes, and reamers from $\frac{5}{8}$ to 1 inch should have 7. After cooling, as above noted, turn the part intended for the lips iccth of an inch larger than the finished size ; ifterwards turn a spot in the middle of it f long, and 1-12th of the size of the reamer fmaller than the reamer. After hardening, this is the place to pene it straight. When the turning of ail but the upper part is finished, put it on the centres, and prepare to flute it, deferring the tuming of the upper part until after hardening and straightening. Place it on the centres; if on a planer, flute with a round end tool, 1-10th of an inch thick, and plane down to the face of each lip, to the bottom of the spot intended for the pening, and plane them so that the space between every other of the two lips will be shorter than that of the two just before them. The next step is to plane off the back side of the lips with a equare and tool to within a 32nd of an inch from the face. The faces of the lips should be planed even with the centre, the lips dressed smooth with the file, hardened again, and then pened straight. Finish by turning the upper part to the desired size, and polish it off, grind the lips io a sharp edge and to the proper size, and it is all right.

To flute taps, Fig. 38, adjust the work on the centres, and plane the faces of all the teeth with a cutter or planing tool, made ciscular at the end, the thickness at the end being \pm the diameter of the tap. Taps should be fluted with the teeth slightly hooking on the face. Dress the faces of all the teeth with the planer one-halt the depth of he thread deeper than the bottom of the thread; this done, plane

Fig. 29. Frônt tool for brass work.
Fig. 30. Tool for cutting square threads.
Fig. 31. Tool for cutting hard metal.
Fig. 32. Boring tool for brass.
Fig. 33. Tool for finishing cast iron, wrought iron and steel.
FIg. 31. Die for acrew-cutting, face view.
Fig. 35. Spiral drill.
off the back parts of the teeth, giving them 11 the breadth of their pitch, leaving them, if the pitch is 10 , a 10 th and a 20 th, which leaves them quite strong enough for efficient service and ensy work. Trim the back parts of the teeth with a plauing tool orual in thicknes to the size of the tap. Two taps should be used for each thread; with hte first, remove two-thirds of the thread, and finish off with the other. No taer is prequired on taps for 5 threads; if they are fabricated by this plan, they are not liable to break, and work easy. Extra large mongrel-thread taps should invariably be of two or more sizes, owing to the coarse thread and the mass of metal to be removed by them, which otherwise would be crushed and torn.

Cold Chisels sloould be shaped thin at the cutting end, and with the edge slightly rounded outwards, instead of being square across or hollowed inwards, as is frequently the casc. This shape imparts more endurance to the tool, and makes it cut easier than when it is even across or rounded inwards, as we see it in many cases. In hardening, heat the tool to a dark red heat to a depth equivalent to its width, and dip it half that length into the tempering liquid, hoiding it stationary about 4 seconds; then plunge it a little deeper and withdraw ; brighten one side by rubbing on an emery or sand board, remove the bad color with a piece of waste or rag, and bring out a clear blue color by immersion in the water. In many cases it is rather difficult to temper a piece of steel uniformly, and molten metallic mixtures are nsed, being chiefly made up of tin and lead; the bright hardened steel is kept in these molten mixtures until it has assumed the temperature of the bath. The following tabulated form exlibits the composition of the metallic baths which experience has proved to be the best for the manufacturing of cutlery :-

	Compos Metallic Lead.	on of ixturo. Tin.	Melting Point.	Temperature.
Lancots.	. 7	4	$220{ }^{\circ}$	Hardly pale yellow.
Razors. .	. 8	4	$228{ }^{\circ}$	$\left\{\begin{array}{c} \text { Pale yellow to straw } \\ \text { yellow } \end{array}\right.$
Pen-knives.....	81/2	4	2320	Straw yellow.
Pairs of Scissors.	14	4	$254{ }^{\circ}$	Brown.
Clasp-knives, Join ers' and Carpen ters' Tools......	- ${ }^{\text {a }} 10$	4	265°	Purplish Colored.
Swords. Cutlasses, and Watch Springs..........	, 48	4	$288{ }^{\circ}$	Bright blue.
Stilettos, Boring Tools, and Fine Saws.	$\} 50$	2	$292{ }^{\circ}$	Deop blue.
Ordinary saws....	$\} \begin{gathered}\text { in boill } \\ \text { seed }\end{gathered}$	11n- $\}$	310°	Blackish plue.

Such tools as are required to work iron and other metals, and hard stones, are heated to a bright yellow ; razors, coining dies, engravers' tools, and wire-drawing plates follow next to straw yellow ; carpenters' tools to purplish red, while such tools and objects as are required to be elastic are heated to the violet or deep blue tint. Ti:o less steel is heated the harder It remains, but also the more brittle.

Fig. 3C. Fluted reamer, sido view.
Fig. 37. Single lipped drill, to drill very trua.
Flg. 38. Square thread tap, side view.
Fig. 30. Single lipped reamer.
Fig. 40. Cominter boring tool, slde view,

Single-lippea Reamers, Fig. 39, should be fabricated from a piece of stecl, with the head forged square to adept it to a proper wrench; turn it tapering and exactly round, and, after placing it on the centres, plane a groove through its entire length, one side of which groove will form the lips of the reamer. From this groove dress off the 64th of an inch half the distance romid. Finish by filing up the face of the lips on a line through the middle on the end: next hardeu and temper. Rose reamers should be made with square ends, with the corners removed, lips cut about 9 to the inch on the end, and a little hooking, with a temper like other roamers.

To Chuck lumieys.-This means to adjust or secure the work in such position as to ensure truthful drilling or planing; the term chuck is also used to denote the instrument employed to secure the work, being merely a circular piece of iron with an aperture on one side of it, fitted with a screw arrangement used to secure it to the spindle of a lathe. The other side contains a nlember of jaws, generally three or tour, when screw together for the purpose of securing the work while it is being drilled or otherwise operated upon. To chuck a pulley, first secure it by screwing it in the jaws of the chuck as near the right position as possible, next screw a tool into the post, with one end of it near the face of the pulley; then turn and true the pulley by means of the screws, so that the tool touches it all around, and true the edges the same way; repeat, trying the face again to see if it has moved. Pulleys should be chucked either on a nandril or else chucked by the arms, since chucking them by the rims springs them out of true.

To Sef the Chuck Rest.-To set the rest, place it into the tool post with the centres of the slats throngh which the drills passes just as highl, and no more, as the centres of the lathe, (otherwise it will fail to bore truc) and drill your wheel, using two drills, to ensure true work, or three, if the holes are cored badly to one side ; the last tool should remove no more than the $\frac{1}{16}$ of an inch, which will leave the hole exactly right.

To Scrape Cast-Iron Smooth.-Place a rest close to the surface to be operated on, and, using a thin wide scraper, rest it on one edge and scrape, twisting it, and upholding it while cutting, in your hand. Don't bear on very hard, but remove as thin a chip as possible, and you will easily succeed.

Work should be fitted as exact and true as possible before belng scraped with the flat scraper, which should be used on flat surfaces only. The half round scraper is the best form for curves, hollow work, etc., the three-comered scraper being the least useful. Old files which have never been re-cut make very good scrapers.

To Make Drill Sockets or Collets.-The best collets for correct work on drill hathes are those formed to screw on to the spindle, and constructed with a tapering hole for the retention of the drill, and a key-way to secure the end of the drill from turning. Sockets for ordinary job form, should be shaped with a set-screw to retain the drills, and the aperture for the drills should be drilled circular, adapted for the reception of round drill steel about $\frac{7}{15}$ of an in. in diameter. For collets to screw on the drill lathe, bore out the end and shape the screw to conform well to the spindle, and attach it by screwing it on to the lathe where it is required for use. Nest,
bore a hole for the drill shank $1 \downarrow$ ins. deep, exactly straight and true, ream it tapering, and cuta koy-way through the metal, below the lower part of, and runuing into the aperture bored for the shank. This key-way is intended to secure the drill and ought to be $\frac{1}{2}$ an inch long and \ddagger wide. A collet for upright drills shonld be made by drilling the centres and turning up the ends to be drilled for the shank so as to adapt it for rumuing in a back rest; then insert the end to be drilled into the back rest and the other end on the lathe centre and proceed to drill out the hole for the shank; then remove it from the back rest, and, making use of the hole for a centre, turn it to fit the drill, insert a set screw in it, and all is finished.

Screw Threads.-The Evglisi Proportions, the Whitwortil Thread.

 Threads per inch. ... $21201816141211109877^{6} \quad 6 \quad 6$ Diam. in inches.....1每1每17 $22 \frac{1}{4} 2 \frac{1}{2} 2 \frac{3}{4} 33 \frac{1}{4} 3 \frac{1}{2} 3 \frac{8}{4} 44 \frac{1}{2}$ Threads per inch.... $5 \quad 54 \frac{1}{2} 4 \frac{1}{2} 443 \frac{1}{2} 3 \frac{1}{2} 343 \frac{4}{4} 3 \quad 2 \frac{1}{8} 2 \frac{7}{8}$ Diam. in inches.....43 $55 \frac{1}{4} 5 \frac{1}{2} 5 \frac{3}{4} 6$ Threads per inch. . . $2 \frac{3}{4} 2 \frac{3}{4} 2 \frac{1}{8} 2 \frac{5}{8} 2 \frac{1}{2} 2 \frac{1}{2}$

Angle of threads $=55^{\circ}$. Depth of threads $=$ pitch of screws. One-6th of the depth is rounded off at top and bottom. Number of threads to the inch in square threads $=\frac{1}{2}$ number of those in angular threads.
Screw Threads.-Standard American Profortions.

No. of threads....66	6	5	5	$4 \frac{1}{2}$	$4 \frac{1}{2}$	4	4	$3 \frac{1}{2}$	$8 \frac{1}{2}$	37
0										

Angle of threads $=60^{\circ}$. Flat surface at top and bottom $=\frac{1}{8}$ of the pitch. For rough bolts, the distance between the parallel sides of bolt-head and nut $=1 \frac{1}{2}$ diameters of bolt $+\frac{1}{\frac{1}{2}}$ of an inch. Thickness of head $=\frac{1}{2}$ distance of between parallel sides. Thickness of nut $=$ diam. of bolt. In finished bolts, thickness of head equals thickness of nut. Distance between parallel sides of a bolt-head and nut and thickness of nut is $\frac{1}{16}$ of an inch less for finished work than for rongh.

Speed of Emery Wherls.-A 12 -inch wheel should make 1,200 revolutions per minute; an 8 -inch, 18,00 ; and a 6 -inch, $2,400$.

To True Corundum Wherels.-Adjust the wheel in the lathe and start it at a high speed, holding a piece of corundum stone ngainst the uneven surface. The stone will soon melt and unite itself to the defective places in the wheel.

To Clean Greasy Cotton Waste.-Boil it in a strong solution of common soda in water, and use the resultant emulsion as a lubricaut for drills, reamers, \&c.

Tearpenrra Tools.-Drawing the temper of tools is usually dono in a charcoal flame, and to drav tho temper of a tool properly it should be held in the thickest part, or the part not renuiring any temper, towards the fire, and in the meantime, should be often wiped with a piece of waste or rag, dipped in oil. The oil keeps the temper even, and prevents it drawing more to one place than another. And in drawing the temper of any tool it sloould bo drawn very slowly, otherwise it will run too far ere jon aro arraro of it. Lancet blades and razors should bo drawn to a straw colcr. Kulfe blades and chisels should be drawn to a copper or almost red color. Plane irons, shaving knives and shocmakers knives the samo temper; cold chisels and stone drills, should bo drawn to a darls bluc. Fluted reamers should only be drawn to a straiv coior, on the end, as they never break elsewhere, and keep their size longer by leaving the lips hard. Ifalf round or tapering reamers, also taps, dies, and drills, shonld be drawn to a straw color. Jijucs and gauges, also common lathe tools, nced no drawing, being tempered enough when merely hardencd.
Ilamdening and Filiing for Fime-proof Safts.-Experiencelas shown that the fire and burglar-proof diamond clill for iron or stecl, described in another part of this work, has no superior as a hardening for security in the construction of safes; and, as a non-conductor of heat, we would recomnend a filling of plaster of Paris or alum. It is claimed by some that a mixture of both of these articles forms the best known filling for safes, as an external application of intenzo heat is certain to liberate a large quantity of water, which is transformed into steam, thus ensuring entire safety to the contents of the safe. Other manufacturers employa concrete filling for safes, and extol it very highly. Mr. Moffat, gas and stcamfitter, Boston, has informed me that ho has applied for protectionin the matter of a discovery by which he claims that he can fully protect a safe against a double blast furnace heat, by means of an outside lining of bricks composed of asbestos and knolin, a very small portion of the latter material being used. From the well known incombustible nature of these materials, there can be no reasonable doubt but that the claim in question is a just one.
Merallic bath for Tempreming.-Use a black lead or cast iron crucible (of the requisite depth), and place the same, filled with lead, on a fire made of coal or charcoal, and surrounded on all sides by a metallic or brick wall, level, or nearly so, with the top of the crucible; but at a sufficient distance (say 5 or 6 inches) from it, to receive tha fuel necessary to maintain the fire, in order to keep the lead in a melted state. Let the crucible rest on iron bars, and leave aperturcs to admit air to the firo. The articles, slightly greasced to prevent tho adherence of oxide, aro immersed in the melted lead (which is kept nt a red heat) by means of tongs, two or three pairs being generally used, in order that one or two pieces may be heated while the other is undergoing manipulation by the hardening process. Keep tho lead covered with charcoal dust or cinders. This plan is used by many cutlers and file manufacturers for giving the proper degree of heat in the tempering of their wares. The process is highly ralued by thoso who uso it. See file manufactnre.

Concrrinivg Saws, Ramitay Sprivge, \&c.-When the saws are wanted to be rather hard, but little of the oil tempering composition

Is burned off; when milder, a large portion; and for a spring temperthe whole is allowed to burn away. Saws as well as springs appear to lose their nlasticity, after hardening and tempering, from the reduction they undergo in grinding and polishing. Towards the conclusion of the manufacture, the elasticity of the saw is restored principally by hammering, and partly over a clear coke fire to a straw color; tho tint is removed by very diluted muriatic acid, after which the sams aro woll washed in plain water and dried. Spring manufacture includes the heaviest specimens of hardened steel works uncombined with irou; for example, bow-springs for all kinds of vehicles, some intended for railway use, measure 3 feet long, and weigh 50 lbs . each piece; two of these are used in combination; other single springs are 6 fect long, and weigh. 70 lbs. The principle of these bow-springs will ve immediately sec. 1 by conceiring the common archery bow fixed horizontally with its cord upwards; the body of the carriage being sttached to the cord sways both perpendicularly and sideways with perfect freedom. In hardening them they are heated by being drawn backwards and forwards through an ordinary fire built hollow, and they are immersed in a trough of plain water. In tempering them they aro heated until the black red is just risible at night; by daylight the heat is denotod by its making a piece of wood sparklo when rubbed on the spring, which is then allowed to cool in the air. The metal is nine-sixteenths of an inch thick, and some consider fivocighths the limits to which steel will bard enproperly, that is sufficiently nilike to serve as a spring. Their clasticity is tested far beyond their intended range.
Tempering Locomotive Trafs, - This is quite ponderous worl, as the tires of the eight foot wheels wcigh about 10 cwt . and consist of about one-third stecl. The materials for the tires are first swiuged soparately, and then welded together under the heavy lummer at the steel works, after which they are bent to the circle, welded, and turned to certain gauges. The tire is now heated to redncess in a circular furnace ; during the time it is getting hot, the iron wheel, previously turned to the right diameter, is bolted down upon a facoplate, the tire expands with the heat, and when at a cherry red, it is dropped over tho wheel, for which it was previously too small, and is also hastily bolted down to the surface plate. The whole load is quickly immersed by a swing crane into a tank of water about fire fcet dcep, and hauled ap and down until nearly cold ; the stecl tires are not afterwards tempered. The apokes are Porged out of flat-bars with T formed heads, these aro arranged madially in the founder's mould whilst the cast-iron centre is ponred around them, the ends of tho Theads are then welded together to constitate the periphery of the wheel or inner tire, and little wedge-form pleces are inserted where there is any deficiency of iron. The wheel is then chacked on a lathe, bored and turned on the edge, not cylindrically, but liko tho meeting of two cones, and about ono quarter of an inch higher in the middle than the two edges. The componnd tire is turned to the corresponding form, and consequently, larger within or under cut so that the shrinking secures the tire withoat the possibility of obliquity or derangement, and no rivets are required. It sometimes happens, that the tire breaks in shrinking, when by mismanagement the diameter of the wheel is in excess.

Manneg Arcanat:-The anchor emith's forge consists of a hearth of brickwork, raisel about 9 inches above the ground, and generally about 7 feet nquare. In the centre of this is a cavity containing the fire. A reatical lecick wall is built on one side of the hearth, which supports the dowes and a low chimney to carry off the smoke. Behind this wall awe placed the bellows, vith which the fire is urged; the bellows beias so placed that they blow to the centre of the fre. The anvil and the cune by which the heavy masses of metal are mored from $x+0$ the fire are adjusted near the hearth. The Hercules, a bura of stumping machine, or the steam hammer, nced not be described this place. To make tho anchor, bars of good iron are brongtet tegetier to be fagoted ; the number varying with the size of the zucdicic. The fagot is kept together by hoops of iron, and the whole placed upon the properly arranged hearth, and covered up 35 sumh enals, which are thrown upon a kind of oven made of cinders. Great care and good management are required to keep this tempecacy oren sound during the combustion; a smith strictly atteads to tris. When all is arranged, the bellows are set to work, and a blaet weyed on the fire ; this is continned for about an hour, when 2 gonet welding heat is obtaincd. The mass is now brought from the fire to the anvil, and the iron welded by the hammers. One pretion having been welded, the iron is returned to to the fire, and the qqeration is repeated until the wholo is welded in one mass. The cificrent parts of the anchor being made, the arms are united to the ead of the shank. This must be done with great carc, as the goociness of the anchor depends entirely upon this process being effectivels performed. The arms being welded on, the ring has to be formed ane weffed. The ring consists of several bars welded together, drawn owitinto a round rod passed throngh a hole in the shank, bent into a circle, and the ends welded together. When all the parts are adjurtent the whole anchor is bronght to a red heat, and hammered with Iighter hammers than those used for welding, the object being to give a finish and erenness to the surface. Tho tonghest iron that care be procured should be used in anchors. Good "Welsh mine irco" " 4 suitable; also "scrap iron." An anchor of the ordinary or Amiralty pattern, the Trotman, or Porter's improved (pivot frkey', the EFoniball, Porter's, Aylin's, Rodger's, Mitcheson's and Lemonex's, each weighing, inclustve of stock, 27000 lbs. withstood without wjury 2 proof strain of 45000 lbs . In dry ground, Rodger's drasged the sidmíralty anchor at both long and short stay; at short stay R Rodure's and Aylin's gare equal resistance; Mitcheson's dragged Atina's at both long and short stay ; and Aylin's dragged the Adromuluy at short stay, they giving equal resistance at long stay. In grsand under water, Trotman's dragged Aylin's, Honiball's, Mitedemu's, and Lennox's : Aylin's dragged Rodgcr's; Mitcheson's drayen Rodger's, and Lennox's dragged the Admiralty' A The breaking weigits between a Porter and Admiralty anchor, as tested at the Wosiwxich Dockyard, were as 43 to 15.

Manufactidese asd Rieparring Anvils.-The common anvil is usually made of seren pieces: 1 , the core, or body $; 2,3,4,8$, the four corner piecan, which serve to enlarge its base; 6 , the projecting end, which has a क्राase hole for the reccption of the tall or sliank of a chisel on which inm barss may be cnt through, and 7, the beal, or
hori a ci sepa In n bring and s tho w plied monid is the ning s of ster
water
como d
above
The fa crack such w ed, it port. in accor is smoo ery and
Mant with a p tremitie is bent, chains t inch d a boy, at may and time for the same iron, now and the link is th loop in th fised on t steam ent of motion figure. by the ca of the det link is no and trans! crane. W relded, a the cast in cosed upo monly req oral link, by hand, il or small es
horizontal cone round which rods or slips of metal may bo turnod in
hearth nerall ding the 4, which smoko. urged ; the fire. ctal are h. The er, need of good with the of iron, rth, and of oren uired to a smith re set to abont an s is now 1 by tho curned to relded in arms are reat care, process 0 ring has is welded le in the When all red heat, - welding, Ree. Thic s. Good nechor of ter's im, Mitche000 lbs ., ground, ort stay; Mitche Aylin's stance at Aylin's, odger's; airalty's chor, as
> anvil is

4,5 , the
ojecting bliank of bealk, or a circular form, as is making rings. These six pleces nre weided ecparately to the first or coro, and then hammered into a uniform body. In manilacturing large anvils two hearths are needei, in order to bring each of the two pleces to bo welded to a proper lieat by itself, and several men are employed in working them together briskly in tie wolding state, by heavy owing hammers. Tho stecl facing is applied by welding in the same manner, powdered borax with sal-ammoniac (1 part to 10 parts of borax) being used as a flux. The anvil is then heated to a cherry red, and plunged into cold water, a runniag stream being better than a pool or cistern, the rapid formation of steam at tho sides of the metal preventing the free access of the water for the removal of the heat with the required expedition. In come cases a stream of water is contrived to descend from a cistern above on the part to be chilled, which is sure to render it very hard. The facing sthould not bo too thick a plate, for when such, it is apt to crack in the hardening. It is somewhat dangerous to stand near snch works at the time, as when the anvil face is not perfectly welded, it sometimes, in part, flies off with grent violence and Ω loud roport. In the case of broken anvils the repairs will have to bo made in accordance with the above description. In finishing off the faco, it is smoothed npon a grindstone, and, for fine work, polished vith ensery and crocus.
Manupacturneg Cinains.-For this parpose the iron is cut off with a plain chamfer, as from the annular form of the links their ers tremities cannot slicle asunder when struct. Erery succeeding link is bent, introducit, and finally welded. In some of these welded chains the links are not more than $\frac{1}{2}$ an inch long, and the iron wiro inch dinacter. These are made with great dexterity by a man mid a boy, at a small fire. The curbed chains are welded in the ordinary may and twisted afterwards, a few links being made red-hot at a time for the purpose. The massive cable cliains are mare much is the same manuer, although partly by aid of machinery. The bar of iron, now one, one and a hall, or even two inches in diameter, is heated and the scarf is made as a plain chamfer, by a cutting machine; the link is then formed by inserting the edge of the lieated bar within n loop in the edge of an oval disc, which may be compared to a cluck fixed on the end of a lathe mandril. The disc is put in gear by the steam engine; it makes exactly one revolution and throws itself ont of motion. This bends the heated extremity of the iron into an oval figure. Afterwards it is detached from the rod with a chamfered cut by the entting machine, which, at one stroke, makes the second scarf of the detached link, and the first of that next to be curled up. Thi link is now threaded to the extremity of the chain, closed togethes and transferred to the fire, the loose end being carried by a traversa crane. When the link is at the proper heat, it is retarned to the anvi welded, and dressed off between the top and bottom tools, after which the cast iron transverse stay is inserted, and the link having been closed upon the stay, the routine is recommenced. The wort commonly requires three men, and the scarf is placed at the side of the oral link, and flat way through the same. In similar chnins made by hand, it is, perhaps, more customary to weld the link at tho crovon, or small end.

Volonnite Emert Wheels.-Use a compound of India rubler, and Wellington mills emery, as little of the former as will suffice to hole the particles of emery together. The materials mnst be thoronghly incorporated together, then rolled into sheets, cut into whenis of the desired size and pattern, pressed into the iroa moulds, and vulcanized or cured by being subjected to a high degree of steam heat for several hours, making it almost as hard as cast iron.

To Braze a Band Saw.-Whitncy; method.-The tools required are a small portable forge, brazing clamps, \&c. and a straight edqo, 3 or 4 feet long, also some brass wire and powdered borax. Take the saw and cut it to the proper length, scarf the ends from one-half to threc-fourths of an inch, then put the saw in the clamps. I would say that I use a very small and simple clamp in the shape of a double rise. Keep the back of the sav out of the jaws of the vise, or clamps, and apply the straight edgo to the back, as it is very necessary to braze it straight; mako the fire in as small a compass as possible; place the clamps directly over the centre of the fire, and then put on thiree pieces of brass wire, bent in the form of the letter U, so that they will pinch the laps together ; putas much borax as wiil lie on tho kaw, corer the whole with a piece of clarcoal : melt the brass so that it will flow over the saw before taking it off the fire, and cool very slow so as not to make the braze brittle. File off what remains on the saw and it is ready for use.

To Remove Rust:-II you immerse the articles in kerosene oil and Iet them remain for some time, the rust will become so much loosened as to come off very easy.

Damascus Steen--It is said that this steel consists of a highly carburetted metal which, by undergoing careful cooling and annealing, separates into two compounds of iron and carbon, giving it the peculiar appearance known as "Damasceening." The wonderful strength of this steel is no doubt owing to careful manipulation.

Gearing'a Lathe for Screw Cutting.-Every screw-cntting lathe contains a long screw called the lead screw, which feeds the carriage of the lathe, while cutting screws; npon the end of thls screrr is placed a gear to which is transmitted motion from another gear placed on the end of the spindle, these gears each contain a different number of teeth, for the purpose of cutting different threads, and the threads are cuta certain number to the inch varying from 1 to 50 . Therefore to find the proper gears to cut a certain number of threads to the inch, yoll will first:-multiply the number of threads you dcsire to cut to the inch, by any small number, four for instance, and this will give you the proper gear to put on the lead screw. Then with the same number, four, multiply the number of threads to the inch in the lead screw, and this will give you the proper gear to put on the spindle. For example, if you want to cutt 12 to the inch, multiply 12 by 4 , and it will give you 48 . Put this gear on the lead screw, then with the same number, 4 , multiply the uumber of threads to the inch in the lead screw. If it is five, for instance, it will give you twenty, put this on the spindle and your lathe is geared. If the lead screw is $4,5,6,7$, or 8 , the same rule holds good. Always multiply the number of threads to be cut, first. Some, indeed most small lathes, are now made with a stud geared into the spindle, which stud ouly runs half as fast as the spindle, and in finding the gears for these
lathes, you will first multiply tho number of threads to ke cut, as be fore, and then multiply the number of threads on the lead screw, as double the number it is. For instance, if you want to cut 10 to the juch, mukiply by 4, and you get 40, put this on the lead screw, then if your lead screw is fivo to the incl, you call it 10; and multiply by 4 and it will give you 40. Again put this on your stud and your latho is geared ready to commence cuiting.
Cutimg a Screti in an Engine Laties.-In cutting ∇ threadscrews, it is only necessary for you to practice operating the shlpper and slide-serew handle of your latho, before cutting. After having done this, until you get the motions, you may set the point of the tow ns high as the centre, and if you keep the tool sharp, you will find no difficulty in cutting screws. You must, however, eut very light clips, mere scrapings in finishing and must take it out of the lathe often, and look at it from both sides, very carefully, to seo that the threads, do not lean like fish scales. After cutting, polish with an ewery stick, and some emery.
Cutiting Square Thread-Scretrs.-In cutting equaro threadscrews, it is always nccessary to get the depth required, with a tool somewhat thinner than one-half the pitch of the thread. After doing this, make another tool exactly one-half the pitch of the thread, and use it to finish with, cutting a slight chip on each side of the groore! After doing this, polish with a pine stick, and some emery. Square. threads for strength should be cut one-half the depth of their pitch, While square threads, for wear, may, and should be cut three-fourths the depth of their pitch.
Mongrel Threads.-Mongrel, or half V, half-squaro threads are usually made for great wear, and should be cut the depth of their pitch and for extraordinary wear they may eren be cut $1 \frac{1}{\text { the depth }}$ of the pitch. The point and the bottom of the groores sllould be in ridth a the depth of their pitch. What is meant here by the point of the thread, is the outside surface. And the bottom of the groore is the groove betwreen the threads. In cutting these threads it is necessary to use a tool about the shape of tho thread, and in ihickness about one-fifth less than the thread is when finished. As it is impossible to cut the whole surface at onco, you will cat it in depth about one-sixteenth at a time, then a chip oft the sides of the thread and continue in this way alteruately till you have arrived at the depth required. Make a gange of the size required between the threads and finish by scraping with water. It is usually best to leare such screws as these a littlo large until after they are cut, and then turn off a light chip, to size them, this leaves them true and nice.
Planing Metais.-The first operation about planing, is to oil your planer and find out if the bed is smooth. If it is not, file off ibe rough places; then change the dogs to see if they will work well, and find out the movements of the planer. After doing this, bolt your work on the bed, and if it is a long, thin piece, plane off a clip, then turn it over and finish the other side, taking two chips, the last of which should be very light. Great care should be taken, in bolting it to the bed, not to spring it. After finishing this side tarn it to the other side, and take off a light cut to fiuish it.

Planing Perpendicularle.-In plaining perpendicularly, it is necessary to swivel the bottom of the small head arc und, so it will stand about three-fourths of an inch inside of square, towards the piece you are to plane. This prevents breaking the tool when the bed runs back.
Gear Cutring.-In cutting gears, they are reckoned a certain number of teeth to the inch, measuring across the diameter to a certain line which is marked on the face or sides of the gear with a tool. This line is one-half the depth of the teeth from the outer diameter. That is, if the teeth of the gear are two-tenths of an inch deep, this line would be one-tenth of an inch from the edge and is called tio pitch line.

Depte of Teetir.-Erery gear cut with a different number of teeth to the inch, shonld be cut of a depth to the pitch line, to correspond with the number of teeth to the inch. This is called proportion. Therefore, if you cut a gear cight to the inch, the depth to the pitch line should be one-eight of an inch, and the whole depth of the twoth would be two-eighths. Again, if you cut a gear trelve to the inch, the depth to pitch line should be one-twelfth of an inch, and the whole depth of tooth two-twelfths. And again, if you cut a gear twenty to .the incin, the depth to pitch lino should be one-twentieth of an inch, while the whole depth should be two-twentieths, and so on cul infinitum.

Measurina to find the Number of teeth.-To find the sizo a certain gear should bo, for a certain number of teeth, is an easy matter, if you study carefully these rules. If you want a gear with thirty-two teeth and eight to tho inch, it shonld be four inches measuring across the diameter to the pitch line, and the two-eighths outside of the pitch line would make it four inches and two-eighhts. Again, if you want a gear with forty tceth, and tea to the inch, it should measure ncross the diameter to pitch line four inches, and the twotenths outside the pitch line would make the whole diameter four inches and two-tenths. And again, if you want a gear with eighty teeth, and twenty to the inch, it should measure to the pitch line, across the diameter, four inches, and the two-twentieths, outsido the pitch line, would make it four iuches and two-twentieths, and these examples will form a rule for the measurement of all except bevel gears.

Beyer Gears. -These are turned a certain bevel to correspond with each other, according to the angle upon which the shafts driven ly them are set. For instance, if two shafts are set upon an angle of ninety degrees, the surfaces of the faces of these gears will stand at an augle oi forty-five degrees. To get the surface of these gears, in turning them, put a straight edge across the face. Then set your level on an angle of forty-five degrees, and try the face of theteath by placing the level on the straight edge. After turning the face of the teeth, square the outer diameter by the face of the toeth; and to get the size to which you wish to cut, measure from the centre of the face of the teeth. Thus, if a bevel gear is six inches in diameter, and the face of the teeth is one inch, you will measure from the centre of the face, und find it is five inclies. On this line you calculate the number of teeth to the inch, and if you want a gear with twenty tecth, and ten to tho "uch, it should measure two finches across the
icularly, it in ud, so it will towards the ol when the ed a certain eter to a cerr with a tool. ter diameter. ch deep, this is called tho
number of 1e, to corres1 proportion. to the pitch of the tooth the inch, the d the whole ar tiventy to of an inch, 0 on cul in-
ind the sizo is an ensy a gear with hes measuriths outside tts. Again, 1, it should ad the twometer four vith eighty pitch line, lis, outsido tieths, and all except
correspond afts driven in angle of 11 stand at e gears, in set your heteath by ace of the and to get tre of the neter, and centre of enlate the h twenty cross the face to the centre of the surface of the teeth; and if the face of the teeth were one inch in length, the diameter of the the face of the three inches, and the inside of the teetheter of the gear would be inch. Again, if you want to cut a gear with would measure only one the inch, it wonld measure four inches with forty teeth, and ten to the surface. And if the surface of the to the centre of the teeth on diameter of the gear would bo five teeth were one inch long, tho rule for three inches inside the teeth. Thches, whilo it would only Dratr-findel gears. Draiv-filing and Finishina.-To draw-fil smoothly and quickly, it is best to first drafile a plece of work fine file, and finish with a superfine file Araw-file it with a medimn Lining Boxpy emery paper and then with After doing this, polish as to insure thes with babiiti Metai, win emery paper and oil. nearly red hot, or filling every time, it is necessary to properly, so the shaft where or at least hot enough to melt thsary to heat the box coming ont of the metal is to be poured upon metal. Then smoks shaft, put it into the ex easily, after it is cold. After s insures its ends of them, for box or boxes, and draw some putty moking tho not to press upon for tho parpose of stoppinge putty fround the place that ought to for if you do it will go into the taking caro metal ought to to ve filled with metal; and in the box and fill a the box stand till it heated, and after you havo meantime, your done. Tcrining and Boning cumference is about fifteen - For turning, the proper speed for the ciring cast irou is about 73 feet per mer minute. The best speed for bor 11 fect per minuto is a good speed minute. For drilling, about 100° For a 1 inch drill, 40 revolutions $=11$ feet percumference of the toot 11 fet per minute, other sizes i^{-} tako locks apre Kers into Locks.-When it is not convenient to When you wish to fit a new key, keys being lost, stolen, or missing smoke the new key in the fley, talse a lighted match or candle and hole, press it firmly against the opposing it carefully into the key. exactl the indentatious in the opmoked prards of the lock, withdraw exactly where to file. part should be finished Toaetrer.--In putting machines together no it is sometimes the caso that where it is necessary to make a fit, as finishing it would be spoiled, while if it is miscalculated, and by by slight alterations in design. And it were not, it might bo saved before you get a machine together, again, in finishing certain parts parts not necessary to be finished, and are unknowingly finishing thing but desirable. This rule , and making ticen of a shape anymachinery being made to detail however, is not intended to apply to To Drill a Hoce where you wings.
times necessary to drill a hole of an mave no reamer.- It is bc.acand at the same time have it of an exact size to fit a certain shaft, be done, by first drilling a hole ooth without reaming it. This may the sizo desired, and then male, one-hundreth of an finch smaller than through to finioh with. This ings a drill the exact size and running it mougin to finisis with. This last drill whould have the corners of its
lips rounded, like a reamer, and tho hole should be finished without holding the drill with a rest.

Squaring, or Facina up Cast Iron Surfaces.-A round-end tool is best for this. A rough chip should first be taken off, over the entire surface to be faced. Then speed your lathe up and taking a light chip, merely enongh to take out the first tool mark, run over the entire surface again. In turning up surfaces it is always best to begin at the centre and feed out, as the tool cuts freer and will wear twice as long.

Boring a Hole with a Boring Tool.-In boring a hole with a boring tool, it is usually necessary to drill the hole first, and too mach care cannot be takenju finishing. An iron gauge should bo made first; it is usually made of a piece of sheet iron or wire. The hole should then be drilled smaller than the size desired, and then bored to the required size, and it is impossible to bore a hole perfect without taking two or three light chips, mere scrapings with which to finish. Holes, in this way, may be bored as nicely as they can bo reamed.

Borina Holes with Boring Arbor.- A boring arbor is a shaft with a set in it, for the purpose of boring holes of great length, and is designed to be used in a lathe. In doing this properly, you must first see if your lathe is set straight; if not, adjust it. Having done this, put the piece of work to be bored in the carriage of your lathe, pass your arbor through the hole to be bored, and put it on the centres of your lathe. Having done this, adjust your work true to the position desired by measuring from the point of the tool, continnally turning round the arbor from side to side of the piece to be bored, while you are bolting it to the carriage, and measure until it is perfectly truc. Having done this, bore the hole, and take for the last chip only a hundredth of an inch. This makes a true and smooth hole. It is impossible to make a hole true with any kind of a tool when you aro cutting a large chip, for the tool springs so that no dependence can be placed upon it.
To Make a Boring Arbor and Tool that will not Chat-TER.-Boring tools, when used in small arbors, are always liable to chatter and make a rongh hole. To prevent this, the tool should be turned in a lathe, while in its position in the arbor, upon the circle of the size of the hole to he bored, and the bearing lengtinwise of the ribor, should be only as wide as the feed of the lathe; for if the bcaring of a tool is on the face, the more it will chatter.
To Straighten Shaftina.-This should be dono by centreing, then put it into a lathe, and square the ends up with what is called a side tool. After doing this, take a plece of chalk and try it in several places, to find out where the worst crooks are : then, if you have not a machine for springing slafting, spring it with a lever where the most crook is, and continue this operation till tho shaft is straight.
Turning Shafting.-To do this properly, tiro chips shonld ahvays be run orer the shaft, for the reason that it saves filing, and lenves the shaft truer and more round, and on shafts thus turned, the time saved In filing more than compensates for the time lost to turning. Before you commence you will put your feed belts of gear on a coarse feed; turn off one a sixty-fourth of an inch

E pull larg shas the of n fivisl a si it it learc. be th file t that t clamp
harger than the size required; having turnea off this chip, com mence the finishing chip, and turn it small enough to have tho pally wring on about an inch without filing. This will leare it large enough to file and finish. If there are counlings to go on a shast, with holes smaller than the holes in the pulleys, the ends of the shaft, where they fit on, shoald be tarued down to a sixty-fourth of an inch of the size required before any part of the shaft is fuished; that is, every part of a slaft should bo turned to within a sixty-fourth of an inch of the size required before any part it it has the finish-chip taken off. The reason for that is that it leares every part of the shaft perfectly true, which would not be the case were it done otherwise. Ifaving done this, jon will filo the shaft so that the pulleys will slide on, and the couplines so that they will drice on ; polish the shaft with a pair of polishingclamps and some cmery and it is done.

To Fonge a Twist Drill.-It is necessary to forgo a flat blade similar to a'flat drill, and then tivist this blade into the resemblanco required, then, with a light hammer, and carcful blows, hammer the twisted edges so that they will be thicker than the central line of the tool. This will gire greater strength and a better drill, and, to cut well, the central line or cutting point must be made quite thin. Be careful to get the same twist at the point of the drill is upon the body of tho drill. The inexperienced often leave the point straight like a flat drill.
To compute the number of teetin required in a train of Wheels to produce a given velocity. Rule.-Minltiply the number of teeth in the driver ly its number of revolutions, and divide the product by the number of revolutions of each pinion, for each driser and pinion. F'or speed of Wheel, Pulleys, \&c., see page 98.
Example.-If a driver in a train of three wheels has 90 teeth, and makes 2 revolutions, and the velocities required are 2, 10, and 18, what are the number of teeth in each of tho other two.

$$
\begin{aligned}
& \text { 10: 90: } 2: 18=\text { teeth in } 2 \text { nd reheel. } \\
& \text { 18: } 90:: 2: 10=\text { teeth in 3rd ucheel. }
\end{aligned}
$$

To compete tie diameter of a wheel. Rule.-Multiply the number of teeth by the pitch, and divide the product by 3,1416 .
Example. The unmber of teeth in the wheel is 75, and the pitch 1,675 ins: what is the diameter of it?

```
\(75 \times 1.6755\)
```


3.1416

To compoie the true on chordial ritcir. Rule.-Divido 180 by the number of teeth, ascertain the sine of the quotient, and maltiply it by the diameter of the wheel.
Example. -The number of teeth is 75, and tho diameter 40 inches; What is the true pitch?

180
$-=2024$, and \sin of $2024,=04188$, which $\times 40=1.6752$ ins. 75
Paper Friction Pullexs.-These snperior mechanical contrirances are made by cutting pieces of pasteloard into a circular form, and of the desired diameter of the pulley, and placing them in layers ono ou the top of another, cerneuting properly with a good coat of glue
betreen cach layer, pounding or pressing them together as close as possible, and leaving a perforation in the centre of each, for the shaft. When you have got enough of these layers together to give you tho proper breadth of pulley, allow the glue to harden, then turn it off to a smooth finish in a lathe. Secure each side of the pulley with a good itout iron flange large enough to cover the entire diameter, or nearly so, and with proper usage it wiil last a long time.

On Belting and Friction.-Leather belts will last double tho usual time if treated with castor oil, they will be rat proof, they will always remain flexible and will not crack. A belt 4 inches wide will be equal to one 6 inches wide without it. It requires about 24 hours to penetrate the leather, if used sooner the greasiness will cause it to slip. A leather belt should have a spced of 1300 ft . per minute, and not more than 1800 ft . or it will not last long. Leather belts, with grain side to pulley will drive 35 per cent. more than the flesh side, because it is less porous, thus admitting less air between the surfaces. Pulleys covered with leather with evolve full 50 per cent. more power than the naked pulley. To increase the power of rubber belting use red lead, French yellow and litharge, equal parts; mix with boiled linseed oiland japan sufficient to make it dry quick. This will produco a highly polished surface. Experiments without lubricants resulted in showing the following co-cffcicuts. Oak upon oak, 62 ; wrought iron on oak, 49 to 62; cast iron on oak, 65; wrought irou on cast, 19; cast iron on cast, 16; cast iron axles on liguum-ritz bearings, 18; copper on oak, 62 ; iron on elm, 25 ; pear tree on cast iron, 44 ; iron axles on lignumvite bearings (with oil), 11 ; iron avles with brass bearings (with oil), 07 . Λ belt 5 in . wide, velocity 100 ft . per minute, on leather covered pulleys, will yicld C-horso p .ver; double tho speed and it will evolve double the power.

Methylated Spirit.-Methylated spirit, so very useful in tho arts, is an inferior kind of alcohol, mixed with onc-ninth of its rolume of pyroxylle spirit, or wood naphtha.

Engineers' Bell Signals in Use on Steamers.-Go ahcad, 1 strok, Back, 2 strokes, Stop, 1 stroke, Sloucly, 2 short strokes, Full speed, 3 short strokes, Go ahead Slowly, 1 long and 2 short strokes, Back Slowly, 2 long and 2 short strokes, Go ahead Full Speed, 1 loug and 3 short strokes, Back Fast, 2 long and 3 short strokes, Hurry, 3 short strokes repeated.

- To Dye Metals.- Metals can be dyed any color by dissolving any of the aniline dyes in methylated spirit and adding shellac. This solution must be painted on until the desired shade is obtained. If the iron has been previously painted white so much the better. - Neit Self-Lubricating Anti-friction for Bearings.-Tako equal parts of asbestos and plumbago, mix them thoroughly and carefully together, then add nufficient liquid silicate of soda or potash to reduce the whole to a half dry paste. Tinis paste must then be submitted to the action of a hydraulic or other press, till it is converted into a solld mass, which is afterwards dried, either in a furnace or by exposure to the air, until all moisture has disappeared. The bearings may elther be turned ont of the block or moulded from the composition while in the molst state. When the bearing is finished it is steeped in hot melted parafflne or other mineral oil, until all th 10 pores of the composition are filled up.
| Burglar Alarm.-During the present time, when tramps, snenk thleves, audacious burglars and desperadoes aro prowling around and infesting society, it ray not be amiss to quote the following description of a home made burglar alarm by a correspondent of the English Mcchanic :-"Just inside my shop door, and directly opposite to it, I have cut a trap in the floor, 3it. by 2 ft., and made it to work upon hinges, at the back or door side (same as a box-lid). I havo placed under the front edge of the trap two common spiral bed springs, blocked up from the ground sufficently to throw front edge of trap, which rests upon them, about 1 in . above the level of the flooring. The springs of course, are placed about 6 in . from each front corner, along front edge, so as to equalize the strain as much as possible. The following is easy. In the place where "New Subscriber" would fix his electric bell, let him fix or have fixed an ordinary bell or gong, with the wiro carried from it, in the way best snited to tho house, under flooring of passage to the trap, beneath tho front or raised edge of which there must be a crank that the springing of the trap shall work and ring the bell, which, if well hung at a good ringing pitch, will awalren tho soundest sleeper in the eveut of a thief or any intruder entering the house at improper times, or for improper purposes. To aroid annoyance in the day time, a button :t each end of trap would fix it down firmly, and at night, upou going to bed or when locking up, it could be released. The doormat would cover the entire thing, and no one but those concerned need erer know of its existerce. I do not hesitate to say that not one in fifty people, or even a hundred, that enter my shop know of anything or notice anything different to any other place they may go into, yet it has been in uce for seven years. I fitted it myself, though nota bell-hanger, and it has never once got out of condition, but the bell will often give fifteen and twenty beats with one person treading on the mat."
Black Varnisir for Inon Work.-Asphaltum, 1 lb .; lampblack, $\frac{1}{4} \mathrm{lb}$. ; resin, $\frac{1}{2} \mathrm{lb}$. ; spirits turpentine, 1 quart; linseed oil, just sufficient to rub up the lampblack with before mixing it with the others. Apply with a camel's hair brush.
To File a Hole Square.-To file a hole square, it is necessary: to reverse the work very often; a square file should first be used, and the holes finished with either a diamond-shaped file or a half round. This leaves the corners square, as they properly should be.
To Turn Chillid Iron.-At Lister's Works, Darlington, England, some articles required turning in the lathe, and cast steel could not bo made hard enough to cut them. One man proposed cast metal tools. He was laughed at, of course, but his plan had to be tried. Well, cast metal tools were tried, with points chilled, and they cut When cast ateel tools were of no use. The article was turned up with metal tools.
Drilling Holes in Cast Iron.-By means of carbolic acid a hole $\frac{1}{4}$ of aninch in diameter has been drilled through $\frac{1}{2}$ inch thickness of cast iron, with a common carpenter's brace; judge, then, what can be done by using the acid and pressure drill.
Haldening WOod for Pulieys.-After a wooden pulleg is turned and rubbed smooth, boll it for about eight minutes in olive oil; then allow it to dry, and it will become almost as hard as copper:
To Solder Ferrules for Tool Handles. - Take your ferrule, lap ronnd the jointing a small plece of brass wire, then just wet the
ferrule, scatter on the joining gronnd borax, put it on tho end of a wire, and hold it in the fire till the brass fuses. It will fill up the joining, and form a perfect solder. It may afterwards be turned ir the latho.
Making Dies for Screiv-Cetting.-In making dies for scret. catting, they should, whenever practicable, be lapped with a taper tap, as they cut more easily and wear longer than those which aro cut straight, and then tapered off to make the screv "take."

Very fine threaded screws, however, cut well with stralght dies. Small dies, or dies below one-fourth of an inch in size, should only hare three lips in them. Dies from one-fourth to one-half shonda have four lips in them. Dies from three-fourths to one Inch should hare six lips in them; and dies from one inch to onc-and-a-half should have seren lips in them. The cuts throngh dies should be only twice the depth of the thread, which is sufficient to mairo them free themselves from chips, for when cut too deep they are liablo to break on the face. Harden and draw to a straw color.
To Dip a Fluted Reamer Properly.-Dip it perpendicalarly to a short distance beyoud the fluting-that is to say, abont half an inch and withdraiv and return it several times. This hardens all tho lips, and prevents it cracking off at the water's edge, which is tho case when a pieco of stecl is dipped in to a certain depth, and allowed to cool without moving.

Anti-Ficiction Metai.-Copper, 4 lbs. ; regulus of antimony, 8 $\mathrm{lbs} . ;$ Banca tin, 96 lbs .2 Grain zinc, $7 \frac{1}{2}$ libs. ; purified zinc, $7 \frac{1}{} \mathrm{lbs}$; antimony, 1 lb . 3. Zinc, 17 parts; copper, 1 part; antimony, 1] parts. This possesses unsurpassible anti-friction qualities, and does not rcquire the protection of outer casings of a harder metal. 4. Block tin, 8 lbs. ; antimony, 2 lbs . ; copper, 1 lb . If the metal be too hard, it may be softened by adding some lead. 5. The best alloy for journal boxes is composed of copper, 24 lbs . ; tin, 24 llbs. ; and antimony, 8 lbs. Melt the copper first, then add the tin, and lastly the antimony. It should be first run into ingots, then melted, and cast in the form required for the boxes. 6. Melt in a crucible $1 \frac{1}{3}$ lbs. of copper, and, While the copper is melting, melt in a ladle 25 lbs. of tin and 3 of antimony, nearly red hot, pour the tivo together, and stir until nearly cool. This makes the finest kind of lining metal. 7. Very cheap. Lead, 100 lbs . ; antimony, 15 lbs . This costs about 10 cents per 1 lb . 8. For Bearings to sustain great weights.-Copper, 1 lb . ; zinc, $\frac{1}{3}$ oz.j tin, $2 \frac{1}{2}$ oz. 9. Mard Bearings for machinery.-Copper, 1 lb ; ;in, 2 ozs. 10. Very Hard ditto.-Copper, 1 lb . ; tin, 2 fozs. 11. Lining Metal for Boxes of Railway Cars.-Mix tin, 24 libs.; copper 4 lbs.; antimony, 8 lbs . ; (for a hardening) then add tin 72 lbs. 12. Lining Metal for Locomotives' Axle trees.-Copper, 86.03.; tin, 13.97.13. Another, French.-Copper, 82 parts, tin, 10 parts, zinc, 8 parts. 14. Another, (Stephenson's).-Copper, 79 parts; tin, 8 parts, zinc, 5,parts, lead 8 parts. 15. Another (Belgian).-Copper, 89.02. parts, tin, 2.44 parts, zinc, 7.76 parts iron, 0.78. 16. Another (English). - Copper, 73 96 parts, tin, 9.49 parts, zinc, 9.03 parts, lead, 7.09 parts, iron, 0.43 parts. 17. Another.-Copper, 90.06 parts, tin, 3.56 parts, zinc. 6.38 . of Nickel Anti-friction Metal.-A late improvement in the manufacture of anti-friction metal is the introduction of a small percentage of nickel into either of the above, or any other anti-friction composition.

Composition for Crucibles.-1. Stourbridge crucible clay 4 parts, plumbago 3 parts, hard coke 2 parts, cement, consisting of old pots ground and sifted, 1 part. If old pots are not to be had, the foregoing must be burnt hard, ground and sifted. The carbon chippings from the interior of gas retorts are superior to the best ordinary coko. Pulverize the whole and sift throngh a $\frac{1}{8}$ inch mesh sieve, temper and mix with plenty of clean cold water, tread with the bare foot to the consistency of stiff dough, allow it to stand for three or four days covered with a damp cloth to permit sweating and thorough maturity, then block by a machine or by hand. When completely dry, place in the kiln and anncal, but do not burn hard. 2. Another.-Tbe BirmIngham soft, tough pot consists of 2 parts of the best Stourbridge crucible clay, 3 parts plumbago, and 1 part cement consisting of old crucibles pulverized and sifted, \&c., as above described. 3, Anothcr.Stourbridge crucible clay 2 parts, cement 3 parts, sift through a $\frac{1}{8}$ inch mesh sleve, temper as above, and when dry place in the kiln and burn hard. 4. Another.- Stourbridge best crucible clay, 3 parts by measure; cement, composed of old worn out fire brick, 2 parts; hard coke, 1 part; sift, temper and manipulate as above.

Cast Iron Patterns should be made very smooth, then slightly warmed, and waxed all over with the best beeswax.

Facings, Sands, \&C., For Castings.-As a facing for loam castings use fire sand 3 parts, Whitelead sand 1 part; mix. For pipes and small cylinders use No. 1, or fine sand, facing with plumbago. Albany or Waterford sand is excellent for fine castings, or use 1 part of sea coal to 8 or 10 of Albany sand; 1 part to 5 will do for heavy castings. To ensure very smooth castings, mix with the green foundry sand about 1-20 part of tar.

To Prevent Holes in Castings.-In casting iron on iron or steel spindles, the moulds are cast endwise; let the cast metal spindle be an inch longer on the uppermost side than is necessary when the job is finished; thus the air holes, if any, will form in the extra inch of length, and may be cut off in the lathe.

To Cast Chilled Iron Tools for Cutting Chilled Iron.After making a tool of the required form out of wrought iron, cast the chilled part, using charcoal iron No. 5 .

Dysiot. - The new alloy, called dysiot, brought into the market by Rompel \& Co., of Homburgh, has been analyzed by Von Uhleuhuth, and found to consist of copper, 62.30 parts; lead, 17.75 ; tin, 10.42; zine, 9.20 , with traces of iron. It can be preared by melting together 62 parts of copper, 18 of lead, 10 of tin, and 10 of zinc.

Excellent Anti-Friction.-Tin 50 parts; antimony 5, copper 1.
Chear Brass.-Copper 1 lb ., zinc 12 ozs.
Brazing Metal.-Copper 1 lb ., spelter 8 ozs., with a little lead.
Tougin Type Metal.-Lead 100 lbs ., antimony 40, tin 20.
Pratinum Bronze, Rust-Proof:-Nickel 100 parts, tin 10, platinum 1.

Malleable or Aluminum Bronze.-Copper 90, tin 10.
Aluminum Silver, of Fine Luster and Polish.-Copper 70 parts, nickel 23, aluminum 7 .

Yellow Brass fon Steam Engines.-Add 44 to 9 ozs. zine to ench 1 lb . of copper.

Good Brass for Micminnery.-1. Copper, 2 lbe., tin 27 ozs., zine
oz. 2. Tough Brass.-Copper, 10 ozs., tin, 1h ozs., zinc if ozs. 3. Wheels and Valves.-Copper, $90 \mathrm{lbs} ., \mathrm{tm}, 10 \mathrm{lbs}$. 4. Brass, very tenacious.-Copper, 88.9 parts, tin, 8.3 parts, zinc, 2.8 parts. ס. Lathe Bushes. - Conper, 80 parts, tin 20 parts. 6. Mrachincry Bearings. -'jopner, 88 parts, tin, 12 parts. 7. Boxes for Enyincs Running at Iligh Speed.-Copper, 7 libs., tin, 1 lb ; add spelter 1 lb . to every 40 lbs . of the mixture. Use steel piston rods for high speed and lignum vitm or apple-tree wood for shoes or gibbs on the cross-heads. Iron for cylinders and guldes, if made from pigiron should ve meited at least 8 or 9 times previous to use.
Bronze. -1. Copper, 83 parts; zinc, 11 parts; tin, 4 parts; lead, 2 parts; mix. 2. Copper, 14 parts; melt and add einc, 6 parts; tin, 4 parts; mix. 3. Ancicnt Bronze.-Copper, 100 parts; lead and tiu, of each 7 parts; mix. 4. Alloy for Bronze Ornaments.-Copper, 83 parts; zínc, 18 parts; tin, 3 parts; lead, 3 parts; mix. 5. Statuary Bronze.-Copper, 88 parts; tin, 9 parts; zinc, 2 parts; lead, 1 part. 6. Another.-Copper, $82 \frac{1}{2}$ parts; tin, 5 parts; zinc, $10 \frac{1}{2}$ parts; lead, 2 parts. 7. Another.-Copper, 90 parts; tin, 9 parts; lead, 1 part. 8. Bronze for Mcdals.-Copper, 89 parts; tin 8 parts; zinc, 3 parts. 0. Bronze.-Copper, 7 lbs.; zinc. 3 lbs.; tiu, 2 lbs. 10, Another.-Copper, $1 \mathrm{lb} . ;$ zinc, 12 lbs ; tin, 8 lbs .
Soperior Bell Metal.-1. Copper, 1001 lbs . $;$ tin, 23 lbs . 2. Copper, 25 parts; tin, 5 parts. 3. Copper, 79 parts; tin, 20 parts; mix. 4. Copper, 78 parts; tiin, 22 parts; mix. '5. Parisian Bell M Petal.-Copper, 72 parts; tin, 26 $\frac{1}{2}$ parts; Iron, 11 parts. Used for the bells of small ornamental clocks. 6. Clock Bell Metal.-Copper, 75.19 parts; tin, 24.81 parts. 7. Bell Metal for Large Bells.-Copver, 100 lbs.; tin, from 20 to 25 lbs . 8. Bell Metal for Small Bells.-Copper, 3 lbs ; tin, 11b. 9. White Metal for Tablc Bells.-Copper, 2.06 parts; tin, 97.31 parts; bismuth, 0.63 parts.
Yellow Brass (for casting).-1. Copper, 61.6 parts; zinc, 35.3 parts; lead, 2.9 parts; tin, 0.2 parts. 2 Dirass of Jemappes.-Cupper, 04.6 parts ; zinc, 33.7 parts ; lead, 1.4 parts. tin, 0.2 parts. 3. Shcet of Stolberg, near Aix la Chapelle. - Copper, 64.8 parts; zinc, 32.8 parts; lead, 2.0 parts; tin, 0.4 parts. 4. D'Arcets Brass for Gilding.-Copper, 63.70 parts; zinc, 33.55 parts; lead, 0.25 parts; tin, 2.50 parts. 8. Another.-Copper, 64.45 parts; zinc, 32.44 parts; lead, 2.86 parts; tin, 0.25 parts. 6. Shect Brass of Romilly.-Copper, 70.1 parts; zinc, 20.9 parts. 7. English Brass Wire.-Copper, 70.29 parts; zinc, 29.26 parts; lead, 0.28 parts; tin, 0.17 parts. 8. Angsburg Erass Wire.Copper, 71.89 parts; zinc, 27.63 parts; tin, 0.85 parts.
Red Brass, For Gilt Articles.-1. Copper, 82.0 parts ; zinc, 18.0 parts; lead, 1.5 parts; tin, 3.0 parts. 2. Another.-Copper, 82 parts $;$ $1^{\text {ziuc, }} 18$ parts; lead, 3 parts; tin, 1 part 3 Another. Copper, 82.3 parts; zinc, 17.5 parts; tin, 0.2 parts. 4. Frerch Tombac jor Sword Ilandles.-Copper, 80 parts; zine, 17 parts; tin, 3 ports. 5 For Parisian Ornaments.-Copper, 85 parts; zinc 15 parts; tin, a trace 6. Used for German Ornaments.-Copper, 853 prits ; zinc, 14.7 parts. 7. Chrysochalk.-Copper, 90.0 parts; zinc, 7.9 parts; lend, 1.6 parts. 8. Red Tombac from Paris.-Copper, 92 parts ; zinc, 8 parts.

Buass.-1. Yellovo Brass for Turning. (common articlo.)-Copper, 20 lbs zinc, 10 lbs. lead, 4 ozs. 2. Another E:ass for Turning.-Cop-
nother
per, 32 lbs. zinc, 10 lbs . lead, 1 lb . 3. Red Brass frec, for Turming.Copper, 160 lbs . ziuc, 50 lbs . lead, 10 lbs antimony, 44 ozs. 4. Best lied Brass for fine Castings.-Copper, 24 libs. ziuc, 5 lbs. bismuth, 1 oz. D. Red Tombac.-Copper, 101 lss zinc, 1 lb. 6. Tombac. - Copper, $10 \mathrm{lbs} . \operatorname{tin}, 1 \mathrm{lb}$ zinc, 1 ll .7 . Brass for Heavy Castings.-Copper, 6 to 7 parts; tin, 1 part; zinc, 1 part. 8. Dalleable Brass.-Copper, 70.10 parts; zinc, 29.90 parts. 9. Superior Mctlleable 1Brass.-Copper, 00 parts; zinc, 40 parts. 10. Brass.-Copper, 73 parts; ziuc, 27 parts. 11. Copper, 63 parts; zinc, 35 parts 12. Copper, 70 parss; zine, 30 parts. 13. Uerman Brass.-Copper, 1 li. zinc, 1 lb . 14. Watchmakers' Brass.-Copper, 1 part; zinc, 2 parts. 15. Brass for Wirc.Copper, 34 parts; calamine 56 parts. 16 Bres , for Tubcs.-Copper, 2 parts; zine, 1 part. 17. Brass for Heary Wir. .-Copper, 100 parts: tin, 15 parts; zinc, 15 parts. 18. Another.-Copper, 112 parts; tin, 13 parts; zinc, 1 part. 19. Tombac or Red Brass.-Copper, 8 parts; zinc, 1 part. 20. Brass.- Copper, 3 parts; melt, then add zinc, 1 part. 21. Buttonmakicrs' Fine Drass. Brass, 8 parts; zine, 5 parts. 22. buttonmakers' Common Brass.-Button brass, 6 parts; tin, 1 part; lend, 1 part; mix. 23. Mallet's Brass.-Copper, 25.4; zinc, 74.6; used to preserse irou from oxydizing. 24. Bext Brass fur Clocks.-Rose copper, 85 parts; zinc, 14 parts; lead, 1 part.
To Cast jhrass solid. -The metal should not be run any hottor than is necessary to insure sliarp castings. The most probable causo of the houey combings of castings is that the air cannot get out of the way ; and thero ought to be proper rents made for it from tho highest parts of the mould; the metal shonld be run in ncar or at the bottom of the mold. If abont 1 lb . of lead be added to every 16 lbs. of old brass, when just at the melting point, solid good brasses will be the result. In melting old brass, the zinc, or lead, contained in it (when fluid) oxydizes freely, consequently tho proportions of the metill are altered, and require an addition similar to the abure. If the brass has not been re-cast a little less lead will do, bit if re-cast several times it may take the full quantity.
New and Beautiful Allots-Copper, 69.3 parts; nickel, 19.8 parts; zinc, 5.5 parts; cadminum, 4.7 parts; tused for spoons, forks, \&-8. Anotier.-Conper, 80.3 parts; aluminum, 10.5 parts. Oreide resembling Gold. Copper, 70.7 parts; zine, 8305 parts; uickel, $\mathbf{6 . 0 9}$ parts, withe etrace of irou and tin.
Good Britannia Metal.-1. Tin. 150 lbs ; copper 3 lbs ; antimony, 10lbs. 2. Britannia. 2d Quality.-Tin, 140 lbs. $;$ Copper, 3 lbs.; antimony 9 lbs. 3. Britannia Metal, for Casting.-Tin, 210 lbs. ; copper, 4 lbs.; antimony, 12 lbs. 4. Dritannia Metal for spinning.-Tin, 100 lbs.; Britamia hardening, 4 lbs.; antimony, 4 lbs. D. Britannia Metal for Registers.-Tin, 140 lbs . ; hardening 8 lbs ; antimony 8 lbs 6. Best Britannia for spouts.-Tin 140 lbs ; copper, 3 lbs ; antimony, 6 lbs. 7. Dest Britannia for spoons.-Tin, 100 lbs.; hardening blls.; antimony, 10lbs. 8. Best Britannia for Handles.-Tin, 140 lbs; conper 2 Ibs. ; antimony 5 lbs. 9. Best Britannia for Lamps, Pillars, and Spouts.-Thn, 300 lbs ; copper, 4 lbs ; antimony 15 lbs . 10. For Casting.-Tiu, 100 lbs.; hardening 5 lbs.; antimony, 5 ilss. 11. Tin, 82 parts; lead, 18 parts; brass 5 parts; antimony, 5 parts; mix. 12. Another Britannia.-Tin, 20 parts; antimony, 4 parts; brass, 1 part; mix. 13 IIarelening for Britannia,-Brass, 4 parts; tin, 4 parts; when

Iused，add birwarth， 4 ，and antimony， 4 parts．Another Hardening． －Antimony，tim，bismuth，and plate brass of each equal parts．Add this mixture to meited tin until it acquires the proper color and hard－ ness．15．Britemniax－Tin， 89.70 parts，antimony 9.70 parts，copper0． 30 parts，zive， 030 parts， 16 Tin， 81.64 parts，antimony， 16.51 parts， copper， 1.85 proter 17．Tin， 89.97 parts，antimony 9.12 parts，copper， 0.91 parts．If．Tho 30.00 parts，antimony， 10 parts．19．Tin 85.30 parts，antirncour， 7.14 parts，copper， 1.78 parts，bismuth， 1.78 parts．
Gelrmar Salter Piret quality for Casting．－1．Copper 60 lbs． zinc， 25 lbm aüdel 25 Ibs 2．Second Qualtty，for Casting．－Cop－ per， 50 lbs ziose， 39 Ibs ．best palverized nickel， 10 lbs .3 ．German Silver for Rulizg－Copper， 60 lbs zinc， 20 lbs. nickel， 25 lbs .4. German Silver fir Belts，and other Castings．－Copper 60 lbs．zinc， 20 lbs ．mickel， 32 man．lead， 3 lbs ．Iron，that of tin plate is the best， 2 lbs．5．Germmes Silver for Castinys．－Lead， 3 parts，nickel， 20 parts，zinc， 30 prater，copper 60 parts，mix．6．German Silver for Rolling．－Nideral，$\$$ parts，zinc， 4 parts，copper 12 parts，mix．7．Cop－ per， 40.62 parts，zine， 4376 parts，nickel， 15.62 parts．8．Copper 41.47 parts，zine 26.45 parts，nickel， 32.35 parts．9．Copper 55.55 parts， zinc，5． 55 parta，miekel 38.90 parts． 10. Copper， 53.40 parts，zine 29． 10 partes，wärket 17． 50 parts．11．Alfenide．－Contain a trace of iron，copper， 10 parta，zinc， 30.30 parts，nickel， 10.10 parts． 13. Fine Silver Culomed Netal．－Tin 100 lbs，antimony， 8 llbs．copper， 4 lbs．bismnth， 1 配 1 ．Fine White German Silver．－Iron 1 part： nickel， 10 partw，zixe， 10 parts，copper， 20 parts ：melt．14．Genuine German Silues－leva 2 \｛ partis，nickel $31 \frac{1}{2}$ parts，zine 25$\}$ parts，cop－ per，401 parts＝melti 15．Bidery．－Copper， 48.43 parts；tin， 6.60 parts，zine， 33.89 priets，lead， 12.12 parts．

Sunder Comaronertroxs．－1．Oryan Pipe Metal consists of lead al－ loyed with aboret lalf its quantity of tin to harden it．Lead，100；tin， 33 parts；and lead， 100 ；tin， 20 parts，answer very well．The mot－ tled or crystailive appearance so mnch admired shows an abundance of tin． 2 ．Cuman Hetal．－Tin， 10 parts；copper， 90 parts；melt． 3．Alloy for Cyminelis．－Copper， 80 parts ；tin， 20 parts．4．Chinese Gong Metal．－Coppery 78 parts；tin， 22 parts．5．Cock Metal．－ Copper， 20 lbs ；Lewf， 8 lbs ；litharge， 1 oz ．；antimony， 3 ozs． 6. Metal for taking limpressions．－Lead， 3 lbs．；tin， 2 lbs．；bismuth， 5 1bs．7．Alloy far Gire Mountings．－Copper， 80 parts ；＇tin， 3 parts． zinc， 17 parts．PíncKbeck．－Copper， 5 lbs．；zinc， 1 lb ．9．Span－ ish Tutanic．－luwa or steel， 8 ozs．；antimony， 16 ozs．；nitre， 3 ozs． Melt and hardem $\$$ ecs．of tin with 1 oz ．of the above compound． 10. Rivet Metal．Capper， 32 ozs．；tin， 2 ozs．；zinc． 1 oz．11．Chinese White Copper－－Cogper， 40.4 ；nickel， 31.6 ；zinc， 25.4 ；and iron， 2.6 parts．12．Beth Netal．－Brass， 32 parts；zinc， 9 parts．13．Splect－ fum Metal．－Copprer，6；tin，2；arsenic， 1 part．Or copper， 7 ；zinc，3； and tin， 4 parts 14 Electrum．－Copper， 8 ，nickel， 4 ，zinc， 3.1 parts． This compound is axararpassed for case of workmanship and beauty of appearance in．Common Peroter．－Tin， 4 ；lead， 1 part． 1.6 Best Pewter．－Tin，1N0，antimony， 17 parts． 17 Qucen＇s Metal．－Tin，

 stecl have becn from this alloy．10．Alloy for Mechanical Instrumente．－Corper， 1 Ib ；tin， 1 oz．20．Rivet Metal for Hose－－

Tin, 46 lbs. $;$ copper, 1 lb .21 . Hard Whitc Mfetal.-Sheet brass, 52 zzs. ; lead, 2 ozs ; tin, 2 ozs. ; zinc, 1 oz. 22. Fusible 1 lloy, melts in Loiling reater.-Blismuth, 8 ozs. ; tin 3 ozs. ; lead, ${ }^{6}$ ozs. 23. Fusible Xlloy for Silvering'Glass.-Tin, 6 ozs. ; lead, 10 ozs.; bismuth, 21 izs. ; mercury, a small quantlty. 24. IIard White Mfetal for Duttons.-Brass, 1 lb . ; zinc, 2 ozs ; tin, 1 oz . 25. Button Makr's Metal.-Copper, 43 parts; zinc, 67 parts. 29. Another.-Copper, ${ }_{322}$ parts, tin. 278 parts, zinc, 35 parts. 27. Another.-Copper, 58. 44 parts; tin, 5.28 parts; zinc, 35.78 parts. 28. Sfetal that expands in cooling-Lead, 9 ; antimony, 2 ; bismuth, 1 part. This metal is very useful in filling small defects in iron castings, \&ic. 20. Albata Mctal. -Xickel, 3 to 4 parts; copper, 20 parts; zinc, 16 parts. Used for plated goods. 30. Birminyham Platin.-Copper, 8 parts, zinc, 5 parts. 31 . Imitation Platinum.-Melt togethor, 8 parts brass, 5 parts of zinc. This alloy closely resembles platinum. 32. Chincse Silver. -Silver, 2.5; copper, Cu. 24 ; zinc 19.62; cobalt or iron, 0.12; nickel, 13. 33. Tutenay.-Copper, 8; zinc, 5 ; nickel, 8 parts. 34. Prince's Detal. -Copper, 3 parts; zinc, 1 part. 35. Another.-Brass, 8 parts, zinc, 1 part. 36. Another.-Zinc and copper equal parts. Mix. 37. Quecn's Mctal.-Lead, 1 part; bismuth 1 part; antimony, 1 part; tin, 0 parts.Mix. 38. Another.-Tin, 9 parts; bismuth 1 part; lead, 2 parts; autimony 1 part; mix. 39. Imitation Gold.-P1atina, 8 parts; silver, 4 parts; copper, 12 parts, melt. 40. Imitation Silver.-Block tin, 100 parts; antimony, 8 parts; bismuth, 1 part: coppor, 4 parts; melt. 41. Spurious Silver Leaf.-Tin, 90.09 ; zinc, 9.91 parts ; melt. 42. Dfirrurs of Reflecting Telcscope. - Copper 100, tin, 50 parts. 43. White Argentan -Copper, 8 parts; nickel, 3 parts, zinc, 35 parts. This beautiful composition is in imitation of silver. 44. Yellow Dipping Metal.-Copper, any desired quantity and 6 or 7 ozs . of zinc to cvery lb. of copper. 45. Shot Afetal. - Lead, 97.06 parts; arsenic, 2.94 parts. Another.-Lead, 99.C0 parts; arsenic, 0.40 parts. 46. White Dectal.-Parts by weight ; tin, 82; icad, 18; antimony, 5 zinc, 1 ; copper, 5 . 47. Ilard Pewtor.Melt together, 12 lbs of tin; regulus of antimony, 1 lb .; copper, 4 02s. 48. Common Pcuter.-Melt in a crucible, tin, 7 lbs. ; when fused throw in lead, 1 lb ; copper, 6 ozs. ; zinc, 2 ozs . 49. Dritish Platc.-Nickel, 5 to 6 parts; copper, 20 parts; zinc, 8 to 10 parts. Used for plated goods. so. Composition for Strong Pumps, \&e.-Copper, 1 lb ; zinc, $\frac{1}{2}$, and tin, $1 . \frac{1}{2}$ ozs. 51. Composition for Toothed Wheels.-Copper, 1 lb. ; brass, 2 ozs. j till, 2 ozs. E2. Another.-Copper, 1 lb. ; brass, 2 ozs.; tin 13 ozs. 53 . For Turning Work.-Copper, 1 lb. ; brass 2 ozs. ; tin. 2 ozs. E4. For Nuts of coarse Threads and Bcarings. Copper, 1 lb ; brass, $1 \frac{1}{2}$ ozs. ; tin, $2 \ddagger$ ozs. 55. Pewtevers Temper.Copper, 1 lb . ; tin, 2 lbs . Used to add in small quantities to tin. $\$ 6$. Alloy for Cylinders of Locomotives.-Copper 88.63 parts; tin, 2.38 parts; zinc, 6.99 parts. 57. Metal for Sliding Lever's of Locomotives. -Copper, 85.25 parts; tin, 12.75 parts; zinc, 2.00 parts. 68. Another (F'mon's).-Copper, 5.50 tm, 14.60 ; zinc, 80 parts. 59. Baron Wctterstedl's Paterit Sheathing for Shpps.-Consists of lead with from 2 to 8 pet cent. of antimony, about 3 per cent. is tho usual quantity. The alloy is rolhed into shects. GU. Afuntz Metal for Shaps.--Best seiected copper, 60 parts; best zinc, 40 paits. Melt together in the usual mauer aud roll into shects of suitable thickness. This composilion resists cxidation from expooure to sca water, and prevents
the adhesion of barnacles. 61. Metal for Anatomical Injections.-Tin, 16.41 parts; lead, 9.27 parts; bismuth, 27.81 parts; mercury, 41.41 parts. 62. Fusible Detal for casts.-Bismuth, 8 parts; lead, 5 parts; tin, 3 perts. It will melt at 200° or under boilligg water. For malo casts use tin ouly. 63. Pot Metal.-Corper, 40 lbs. ; lead, 16 lbs . tin, $1 \frac{1}{2} \mathrm{lbs}$. G4. Metal for Models.-Teat lead, $6 \mathrm{lbs} ;$ tin, $\frac{1}{2} \mathrm{lb}$. ; anti-
 Von Bibra's Alloy for Mcdels.-Bismuth, 27.27 parts; lead, 50.01 parts ; tin, $\mathbf{1 3 . 4 6}$ parts. If the cast objects bo bitten with diluted nitric acid, washed with water, and rubbed with a woolen rag, the elevated spots become bright, while the sunken portions are duy and the castings acquire a dark gray appearauce with an antique lustre. Without biting the color is light gray. 67. New Sheathiny Metal. -This alloy is made by melting $2 \frac{1}{2}$ parts of copper in one crucible, in another, 9 parts of zinc, 87 of lead, 1 part of mercury, and $\frac{1}{2}$ part of bismuth, thien mix the contents of both crucibles, covering the surface with charcoal dust, and stirring well till all are incorpmated. The mercury in this allay protects both the zine and copper from the action of sea water. The contents of the crucible aro run into fingots and rolled into sheets. 68. Spelter.-Natural impure zinc, which contains a portion of lead, iron, copper and a little manganese and plumbago.
Iron Manufacture.-Charcoal 138 bushels, limestone $432 \mathrm{j} . \mathrm{i}$, , and ore 2612 lbs., will produco 1 tom of plg iron. In England temperature of hot blast is $600{ }^{\circ}$, density of blast and of refining furnace 2$\}$ to 3 lbs . per squarn inch. Revolutions of puddling rolls 60 per minute; rail rolls, 100 ; rail saw, 800.
f Horse fower (indicated) required for different processeg.

Blast Furnice. 60	Kailvay rolling train.
Kefining " 26	Small bar trinin.. 60
Puddling Rolls with squeezers	Doublo rail saw............. 12
and sliears................. 80	Straightening................ 7

One pound of Anthracitecoal in a cupola furnace will melt from 5 to 10 libs of cast iron : 8 bushels of bituminous coal will melt 1 ton of enst iron. Small coal produces about $\frac{3}{2}$ of the effect of large coal of the same kiud.
To Reduce: Oxides.-The more powerful deoxidizing agent is madonltedly coal in its several varicties, and the gases deriving therfrom during combastion in tho furuace. The oxides of lead, bismuth, untimony, hickel, cobalt, copper, and fron require a stroug red heat in the furnace, whillist the oxides of manganese, chromium, tin, and zinc, do not lose their oxygen untll heated to whiteness. On a small scale, the reduction of oxides is generally effected by mizing charcoal, together with the oxide to Do reduced, in a refractory clay crucible, the charcoal furnishing the carbon necessary to the proper performanco of this work. Some use a crucible thickly lined with charcoul, putting in the oxide on the top of the charcoal. It is necessary, however, When using the crucible and charcoal, to use a flux, say a little borax in powder, strewed on the mixture to accelerate the reduction of the oxide. Tho boonx is generally the first to fuse, and, as the meta! is

MACHINISTS, ENGINEERS', \&C., RECEIPTS.

ellminated, seems to purify and cleanse it, as it gathers into a button at the bottom of the crucible. It is all the better if you give tho cruclble Ω few sharp taps when you take it off the tire.

Effeces of heat on various bodies.

Shminkatar of castings.
Tron, small cyllid's $=1-16 i \operatorname{lin}$ per ft Ditto, in length... $\frac{1}{s}$ in 16 ins.
" Pipes........ $=\frac{1}{8}$ " "ft.
" Prirders, bcams,
ect............... $=\frac{1}{8}$ in. in 15 ins.
"Large cylind-
ers, the con-
traction of d1-
ameter ar top. $=1-16$ th per foot.
Ditto at botiom. $=1-12$ th per foot.
Green sand iron castings are 6 per cent. stronger than dry, and 30 per cent. stronger than chilled, but when the castings are chilled and amealed, a gain of 115 per cent. is attained over those mado in green sand. Chilling tho under side of cast iron very materially increases its strengt!!.
To Repayr Cracked Bells. - The discordant tones of a cracked bell being due to the jarring of the rugged meven edges of the crack against each other, the best remedy that ean be applied is to cut a thin slit with a toothless saw driven at a very high velocity, say 3 or 4000 revolutions per minute, in such a mamer as to cut away tho opposing edges of the fracture whereever they come in contact. This will restore the original tone of the bell.
To Galyanize Grey Iron Castings.-Cleaneo the articles in an ordinary chaffllt mill, which consists of a barrel revolving on its axis. containing sand ; when the sand is all removed, take them out and heat one by one, plunging, while hot, in a liquid composed as follows: 10 lbs. hydrochloric acid and sufficient sheet zine to make a saturated solution. In making thls solution, when the evolution of gas has ceased, add murlate, or preferably sulphate of ammonia 1 lb ., and let it stand till dissolved. The castings should be so hot that when dipped in this solutiou, and instantly removed. they will immediately
dry, leaving the surface crystallized like frost work on a rindow pane. Next plunge them while hot, but perfectly dry, in a bath of melted zinc, previously skimming the oxide on the surface away, and throwing thereon a small amount of powdered sal ammoniac. If tho articles are very small, inclose them in a wroupht iron basket on a pole, and lower them into the metal. When this is done, shalse off the superfluous metal, and cast them into a vessel of water to prevent them adhering when the zinc solidifies.

To Find the Sperd of a Counter-Shaft,-If the revolutions of the main shaft and size of pulleys are given: Multiply the rerolutions of the main shaft by the diameter in inches of the pulley, and divide by the diameter in inches of the pulley on the counter-shaft, the quotient will be the number of revolutions.
Example.-What will bo the speed of a counter-shaft with a 12 in. pulley driven by a 30 in . pulley 180 revolutions per minute: $180 \uparrow$ $30 \div 12=450$.

To Find the Size of a Puliey Requined; if the number of rerolutions and size of pulley on the main shaft are given: Multiply tho diameter in inches of driving pulley by the revolutions of the main shaft, and divide by the speed required; tho quotient will be the diameter in inches of the pulley.
Example-What will be the diameter of a pulley to make a coun-ter-shaft turn 450 revolutions per minuto driren bv a 30 inch pulley 180 revolutions per minute : $180+20 \div 450=12 \mathrm{in}$. pulley.
To Find the Size of a Puldey for a Main Shaft, if tho speed of shafts and diameter of pulley on the counter-shaft aro given: Multiply the diameter in inches of pulley by speed of the counter-shaft, and divide by tho revolutions of the main shaft; the quotient will be the diameter of the pulley.
Example. -What will be the diameter of a pulley on a main shaft, making 180 revolutions per minute, to drive a 12 in .450 revolutions per minute: $450 \times 12 \div 180=30$ inch pulley.
To Weld Steef Axles. - To insure a good weld, prepare the composition described on pago 270 for welding cast steel. Use a strong fire, and when the axle is brought to what may be termed a bright red heat, apply a sufficlency of tho composition and return it to the fire until the heat is regained onco more, then place it under the hammer. Bo careful not to put on too much of the composition, otherwlse it might waste in the fre, and by its afflinty for metal obstruct the tire iron, thereby preventing the fire from receiving the full energy of the blast, and thus retarding if not spoiling the job.
Mildew on Sails can be prevented by soaping the mildewed parts and then rubbing in powdered chalk. The growth of the mildew fungus can be prevented by steeping the canvas in an aqueous solvtion of corrosive sublimate. Another wouv. Slacked lime 2 bushels, draw off the lime water, and mix it with 120 gals. water, sud with blue vitriol 4 lb .
To Make Gun Cotron.-Take dry saltpetre, $\frac{1}{2}$ oz. ; strong oil ritriol, $\frac{8}{4}$ oz. Mix in a tumbler, add 20 grs. of dry cotton wool, stir with a glass rod 5 minutes, remuve the cotton and wash from all traces of tho acid in 4 or 5 waters; then carefully dry under 120. This gua cottoi.

To Keep Wagon Tries on the Wheel.-A practical mechanic suggests a method of so putting tires on wagons that they will not get loose and require resetting. He says he ironed a wagon some years ago for his own use, and, before putting on the tires, he filled the felloes with linsced oil, and the tires have worn out and wero never loose. This method is as follows: He used a long cast iron heater made for the purpose; the oil is brought to a boiling heat, the wheel is placed on a stick, so as to hang in the oil, each felloo an hour. The timber should be dry, as green timber will not take oil. Care should be taken that the oil is not made hotter than a boiling heat, or the timber will be burned. Timber filled with oil is not susceptible of injury by water, and is rendered much more durable by this process.
To Cimll Cast Iron very Hard.-Use a liquid made as follows: Soft water, 10 gallons; salt, 1 pock ; oil vitriol, 3 pt. ; saltpetre, $\frac{1}{2} \mathrm{lb}$.; prussiate of potash, $\frac{1}{2} \mathrm{lb}$. ; cyauide of potash, $\frac{r}{2} \mathrm{lb}$. Heat the iron a cherry red and dip as usual, and if wanted harder repeat the process.
another to Harden Cast Inon.-Salt, 2 lbs.; saltpetre $\frac{1}{2}$ lb.; roche alum, $\frac{1}{2} \mathrm{lb}$.; ammonia, 4 ozs .; salts of tartar, 4 ozs .; pulverize all together and incorporate thoroughly, use by powdering all over the iron while it is hot, then plunging it in cold water.
Flux for Reduclng Lead Ore.-Red argol, 6 parts; nitre, 4 parts; fluor spar, 1 part; grind well and mix thoroughly.
Varnish for gmooth mothding Patteras.-Alcohol, 1 gal.; shellac 1 lb .; lamp or ivory black, sufficient to color it.
Inon Lustre is obtained by dissolving a piece of zinc with muriatic acid, and mixing the solution with spirit of tar, and applying it to tho surface of tho iron.
black having a Polish for Inon.-Pulverized gum asphaltum, $2 \mathrm{lbs} . ;$ gum benzoin, $\frac{1}{4} \mathrm{lb} . ;$ spirits of turpentine, 1 gal.; to make quick, Leep in a warm place, and shake often; shado to suit with finely ground ivory black. ^pply with a brush. And it ought to be used on iron exposed to the weither as well as on inside work desiring a nice appearance or polish.
Varnish For Iron.- A sphaltum, 8 lbs.; melt in an fron kettle, slowly adding boiled linseed oil, 5 gals.; litharge, 1 lb .; and sulphato of zinc, $\frac{1}{2} \mathrm{lb}$. ; continuing to boil for 3 hours; then add dark gum amber, $1 \frac{1}{2} \mathrm{lbs}$.; and continue to boil 2 hours longer. When cool, reduce to a proper consisteuce to apply with a brush, with spirits of turpentine
To Soften Cast Iron For Turning.-Steep it in 1 part of aquefortis to 4 of water, and let it remain in 24 hours.
Cast Iron Ornaments are rendered susceptible of being finished with a scraper, where they cannot be reached with files, after having the following liquid applied to them:
Scaling Cast Iron.-Vitriol, 1 part; water, 2 parts; mix and lay on the diluted vitriol with a cloth in the form of a brush, enough to ret the surface well; after 8 or 10 hours, wash off with water, when the hard, scaly surface will be completely removed.
To Break Up Old Cannon.-Old cannon and massive castings may be cut in two by a continuous stream of hot molten iron, rhich wears away the iron as a stream of hot water would eat into a mass of ice, Or tho gun may bo rolled on a frame to the mouth
of ifurnace, and tho muzzle end shoved in as far as possible among other iron, the opening filled up and lated around the gan, tho end of which is nelted off. At the next charge shove it in another leugth, and so on until the breech is disposed of.

Large masses of cast iron may bo broken up by drilling a hole in the the most solid part, filling it up with water, fitting a steel pling very accurately into the hole, and letting the drop of a pilo driver descend on the pling.

Amaliair for Mirrors.-1. Tin, 70 parts; mercury, 30 parts; 2. (For curved mirrors) 'Tin, 80 parts ; mercury, 20 parts ; 3. Tin, 8.33 parts ; lead, 8.34 parts ; bismuth, 8.33 parts ; metcury, 75 parts. 4. (F'or sphecical Dfirrors) Bismuth, 80 parts ; mercury, 26 parts.

Reflector Metal.-1. (Duppler's) Zinc, 20 parts; silver, 80 parts; 2. Copper, 60.22 parts; tin, 33.11 parts; arsenic, 0.67 parts. 3. (Cooper's.) Copper, 57.86 [parts ; tin, 27.28 parts ; zinc, 3.30 parts ; arsenic, 1.65 parts ; platinum, 9.91 parts ; 4 . Copper, $6 \pm$ parts ; tin, 32.00 parts ; arsenic, 4.00 parts. 5. Copper, 82.18 parts ; lead, 9.22 parts ; antimony, 8.60 parts. 6. (Little's) Copper, 60.01 parts; tin, 30.82 parts ; zinc, 2.44 parts; arsenic, 1.83 parts.

Metal for Gilt Wairs.-1. Copper, 78.47 parts; thn, 2.87 parts; zinc, 17.23 parts ; lead, 1.43 parts. 2. Copper, (6.43 parts; tin, 0.25 parts ; zinc, 32.44 parts; lead, 2.86 parts. 3 . Copper, 72.43 parts; tin, 1.87 parts; zinc, 22.75 parts; lead, 2.96 parts. 4 . Copper, 70.90 parts ; till, 2.00 parts ; zinc, 24.05 parts ; lead, 3.05.

Amalgam for Eiectrical Machines.-1. Tin, 25 parts; zime; 25 parts ; mercury, 50 parts. 2. Tin, 11.11 parts ; zinc, 22.22 parts; mercury, 66.67 parts.

Trpe Meral.-1. For smallest and most brittle types.-Lead, 3 parts ; antimony, 1 part. 2. For small, harl, brittle types.-Lend, 4 parts; nutimony, 1 part. 3. For types of medium size.-Lead, 5 parts ; antimony, 1 part. 4. For large types.-I.ead, 7 parts ; antimony, 1 part. 5. For laryest and softest types.-Lead, 7 parts; antimony, 1 part. In addition to lead and antimony, type metal also contains 4 to 8 per cent. of tin, and sometimes 1 to 2 per cent. of copper. 6. Stercotype plates are mado of lead, 20 parts ; antimony, 4 parts; tin, 1 part. 7. Another do.-Lead, 25 parts; antimony, 4 parts; tin, 1 part. 8. Type metal.-Lend, 4 parts; antimony, 2 parts. 9. Tough type metel.- Lead, 100 parts; antimony, 32 parts ; tin, 8 parts.

Dowlads Ino Wonks, (England.) Furnaces.-Eight, diameter 10 to 18 feet, 1300 Tons Forge Iron per week ; discharging 44,000 cabic feet of air per minute. Entine. (noncondensing,) Cylinder, 55 ins. in diam. by 13 feet stroke of piston. Pressure of steam, 60 lbs per squaro inch, cut off at $\frac{1}{2}$ the stroke of the piston. Valves, 120 ins. in aren. Duilers. light, (Cylindrical flne, intemal furnace, 7 feet in diam. and 42 feet, in length; one flue, 4 ft . in diam. Grates, 288 square feet, Fly zeheel. Diam. 22 feet, weight, 25 tons. Blowin! Cylinder, 144 ins. diam. by 12 ft . strolio of plston. Revolutions, 20 per ninute. Llast 3 libs. per squaro inch, Discharge pipe, diam. 5 ft . and 420 feet in length. Vulves, bxhaust, 56 square feet. delivery, 16 squaro fect.

To Linamel Cast Inon and Hollow Ware.-1. Calcined dints, 6 parts ; Cornish stone or composition, two parts ; litharge, 9 parts ; borax, 6 parts; argillaceous earth, 1 part ; nitro, 1 part ; calx of tin, C parts; purified potash, 1 part. 2. Calcined flints, 8 parts; red
lead rott part. 2 pa com calci Whic dered cold, with interi Clean
lead, 8 parts ; borar, 0 parts ; calx of tin, 5 parts ; nitre, 1 part. 3 lottcrs composition, 12 parts; borax, 8 parts; white lead, 10

2 parts ; calr of tin, 5 parts. 4. Calcined flints, 4 parts ; potters ${ }^{8}$ coimposition, 1 part ; nitre, 2 parts ; borax, 8 parts ; white marble, calcincd, 1 part; argillaceous earth, $\frac{1}{3}$ part ; calx of tin, 2 parth. Whichever of the above compositions is taken must be finely powdered, mixed, and fused. The vitreous mass is to be ground when cold, sifted, and levigated with water ; it is then made into a pap with water, or gum water. The pap is smeared or brushed over the interior of the ressel, dried, and fused with a proper heat in a muffie Clean the vessels perfectly before applying.
Russia Sheet Iron.-Russia sheet iron is, in the first instance, a rery pure article, rendered exceedingly tough and flexible by refining and annealing. Its bright, glossy surface is partially a silicate, and partially an oxide of iron, and is prodnced by passing the hot sheet, moistencd with a solution of wood-ashes, through polished steel rollers.
Liquid Biack Lead Polish.-Black lead pulverized 1 lb . tarpentine, 1 gill ; water, 1 gill; sugar 1 oz.

Copperas Dip for Cast Iron.-Dissolve 3 lbs, of sulphate of copper and add 2 fluid ozs. sulntr ric acid.
Enanelled Cast Iron.-Clean and brighten the iron beforo applying. The enamel consists of two coats-the body and the glaze. The body is made by fusing 100 lbs . ground flints, 75 lbs . of borax. and grinding 40 lbs. of this frit with 5 lbs. of potters' clay, in water, tull it is brought to the consistence of a pap. A coat of this being applied and dried, but not hard, the glaze-powdor is sifted over it This consists of 100 lbs . Comish stone in fine powder, 117 ibs . of borax, 35 lbs . of soda ash, 35 lbs . of nitre, 35 lbs . of sifted slacked lime, 13 lbs . of white sand, and 50 pounds of pounded white glass. These are all fused together; the frit obtained is pulverized. OI this powder, 45 lbs . are nixed with 1 lb . soda ash, in hot water, and the mixture being dried in a stove, is the glaze powder. After sifting this over the body-coat, the cast-iron article is put into a store, kept at a temperature of about 212°, to dry it hard, after which it is set in a muffe-kiln, to fuse it into a glaze. We inside of pipes is cnamelled (after lueing cleaned) by pouring the above body composition through them while the pipe is being turned around to insure an equal coating ; after the body has become set, the glaze pap is poured in in liko manner. The pipe is finally fired in the Filn.
To Enamel Copper and Other vegsels.--Flint glase, 6 parts . borax, 3 parts; red lead, 1 part; oxide of tin, 1 part. Mix all together, frit, grind into powder, make into a thin paste with water, apply with a brush to the surface of the vessels, after scaling by heat and cleaning them, repeat with a second or even a third coat, aftermards dry, and lastly fuse on by heat of an enamelled kiln.
Emery Wheels for Polishing.-Coarse emery powder is mixed with about half its weight of pulverized Stourbridge loam, and a little water or other liquid to make a thick paste; this is pressed into a metallic mould by means of a screw-press, and, after being thoroughly dried, is baked or burned in a muffle at a temperature above a red, and below a white licat. This forms an artificial emery stone, whieh
cuts very greedily, with rery littlo wear to itself. Unequalled for grinding and polishing glass, metals, enamols, stones, \&c.
Modidina Sand for Casting Brass or Iron.-The vatious kinds of good moulding sand employed in foundries for casting iron or brass, have been found to be almost uniform chemical composition, varying in grain, or the aggregate form only. It contains between 93 and $x ;$ parts silex, or grains of sand, and from 4 to 6 parts clay, and a littlo oxide of iron, in each 100 parts. Moulding sand which contains lime, magnesia, manganese and other oxides of metal, is not applicable, particular for the casting of iron or brass. Such sand is either too close, will not stand or retain its form, or it will acuse the matal to boil through its closeness.
Refining Fluxes, for Metals.-Deflagrate, and aftertrards pulverize, 2 parts of nitre and 1 part of tavtar. The following fluxes answer very well, provided the ores be deprived of their sulphar, or if they contain much earthy matter, because, in the latter case, they unite with them, and convert them into a thin glass, but, if any quantity of sulphur remains, their fluxes unite with it, and form a liver of sulphur, which has the power of destroying a portion of all the metals, consequently the assay must bo, under such circumstances, very inaccurate. Limestone, fieldspar, fluorspar, quartz, sand-slate, and slags, are all used as fluxes. Iron ores, on account of the argillaceous earth they contain, require calcareous additions; and the copper ores, rather slags, or nitrescent stones, than calcareous earth.
Burnina Iron Castings together.-Tho usual mode is by imbedding the castings in the sand, having a little space left vacant round about the joint where it is to be burned. Two gates must then bo provided, one lying on a level with the lower side of this space, and the other raised so that the metal, which must be very hot, is poured in at the higher one; it passes round, fills up the space, and ruas off at the lower gato. A constant supply of metal is thus kept up, till tho parts of the casting are supposed to be on the eve of melting. Tho lower gate is then closed, and the supply stopped. When cool, and the superfluous metal clipped off, it forms as strong a joint as if it had been original.

- Cornisi Reducina Flux.-Tartar 10ozs., nitro 3 ozs. and 6 drs. borax, 3 oz . and 1 dr . Mix together.
Crucibles. - The best crucibles are made from pure fire-clay, mired with finely-ground cement of old crucibles, and a portion of black-lead or graphite; some pounded coke may be mixed with the plumbago. The clay should be prepared in a similar way as for making pottery,ware; the vessels, after being formed must be slowly dried, and then properly baked in the kiln.
Black-lead crucibles aro made of 2 parts graphite, and 1 of firoclay, mixed with water into a pasto, pressed in moulds, and well dried, but not baked hard in the kiln. This compound forms excellent small or portable furnaces. Malleable Cast Iron.-The great secret of this sort of work is the annealing, which if not done properly the castings are of no use at all. The best mode is to take an iron pan, say one foot square; put in a layer of charcoal, then some of the castings, then another layer. When the pan is full cover it over with some sand, to keen the charcoal from burning avay. Put on an old piece of iron for a lid to
cover all, put it in the annealing furnace, and get the licat up quito alow and gradually, taking care not to get the heat up too quick. After you have got it to the proper heat, which is this, the castings must be red hot through; keep it at this heat for 5 or 6 hours, then let your fire die gradually out, or, if you want to take some out and put more in, take them to a corner and bury them, pan and all,-let them lie there till properly cooled. Regarding the melting, procure not less than two good sorts of No. 2 pig iron, which you may mix with. some good scrap if you choose; the casting, melting, and moulding are conducted in the same manuer as common cast-iron, only the metal being hard, whicn casting, you have to make properly constructed runners and risers, or flow gates, if the article is likely to sink, for yon canuot pump it well.

Japanning Castings.-Clean them well from the sand, then dip them in or paint them over with good boiled linseed oil ; when moderately dry, heat them in an oven to such a temperature as will turn the oil black, without burning. The stove should not be too hot at first, and the heat should be gradually raised to avoid blistering ; the slower the change in the oil is effected the better will be the resnlt. The castings, if smooth at first, will reccive a fine black and polished surface by this method.
handening Axcetrees and Boxes. - The method now used in the manufacture of Murphy's axletrees is to use wrought iron and weld two pieces of steel into the lower side, where they rest upon the wheels and sustain the load. The work is heated in an open forge fire, in the ordinary way, and when it is removed, a mixture, principally prussinte of potasi, is laid upon tho stecl ; the axletree is then immediately immersed in water, and additional water is allowed to fall upon it from a cistern. The steel is considered to be very materially hardened by the treatment, and the iron aromud the same is also partially hardened. One very good waty to chill axletree boxes is to mould from wooden patterns on sand, and cast them apon an iron core which has the effect of making them very hard. To form tho annular recess for oil, a ring of sand, made in an appropriate corebox, is slipped upon the iron mandrill, and is left behind when the atter is driven ont of the casting.

Composite iron Railings.-The process by which this light, clegant and cheap fabric is manufactured, is as follows :-Rods and bars of wronght-iron are cut to the lengths desired for the pattern, and sabjected to a process called crimping, by which they are bent to the desired shape. These rods are then laid in the form of the design, and cast-iron moulds are affixed at those points where a connection is desired ; the moulds are then filled with melted metal, and immediately you have a complete railing of beautiful design. Casting in iron moulds has this great advantage over the old sand moulding, it does not require any time for cociing, as the metal is no sooner run than the moulds may be removed and used again immediately on another section of the work; and besides, it is so much more easily effected. By the combination of wrought and cast-iron in this process, the most curious and complex designs may be produced with great rapidity and cheapness.

To Galvanize Castiron Thmocgin.-To 50 ibs. melted iron add 1 Il. pulverized pure zinc. Scatter the zinc powder well over the ladle,
then catch the melted iron, stir it up with an fron rod and pour at once.

To obtain Commerciar Antimony.-Fuse together 100 parts sulphuret of antimony, 40 parts metallic iron, and 10 parts dry crudo Bulphate of soda. This produces from 60 to 65 parts of antimony, besides the scorlæ or ash which is also valuable. Metallic Antimony. Mix 16 parts sulphuret of untimony and 6 parts cream of tartar, both in powder; put the mixture, in small quantities at a time, into a vessel heated to redness; when reaction ceases, fuse the mass and after 15 minutes, pour it out and separate the metal from the slag. The product is nearly pure.

Holes in Millstones are filled with melted alum, mixing burr sand with it. If the hole is large, put some pieces of burr mill stones in it first, and pour in melted alum. These pleces of block should bo cut exactly to fit. There should bo small joints, and fastened with plaster of Paris. These holes should be cut at least 4 inches deep; there is then no danger of their getting loose.

Fiting a New back on an Old Milistone.-Block jour stono up with a block of wood, having its face down until it lies even, solid, and perfectly level ; then pick and scrape off all the old plaster down to the face blocks, so that none remains but what is in the joints of the face blocks; then wash these blocks, and keep them soaked with water. Keep a number of pieces of burr blocks, at the samo time, soaked with water. Take a pail half filled with clean water, and mixed with 2 tablespoonfuls of glue water, boiled and dissolved; mix in with your hand plaster of Paris until it be thicke enough that it will not run ; and, breaking all the lumps, pour this on the stone, rubling it with your hand; the stone being at the same time damped; and place small pieces of stone all over the joints of the face blocks; you then, with more plaster, mixed in the same way but more stiff, with this and pieces of burr stones, build walls round the eye and verge 4 or 5 inches high, leaving the surface uneven and the eyo larger, as it will be brought to its proper size by the last operation. It is better to build up the wall of the running stone round the vergo for 3 inches without any spalls, so that the holes may be cut in to balance it. If you wish to make your stone heavier, you will tako small pieces of iron, perfectly clean and free from grease, and lay them evenly all around the stone in the hollow place between the two walls just built ; and, with plaster mixed a little thicker than milk, pour in under and through all the crevices in the iron until tho surface is nearly level with the two walls. It the stones do not rcquire additional weight added, instead of iron, use pieces of stono the same way, leaving the surface rough and umeven. Again, as before, build walls round the verge of the stone, and round the cye of the stone, until they are within 2 inches of tho thickness you want your stones to be, the wall round the eye being 2 inches higher than that round the verge, and filling the space between the walls with stones; ana pouring in plaster again, make it nearly level with the walls, but leaving the surface rougl and jagged, to make the next plaster udhere well to it. Let it stand antil the back is dry and perfectly set, when you raise the stone upon its cdge, and, with a trowel, plaster round the edge of the stone neatly, giving it a taper of half an inch from the face to the back of the stoue When cased
found in this way, lay the stone domm on the
the balance ryne, but the driver off, the cock-head; it being in balance the stone as already directed bethen raise tho spindlo, and of the back. Then lave a tin from the balance ryno to tho thicke the size of the eyo, and to reach eyo. This tin should bo exactly fitted to its want the stone to be at the a hoop of wrood or iron round theted to its place, and mado fast; then fit thickness from tho face you want therge, having the upper edge of the all round. This hoop should bo greased to bo at the verge, and equal and the tin in the eye, being stopped; and, all the craclis round it, more glue water than in previous oped, you pour thin plaster (with so quickly, and to give timo to finisherations, to prevent it from setting level with the hoop round the verro off the back correctly) until it be eyo; theng on the hoop, and the other end with a straight edge, one a trowel, make tho surfing round, and working the plaster at the these two points. Tho haco of tho back even and piaster with planed smooth. Tho hoop is then taken off and sinooth between and put your band lower the spindle until , and tho back and edges taking care that it or hoop on, it being first made panner lies solid, if fitting too tigltly of suffient sizo not to reque nearly red hot, and place; it may loe cooled it loosen the back in driving it to its proper ; cool, it should fit tight. gently by pouring water on it; and, when balangeva a Nit.
stone may have full play one.-First, take off the driver, that the that there may be room between cock-head ; then raise the spindle so heaviest parts, and near the verge lay on see the balance. Find the it. Cut a hole in the back of the lay on sufficient welglit to balanco and as near the verge as possiblo thate, as deep as you can make it ftone may keep tho lead in its placo. The binding iron hoop of tho in bottom than the top in order to retain tholo should bo wider at brings the and into this the melted lead the lead when the stone is cover over with completcly into balance. When be poured until it Compositioy mixed plaster, even with tho back the lead is cold, borax, 2 oz ; nut each, of washing soda, 4 lb . and 3 balls of - Hot water, 1 gal ; scrubbing brush. prunel. Mix and apply it the size of a hazel take up the burre When grinding garlic when to the burrs with a the burr trico per dat all. It is sumficient to dron is not necessary to and that will ker day one of the above describen through the eye of all seasons to use the burrs sharp and clean, enalins of sal prunel, quantity than usual. No. 13 bolt, to make finer flour and in merer at aner hour and in greater suitable place. If yon building a dam, you should select the most will so that the end of the dam it across the stream near a rocky will prevent the water running by may run into the bluff. This jour dam rery strong; if this by at the ends of the dam. Build Fn, causing ruinous expense in mot done, they are breaking up Flour Mill Machinery.- For money and loss of time. powecessary diessing machinery, etce pair of 4 feet stones, with all ${ }^{10}$ wel. Stoncs, 4 it. diam., 120 to, there is required 15 horsos' Dressing Sfachines, 21 ins. diam., 450 to 1400 revolutions per minute.别

Elevator, 18 ins. diam., 40 revolutions per minuta. Crcepers, 31 ins. pitch, 75 revolutlons per minute. Screen, 16 ins. diam., 300 to 350 revolutions per minute. 788 cuble feet of water, discharged at a velocity of 1 loot per second, are necessary to grind and dress a bushel of wheat per hour $=1.40$ horses' power per bushel. 2000 feet per minnte for the relocity of a stone 4 feet in diam. may be considered a maximum specd.
Rock Dasis are incomparably the best in use, if there is plenty $n f$ material at hand for building, and a rock bottom to the stream; if there is not a rock bottom you should dig a trench in the bottom, decp cnough, so that the water cannot undermine it This should bo tho same as if you were building the foundation 0 a a large building. Tho wall to be built should be of a small circular form, so that the back of the circle should ve next to the body of water, which may by its pressure tighten it. To secure the water from leaking through at the ends of the dam, dig a ditch deeper than the bottom of the river ; then fill this with small pieces of rock, and pour in cement. This cement is made of hydraulic cement, and is mado of one part of cement to five parts of pure sand. It will effectually stop all crevices. A rock dam if well built will be perfectly tight. Use as you conveniently can move ; building this wall 4 to 6 feet thick, according to the leugth of the dam, with jam or buttressess every place where they are needed to strengthen it; make true joints to these rocks, especially on the ends so that they may join close together. Wheu you have the outside walls laid in cement for every layer fill the middle up with pleces of small rock, pouring in your grout, so that there may not be a crevice but what is filled. If there is any crevice or hole left open, the water will break thrnagh, wearing it larger and larger. If the stream is wide and large, it is necessary to build the dam in two sections, which should be divided by a waste way, necessary for the waste, or surplus water, to run over, to keep the head in its proper place or height. Let each soction, next to where the water is to be run over, be abutments, built to strenghen the dam. The last layer of rock, on the top where tho waste wafier runs over, should project 5 or 6 inches over the back of the dam so that the water may not undermine it. This last layer should ba of large rocks and jointed true ; then laid in hydraulic cement, in proportion of 1 of cement to 3 of sand. When the dam is guilt, the front should be filled up with coarse gravel or clay ; this is best dono with teams, for tho more it is tramped the more durable it becomes.
Frame-Dams.-In building a frame dam, commence with a good foundation, laying the first sills in the bottom, of sufficient deptin. They sloould be large square timbers that will last in the water without roting. Where there is a soft foundation, the bottom should first be made level; then dig trenches for the mudsills, abont 7 or 8 feet apart, lengthways of the stream, and 10 or 12 feet long. Into these first sills other sills must be framed, and put crosswise of the stream, 6 or 8 feet apart, to reach as far across the stream as necessary. Then two outside sills should be piled down with 2 -inch plank driven down to a depth of 4 or 5 feet. If this can be done conveniently, they are to be jointed as closely ns possible. It would be better to line with some stuff 1 inch thick; then with posts their proper length, about 12 or 14 inclees square, which should be framed into the uppermost sill, in both
sides, and all the way across the dam, from bank to bank, at a distanco of 6 fect apart. Then, with braces to each post, to extend two-thirds of the length of the post, where they should be joined together with a lock, instead of a mortiso and tenon, with an iron bolt ior $1 f$ inches in diancter, going through both, and tightened with a screw and uut. When mortises and tenons are used, they often become rotten and useless in a few years. Thesc braces should be set at an angle of 50 or 60° with the other end mortised into the mud sill. These braces roquire to be about 6 to 8 inches, and as long as you find necessary ; beling covered with dirt it will not decay for a long time, as tho air is excluded. These posts should be capped from one to the other, plate fasiifon. The posts should be lined with 2 or 2 inch plank on the inside, pinned to the plank, and should, in the middle, be filled in with dirt.
If the stream is large and wide, the dam should be buiit in two sections, which should we divided by a waste-way for the surplas water, Fhich should bo in the centre of the dam, and sufficient for all tho waste-water to run over. Let each section of the dam form an abutment next to the waste-way, placing cells or sills 4 fect apart tho length of the waste-way ; in each of these sills, posts should be framed with a brace for the sides. These rows of posts, standing neross the dam, will form the sectional abutments ; the middle one may bo conatructed by being lengthways of the stream, with short braces, so that they will not be in the way of drift-wood passing down the stream; it being necessary for strong pieces for a bridge. Then cover the sills rith an apron of 2 -inch plank joined perfectly straight, to extend 30 or 40 feet below the dam, to prevent undermining of the dam. The planifs wrich are used for the purpose of lining the posts which form the abuments of each section of the dam, and the ends of the maste-way, should be truly pointed, so as to prevent any leakage. The dam being built, the dirt should be filled in with teams, as tho more it is tramped the better. Clay or coarse gravel is the best.' Then place your gates on the npper side of tho waste-way, the sizo that is necessary to a lerel with low-water mark; which gates are not to be raised except in times of high water, as the proper leight of tho mill-pond should be regulated by boards placed over the gate for tho desired head, as the water should be allowed pass at all times frecly orer them. To strengthen the dam, if yon think necossary, 2 -inch plank may be used in lining tho front side of the dam, long enough to reach from the bottom of the stream (on an inclined plane, and next to the body of water to the top of the dam, and filled up nearly to the top of the dam with clay or gravel well trampled down.
Bnusir or Log Daiss are very often used in small, muddy streams. When the bottom of the stream is of a soft nature, take a fat boat where youl want to fix your dam, and drive piles the whole length of tho stream, about 3 or 4 feet apart, as deep as you can. Take young oak saplings pointed at the end, for the purpose. If you can, construct a segular pile-driver, similar to those in use for making trestle-work on the railways. This weight may be pulled up by horses instead of an engine. When you have finished driving piles, make some bores or troughs of 2 or 3 inch plank, about 3 feet wide and as long as the plank is. Sink these in the water the length of the dam, close to the plles, by loading them mith rock, until they are at the bottom of the
stream, filling in the front part of the dam rith dirt and brush, nonrly to the heighit rees want it. This klud of a dam will last a long time.

Whenever there is a small break in the daun or race, cut up somo Fillows and lerwat, put them in the break aloug with some straw and dirt, and rame thema down with clay.
In remard to the trinme, the greatest earo must be taken to insure strength aid duability combined with tightuess. Every step *aken in its constrastinu mutas be of such a nature as to unite these qualitics in the highest powibie degree, otherwise the whole is, in a mamer, labor lost.
Bronzise Conepostrioss, 32 Kinds.-1. Silver white Bronzing Poroder. - Nelt together 1 oz . each. bismuth and tin, then add 1 oz . quicksilver, cool nid ponder. 2. Gold colored Bronze Powder.-Verdigris, 8 ozs ; tutry fromer. 4 ozs. ; borax and nitre, of each 2 ozs ; bichlorido of incrcury, $\frac{1}{2}$ wa make into a paste with oil and fuse them together. Used in jupaneing as at gold color. 3. Beautiful Red Bronze Powder. -Sulphite of exper, 100 parts; carbonate of soda, 60 parts; apply lieat until ther tuite into a nuss. 4. Acid Bronze.-Cobalt, 4 lbs.; pulserize; sith theonigh a fine sleve, put in a stone pot; add $\frac{1}{5}$ gal. nitric acid, a Fethe at a time, stirring frequently for 24 hours; then add about, 5 mals anmiatic acid, or nntil the work comes out a dark brown. 5. Alkaii Dmmas-Dissolve 5 lbs. nitrato of copper in 3 gals. of water; and 5 lbs peachath; add 1 or 2 pts. potash water; then add from 2 to 3 lbs. sal ammacaitc or until the work comes out the required color. 6. Coating Dip.-Exlphate of zinc, 8 lbs ; ; oil of vitriol, 5 gals. : aquafortis, 是 gal. To mse warm up scalding hot. 7. Quick Bright Inppin! Acid, for Brase nolizgil hats been Ormolued. -Sulphuric acid, 1 gal. ; nitric acid, 1 gal 8. Dipmiby fex́l.-Sulphuric acid, 12 lbs ; nitric acid, 1 pt ; nitre, 4 lbs.; zout, Llandfuls; brimstone, 2 ozs.; pulverize the brimstono and soak it water 1 hour, add the nitric acid last. 9. Gool Dipping Avid for catat Erass.-Sulphuric acid, 1 qt .; nitro, 1 qt ; a littlo muriatic acial many be added or omitted. 10. Ormolu Dipping Acid for Sheet Enass.-Sulphuric acid, 2 gals.; nitric acid, 1 pt. ; muriatic acid, 1 ut ; zithe, IPIbs.; put in the muriatic acid last, a little at a time, and stirrizg the misture with a stick. 11. Dippiny Acid.-Sulphuric acid, 4 galk, zeitric acid, 2 gals.; saturated solution of sulphate of iron $1 \mathrm{pt}$. ; solutine of sulphate of copper, 1 qt . 12. Ormolu Dipping Acid for cast Lenesur- -Sulphuric acid, 1 gal.; sal ammoniac, 1 oz.; sulphur (in flour) 1 az; Bite fitriol, 1 oz.; saturated solution of zinc in nitric acid, 1 sal: mised with an equal quantity of sulphuric acid. 13. Vinegar Linematy for Erass.-Vinegar, 10 gals.; bluo vitriol, 3 lbs.; muriatie aseid 3 Ibs.; corrosive sublimate, 4 ozs.; sal ammoniac, 2 lbs .; alum, 8 ozs. 1e Antique Bronze Paint.-Sal nmmoniac, 1 oz.; cream of tartar, 3 acs.; common sult 6 ozs.; dissolve in 1 pt . hot water; then add uitrate ac copper. 2 ezs.; cissolvo in $\frac{1}{2} \mathrm{pt}$. water; mix well and amply it to the artuce in a dany! place with a brush. 15. Blue Bronzs on Copper-Clean and polish: well, then cover the surface with a fluid olitaived by dimplving ver-nillion in a warm solution of sodium, to which some cuastic potash has been added. 16. Bronze Dip.-Sal ammonise 1 aza; sait of sorrel, (binoxolate of potish) 4 oz.; dissolved In rinegat 17. Parisian Bronze Dip.-Sal ammoniac, $\frac{1}{2}$ oz. ; common salt, $\frac{1}{2}$ oz.; spicits of hartshorn, 1 oz.; dissolved in an English qt. n! vinegar, a grod result will be obtained by adding $\frac{1}{2} \mathrm{oz}$, aal ammoniac
sh, nearly long time. : 110 somo straw and to insure step tilien e qualitics mawner, zzing Porooz. quick--Verdigris, blchlorido a together. ze Pooder. crts; apply alt, 4 los.; add $\frac{1}{2}$ gal. ; theis add ark brown. s. of water; from 2 to 3 1 color. 0. : aquafornping Acid, nitric acid, 1 pt ; nitre, brimstono Good Dipqt. ; a littlo pping Acid t.; muriatic o at a time, -Sulphuric hate of iron ipping Acid ; sulphur (in ne in nitric ic acid. 13. riol, 3 lbs.; oniac, 2 lbs.; 1 oz .; cream water; then iix well and Blue Bronzs with a fluid f sodium, to ze Dip.-Sal z.; dissolved z.; common inglish qt. n! a ammouise

instead of spts. of hartshorn; the pieco

 is to bo rubled with one of thess pieco of metal being well cleared 2 fresh brush. 18. Green Dip.-Wine inns, then dried by friction with 2 ozs ; sal ammonlac 1 oz . ; salt, 2 oze vinegar, 2 qts. ; verditer green, 8 ozs ; boil the ingredients together. 10 ; alum, $\frac{1}{2}$ oz. French berries, 8 ozs.; muriatle acld, 1 qt.; sal ammoni Aquafortis $D_{i p}$.-Nitric acid, acil, 2 ozs. ; add litonec Din for Brass, - Nitrics.; alum, 1 oz.; salt, add 2 gals. pure titanium or palladium, witric acid, 3 ozs.; muriatic Bronze Paint for 8 oft water to each pt . of the tho metal is dissolved $40 z s$. ; blue vitriol Copper Vessels.-Tiuct. of steel, 4 ozs. 21. Brolon a fine brush, the ri, 1 oz. ; water $\frac{1}{2} \mathrm{pt}$. ; mir in a bozs.; spts. of nitro application of tho vessel being full of boiling in a bottle, apply it with of ammonia, (sal romzo. 23. Bronze for all kinds. Varnisfi after tho dissolvo the oxalic ammoniac) 4 drs.; oxalic acid 1 of sictal.-Muriato rith a brush, repeating flirst let the work be clean pur. vinegar, 1 pt ; necessary. 23. Green tho operation as many, put on tho bronzo ozs. hyposalphato of Gronze.-Dissolvo 2 ozs ny times as may bo the required shade of soda in 1 pt . of water; immerse the iron, and 2 red can bo obtained obtained, as almost any shado the articlo until mash with mater according to the time of immo from brown to Bronze.-Perchler dry and brush. 24. Pale Dersion then well the brass. 25. Darid of iron, 1 part; water, 2 parte Deen Olive Grcen merse the brass. 20 Green. - Saturate nitric acid with cond immerso first with tripoli, 20. Dcad Black for Brass Wort with copper and imof tin, with 2 parts, wash it with a solution of 1 part Rub the surface a wet cloth. 27 . Dest , chlorido of gold, after 10 ininutes neutral nitrate \$1b. of Thite arsenic Bronze for Brass.-Take 1 ib of wipe it off with in the usual manner. put them into an carthen ressel of nitric acid, and of ammonia, 1 ozer. 28. Another Bronze for Brel and then proceed strong vincgar. oz. alum, $\frac{7}{2} \mathrm{oz}$. arsenic, dissolve Brass.-1 oz. muriato monly called smoke Black Dip for Brass.-Hydrogether in 1 pt. of White arsenic 1 lb g salts,) 12 lbs ; sulphate of irochloric acid (comBirmingham, but the This dip is used in all the iron, 1 lb . ; and pure sublimate, in 1 put the dip used in the London trado is 2 factories in let it stand 24 hours. tho best vinegar, cork botll air is ozs. corrosiro Brass.-Use strong nitric it is fit for use. 30. Ouick Brigh a bottle, the liquid for an ing nitric acid in sufficient quantity , Bright Dip for in cold water, then in withdraw, and immediaty, dip your breiss in bath, then allow it in boiling water, for a short fimmerse it first plication of Bronze to dry, repeat the process if time only in each and then dust the browzer. - The proper way is to varsary. 31. Apdry. 32. Biack bronze powder over it after the varnish the article nitrate of silver, in olor for Brass Work.-Make a strong solutiontly the two together and plungo and nitrate of copper, in another. Mir till the reguired degree of in tho brass. Now heat the brass evenly beautiful color on optical in blackness is acquired. Unrivalled as a Grailam's Quick BranCopper, Brass, or Zinc.-1 ${ }_{5 d r s}$, or Zinc.-Dissolve 5 d Brown or Dark Bronze for Copper, ${ }^{5}$ drais. perchloride of iron in 1 pt. water nitrate of iron in 1 pt . water; or, and 1 ptrom 10 ozs. muriate of arsenic in A black may also be ob, and 1 pt. mater. 2. Brown or Red Bronzing for Bermuriate of Iron,
drs. nitrate of iron, and 16 drs. hyposulehate of so ${ }^{\circ}$ a, in 1 pt. water, or, 1 dr . nitric acid may be substituted for the nitrate of iron. 3 . Red Brown Bronzing for Brass.-Dissolve 1 oz. nitrate of copper, and 1 oz. oxalic acid in 1 pt. water, brought to the boil and then cooled. 4. Dark Brown Bronzing for Brass.-Mix 1 oz . cyanide of potassium, and 4 drs. nitric acid, with 1 pt. water. 5. Red Bronzing for Brass. Dix 30 grs . tersulphate of arsenic, 6 drs. solution of pearlash, and i pt. water. 6. Orange Bronzing on Brass.-Mix 1 dr. potash solution of sulphur with 1 pt. water. 7. Olive Green Bronze for Brass.Dissolve 1 pt. permuriate of iron in 2 pts. water. 8. Slate-colored Bronzing for Brass.-Dissolve 2 drs. sulphocyanide of potassium, and 5 drs. perchloride of iron, in 1 pt. water. 3. Stecl Grey Bronzing for Brass.-Mix 1 oz . muriato of arscnic with 1 pt. water, and use at a heat not less than 180° Fahr. 10. Bright Red Bronzing for Copper. Mix 2 drs. sulphide of antimony, and 1 oz . pearlash in 1 pt. water. 11. Dark Red Bronze for Copper.-Dissolve 1 dr. sulphur and $10 z$. pearlash in 1 pt. water. 12. Copper Colored Bronzing for Zinc. Agitate the articles in a solution of 8 drs. sulphate of copper, and 8 drs . hyposulphate of soda in 1 pt . water.

Corper Plates on Rods may bo corered with a superficial coatIng of brass by exposing to the fumes given off by melted zinc at a lis't temperature. The coated plates or rods can then be rolled into thin sheets, or drawn into wire.
Solution of Corper or Zinc.-Dissolvo 8 ozs. (Troy) cyanido of potassium, and 3 ozs. cyanide of copper or zinc, in 1 gal. of min water. To bo used at about $160^{\circ} \mathrm{F}$., with a compound battery of 3 to 12 cells.
Brass Solution.-Dissolre 1 lb . (Troy) cyanide of potassiam, ? ozs. cyanido of copper, and 1 oic yanide of ziuc, in 1 gal . of rainwater; then add 2 ozs . of muriate of ammonia. To be used at 100° F., for smooth work, with a compound battcry of from 3 to 12 cells.

Brassing Inon.-Iron ornaments are covered with copper or brass, by properly preparing the surface so as to remove all organic matter which would prevent adhesion, and then plunging then into molted brass. A thin coating is thus spread over tho iron, and it admits of weing polished or burnished.

Ormolu Coloring, Lacquets, \&c.- 18 Kinds.-Ormolu Color-ing.-1. Alum, 30 parts; nitrato of potassa, 30 parts; red ochro, 30 parts; suiphate of zinc, 8 parts; common salt, 1 part; sulphate of iron, 1 part. It is applied with a soft brush. The articles are placed ovrr a clear charcoal fire until the salts, melted and dried, assumo a brown aspect. They are then suddenly cooled in nitric acid water, containing 3 per cent. of hydrochloric acid, afterwards, washed in albundance of water and dried in sawdust. 2. To Prepare Brass Work for Ormolu Dipping.-If the work is oily, boil it inley, and ifitis finished work, filed or turned, dip it in old acid, and it is then ready to be ormolned, but if it is unfinished and free from ol, pickle it in strong sulphuric acid, dip in pure nitric acid, and the. in the old acdr, after which it will be ready for ormoluing. 3. To Repair Old Nitric Acid Ormolu Dips. - If the work after dipping appears coarso and spotted, add vitriol till it answers the purpose: if tho work after dipping appeurs too smooth, add muriatic acid and nitre till it gives tho
right appearanco. The other ormolu dips shond be repaired according to the receipts, putting in the proper ingredients to strengthen them. They should not be allowed to settle, but should be stirred often while using. 4. Directions for making Lacquer.-Mix the ingredients, and let the vessel containing them stand in the sum, or in a place slightly warmed, 3 or 4 days, shaking it frequently till gum is dissolved, after which let itsettle from 24 to 48 hours, when the clear liquor may be poured off for use. Pulverized glass is sometimes used in making lacquer to carry down the impurities. 5. Lacquer for Dipped Brass.-Alcohol, (95 per cent.) 2 gals. ; seed lac, 1 lb .; gum copal, 1 oz ; English saffrou, 1 oz. ; amnatto, 1 oz. 6. Lacquer for Bronzed Brass. - To 1 pt. of the abovo lacquer add gamboge, 1 oz ., and, after mixing it, add an equal quantity of the first lacquer. 7. Deep Gold Colored Lacquer.-Best alcohol, 4 ozs.; Spanish annatto, 8 ozs.; turmeric, 2 drs.; shellac, $\frac{1}{2}$ oz. ; red sanders, 12 grs.; when dissolved, add spts. of turpentine, 30 drops. 8. Deep Gold Colored Lacquer for Brass not Dipped.-Alcohol, 4 gals.; turmeric, 3 lbs.; gamboge, 3 ozs.; gum saudarac, 7 lbs . shellac, $1 \frac{1}{3}$ lbs.; turpentino varnish, 1 pt. 9. Gold Colored Lacquer, for Dipped Brass.-Alcohol, 36 ozs. ; sced lac, 6 ozs.; amber, 2 ozs.; gum gutta, 2 ozs.; red sandal wood, 24 grs .; dragon's blood, 60 grs ; oriental saffron. 36 grs ; pulverized glass, 4 ozs. 10. Gold Lacquer, for Brass.-Seed lac, 6 ozs.; amber or copal, 2 ozs.; best alcohol, 4 gals. ; pulverized glass 4 ozs. ; dragon's blood, 40 grs.; extract of red sandal wood obtained by water, 30 grs . 11. Lacquer, for Dipped Brass.-Alcohol, 12 gals.; seed lac, 8 lbs. ; turmeric, 1 lb . to a gal. of the above mixture; Spanish saffron, 4 ozs . Tho kaffron is to be added for bronzed work. 12. Good Lacquer.-Alcohol, 8 ozs. gamboge, 1 oz .; shellac, 3 ozs.; ammatto, 1 oz.; solution of 3 ozs . of seed lac in 1 pt . alcohol. When dissolved, add $\ddagger \mathrm{oz}$. Venice turpentine, $\frac{\ddagger}{}$ oz. dragon's blood, will make it dark. Keep it in a warm place 4 or 5 days. 13. Pale Lacquer, for Tin Plate.-Best alcohol, 8 ozs. $;$ turireric, 4 drs.; hay saffron, 2 scrs. ; dragon's blood, 4 scrs. ; red sanders, 1 ser .; shellac, 1 oz .; gum sandarac, 2 drs.; gum mastic, 2 drs. Canada balsam, 2 drs.; when dissolved, add spts. turpentine, 80 drops. 14. Red Lacquer for Brass.-Alcohol, 8 gals.; dragon's blood, 4 lbs. S Sanish amnatto. 12 lbs . gum sandarac, 13 lbs ; turpentine, 1 gal. 15. Pale Lacquer, for Brass.-Alcohol, 2 gals.; capo aloes, cut small, 3 ozs.; pale shellac, 1 lb .; gamboge, 1 oz. 16. Best Lacquer, for Brass.-Alcohol, 4 gals.; shellac, 2 lbs .; nmber gum, 1 1b. ; copal, 20 ozs.; seed lac, 3 lbs.; saffron to color; pulverized glass, 8 ozs. 17. Color for Lacquer.-Alcohol, 1 qt.; ; annatto, 4 ozs. 18. Gilder's Pichle.-Alum and common salt, each, 1 oz.; nitro 20 . ; dissolved in water, \ddagger pt. Used to impart, a rich yellow color to gold surfaces. It is best largely diluted with water.

To Reduce Oxide of Zinc.-The oxido may be put in quantities of 500 or 600 lbs . Weight into a large pot over the fire; pour a suftlciont quantity of muriatic acid over tho top, to act as a flux, and tho action of the fire will melt the dross, when the pure metal will bo found at the bottom of the pot.
To Separate Tin frosi Lead.-If the lead and tin aro in solntioin, preclpitato tho former by sulphuric acid, and the latter with sulphuretted hydrogen gas. In an alloy tho lead will dissolvo in nitric acid, leaving the titl as an oxide.

To Frost and Cloud Small Brass-work.-Scour the brass thoroughly with strong ley, and hold the work against a circular scratch-brush of fine brass wire, secured in a lathe and driven at a high speed, as in frosting watch plates, see page 3%; for clouding bruss work, see page 515.

Cement for brass and Wood.--The best cement for this purpose is a glue composed of best gelatine, 1 part; glacial acetic acid, 1 part. Soak the gelatine in cold water until it has swollen up and become quite soft. Throw away the water and dissolve the gelatine in the acetic acid, applying gentie heat if necessary.

Yellow and Light Red bhonze.-1. Copper bronze powder, 1 oz.; mix thoroughly with japanner's gold size, adding turpentino during its use sutticient to keep it at the consistency of crean. Mix with a pallet knife on glass or porcelain; if made too thin it is liablo to be removed by the brush as fast as put on. Apply with a soft brush. 2. A gold bronze color is obtained by using $\frac{1}{2}$ gold bronzo and $\frac{1}{4}$ copper bronze powder, or other beantiful colors may be obtained by varying the mixtures. 3. A Dark brown Bronze is produced by the addition of bumt umber to the above named ingredients. 4. A Dark Grecn Bronze is obtained by mixing green bronze and terra verto with gold size, adding as much ivory black as may be required to impart the depth of tint required. Finish with a coat of fine shellac varnish. 4. For a Vcrde Antique shade, apply tice bronze coat as abore, vamish with shellac, allow it to get firm and hard; then coat tho depressed parts with gold size thimed with turpentit Previous to drying, dust the article with dry paint, of light yellow lne color, and gently remore all that can be easily rubbed off wit lag molstened with turpentine. G. Brown Bronze for Marduwn.-Muriatic acdd, 2 lbs .; iron scales, 2 lbs.; arscnic, 2 oz.; zinc (a solid mass to be kept in only when the solution is in usc), 1 lb .4 oz . Previons to immersion in the bath, cleanse the articles thoroughly in acid pickle. 7. Green Bronze on Harducarc.-Apply a varnish composed of ground tin or bronze powder mixed up with honey in gum water, then wash with a solution of vinegar, 1 pt ; spts. hartshorn, 1 oz ; sal ammoniac, $\frac{1}{2}$ oz.; salt, $\frac{1}{2}$ oz. Place the articles in the sum for a day or two; then give them another coat, 8. Black Stain on Brass.-Water, 80 parts: hydrochloric acid, 4 parts; sulphuric acld, 1 part. 0. An. other--Hydrochloric acid, 12 parts; arsenic by weight, 4 parts; apply brighten, dry, and lacquer.

Magic Polish for Brass.-Add to sulphuric acid half its bulk of pulverized bichromate of potash; dilute with an equal weight of water, and apply well to the brass, swill it well immediately in water, wipe dry, and polish with pulverized rotten stonc.

To Bronze Pohished Steel.-Methylated spirits, 1 pt. ; gum shellac, $4 \mathrm{oz} . ;$ gum benzoin. $\frac{7}{7}$ oz. Set the bottle in a warm plare, with occasional agitation. When dissolved, decant the clear part for fine work, and strain the dregs through muslin. Now take 408. powdered bronze green, varying the color with yellow ochre, red ochre, and lampllack, as may be desired. Mix the bronzo powder with the above varnish in guantities to suit, and apply to the work after previously cleansing and warming the articles, glving them a second coat and touching off with gold powder if required, previous to varnishing. st a circular 1 driven at a or clouding
for this purcetic acid, 1 up and bee gelatine in
ze powder, 1 g turpentivo cream. Mix in it is liablo y with a soft gold brouzo y be obtained produced by dients. 4. A dd terra verto quired to ime shellac varoat as abore, en coat tho
Previous to
lue color,
rag moist-c.-Muriatic solid mass to oz. Previons ghly in acted ish composed 1 gum water, orn, 1 oz .; sal a for a day or rass.-Water, part. 9. An\neq parts; apply
alf its bulk of ual weight of itely in water,
ss, 1 pt.; gum twarm plare, clear part for ow take 40 . ow ochre, red ronze porver y to the work yiving them a ed, provious to

Dead Black for the Brass Work of Lenses.-The brass
work inust be made quite cleanand the follo of Lenses. - The brass with a cauncl's-hair pencil: bichlorid of pollowing preparation applied silver, 1 grain; water, 6 oz . When you get wh, 4 dians; nitrate of with clean water, dry, and finish with plumbago right d(pth, wash to Solder German Sulver - Disumbago. of salts in an earthen vessel. Cleanse the granulated zinc in spirits apply the spirits of salts. Next put a piece part to be soldered, and juint and apply the blow-pipe to it. Melte of pewter solder on the zinc in thin sheets, 4 parts, then powder it ferman silver, 1 part, and Sllyery Appearance on Ihon Wer for solder.
contact with a acid, and immerse the w.-Suspend a piece of zinc solved in 100 parts of zinc, in a bath of 2 prts it. Next, place it in 3 parts of soda. Let it rer, to which is added 3 partartaric acid disby polishing or drawing remain two hours in the parts cr tin salts and

Permanent Brang through a drawing irone bath; then brighten oughly cleaned, in a solution on Iron Winie.-Pl ately becomes covered tion of sulphate of connce the wire, thorpaste of pure oxide of with a thin film of copper, when it immedi-
To Ccesn Syo of tin, and heat hot cuoupper; now cover with a of oxalic acid in woter Tarnished biass.- Use ase the copper. ased; then rinse ther; apply with a stiff roll of cleaturated soluticn After drying with a object in plenty of water to remanel briskly prepared chalk or the warm cloth, polish up with chamose the acid. To Clean Embossed ont whiting.
a stroug solution of canstic on Undencut Brass.-Boil the objects in ture of hydrochloric acid, 6 parts; water: 2 immerse them in at mixpart, until they become covered with a darts; and nitric acid, 1 from the mixture and remove tho black a dark deposit. Take them brash: when thus cleansed, swill in lint matter with a fine scratch. dust. A fine orange-yellow tingo may be witer and dry in hot saw stituting an equivalent weight of mowdered ben to the brass by kubin the solution.
Dead Appearance on Brass.-Immerse the objects in aid ture of nitric acki, 200 parts; sulphuric acide the objects in a mixthis impon salt, 1 part; sulplate of zinc, a parts. gr. 1.845, 100 parts; hirge work inparts the dead appearance styled parts. Rinse thoronghly; hrge work use nitric acid, 3 parts; sulpluric , by the French. For till the pulphate of zinc, $\frac{1}{2}$ part. Repeat diphing acid, 1 part; water, 1 To Lroper color is brought out. fug the articles in stans.-For flat work, cleanse thoroughly by boilchor of the brass, dip it in hydrocher; if yon wish to heighten the hot Water altemately, using hydrochloric acid, rince well in cold and and dry in hot sawdust, burnishine brush to remose any blackness, riork on an iron plate, kent at a lo afterwards if desirel. Place the arly and rapidly over the suriaco wheat, and pass the lacquer regurush, keeping the iron plate warth a cood sized fine camel's-hadr irculai work, after being well warm until the work ja dry. Small ind sliglitly heated in a stove or cleansed, and burnished if need be, cquer thinly and erenly ape or over a charcoal fire, should heed be, a charcoal brazier under the while in motion in the lathe, holdstoo soon.

Contrast Colors for Painting Machinery.-1. Deep blue and golden brown; 2, Black and warm brown; 3, Chocolate and light blue; 4, Violet and light rose color; 5, Violet and pale green; 6, Deep red and gray; 7, Claret and buff; 8, Maroon and warm green; !, chocolate and peagreen; 10, Deep blue and pink; 11, Black and warm green; 13, Maroon and deep blue.

Varnish for Loom Harness.-Linseed oil, 2 gals.; gum shellac, 2 t lbs. ; red lead, 1 lb. ; umber, $1 \frac{1}{2}$ lbs. ; litharge, 2 lbs. ; sugar of lead, $1 \frac{1}{2}$ lbs. Mix and thoroughly incorporate together.

Water-proofing for Nets and Fishing Lines. - Soak the nets or lines in a mixture of 2 parts boiled linseed oil and 1 part gold size; expose to the air, and dry.

Winter Fishing on the Western Lakes.-A small portable house is erected on large rumners, like those of a sled, with a hole cut in the centre of the floor. This house is moved to any desired spot; a hole is cut in the ice, so as to be directly under the aperture in the floor; the lines are dropped through the hole, and the fish are drawn in while the fishermen are seated by a warm stove.

Paint for Metals, Proof against Hot Water.-Prepare the metal by cleaning it with turpentine, ley, or benzine; then apply two thin coats of a mixture of white lead, spts. turpentine and carriage varnish, and follow at once with a thick coat of carriage varnish and white lead.

Draughtmen's Colors for Mechanical Drafing.-The following are the names of different materials, together with the pigments used to represent them: 1, Red brick, Indian red; 2, Yellow brick, Indian yellow or cadmium, tinged with white; 3, Wrought iron, Prussian blue or cobalt; 4, Cast iron, Paine's gray and a little India ink, or Prussian blue and India ink; 5, Steel, 凤 purple color by the admixture of crimson lake and Prussian blue; 6, Gun metal or brass, gamboge or yellow cadmium; 7, Copper, Indian red mixed with a little lake; 8, Wood, vurnt umber; 9, Water, broken, irregular straiglit lines, with liquid copperas; 10, Stone color, Chinese white and India ink, tinted with yellow.

Tracing Paper, to Stand Wasiing.-Saturate writing paper with benzine, and follow at once with a slight coat of the following varnish: Boiled bleached linseed oil, 20 oz .; oxide of zinc., 5 ozs . ; lead shar: ings, 1 oz .; Veuice turpentine, $\frac{1}{3} \mathrm{oz}$. Boil all for 8 hours, cool, and add gum-copal 5 ozs., gum sandarac $\frac{3}{2}$ part.

Tracing Paper.-Dissolve castor oil in strong alcohol and apply the mixture to the paper with a sponge. The alcohol will volatilize, leaving the paper dry. Proceed to finish your tracing, and then you may, if you wish to do so, restore the paper to its original state, by immersion in strong alcohol, thereby absorbing the castor oil from the paper.

To Solder without Heat.-Brass filings, 2 oz.; steel filings, 2 oz.; fluoric acid, oz. Put the filings in the acid, and apply the solution to the parts to be soldered, after thoroughly cleaning the parts in contact; then dress together. Do not keep the fluoric acid in glass bottles, but in lead or earthen vessels.

Easy Soldering of Brass.-Cut a piece of tin foil the size of the surface to be soldered; then pass over the surface a solution of

웅 흥블올 sal ammoniac for a flux, place the tin foil between the pieces, and apply a hot iron until the foil is melted. und light ; 6, Deep green; ! ind warm
m shellac, ar of lead,
k the nets gold size; 11 portable a hole cut red spot; a ture in tho are drawn

Prepare the a apply two ind carriage varnish and
G.-The folith the pig. 1; 2, Yelloso rought iron, little India or by the ad. etal or brass, a with a little ular straiglt te and India

Ig paper with ing varnish: ; lead sharrs, cool, and
ol and apply ill volatilize, and then you nal state, by tor oil from
eel filinga, ${ }^{2}$ d apply the cleaning the uoric acid in
il the size of solution of eces, and ap-

To Tin Coprer and Brass.-Boil 6 lbs. cream of tartar end 4 gals. of water and 8 llbs . of grain tin or tin shavings. After the matorial has boiled a sufficient time, the articles to bo tinned are put therein and the boiling continued, when the tin is precipitated on the goods in metallic form.
Mixture for Silverina. - Dissolvo 2 ozs. of silver mith 3 gr of corrosive sublimate; add tartaric acid, 4 lbs.; salt, 8 ts.
To Srrarate Silver from Corper.-Mix sulphuric acid, 1 part; nitric acid, 1 part; water, 1 part; boil the metal in the nitture till it is dissolred, throw in a little salt to cause the silver to subside.
To Writr in Siluer--Mix 1 oz. of the finest perter or block tin, and 2 ozs . of quicksilver together till both become fluid, then grind it wilh gum water, and write with it. The writing will then look as if done with silver.
Tinning Acid, for Brass or Zinc.-Dintiatic acid, 1 qt; zine 6 ozs. To a solucion of this, add water, 1 qt. ; sal-ammoniac, 2 029.

To Cleary and Polisir Drass.-Wash with alum boiled in strong lye, in the proportion of an ounce to a pint; afterwards rub with strong tripoll. Not to be used on gilt or lacquered work.
bronze Pant, for Lron or llrass.-Chrome green, 2 lbs. ivory black, 1 oz . ; chromo yellow, 1 oz . ; good japau, 1 gill; grind all together, and mix with linseed oil.
To Bronze Iron Castings.-Cleanse thoroughly, and afterwards immerse in a solution of sulphate of copper, when the castings will acquire a coat of the latter metal. They must be then washed in mater.
Removina Zinc and Iron From Plumbers' Solder-Digest the metal in grains in diluted sulphuric acid. The acid will dissolvo the zinc first, the iron next, and all traces of these metals by subsequent washing.
Tisnina Cast Inon.-Pickle your castings in oil of vitriol; then corer or immerse them in muriate of zinc (made by putting a suffcient quantity of zinc in some spirit of salt): after which dip it in a melted bath of tin or solder.
Silvering dy IIeat.-Dissolve 1 oz. silver in nitric acid; add a small quantity of salt; then wash it and add sal-ammoniac, or 6 ozs. of salt and white vitriol; also $\underset{4}{2} \mathrm{oz}$. corrosive sublimate; rub them together till they form a paste; rub the piece which is to be silvered with the paste; heat it till tho silver ruus, after which dip it in a weak ritriol pickle to clean it.
Zincina. - Copper and brass ressels may bo covered with a firmily adherent layer of pure zine by boiling them in contact with a solution of chloride of zinc, pure zinc turnings being at the same time present in considerable excess.
To Cloud Metal Work.-Metal work may be clouded by putting a piece of fine emery paper under the thumb or finger and working it over a surface of the metal with a spiral motion.
Silverina Powder.-Nitrite of silver and common salt, of each ${ }^{5} 0 \mathrm{grs}$. cream tartar, 31 drs. ; pulverize finely and bottlo for use Unequalled for polishing copper and plated goods.
To Clean and Polisi Brass.-Oil of ritriol, 1 oz.; sweet oil, $\frac{2}{2}$
gill; pulrerized rotten stone, 1 gill; rain mater, 1 p pts; mix all and shake as used. Apply with a rag and polish with buckskin or all woolen. Rotten stone, followed by Paris v 'ite and rouge is very good also.

Paste for Cleantng Mftals.-Tako oxalic acid, 1 part; rotten stone, 6 parts; mix with equal parts of train oil and spts. turpentive to a paste.

To Prfyent Inon or Steel from Rusting.-Warm your ion or steel till you cannot bear your hands on it without burning yourgelf, then rub it with new and clean white max. Put it again to the fire till it has soaked in tho wax. When done rub it over with a piece of serge. This prevents the metal from rusting afterwards.

Bronzing Liquids for Tin Castings.-Wash them over, after leing well cleansed and wiped, with a solution of 1 part of sulphate of iron, and 1 of sulphate of copper, in 20 parts of water; afterwards, with a solution of 4 parts verdigris in 11 of distilled vinegar; leare for an hour to dry and then polish with a soft brush and colcothar.
Fancy Colors on Metats.-1. Dissolve 4 ozs. hypo-sulphite of foda, $1 \ddagger$ pts. of water, and then add a sclution of 1 oz. acetate of lead \%: - 2z. water. Articles to bo colored are placed in the mixture, : is then gradually seated to tho boiling point. This will gire a color of blue steel, zinc becomes bronze, and copper or brass beccines, successively, yellowish, red, scarlet, deep blue, light blue, bluish white, and fiually white, with a tinge of rose. 2. By replacfug the acetste of lead in the solution by sulphate of copper, briss bec "es, At, of a fine rosy tint, then green, and lastly, of an irridescent brown. color.

Coatino Inon Castings with Gold or Silver.-The articles to be gilded are well cleaned and boiled in a porcelain vessel, together with 12 parts of mercury, 1 of zine, 2 of iron vitriol, $1 \frac{1}{2}$ of muriatic acid of 1.2 specific gravity, and 12 parts of water; in a short time a layer of mercury will deposit upon the iron; and upon this the gold amalgam may be uniformly distributed. Iron to be silvered is first provided with a coating of copper, upon vich tho silver is applied either by means of amalgam or silver leaf.
Bronswick Black fon Grates, \&c.-Asphaltum, 5 lbs.; melt, and add bolled oil, 21 lbs .; spirits of turpentine, 1 gal. Mix.

Bronze Paint for Inon.-Irory black, 1 oz.; chrome yellow, 1 oz.; chrome green, 2 lbs.; mix with raw linsced oil, adding a littlo japan to dry it, and you have a very nice bronze green. If desired, gold bronze may bo put on the prominent parts, as on the tips or edges of an iron railing where the paint is not quite dry, using a piece of velvet or plush to rub on the bronze.

Tinnina Inon.-Cleanse the metal to be tinned, and rub with n coarse cloth, previously dipped in hydrochloric acid (muriatic acid,) and then rub on French putty with the same cloth. French putty is made by mixing tin filings with mercury.

Tinnino.-1. Plates or vessels of brass or copper boiled with a solution of stannate of potassa, mixed with turnings of tin, become, in the course of a few minutes, covered with a firmily attached layer of pure tin. 2. A pimilar effect is produced by boling the articles vith tin-filings and cusstic alknli, or cream of tartar. In the above 0 is very irpentine in vessel, to$1,1 \frac{1}{2}$ of $\mathrm{mri}-$ in a short pon this the silvered is silver is ap-
llbs. ; melt, x.
o yellow, 1 ing a littlo If desired, the tips or ssing a piece
rub withn riatic acid, nch putty is
iled with a in become, ached layer the articles in the above
may, chemical ressels made of copper or brass may be easily and perfectly tinned.
New Tinnina Process.-Articles to be tinued aro first corered with diluted sulphuric acid, and, when quite clean, are placed in warm water, then dipped in a solution of muriatic acid, copper, and zinc, and then plunged into a tin bath to which a small guantity of zino has been added. When the timning is finished, the articles are taken out, and plunged into boiling water. The operation is completed by placiug them in a very warm sand-buth. This last process softens the iron.
To Recover tee Tin from Old Britannia.- Melt the metal, and while hot sprinkle sulphur over it ; and stir it up for a short time, this burns the other metals out of the tim, which may then bo used for any purpose desired.
Kustitien's Metil for Tinnifg.-Malleable iron, 1 lb ., heat to whiteness ; add 5 ozs. regulus of antimony, and DIolucca tin, 24 lbs.
Galfanizing Inon.-Tho iron plates are first immersed in a cleausing bath of equal parts of sulphuric or muriatic acid and water used warm; they are then scrubbed with emery or sand, to clean them thoroughly and detach all scales if any are left; after which they aro immersed in a "preparing bath" of equal parts of saturated solutions of chloride of ziuc and chloride of ammonium, from which bath they are directly transferred to the fluid "metallic bath," consisting, by weight of 640 lbs . zinc to 106 lbs . of mercury, to which aro added from 5 to 6 ozs. of sodium. As soon as tho iron has attained the temperature of this hot fluid bath, which is 680° Fahr., it may be removed, and will then be found thoroughly coated with zinc. A little tallow on the surface of the metallic bath will prevent oxidation.
Preventlisa of Rust.-Cast iron is best preserved by rubbing it rith blacklend. For polished work, varnish with wax dissolved in enzine, or add a little olive oil to copal varnlsh and thin with spts. turpentine. To remove deep-scated rust, use benzine, and polish off with fine emery, or use tripoli, 2 parts; powdered sulphur, 1 part. Apply with soft leather. Emery and oil is also very good.
To Purury Zinc.-Pure zine may be obtained by precipitating its sulphate by an alkali, mixing the oxido thus produced with charcoal powdered, and exposing the mixture to a bright red heat in a covered crucible in which the pure metal will be found as a button at the bottom when cold.
Transpalent Blue for Inon or Steel-Demar rarnish, $\}$ gal.; fine ground Prussian blue, $\frac{1}{2}$ oz.; mix thoroughly. Nakes a spleudid appearance. Excellent for bluing watch-hands.
Lead Shot are cast by letting the metal run through a narrow slit into a species of colander at the top of a lofty tower; the metal escapes in drops, which, for the most part, assume the spherical form before they reach the tank of water into which they fall at the foot of the tower, and this prevents their being bruised. They aro afterwards riddled or sifted for size, and afterwards churned in a barrel with black lead.
Black Bronze on Iron or Steel.-The following mixtures aro emplojed: liquid No. 1. A mixture of bichloride of mercury and sal-ammoniac. No. 2. A mixture of perchloride of irou, sulphate of copper,
nitric acid, alcohol and rrater. No. 3. Porchloride and protochloride of mercury mixed with nitric acid, alcohol and water. No. 4. A weak solution of sulphide of potassium. Clean your metal well and apply 2 slight coat of No. 1 with n sponge; when quite dry, apply another coat. Remove tho resulting crust of oxide with a wire brush, rub the metal with a clean rag, and repeat this operation after each application of these liquids. Now apply several conts of No. 2, and also of No. 3, with a full sionge; then, after drying for ten minutes, throw tho pieces of metal into wator heated near tho boiling point; let them remain in the water froun 5 to 10 minutes, according to their size. After being cleaned, cover again with several coatings of No. 3, afterwards with a strong coating of No. 4; then again inmerso in tho bath of lot water. Romoro from tho bath dry, and wipo th. carded cotton dipped in liquid No. 3, diluted each time with an increased quantity of water; then rub and wipe them with a little olive oil; again immerse in a water bath heated to 140° Fahr., remore them, rub briskly with a woolen rag, and lastly, with oil. Unequalled for producing a beautiful glossy black on guu-barrels, steel, iron, \&c.

Paint for Sheet Lron Shokr Pipe.-Good varnish, $\frac{1}{2}$ galion; boiled linsced oil $\frac{2}{2}$ gallon; add red lead sufficient to bring to tho consistency of common paint. Apply with a brush. Applicable to any cind of iron work exposed to the weather.
'fo Copper the Sunface of Inon, Steki, or Inon WmeHave the article perfectly clean, then wash with the following solntion, and it presents at once a coppered surface. Rain water, 3 lbs.; wulphato of copper, 1 lb .
To Join Broken Lead Pipes deting Pressere of Water.It frequently happens that lead pipes get cut or damaged when the water is running at a high pressure, causing much trouble to mako repairs, especially if the water cannot be ensily turned off. In this case plug both ends the pipe at the break, place a small pile of brolien ice and salt around thein. In a few minutes the water in the pipe will freeze; next, withdraw thro plugs and insert a now piece of pipe; solder perfectly, thaw the ice, and it will be all right.
To Repair small Leaks in Lead Pipes.-Place the point of a dull nail over the leak, give it a gentle tap with a hammer and the How will cease.

To Prevert Corrosion in Lead Prifs.-Pass a strong solution of sulphide of potassium and sodium through the inside of the prpe at a temperature of 212°, and allow it to remain about 10 or 15 minntes. It converts the inside of the pipe into an insoluble sulphide of lead and prevents corrosiou.

To Bend Copper or Brass Tubes.-Run melted lead or resin into your pipe till full, and you may then bend it gradually into any desired shape ; the pipe may then be heated and the lead or resin melted and run out.
To Join Lead Plates. - Tho joints of lead plates for some purposes are made as follows : The edges are brought together, ham. mered down into a sort of channel cut of wood and secured with a few tacks. The hollow is then scraped clean with a scraper, rubbed orer with candle grease, and a stream of hot lead is poured into it, the surface being afterwards smoothed with a red hot plumber's iron.

To Joir Lead Prems.-Widen out the end of one pine with a to
rotochlortide 4. A reak 1 and apply ply another tsh; rubthe sch appliciand also of s, throw tho let them resize. After afterwards the bath of pieces with with an inlittlo olire moro them, qualled for ron, \&c. , $\frac{1}{2}$ gallon; to the conble to any
n Wme.wing soluiter, 3 lbs.;

Water. when the le to malio f. In this pile of broiter in the aw picce of
point of a er and the
strong soside of the at 10 or 15 le sulphide
d or resin y into any de or resin
some purher, ham. red with a er, rubbed into it, the B iron. with a to be strong, rub a little ter as before described; or, if it requircs ball of melted lead, holding n over, and cover the joint with n on the under side; and smoothing over with it of greased bedtick) iron.
Tinnina Interior of Leat applying a flux of grease or mudiatrees.-This invention consists in protect tise lead from oxidation, and zinc or any other flux that will when the tin is poured through the insure a perfect coating of tin, bath of tin; after the lead pipe has pipe or the pipe dipped into the rertical or nearly vertical position, and pas mado, place the same in a strong cord, to which a weight is attachess down through the sarje a otherpe; and at or near the other end of the draw the cord through and of any poruus wad being length, say. 6 inches more or a size to fill the pipe, aud by its length saturated with the flux, is drawn. The sponge or the inside of the ensures the covering of the entrin through tho pipe, sequently applied, plpes with the flux, so that the inside surface of ness.

whiformity and firm-

 patience sorely tried when pouring - Many mechanics have had their joint to find it explode, blow out, or melted lead around a damp or wet generated by the heat of the lead, or scatter from the effects of steam by putting a piece of resin the size of the thole troublo may be stopped is, many hare allowing it to melt before pouring a man's thumb into is, many have paid $\$ 20$ for tho privile pouring. Simple as the secret Tabular View of the Processege of knowing it and silve hard solderg most commonly used arina.-Hard soldertable, and tholders. The general flux is used are the spelter solders, muffle, and the modes of heating are the norax, marked A on the metals less fusiblow pipe, marked a, b, g, applicab, the furnace or nearly similar the than the solders; the applicable to nearly all the solders (the langhout. Note.-The examples of treatment are Thich they are least fusible first) followed cut into shreds, is umonly employed. Fine by the metals for made of platinum used as the solder for joining laminated and folder for Germ. Silver is by many considered chemical vessels Copper cut in shan silver, for silver solders, see as much tho brst folders laminated Spelter solders, are nsed for gold alloys, for iron. Gold brass, gun metals, Gered whilst hot, aro nsed for 333 and 338. himinated, are eals, German silrer, \&c., seo nsed for iron, copper, trork, also for Germed for all silver works and for commer solders metal, \&c. when grean silver, gilding metals, iron, for common gold apelter solder. than is obtained from alloys called button metals; they were introduloed for the white tutes for sllver solder. Hard the metalg; the modes of treatmeldering.-Applicable to nearly all metals; tho modes of treatment are very different. The soft sol-der mostly used is tro parts tin and ono of lead; sometimes, from motives of economy, much more lead is erpployed, and $1 \frac{1}{2}$ tin to 1 :ead is the most fasible of the group, unless bismuth is used. The fluxes B to G, and the modes of heating, a to i, aro all used with the soft solders.

Note.-The exnmples commence with the metals to bo soldered. Thus in the list, zinc, $8, c, f$, implies, that zinc is soldered with No. 8 alloy, by the aid of the muriate or chloride of zine, and the copper bit. Lead, 4 to $8, F, d, c$, implies that lead is solderod with alloys varying from No. 4 to 8, and that it is fluxed with tallow, the lieat beins applied by pouring on melted solder, and tho subsequent uso of the heated lron, not tinned; but in gencral one only of the modes of 1 eating is selected, according to circumstances. 1ron, cast-iron and stecl, $8, \mathrm{~B}, \mathrm{D}$, If thick, heated by a, b or c, and also by g. Tiuned iron. 8, G, D, f. Gold and silver aro soldered with pure tin, or elso with $8, E, a, g$, or h. Copper and many of its alloys, namely brass, gilding metal, gun metal, de., 8, B, C, D; when thick, heated by a, b, c, e or f when thin, by f, or g. Speculum metal, $8, B, C, D$, tho heat should be cautiously npplied; the sand bath is perhaps the best mode. Zinc, 8, C, f. Lead and lead pipes, or ordinary plumber's work, 4 to $8 \mathrm{~F}, d$, or e. Lead and tin pipes, 8 , D , and G, mixed, g, and alsof. Britannia metal, $\mathrm{C}, \dot{\mathrm{L}}, \mathrm{g}$. Pewters, tho solders mast vary in fusibility according to the fusibitity of tho metal, generally G, and l, are used, sometimes, also G, and g or f. Lead is united withont solder ly pouring on red hot lead, and employing a red hot iron, d.e. lron and brass are sometimes burned, or united by partial fusion, by pouring very hot metal over or around them.
allois And their Melting Heats.

Fuuxes.

No. $1 \quad 1$ Tin 25 Lead 258 Fahr. A. Borax.

2	1	" 10		541		B. Sal-am. or mar. of amm.
3	1	" 5	"	511	"	C. Muriate or chlor. of ziuc.
4	1	" 3	"	482	"	D. Common resin.
5	1	" 2	"	441	"	E. Venice turpentine.
6	1	" 1	"	370	"	F. Tallow.
7	13	" 1	"	334	"	G. Gallipoli oil, or common
8	2	" 1	"	340	"	[swect oil.
9	3	" 1	"	356	"	Modes of Applifiva Heat.
10	4	"1 1	"	365	"	a. Naked firc.
11	5	" 1	"	378	"	b. Hollow firnace or mufle.
12	(" 1	"	381	"	c. Immersion in melted solder.

134 Lead 4 Tin 1 Bismuth 320 Fahr. d. Melted solder or metal

14	3	"	3	"	1	"	310		poured on. c. ITeated iron, not tin'd.
15	2	"	2	"	1	"	292	"	f. Ileated copper tool, tinned.
16	1	"	1	"	1	"	254	"	7. Blow Pipe flame.
17	2	"	1	'	2	"	236	"	h. Flame alone, generally alchohol.
18	3	"	5	'	2	"	202	"	i. Stream of heated nir.

Cheap Mosquito Bar.- Drop a small quantity of petroleum or kerosene oil on a piece of cotton, squeeze out the excess as much as possible, then rub the cotton over the face, hands, \&c., and these restiferous insects. will not alight where the scent has been left.

MACIINISTS, EXGINEERS', \&C., RECEIPTS.

 Soldens 32 kinds,-1. Plumbers' solder.-Lead, 2 pind part. 2. Tinmen's solder.-Lead, 1 nart; tin-Lcad, 2 parts; tin, 1 -Tin, 1 part ; lead, 1 to 2 parts, 4. Peicter, 1 part. Zinc oolder. 6. Teuterers' soft part, 5 Speller solder.-Evus solder.-Lead, 1 part ; other.-13ismuth, 1 .ier.-bismuth, 2 ; lead 4 parts copper and zinc. -Tin, 2 parts ; lend lead, 1 ; tin, 2 parts. 8. inoth 3 parts, 7. An1 part. 10. Solder for Part. 9. Glazier's Solder 1 nother pewter solder. lellow Solder for Jrass opper.-Copper, 10 parts Tin, 3 parts; leal, tin, 1 lb. 12. Brastass or Copper.-Cópp parts ; zinc, 0 parts. 11. 13. Brass Solder Yellder. Copper, 61.25, 33 Ibs.; zlnc, 20 lbs.; parts. 14. Brass solder and casily fusible, parts ; zinc 38.75 parts. zine, 27.99 parts. 15 . White.-Copper, 57.41 popper, 45 ; zluc, 55 lead, 1 part. When the Another Solder for Copprs; tin, 14.60 parts; thin, use a tinned coppe copper is thick, herst Copper.-Tin, 2 parts; flar. The same solder tool. Use mariate or by a naked fire ; if pieces are thick, lieat by will do for iron, cast iron or of einc, as a Llack Solder:-Copper a naked fire, or immerson, or sleel; if the brass, 20 Jbs. ; tin, $61 \mathrm{lbs} 2 ;$ zinc, 3 ; tin, 2 parts. 17 the solder. 16. or Lamp.-Fluoric acid. ; zinc, 1 lb . 18. Cold B. 17. Another.-Sheet bottle. Put a challe mark oz.; oxy mariatic acid, 1 azing without Fire mixture will teep about 6 each side where you want 1 mix in a lead tithout Fire or Lampout 6 months in one bottle want to braze. This filings, 1 oz. ; spirits salts 1 ozh, \ddagger oz. ; quicksilver, Cold Solderin!n lion to Steel or either salts, 1 oz. ; all mired together, $\ddagger 0 z$; block tin zinc, $7 \frac{1}{2}$ parts. When to Brass.-Tin, 3 parts ; metals first named to applied in a molten state copper, 301 parts; lead, 5 : tin, 3 parts is ach other. 21. Plumbers' it will firmly unito raiscd Britannia Warc.-Tin inss composition. Solder.-Bismuth, 1 ; 81bs. 23. IIardening for Britan, 100 lbs, ; hardening, 8 White Solderfor other ingredients). Copper 2 linia.-(To be mixed se los.; antimony, cast Britannia Ware 1 per, 2 lbs. ; tin, 1 lb . 24 separately from tho lin, 1 ; lead, 3 ; bisnin, 8 lbs. ; lead, 5 lbe 24 Best soft solder for sland IIammering.-Brass, 3 parts. 26. Soldev. 25. Bismulh solder. 33 parts ; add a little Brass, 78.26 parts ; zinc, 17. for Brass that 2 oill 27 Solder for Stec cllloride of potassiom to 17.41 parts ; silver, 4. 2 parts. Níelt all to Joints. - Silrer, 19 parts to Jour borax for a flax. part. Melt together 20 28. Mard Solder, copper, 1 part ; brass, 1 part ; with borar. 20. Solder for Brass-Copper, 2 parts; zlnc, 1 lart ; tin, I part. 30 . Solder for Copper.-Copper, 8 parts ; zine. Solder for platina melt all together well, and Brass, 6 parts ; zinc, 1 best solder for iron.-Gold with borax. and pour out to cool. 31. N. B. In soldering good tough brass with a Solder for Iron.-The cicin and smooth, the surfaces to be joined bornx.fux, the solder is then then covered with sal by a tinued soldering applied, being melted amoninc, resin or other SOLDERING ving iron. cease to ring HLULD.-Take 2 oz m
BLack Y; add $\frac{1}{2}$ teaspoonful of sal-ammoniac add zinc till bubbles Whack, t lb arnish For Coal Brecremaniac. ssphaltumi and resin in. ; spirits of turpentine 1 am, 1 lb.; lampnith linseed oil, othser. Apply with a brush to form a paste, and mis lamp-black Apply with a brush. (For Diameters. \&c. of Circles see Tables.)

Tis Caxa-Size of Sheet, for from 1 to 100 Gallons. For 1 gullear, 7 by 20 inches. For 25 gallons, 30 by 56 inches

This iadiudes all the laps, seams, \&c., which will be found sufficientlf correct for all practical purposes.

Patexit Lerricating Oil.-Water, 1 gal.; clean tallow, 3 lbs ; palun oil, 10 Ibs.; common soda, $\frac{1}{2} \mathrm{lb}$. Heat the mixture to about 210° Fabs for use.

Rign of the the end chornc length i Now dr: line alo the four do the s ret the a designate ramis or Elbont sess a for rays, the pipe who. the requis Bro NzI scoutr it fr acid until thright, s latter dipp but the N Bind it ver minutes in posit a lay rood dust, nell's red b
To Sepat poured fron
tion is comn granulated nitric acid a can be reduc remains as a inc america

MACHINISTS, ENGINEERS', \&C., RECEIPTS. . 28
 the end as exhibited above above diagram, drawing semicircles at chomn extending along the small figuren draven horizontal lines as length into 16 equal parts by drawing 15 Divide the circumference or Now draw a line from h to k and d : dirertlcal lines as in diagram. line along the lettors $v r p$; for the top atly opposite draw anothcr the fourth line from the bottom, and sweep set the compasses on to the saine at the corner. On space sweep two of the spaces; and ret the compasses so as to intersect in the the two remaining sweeps tesigmated by the small cross marks. The three corners of the spaces Elbors laps, theso must be added. 1 drawing does not include sess a form resembling the undivides of h.oors.-Eave troughis josmays, therefore by describing undided half of a pipo divided lengthpipe whose size is equal to the size of tha one end of the elbow of a the requisite pattern; extra allowe of tho gutter at the top, yout have
Broxzing Gas Firtings. - Boil the wo mado for bead.
scour it frce from all grease or old the worls in a strong ley, and acid until quite clean, and then dip it it bright, swilling it in the wan dip it into strong nitric acid to malic latter dipping in strong acid requires to bately after. - Sometimes this int the work must always be rinsed inmeated two or threc times, minutes in loosely round with irons wire and lately after dipping. posit a layer water you have used for and let it stand for a few rood dust, and copper on the work. Agrin willing. This will donell's red bronze. To Sprarate Gold From Sur blacklead and Bafpoured from a height into a vessel of Tho alloy is to bo melted and tion is communicated. By this mel of cold water, to which rotary mond granulated condition. The metallic the alloy is reduced to a fincly nitric acid and gently heated. Nitrate of sunce is then treated with can be reduced by any of the . Nitrate of silver is produced, which remains as a black mud, which murding methods; while metallic gold tifl American.
To Tir Copper Stev Diseres, \&c.-Wash the surface of the arti-
cle to be tinned with sulphuric acia, and ruo the surface weli, Bo as to have it smooth and free of blackness caused by the acid; then sprinkle calciped and fincly pulverized sal-ammoniac upon tho sursace, holding it over a fire, when it will be sufficiently hot to melt a har of solder which is to be rubbed over the suriace. Any copper dish or vessel may be tinned in this way.
Paricer's Corper Hardentigg process consists in fintroducing an admixture of a minute quantity of phosphorus into thie metal. ,

To Stmine out Common Flaring Vessels, Cones, \&c.- Fiy. 2.Form a right angled paralellogram HKDV,HK K equal to the circumfereuce of the wide end of the dlagram, and $N P$ cqual to its circumference at the indicated points, $K D$ being the elevation; draw the right lines $H N R$ and $K P R$; from R as a basis lay out arcs from H to K and N P calculating proper allowance for backs. To Strine OUT A Cone.-Form a paralellogram as in the diagram; the space from H to K equivalent to tho diameter of the cone $; K$ to D equiralent to the elevation; next draw lines from \mathbf{H} and K to the centro on the surot to melt a Any copper out arcs from

To Sthike m; the spaco to D equirato the centre
of the line D V, and from this as a base or centre describe a segment of a circle from H to K .
Flux for Weluing Copper.-Boracie acid, 2 parts ; pliosphato of soda, 1 part; mix. This welding powder should be strewn over tho surface of copper at a red heat; the pieces should then be heated up to a full cherry red, or yellow heat, and brought immediately undor the hammer. Heat the copper at a flame, or gas jet, where it will not touch chaicoal or solid carbon.

'To Strime out a Cmedrab Elibow.- Fige. 3 and 4.-Lay out two curred lines $F I$ and G D to suit the desired length of elbois; the space from F to G equivalent to the intended diameter of the pipe; lay of the circles F D, G I into as many divisions as youdesire; construct the paralellogram, Fig.' 4 , the length equivalent to the diameter of the pipe you are making, the widthe equal to C B in Fig. 3; lay off a segment of a circle equivalent in diameter to the pipe, touching the point H; divide the segnent into any desired number of equal divisions; draw lines across the dots parallel to V V ; open the compasses 1, times the diameter of the plpe ${ }^{\text {and }}$ and describe the line from V to the intersection of the lines $\mathbf{P} \mathbf{P}$ and $R \mathbf{R}$, draw curvilinear lincs io the crossings of the other lines to the point H, this will furnish one side of a section.

To Strike out Ofals, Oval Flaring Vesseles, \&c.-Fiy. b.Construct the paralellogram $\mathrm{HKDV} \mathbf{H K}$ equivalent to the long and E:D to correspond to the ehort diameter; divide it into four equal parts by drawing the lines $\mathbf{P} R$ and $N \mathbb{N}$; mark the point L one-tjird the distance from N to O ; then describe the arcs I SI, I S I; and from the line $N \mathbb{N}$ describe the segment I N I. To describe an egg-shaned oral with ends of unequal magnitude, construct the fruetrum of a cone that will embrace the oval and proceed as in frig. 5. To Striki

out an oval Flaring Vessel in four subdivisions, find the circumferenco of the arcs I S I and I N I for the bottom of the pleces; form a paralollogram the length of which shall be equal to the circumferenco of the top of either division, and operate as in Fig. 2. The same allowance must be accorded for flare on the side parts as on the ends, allowing for burre and locks.

Gold Lacquer for Tin-Transparent, All Colors.-Alcohol in a flask, 1 pt. ; add gum-shcllac, 2 ozs.; turmeric, $10 z$. ; red sand. ers, $1 \frac{1}{2}$ ozs. Sct the flask in a warm place, shake frequently for 12 hours or more, then strain of the liquor, rinse the bottle, and return it, corking tightly for use. When this varnish is used, it mist be spplicd to the work freely and flowing, and the articles should bo lot when applied. One or more coats may be laid on, as the color is required more or less light or deep. If any of it should become thick from evaporation, at any time, thin it with alcohol. And by tho following modifications, all the varions colors are obtained: 1. RoseColor. Proceed as above, substituting 1 oz . of finely ground beat lake in place of the turmeric. 2 . Blue. The blue is made by substituting pnlverized Prussian blue, 1 oz., in place of the turmeric. 3. Purple. Add a littlo of the blue to the first. 4. Green. Add a littlo of the rose to the first. Cbacked Stoves.--Equal parts of wood ashes and salt; mix to a paste with water ; with this fill the cracian.
breadt
line \mathbf{H}
make for the on the scribe lowanc
JAPA spirits spirits Japa page 2 with oi being 1 For Sc is not 1 have a flower mine m solved pure'se er appl pink for tothes is the re 4. Oran bright o misture color, mived

To Describe a Heart.-Fig. 6.-Draw the straight line H DK equal to the breadth of the
 heart; lay off the segments HD and D K, then with the dividers extended from \mathbf{H} to K, describe the arcs $\mathbf{H K}$ and K V.

- To find the circumference of a circle, the diameter being known, multiply the diameter by 3.1416, and to find the diameter of a circle, the circamferenco being known, divide the circumference by 3.1416.

To Strike out Oval Wash Boiler Covers.Fig. 7.-Describe the line \mathbf{V} R equal in extension to half the length of the boiler; from the central point D lay off the circle MRN, equivalent in diameter to the breadth of the boiler ontside the wire around the rim; describe the line H K so as to crose the line $V R$ in the manner shown in diagram; make V S three-eighthy of an inch high more or less as you desire it for the pitch of the cover; place the comer of the measuring square on the line $H K$, laying the flat part tonching the point 8 ; then describe the lines I N; H $8 ; 8 \mathrm{~K}$ and K M, which, with the proper allowance for locirs and edges, completes the cover.
JAPANNERs' GoLd SIze. -Gum ammoniac, 1 lb. ; boiled oil, 8 ozs.; spirits turpentine, 12 ozs. Melt the gum, then add the oil, and lastly spirits turpentine.
JapanNing. - Nearly 30 formula for varnishes will be found on rage 283, among them Japanners Copal Varmish, and this, together with oil, alcohol, shellac, or any other transparent varnish, admits of being mixed with coloring matter to produce different shades. 1. For Scarlet. Ground vermilion may be used, but being so glaring it Is not benutiful unless covered over with rose-pink, or lake, which hare a good effect when thus used. 2. Bright Crimson. Use saffflower or Indian lake dissolved in alcohol; in place of this lake carmine may be used, as it is more common. 3. Yellow. Turmeric dissolved in splrits of wine, strained throngh a cloth, and mixed with puro seedlac varnish, makes a good yellow japan; saffron will answcr applled in the same way. and chrome yellow is excellent. Dutch pinls forms a cheap yellow japan ground. If dragon's blood be added to thy yellow japan, a most beautiful and rich salino:-colored varnish is tho result, varied according to the quantity of the ingredient used. 4. Orange. Use yellow mixed with vermilion or carmine,' just as a bright or inferior color is desired. S. Purple. Add to the varnish a misture of lake and Prussian blue, or carmine, or for an inferior color, vermilion. 6. Blue. Use lright Prussian blue; it may bo mised with shellac varnish and brought to a polishiug stato by 5 or 0
coats of varnish of seedlac; mixwith the purest varnish when a light blue is desired. 7. Black. Prussian blue 1 oz., asphaltum 2 ozs ., spirits turpentine 1 pint; molt the asphaltum in the turpentine, rub up the blue with a little of it, mix and strnin; then add the whole to 2 pints of the varnish. 8. Green. Mix equal parts of the bluc and yellow together, then mix with the varnish until the color mifts the fancy. 9. Pink. Mix a little of the blue to more in quantity of tho red and tiken add to the varnish till it suits. 10. Whtie. One whito ground is made by the following composition: white flake or lend washed over and ground up with a gixtli of its weight of starch, then dried and mixed with the finiest gum, ground up in parts of 1 oz. gum to $\frac{1}{2}$ oz. of rectified turpentine mired and ground well together. This is to be finely laid on the articie to be fapanned, dried and then varnished with 5 or 6 coats of the following: 2 oxs of the whitest seed-lac to 3 ozs. of gumsanime reduced to s fine powder and dissolved in 1 qt, alcohol. For a cofter varnioh than thls, alitile turpentine should be added and less of the gam.

To Strike out Can Tops and Bevel Covers for Vessels.Fig. 8.-Describe the circle K K K for the size of the can or cover; allow the space betwcen K K K and D D D for edges to the same, and the distance loetween V V V and D J) D for the flare; spen the

$$
\begin{aligned}
& \text { div } \\
& \text { equ } \\
& \text { loc } \\
& \text { the } \\
& \text { of } \\
& \text { vid }
\end{aligned}
$$

fourths quarter: ter of th for lock DIFFI sary on fourth fi Your po the mide and to fil Work oft you are 1 When, h you had ineans yo in filling t
To Cry
o2n., acco tin hot 0 wash off demar var Compre Stroke. 3 tous, 23
ren a light um 2 ozs. ntine, rub tho whole θ blue and CNuits tho jity of the One white ke or lend arch, then 8 of 1 oz . together. and then he whitest and dis. le turpen-

2SSELS.or cover; he same, span the
rachinists, twgineers', \&C., necerits. 528 dividers from IR to K and divide the curvilinear line $\nabla \mathrm{V} V$ into six locks parallel to $H \mathbf{H}$. out the pieces $\mathbf{H} \mathbf{H} \mathbf{H}, \mathrm{D} D \mathrm{D}$ leaving edges for the curvilinear ling HH H equat in magnitun head or top, describe viders two-thifrds of the your can topsonge-third pitch circumference

tro-thirds of

fourths of the diamor one-quarter pitch, span the dividers threoquarters of it. For one-half pitch, lay ont a circle and use threeter of the can and use half of it. Remem the circle twice the diamefor locks only. fary on commencing, to squeging. -To file a surface truc, it is necesfourth fingers and palm of yous the filo tightly between tho thind and our position in filing should hand until you become used to it the middle of your right foot fifteen left face to your work, with nad to file your work true or fifteen inches behind your left heel : Tork often, as by this means square, it is necessary to reverse your You are filing, and see while foling are enabled to see the whole surface When, however, your work is so whether you are filing true or not you had better fllo first to the se hor y that yon cannot reverso it ineans you can plainly soe the file mand then to the left, as by this file maxks, and this again assists you To Cryetallize Tin.-Sulphuric acid, 4 ozs.; soft mater, 2 to 3 tin hot over ag to strengti of the acid; salt 19 ozs , Mix. IIeat the Wash off directly with clen with a sponge apply tho mixture, then demar varnish Compression of an India-Rubber Buffer of Threr Inches 3 tons, 24 inches, 1.3 inches. 13 tons, 19 inches. 2 tous, 2 inches tons, 2 s inches. E tons, 23 inches. 13 inches. 2 tons, 2 inches.

To Strike a Set of Patterns for the Envelope of a Cone. Fig. 9.-Lay off the lines $\mathbf{H} N$ and $K N$; the space from H to K corres-
 pording to the circumferenco of the coue at the largest end; II N equal to the sloping height; from N as a basis doacribe the segments $H K, D D$, V V, RR, and P P; each of the parts between these segments will compose a section of the covering if allowance be mado for the laps, To lay off the frustrum of a cone; see Fig. 2. 70 find the Area of a Circle, multiply the circumference by one-fourth the diaineter. To find the Area of a Section of a Circle, multiply the length of the are by half the length of the radins.

To Strike out Straner BUCKET AND COEFEE POT LIPs (Eastern Style), Fig. 10.-Describe the triangle H K D, H K equiralent to the slanting height; from Dlay out the section HK ;

describe sections of circles from K to D and H to D according to the dimensions of the vessel. In coffee pots, the section extending from H to K should be regulated according to tho style in which it is to be constructed. In describing Tea-kettle and Tea-fot Spouts, proceed as in Figs. 1 and 4, making the breadth of the paralellogram commensurate or equal to the angle you desiro to cut, and the length equiralent to the circumference of the spout.-

To Strike out Lips For Measures, \&c.-Lay out a circle the dimensions of the top of the vessel; describe a line through the centre of the circle and divide it into four equal sections; span the compasses on the line one quarter the distance from the end, and describe a semi-circle touching the opposite end of the line; pass the compasses the breadth of the lip desired, and lay out an arc until it approaches the semi-circle, which will allow the desired lip. The anmexed Sector is appended to enable mechanics to obtain angles when required:

AdJUSIING Locomotive Valtes. - A correspondent of tho Scientifi American gives the following method of setting slide valves of locomotives :-Make a steel tram, about 51, in. long, with two points at the right angles with the straight bar, one point to be $2{ }^{\circ}$ in. in length, and the other 13 in. Both points are to be sharp. Talie a centro punch, and make a centre-mark on the top of the steam-chest. packing-box; then take a strip of tin and put it in the steam-port. Draw the valves slowly back until jou can just move the tin between the edge of the valves and the edge of the steam-port (which is now closed except as to the thickness of the strips of tin.) Tako the tram, place the short point in the centre-mark on the packing-box; then make a Beratch on the valve stem, and go through with the same process with the opposite steam-port. Now rou have marks on the valve-stem just where the valve begins toopen. The , valve-stem must next be got into radius (as wo toma it), which is to show the proper length for the valve-stem. It is done thus: Corer the steam-ports equally with the valve, put the centre of tho rock shaft and the rocker pin at a right angle with the bore of the cylinder: and when the valve-stem is adjusted to this, it is of the proper length and should not be altered. To adjust the ralves in forward motion, hook the reverse lever in the forward notch, talie thic dead points for centres, and alter the cccentrie rods until tive spaces are equal on the valve-stem, which is determined by tho ure of the tram. Take the forward centres and giro 1-10th. lead to tho ralve, for either passenger or freight engines. By adopting this plan the engine will reverse her action promptly. Hook the reverse lever in the back motion, and repeat as above. If the job is to be done quickly and the eccentrics are in the proper position, it can be done by the travel, in this way : Move the engine slowly forward with steam, take the tram, and trace the movement of the valve on the valve-stem nutil the stem stops; then trace the return movement nutil that stops. Take a pair of dividers aud measure cach distance from the valve mark on tho stem to the extreme of the travel line (or whicre the valve stopped). Alter cecentric rods until the spaces are equal. By these means you do not require to tako the steam chest corers off.

532 fACTS FOR GAS COMPANIES AND CONSUMERS.

Facts for Gas Companies and Conscyers.-The following different volumes of gas have been obtained from various hinds of coal Caunel coal, 15,000 cubic ft. Wigan caunel, 15,426; Boghead cangel, 13,334; Cape Breton "Cow Bay," etc., 9,500 ; Pictou and Sidney, 8000; English, mean, 11,000; Newcastle from 9,500 to 10,000; Pittaburg, 9,520 , Scotch, from 10,300 to 15,000; Walleend, 12,000, Virginia, 8,560 ; Western, 9,500 . Pine wood will evolve 11,000 cubic ft . per ton. Rosin 15,600. Oil and grease 23,000 cuble ft. Lach retort should produce about 600 cubje ft. of gas in 5 hours, with a charge of $1 \frac{1}{2}$ cwt. of coal, or 2800 cubic feet in 24 hours One ton of coal should produce about 9000 cubic ft of gas, 1 chaldron of coke and about 11 gals. of tar, and 9 of ammoniacal liquor, Diy perifers require 1 bush. of lime to 10,000 cubic ft . of gas, and wet purifiers an admixture of water, 48 bushels, and lime, 1 buslel for each 10,000 cubic f t. of gas. One per cent. of carbonic acid in gas diminishes its illuminating power oue-tenth. Defective burners should be changed without delay, as all smoking, roaring, irregular, ragged, and pronged flames caused a great waste of gas with deficient light; a smoky flame indicates loss of gas as woli as loss of light. One good gas light is better economy than a number of small ones. The standard of gas burning is a 15 hole Argand lamp, interior diameter 44 ins., chimney 7 ins, bigh, consuming 5 cubic ft. per hour, evolving a light from common coal gas of froin 10 to 12 sperm candles of 6 to the pound, with cannel coal from 20 to 24 candles, and with Pennsylvania coal from 14 to 16 candles. The advautago gained by employing a 30 -hole argand instead of the standard is a greater production of light, the increase being from 20 to 30 per cent., for if the standard consumes 5 ft . per hour, and evolves the light of 12 candles, the $30-$ hole burner, consuming 7 ft . per hour, will give the light of 22 candles. An Argand burner with two chimneys, oue within the other, with air space between in which the alr becomes heated during its downward movement towards the flame, for an equal amoint of light, causes a saving of gas equal to 33 per cent., and for an equal consumption of gas, the gain in light is equal at 62 per cent.

Burners are made so as to produce all shapes of flane, and are of different materials, lava, iron, steel, porcelain, steatite, brass, platinum lined, etc. The bore from which the flame of the gas issues should be arranged, as regards its width, for the quality of the gas consumed, cannel coal gas for instance, being provided with narrower openings than those for common coal gas. We have single jet burners, double jet burners, bat's wing, fishtail, cockspur, and other varietics; also Argand burners of various sizes, bored with 6 to 30 or 48 holes, or as in the Dumas burner, a slit instead of a hole. The best gas burners are made of lava, and the kind known a3 fishtail burners consume from 4 to 5 ft . of common coal gas per hour; large burners require from 6 to 10 cubic ft. per hour, in proportion to size ; sheltered lights consume about 4 cubic ft. per hour, ont door lights about 5 cubic ft.; street lamps in cities consume from 3 to 5 cubic ft. per hour, according to size of burner used. A 13 candle-gas, consumed in an Argand burner, evolves anilluminating power of 13 candles; if burnt in a batwing or fish-tail burner the same gas will produce only the illuminating power of 9 candles. The deficiency of light is caused by au admixture of atmosplieric air mingling largely with the thin jcts of gas, increasing the heat, but dissipating the light,
and imparting a blne tinge to the flame. Bat-wing burners are the best adapted for all out-door lights. Whenever economy in gas and good light are main objects, the larger kind of bat-wing burners are preferable; a bat-wing burner consuming $3 \frac{1}{2} \mathrm{ft}$. of gas per hour yields only the light of 6 candles, whereas a burner consuming 6 ft . per hour evolves a light equal to $15 \frac{1}{2}$ candies, the pressure being 4 loths of an inch at the point of ignition. Nearly thesame results are obtained by the use of the fishtail bumer. The carcel bumer; with a perforated dise at the lower part, and two orifices at the upper, where the flanes unite and spread into one, each side of this united flame being supported by two curved levers or arms, is raid to be equal if not superior to the Argand or fishtail burners in the power of evolving a soft, steady, mellow light.

Loss to the Diffusion of Gas Light by Glass Globeb. Clear glass, 12 per cent.; glass globe engraved with oruaments, 24 per cent, ; hall ground globe, 35 per cent. ; globe obscured all over, 40 per cent.; opal globe, 60 per cent.; painted opal globe, 64 per cent. No glasses of any kind are ever used with the bat-wing bnrner owing to the widely extended flame, but for fish-tail bumers they are in common use. Giohes as usually made, are of fanlty construction and canse needless obscurity and a great loss of light. The Trudean globe, invented and patented by Mr. Trudeau, of Ottawa, Canada, is coustrncted on correct scientific principles, with spacious and roomy apertures, which tend to promote a low temperature in the glass, thus preventing fracture from the heat, and the accumndation of smoke and dust. The burner being properly adjusted, the height of the globe being low, and the openings wide, the gas is easily ignited, aud burns at an exceedingly low pressure, with a clear, steady flame, without flickering, and diffuses a flood of soft, brilliant light, which for quantity and quality is really surprising to onc accustomed to the old fasl:ioned globes. If 1 per cent. of air is mixed with gas, the illuminating power is diminished about 6 per cent.; if one-fifth of air be mixed with fourfifths of gas, no servicable light can be derived from the mixture. The greatest ligit and least heat is produced when the gas is not exposed to too great a current of outside air, and the most heat and least light is evolved by permeating the gas largely with external nir; in every case an insufficiency of air supply will cause smoke and obscurity of light with any kind of burner. Large bumers under a low pressure prodnce a greater amount of light than small burners under a high pressure, each kind consuming equal quantities of gas in a given time, and a greater volume of light is emitted from a large burner than from two small ones consuming the same quantity of gas as the one large. All burners, no matter what the size may be, require a certain quantity of gas to produce the largest amount of light, which is as much lost throngh the use of too little gas as by the uso of a surplus.
Explosion of Gas.-Seven parts of air and one of gas is considered to be the most dangerous compound, but muelh depends on the purity, \&c., of the gas. Compounds of less than 3 of air to 1 of gas, or above 11 of air to 1 of gas, will not explode. Gas unmixed with oxygen or atmospheric air, extinguishes flame, and while in this state cannot explode. The terrific gas explosion during the summer of 1870 in Cincinuati, was caused by a lighted pipe belonging to a laborer employed on the top of the gas holder; the heat generated by the flash

534 FACTS FOR GAS COMPANIES AND CONSUMERS.

was nearly 2,5000 , or about the temperature of melted steel; ons party at the distance of half a mile from the explosion compared his experience to the inhalation of a stream of hot air from a furnace; the time occupied by the explosion was about the 3rd part of a sezond. An explosive mixture of gas, while under pressure, will only ignite at the exteriol orifice of the pipe or holder; but if the pressture ts remored, the flame penetrates to the interior, and explosion ensues. On perceiving the odor of escaping gas, instant action shonld be taken to detect and stop the leak, but there is great temerity in applying a light. in such cases; the best way is to turn off the gas for 3 or 4 hours, and allow it full time to dissipate into the open air through the doors, windows, \&c., before nsing flame in any form. It a light is required at the open end of a pipe while making a new connection, gas-fitters should in every case turn the outlet tap off, or disconnect the outlet union of the meter, iu order to avoid the hazard of exploding the meter.

Pressure.-According to Mr. Haswell, "The pressure with which gas is forced through plpes should seldom exeeed $2 \frac{1}{2}$ inches at the works, or the leakage, will exceed the advantages to be obtained from increased pressure. When pipes are laid at an inclination elther above or below the horizon, a correction will have to be made in estimating the supply, by adding or deducting 1-100 of an inch from the initial pressure for every foot of rise or fall in the length of the pipe. By experiment 30,000 cubic feet of gas, sp. gr. 42 were discharged in an hour through 6 linches in diameter, and 22.5 feet in length, and 852 cubic fect, specific gravity -398 were discharged under a head of 3 ins. of water, through a main 4 ins . in diam. and 6 miles in length. Loss of volume of discharge by friction, in a pipe 6 ins. diam. and 1 mile in length, is cstimated at 95 per cent. In distilling 56 lbs. of coal the volume of gas produced in cubic feet when the distillation was effected in 3 hours was 41.3 , in 7 hours 37.5 , in 20 hours 33.5 , and in 25 hours 31.7.". The expiration of the breath from the lungs in the gentlest manner, is about equal to the proper pressure for the most favorable consumption of gas, while a slight blowing force is equal to the highest pressure in the mains of gas companies; tho first cxample is about equivalent to two or three-tenths pressurc, and the sacond to from 3 to 5 ins. pressure.

The orifices of gas burners should be well proportioned, not too small, to require increased pressure to expel tho gas, thns seriously curtailing the light, as shown by the following experiments with 4 Argands, all of one size, each having 15 holes, but the orifice of each gradnated so that only 5 cubic feet of gas per hour conld pass under the respective pressures here intimated:-

Gas issuing with Pressure in tenthis of inches.
1-10th yielded the light of 12 candles.

On the other hand, if the orifice of an Argand burner is too large, the flame will smoke offensively and thus entail waste and loss. Grado the size of the orifice by the quality of the gas to be consumed; for poor gas the holes may be large; tor good gas, smaller holes may bo used. In every caso be careful to effect a correct adjustment in order to obtain the best results.

No.
lamp

FACTS FOR GAS COMPANIES AND CONSUMERS. 535
ol; 0118 mpared urnace; sezond. gilite at emored, On peron to de. g a light uris, and ors, winuired at is-fitters le outlet the me-
th which es at the ned from on either io in estifrom the the pipe. ischarged in length, er a head miles in pe 6 ins. distilling When the 20 hours from the essure for ing force nies; tho surc, and 1, not too seriously ts with 4 0 of each ass under
too large, s. Grado med; for 3 may bo in order

Volumes of Gas Dischamaed per Hour Under a Preasuke of haly ax Lxck of Water-Specific Gravity or Gas $\mathbf{4} 2$.

Diam. of opening.	Volume.		V		Volume.		
Ins. $1 / 2$	Cuble 80 321	$\text { Ing. }_{1 / 6}$	$\begin{array}{r} 7 \\ 12 \end{array}$	$1 / 4,$	$\begin{aligned} & 1625 \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Ins. } \\ & 11 / 2 \\ & 8 . \end{aligned}$	$40,150$

diameter and Lengtif of Gas Pipes to Thangmit given Volumie of Gas to Branch Pipes. -Dr. Üre.

Volume p. hour.	Diameter.	Length.	p.hour.	Diameter.	Length.	p. hour.	eter.	Leugth
Cub. ft.	Ins.	Feot.	Cub. ft .	Ins.	Feet.	Cub. ft.	Ing.	Feet.
50	4.	100	1,000	3.16	1.000	2,000	7.	6,000
250	1.	200	1,500	3.87	1,000	6,000	7.75	1,000
600	1.97	600	2,000	6.32	2,000	6,000	9.21	2,000
700	2.65	1000	2,000	6.33	4,000	8,000	8.95	1,000.

To Determine tife Size of Gas Pipe Requined-London Rulz.For 200 lighte, 2 Inch tube; 120 lights $11 / 2$ Inch; 70 lights, $11 / 4$ finch; 50 lights, 1 inch; 25 lights, $2 / 4$ inch; 12 lights, $1 / 3$ Inch; 6 IIghts, $8 / 8$ hich; 4 IIghts, $1 / 4$ inch.

Diameter and Extrexe Ienoth of Tubino and Number of BurnrRs Allowed-AyEDican Standatd.

Diam. of tube.	$\left\|\begin{array}{r} \text { Feot } \\ \text { in } \\ \text { length } \end{array}\right\|$	No. of buriters.	Cspacity of met'rs.	No. of burl. cra.	of tub Ing.	L'ngtb III feet.	$\left\|\begin{array}{c} \text { No. of } \\ \text { burn- } \\ \text { ers. } \end{array}\right\|$	$\left\|\begin{array}{c} \text { Capac- } \\ \text { ity of } \\ \text { mot're } \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { No. of } \\ & \text { burn- } \\ & \text { - ers. } \end{aligned}\right.$
1/4	6	1	3 lighte.	6	1	70	35	45 litts.	90
9	20	3		10	$11 / 4$	100	60	60 \%	120
$1 / 7$	30	6	10	20	11/2	150	100	100 '6	200
b/8	40	12	20	40	2	203	200	
\%	60	20	30	60					

Dianeter and Lengtif of Pipe from the Main, togetmer witit the Nusber of Liohts allowed is the Gas Service FOR LAMPS.

No. of lamps.	```Dis- tance from main in feet.```	Diameter of pipe.	No. of lamps.	$\left\lvert\, \begin{gathered} \text { Dis } \\ \text { tance } \\ \text { from } \\ \text { main in } \\ \text { feet. } \end{gathered}\right.$	Dlameter of pipo.	No. of lamps.	Distance from main in ft .	Dlameter of plpe.
2 4 6	40 40 60	$8 / 6$ $1 / 7$ $8 / 8$	10 15 20	100 130 150	$\begin{aligned} & 1 / 4 / 4 \\ & 1^{1 / 4} \end{aligned}$	25	180 200	(19/8

In experiments conducted by Mr. Pattinson, analytical chemist, Newcastle, one burner he tested gave light equivalent to $17 \frac{3}{4}$ candles; while, with the same nuantity of gas, some bumers gave only 3 胥, others $5 \frac{1}{2}, 6,8$, and 94 cindle light.

As to the quality of illuminating gas, the English law enacts that "such gas shall, with regpect to its purity, ie so far free from ainmonia and sulphuretted hydrogen that it shall not discolor either turmeric paper, or paper imbued with acetate or carbonate of lead, wheu these testis are exposed to a current of gas, issuing for oue min-

536 facts for gas companies and consumers.

ute under a peesure of five-tenths of an inch of water, and shall not contain mere than 20 grains of sulphur in any form in 100 cubic ft . of gas." The following enumeration shows the illuminating power of the common mased in rarious cities and towns in Great Britain, as determined br Prof. Frankland, in accordance with the Goveinment standand: Landont, 12 candles, Liverpool, 22, Manchester, 22, Car lisle, 16, Einsingham, 15, Edinburgh, 28, Glasgow, 28, Hawick, 30 Aberdeen, $2 \mathbf{y}$, liverness, 25 , Greenock, 28.5, Yaisley, 20.3. In Berlin, it is 15.5, Paris, 123, Vienna, 9; and in the United States it varies from 12 to 15 candles, computing by the English standard. Gas manufartured frome cannel coal emits a light the standard of which is equal to 99 eandies. 1 his gas, in London, is usually supplied to the public buitlimer and the residences of the wealthy. Loudon has now (1876) 3,009 miles of gas mains, 54,000 street lamps, which burn $3,000,000$ embre feet of gas each night; on the lighting of the lampa and other lights the deoxydation of the atmosphere caused therely is equiraleut to the addition of 500,000 inhabitants to the population.

The illmainating value of gas is enormously enlianced by causing it, after it luas passed through the meter, to enter a Carbonizer or Carbureter, containing gasoline, or other light oil, where it becomes saturated and enriched by the absorption of the carbonaceous fumes and vapore senerated from the oil previous to emission into the serrice pipes of the building. The apparatus ought to be of sufficieut size, and abould, in its construction and location, combine every a vailable arpliandee to ensure safety, strength, simplicity, and ease of managemeth, while presenting the largest possible surface for the proper erainuration of its contents. The economy of this carbureted gas is suct that a two-foot barner emits the light of five feet of common gas, wiste the direct saving effected on the consumption of the latter, sariest secording to the quality of the gas used, from 33 to 43 per cent. Hydrogen, an essential component of coal gas, is the lightest mnturtaice in natore, being 15 times lighter than air, and 12,000 times lighter than water, and requires for perfect combustion, 8 times its rreaghte or half its volume of oxygen ; in its passage through the carbureter abore described, it is simply the incdium or vehicle to transmit the particles of raporized carbon from the geverator to the burner, wberne cn ignition it attracts to Itself a sufficient portion of the surrounding oxygen, etc., to effect illumination. When 12 lights with 5 foot bumers are required to furnish the desired light from common 6 lights, with 3 foot burners and carbureted gas, is found to te all suffient for the same purpose.

Gasolive beigs almost a pure carbon, may be transmitted in the vaporized form in eombination with the coal gas, direct from the gas works to the ensumer. The Superintendent of the West Pittsburg, Pa., Gas Mouta, reports a product of 603,600 cubic fect of 20 candle gas from 70 bles. benzine, 72 gravity, costing $\$ 1.75$ per bbl., being a result of atee feet per bbl., at a cost, includiug material, labor, furl. etc., of alonit se cents per 1000 cubic feet. Crude petrole us as heary oil from the refineries, including gasoline, benzi n, ., were all tested and wsed with the greatest ease, the vapo $\quad r$ carbonizing process being prodaced by means of superheat uther steam masing through a eoil of pipe inside a tank or still a ining the oil. Proportioms meti were: 14 candle gas, 50 per cent. oil bat, 30 per cent. air, $\mathbf{1 5}$ per It is worthy of note that the unusually large per-

facts for gas companies and consumers. 537

all not ft. of rer of in, as nment , Car k, 30 Berlin, varies

Gas hich is I to the as now h burs lampa ereby is ition. causing mizer or becomes s Iumes the serufficieut e every d ease of e for the trbureted t of comon of the 2 33 to 43 s , is the nd 12,000 nstion, 8 through rehicle to or to the ortion of 12 lights ght from ed gas, is
ed in the n the gas Pittsburg, 20 candle , being a bor, fuct. e- in were c carbon-
her steam
g the oil.
per cent. arge per-
centage of air did not perceptibly diminish the illuminating puwer of the compound, used with common coal gas, 15 per cent. of air would have produced great obscority in the resultant light.

Owing to the cheapuess of petroleum and tis products, several towns have commenced lts exclusive use for the production of illuminating gas, and find it much cheaper and better every way than the gas prodnced from coal. In Pittsburg, Pa., and elsewhere, several enterprising firms have taken a uotable stey in utilizing natural gas, which is conreyed in some instances many miles throngh piper from the wells, and is used in the manufacture of iron, for illumination, the generation of steam power, etc. The gas, manufactured in nature's alembic, is most probably geuerated by the action of subterranean heat operating on an ocean of volatile carbonaceous matter at 3 great depth in the earth, from which it frequently insues with terrific noise and irresistable force on the penetration of the crust by drilling or otherwise.

Gas machines for generating gas from gasoline are now in extensire use for lighting factories, dwellings, offces, etc. A good illustration of a most meritoriousinvention of this class can be seen on the next page. The gas made by this machine, kuown as carburetted air gas, is obtained by the impulsion of common air, by means of au airpump, into a carbureter containing gasoline. In this receptacle the air becomes saturated and impregnated with the carbonaceous vapors from the gasoline, and, impelled by the action of the air-pump, it transmits its burden to the burners through the service pipes of the building, yielding a beantiful, rich, bright flame, conceded to be fuily equal to that evolved by the best coal gas, being free from sulphurous compounds and other impulities. Nearly one thousand of theso machines are now in successful operation in the United States, Canada, etc., and the saving effected by them is almost incredible. The proprietors of the National Drover's Hotel, cor. 100th Street and $3 d$ Arenue, New York, certify that their gas bill for one rear, with a 200 light Gas Machine, was only $\$ 550$, the light obtained belug every way more desirable, and far supertor to that formerly supplied by the "city gas" at an amnual cost of uearly $\$ 1,400$.
Dhamter and Extreme Length of Plpe ind Number of Burners allowed for Carburetted Gas, Seryed by Gas Machine. (Gilbert \& Barker).
Greatest number of feet ., Bize of plpe. \quad Oreatent number of burnors to be run.

As to the quality of carburetted air gas it possesses an illuminating porer of from 16 to 20 candles, being uearly equal to cannel gas, aud is characterized by perfect combustion, ease of lighting, large volume of flame, and perfect combination.

Dry m be affect gas-light meters al prored b this kind drical box drum of bell-meta fersuce in
pression o becoming the drum i with the wl
so that at e
paseses thro

Classification of Hydrocarbons. - The grade usiall hydrometer is styied chimog follows: All above 88° of Baumé's to 60° maphtha, from 600 to 50°, from 880 to ", 00 gasolive, from 70° from 35° to 28° lubricating oil. beuzine, from 50° to 35° kerosene, On Gas Metzers-In distin construction of the former is bring between dry and wet meters, the tillic box are placed 2 or 3 bellows tiy as foliows: In a gas-light meWhen inflated to inflated by the gas entering, which instead of being forces tire gas out some extent an arrangement from the service pipes. the buruers. The cubicellows again into the eprings and levers, magements are calle capacity of the chambery exit-pipe leading to ments of their walls , having been accurately as the bellows like arconnected with dials is communicated to why adjisted, the movecousumption of gas in indicate in tens, hundreds work, Which being

Dry mete Fia. 1.

be aff are preferred on acconnt as woll of Fic. 1.
gas-ight for wrost as of not causing the sudden extin being liable to meters are constrint of water as may ocenr with winguishing of the proved by Crossley this kiud of metey, and others. Figs. 1, 2,3 and by Clegg, and imdrical box of ceter, which consists in the firs and 4, are drawings of drum of pure cast iron; closed on all sides. In the of an onter cylin-bell-metal axis block-tin, divided into 4 compart this box is placed a ferauce in water. and immersed for rather more thents, bearing upona pression of the By the pressure of the gas, and halt its circumbecoming alternater, the drum revolves, eas, and the ensuing dethe drum is an entely filled with and emptied of its compartments with the whon endess screw, which brmechani gas. On the axis of so that at every corz of the dials. The drum is rery means is connected passes througli and iete revolution a certain cuacurately adjusted, ases througli and is registered. Fig. 1 exhibite thantity of gas
the front plate removed; Fig. 2 shows the side of the meter; Fig. 3 is soctional plan; and Fig. 4 is a section through the box; a is the box a the drum, b its axis, c the endless screw; bearing in the wheel d, and carrying by means of e the movement of the drum on to the wheel-work of the dials; $f g$ is the inlet pipe for the gas, which flows into the vaive box, h and passing by the valve, i (kept open as long as the meter contains sufficient water for action), flows through the bent tube, l into the bulged cover of the drum, or technically antechamber m,

Fra. 3

Fia. 4.
and thence into the several compartments of the drum, Hence the grs enters the space n, to which is fitted the outlet pipe, $o i$ is tho valve; p the float; q thie funnel tube for filling the meter with water; r the waste water cistern; s the plug by which the waste water may be run off. As long as no gas burners are in use, the meter connected with them is inactive; but wheu the gas is burnt the drum rotates, and by its communleation with the wheel-work registers the quantity of gas consumed. Instead of filling wet meters with water, they may be filled with glycerine, which docs not freeze nor evaporate, and they should be set perfectly level.

Water Gas. - The manufacture of water gas essentlally consists in forcing steam through irou or fire ciay retorts filled with red-hot charcoal or coke. The steam is decomposed, yiciding Ω mixture of hydrogen, carbonic oxide, and carbonic acid gases, with a small quantity of marsh-gas. The purified gas, consisting essentially of carbonic oxide nad hydrogen, is, nlthough not luminous when burnt by itself, suitable for illuminating purposes under the following conditions: 1. By placing on the burners small phatinum cylinders which, by le coming white-hot, yield a strong light-Gengembre's and Gillard's plan. 2. By impregnating the gas with vapors of hydro-earbons, as above described, the original idea being due to Jobard (1832), of Brussels.

Gas Welcs.-Although these remarkable wells are quite numerous in Pennsylvania, they are by no meang confined to that locality. In the neighborhood of Fredonia, NewYork, a native permanent source of gas exints, which having been accidentally discovered by tho

Gas lighting, Gas engines, \&C.

 pulling down of a mill situr lias beel, by boring the bitur on the banks of the river Canadaway; holder constructed: The native gous limestone, enlarged, and a gas, nating the locality. In the Salatims now serves the purpose of illumiing gas is constantly evolved, at a depth mine, in Hungary, illuminatMr. Imbert, who a the purpose of lighting 90 metres, in great quanthat in the province of Szusionary, has travelled the mine. The Rev. salt have been made Szu Tchhouan, where inany though China, states permanently emitted and the depth of about 15 bore-holes for rock it is used for lighting and couveyed in bamboo 1500 to 1600 feet, gas is ing of silt-paris in which heating purposes, more thbes to places where and near the Caspian Sca the brine is evaporated especially the heatinfernal fires, which are due the are, at severated. In Central Asia, the soil. Sinilar phenome to the constant al localitien, so-called Chitta-Gong, in Beugal About 1786, . Culross Abbey; but it should made experiments onthat they were made with th be observed regarding th gas lighting at by the distillation of the cone view of obtaining these experiments real inventor of practical coals being regarded tar, the gas evolved li92, lit his shops at Redrugaslighting is William a curlosity. The The first more extensive cas. Comwall, with gas Murdock, who, in dock, at the Soho Fou gas-work was establiahed inined from coals. celebrated Boulton \& Waty, near Birmingham in 1802, by Murin Manchester the same watt. In 1803 he illuminated property of the Wo cotton mills France, the sons. - In Lenoir's gas engine, now much sion of gas. Air and power is the expanision arising emplosed in of 11 to 1 ; a spark from are admitted to a crlind spark explodes the mixtury galvanic battery is sent in the proportion explosion drives a pistoxture, and the expansion sent through it;' the does all inie rest; opens to theother end of the cy consequent on this mixture, drives the pens a slide valve to permit exit to. Mechanism tubes for the admission back by the momentum ofit to the exploded again with the battersion of new air and gas, establify-wheel, opens 80 on contiuucusly. and many precautions These engines are costly tal of the action, and but they require no fenecessary to prevent in the first instance, stenm-engines; consequently, and are rather chemboing overheated; poirer purposes. ployed for 2 to 4 horse-Lation- - of a Cord of Pitcr leet; Illuminarcoal, 80 bushels; Illun ine ohtained by Distil.Acid, 100 mals.ing Oil and Tar;, 50 gals.; Ring Gas, about 1000 cubic
 Lar, 1 bbl.; Wood Spirit, rater sufficient to metorts. - Fire clay 15 lbs ., saleratic 1 lb , wits the retort whilie at make a thick paste. Apply, saleratus, 1 lb ., with dnat, and charge the retort forking heat, then cover it broken part of To Stop Leaks in Crit for working. Mre parts fire clap in Clay Retorts W
gmud. Mix the trionts white sand, 1 piart of Working Heat:mad. Mix the whole together with 1 part of borax pressed and Wole together with ns mart of worax pressed and
essary to bring it to the consistence of putty. Roll it in the hands to a proper length and apply it over the crack, pressing it with a loug epatula into the crack.
To Remove Deposit of Carbon from Clay Retorts.-Leare the retort uncharged for 48 hours, or as long as can be spared. Put the lid on the mouth-piece so as to be closed at top, and open two or three inches at the bottom. Take out the stopper from stand pipe, so as to allow a current of air to pass through the retort and oxydize the carbon ; use no bar. Put in a charge of coal after the retort has lain idle the number of hours required, and when it is withdrawn tho carbon comes with it.

To Prevent Gas Meters From Freezing.-Half a pint of good glycerine is said to prevent tho freezing of 1 gal . water, though at least donble the proportion is preferable in the country, whatever the temperature in the winter may happen to be.

- Hof To Read The Gas Meter. The figures on the index at the right hand denote even hundreds. When the hand completes tho entire circle it denotes ten hundred, and is registered by the hand in the centre circle, pointing to onc--each figure in the centre circle being a thousand, this entire circle belng ten thousand; and is ngistered on the index of the left hand circle by the chand, there denoting by each figure, ten thousand. ?

The quantity of gas y sich piasses throagh the meter, is ascertained by reading from the index at the time the amount is required to bo known, and deducting therefrom the quantity shown by the index at a previous observation.
If the whole is registered by the hands on the three circles abore, it indicates. .49 .900
Amount at previous observation, as shown by the dotted unes

Shows amount which passed through since last taiken off7.40
The register at all times shows the quantity that has passed through since the meter was first set, loy deducting from which the amount that has been paid for (without any regard to the time when,) shows that the difference remains unpaid.

To Purify Gas. - The purifier is to be filled with mille of line, made by mixing 1 part of slaked lime with 25 parts of water. A very great improvement in the purification of gas has been effected by Ir. Statter, of England, by the employment of hydrated clay along Fith the lime employed for this purposo. Itydrated clay unites wit2
the hands to with a loug
rts.-Leare spared. Put open two or , stand plpe, and oxydizo he retort has ithdrawa tho
is ascertained equired to bo y the index at
circles abore, . 49.900 dotted
. 42.500
off7.40
passed through
h the amount
time when,
milk of lime, vater. A very en effected by tted clay along ay unites with
the ammonia of the gas as rith a base; and, at the same time with its sulphuret of carbon as an acid, and thus removes both of these noxin conjunction from the gas exposed to its influence. It assiste also, impurities from the gas. The in removing tarry rapor and other ircly tucreased by the clay purninating power of the gas is posiLatterly, use is made of hydrated sesquion from 22 to 33 per poank
To Avoid. Wastre or G assed sesquioxide of iron for purifying gana much gas is burned to waste br too orne gas partly off at the meler: In buildings of any size a good regulator pressure in certain localities; stop the leakaye of gas. Tum off the whill soon pay for itself. To take ont (a screw driver is all the tool gas back of the meter; then 2 wax, gperm, or paraffine candlo, and required) tho phig. Next light or paraffine upon the surface of the and drop the melted wax, sperm, laycr. Next, screw in the tap, and in uing, till it is covered with a thin will be stopped, and remain stopped. To Remedy Scattemiva Shore. to gunsmiths is by choke-boring, that GuNs.-The only remedy known the gun, so as to havo a gradual tap, boring from the breech of ns the char boring greatly improres the er towards the muzzle. This scatter than concentrates at the muzzio. Ing qualitics of the gan, bored gun does not this depends on the borge shot are more apt to bored gun throws finoot fine shot so well as the pun. A large one. As a general thin shot with greater force medium. A smalt shot, as it does not ching, a small bored pun is than a large bored pends on the size chamber them well. Tho lengot adapted to large gange; 30 to 34 , of bore- 28 or 30 inches for a gmin of gun also de18 gauge. \quad guns from 8 to $10 ; 26$ to 28 , of guns 10 to it Broazing Flum por cthcr, alcohol, muriate of GONB.-Nitric acid, 8p. gr. 1.2 parta;nitric of copper, 2 parts, dissolved iniwach 1 part; mix, then add sulphate Bluing on Revolivere inater, 10 parts. simply heating the piece to be Blu GUN Banners is performed by until the desired color is obtained. in powdered charcoal over a fire Fine Blue Finisy for Gumed.
it eat into the iron a littie; then thers.-Apply nitric acid and lot thin film of oxldo. Clean' the barrel latter will be cuvered with a appearance is given to gun barrels oil and burnish. A rery fino nitric acid and vinegar, to which by treating them with dilute copper. The metallic copper is deposited been added sulphate of Brownash, oll and rub with a hard brush. Ib.; cortosive ror Gun Barrels.-Spirits of Directions: polish mate. 1 oz.; mix in a bottitre, 1 lb .; alcohol, 1 with a cloth, whith the barrel perfect; then rub and cork for use. ing fluld with a ch removes grease and dirt; rub it with quick lime dark place for from 10 white cloth, apply one coat, and aply the browncard it down with a 10 to 20 hours, until a red rust form it in a warm Repeat the process if gunmaker's card, and rub off with a clean then Enowniva $\overline{0}$ ar twon wish a dark shade.
 of stoal cannot be obtained; icated tincture of iron if the tincture cannot we obtained; black brimstone, \ddagger oz. ; llue vitriol,
oz.; corrosire sublimate, \ddagger oz.; nitric acld, 1 dram; copperas, \ddagger oz.; mix with $1 \frac{1}{2}$ pints rain water, and loottlo for usc. This is to be app plied the same as the first; it causes the twist of the barrel to be visible after application, a quality which the other liquid does not possess.
Browning Composition for Gun Bammels.-1. Blue vitriol, 4 oz.; tincture of muriate of iron, 2 oũ.; water, 1 qt.; dissolve, and add aquafortis and sirect spirits of nitro, oi cach, 1 oz . 2. Blue vitriol and srect spirits of nitro, of each 1 oz.; aquaifortis, $\frac{1}{2}$ oz.; water, 1 pint. To be used in the same manuer as previously described in this work.
Vabsisif and Pozistr for Gun Stocki-Gum shellac, 10 oza.; gum sandarac, 1 oz.; Venico turpentinc, 1 dr.; 98 per cent. alcohol, 1 gal.; shake the jug occasionally for a day or two, and it is ready for use. Apply a few coats of this to your gun stocks, polish by rubling smooth, and your work is completo.

Boriva Gun Barrels.-Trke a picce of rod, cast steel, $\frac{1}{8}$ inch smaller than the interior of the barrel, and a few inches longer, beat one end up something larger than the sizo of the boro, then tum or file it in the shape of an egg, leaving the swell, or centreing part 1-20th of an inch larger than the boro. With a saw file, cut longitudinal cuts, $\frac{1}{8}$ inch apart, laying them tho samo augle as a rose bit countersink, taking caro not to injure tho periphery of the tool; harden and temper to straw color.
Damascus Twist and Stun-Twist Gun-Barneis.-The twisted barrels are made ont of long ribbands of iron, womd spirally aronnd a mandril, and welded on their edges by jumping then on the ground, or rather on an anril embedded therein. Tho plain t tnb barrels aro mado in this manner, from iron manufactured from a bundle of stubnails, welded together, and drawn out into ribbands, to insure tho possession of a material most thoroughly and intimately worked. The Damascus barrels are mado from n mixture oi stub-nails and clippings of stecl in given proportions, paddled together, made inton bloom, and subsequently passed through all the stages of the manufacture of irou, in order to obtain an iron that shall be of an unequal quality and hardness, and thereforo display different colors and markings when oxidized or browned. Other twisted barrels aro made in the llko manner, except that the bars to forn the ribbands are twisted whilst red hot, like ropes, some to the sight, others to tho loft, and which are sometimes laminated together for greater diversity. They aro subsequently again drawn into tho ribbands and wonnd upon the mandril, aud freqnently two or three differently propared pieces are placed side by sido to form the complex and ormmental figures for the barrels of fowling-pieces, described as atubtwist, wire-twist, Damascus-twist, \&c. Sometimes Damascus gunbarrels aro formed by arranging twenty-fivo thin bars of iron and inild steel in alternate layers, welding the whole together, drawing it down small, twisting it like a rope, and again velding threo such ropes, for tho formation of the ribband, which is then spirally twisted to form n barrel, that exhibits, when finished nud acted upon by acids, a diversified, laminated appearance, resembling, when properly managed, an ostrich feather.

Daseskeencisg. - This is the art, now in a great measure lost, of produciuz a raterod or rary appearance on tho stecl srord-bladem, origiunlly practised at bing and cueristing stoel with gold und silver, ing wero practised. but the most comarious methods of da naskeenwelding tivo different kinds of steel, orsteel to have been those of cutting lines on the surface of the steel and and iron, together, or of level with the was either forced into the ind filling them with gold or When the former suriace of the steel, or remained in and brought to a lines, was produced on was used, a light nattern in reliof above it. of the metals caused a dark ground, or vice versa, furally in many ness of the blade, so the pattern to run through, fud the junction ing. oobliterated even by griuds be washed with iye or wew Wood Tipes.-Wood cuts should nerer used. Large wood letters when benzino or campheno only shonld be of turpentine and thin boiled linseed should bo sonked in a misturo the bath in the morning, and then wil over night, and takenout of awhile to absorb what oil, etc., nay not have clean, Let them stand wiping, then ink them well. After they stand a foveen removed by with benzine.

保 wash them
elastic. Genuine Irish or Bo. 1. Black Composition, very durablo and brit maple molasses, 1 gal., purified 10t lbs., black nugar cano, or Carolina tar, 2 ozs., glycerine, 13 puried Iudia rubber shavings, 1 lb ., the glue over night and drain, th ozs, strong vinegnr. 4 ozs. Soak colander. Boil molasses and intim torning by means of a covered slavings and stir until it combines with minutes. Add the rubler and boil 6 or 7 minutes, and pour. If purife molasses, add the gluo lbs. ; Baeder's. more glue and 4 oxs. more grifibber cannot be procerine, 1 pt. For give 2 lbs. ; best sugne house glycerino. No. 1 glue, 2 the glues ivrapped Finter use, zeduce each glue tosses, 1 gal. ; glyBoil the molassed up separataly in wnolen cloth to for a lb. Soak the glues drained 45 or 50 minutes, skimming thoribout three hours. minutes, ndd the of superfluous water. Boil thoronghly. Then add No. 3. Strong glycerine, boil and stir 3 to 5 minutele for 15 or 20 Coopers best Midalle Weather Rollers. Teminutes then pour off. Venice turpentuo, 83 lbs. \mathfrak{j} extra syrup, 2 emul. 60° to 70° F'ahr. and drain it well, 2 ozs. Steep the glue in rain ; glycerine, 1 pt. ; "cook it." This. Then melt it over a moderate fer uutil pliart, arrup, and boll ss will tako from 15 to 25 minutesto fire, but do not impurities arisis of an hour, stlrring it occasionally Next put in the a ferv minutes bo the surface. Add the glycery and slimming off Slightly reduce or incrense thoing from the fire and turpentine Farmer. weather becomes colder or eilser 2 drs. ; distilled water, 37 derctrotype Plates.-Nitrate of iac, 1 dr . ; hydrophosphite of soda, 4 drsssolve, and add sal ammonAgitate the preparation occasionally for ; precipitated chalk, 4 drs. ready for uso. Apply with a fine spongo. 10 hours, when it will be Privting on Gpply with a fine spongo. a patent to use an clastic type for printinmed Wilbanr, has taken ont
rendered adhesire by somo such material as mucilage or printers lnk; sulphuric acid of suitable temperature is then allowed to act on that portion of the glass. The hydrofuoric acid generated in this way would etch the glass on the places printed on. When completed, the whole is washed of with warm water and lyo.

Liquid for Bhigitening Common Qualities of Brack of Colored Inks.-Domar varuish, 1 oz.; balsam fir, $\frac{1}{2}$ oz. ; oil bergamot, 25 drops ; balsam of copaiba, 35 drops ; creosote, 10 drops; copal varnish, 50 drops. Use in small quantities. The whites of fresh eggs are also brightencrs of colored inks, but they must be applicd a littlo at a time, as they dry very hard, and are apt to take array the suction of rollers if used for any extended period.

Goon Redecing Duren.- Brown's (genuine) Japan. Uso in small quantitics. Ilardening Gloss For Inkis.-Gum Arable dissolved in alcohol or a wrak dilution of oxalic acid. Use in small quantities, and mix with the ink as the latter is consumed.

Togive Dark Inrs a Dronze on Changeable Mue.-Dissoifo 11 lbs. gum sheclac in 1 gal. 65 per cent alcohol or cologne spirits for 21 hours. Then add 14 ozs, aniline red. Let it stand a few hours longer, when it will bo ready for ase. Add this to good blue, black, or other dark ink, as needed in quantities to suit, when if carefully done they will be found to have a rich brouze or changeable huc.

Quick Dryer for Inks used on Bookbinders' Cases.-Becswax, 1 oz ., gum arabic (aissolved in suffleient acetic acid to makes
 good Cut ink. To Rencw a Hard Roller.-Wash the roller carefally with lye cover the surface with a thin layer of molasses and lay it asido till the next morning, then wash it with water, and let it bang till dry enough for using.

Savaae's Prunting Ink.-Pure balsam of copaiba, 9 ozs.; lampblack, 3 ozs. ; indigo and Prussian bluc, each 5 drams; Indian red, 3 oz.; yellow soap, 3 ozs. Mix and grind to the utmost smoothness.

Printing Ink.-Sct on a fire in a large iron pot 12 gals. of cleat linseed oil, boil, and stir until it smokes, then ignite it, remore it from the fire and let it burn until a mample will draw into strings between the fingers. Put the lead on to extinguish the flame, then add 1 lb . of resin to each qt. of oil; dissolve, and add gradually in slices 18 ibs. of soap; heat the pot until the solution is complete, when the varnish is ready. Two sorts are kept, one thick, and the other thin, so as to mix when required; the difference is caused in the boiling and firing veing kept up for different periods. For large printing type a thin is yequired, as thick ink would only print in patches; for small type very stiff ink is used, to prevent it runuing off. For malsing black ink, mix together mincral lampblack, 8 lbs.; vegetable black, 7 lbs ; indigo and Prussian blue of each 5 ozs. Indian red, 2 ozs.; grind this With sufficient varnish, gradually adding as tho grinding gocs on For colored ink use colored pigments, according to the required shade.

Gum for Backing Labels.-Nix pure dextrine with boiling rnter until it assumes the consistency of ordinary mucilage. Apply with a full bodied, erenly made camel's hair brush. The paper should not be too thin or unsized. It will dry quickly and adhere when alightly wet.

Prof. Bottger's Pobtable Ink.-Make the strongest possible

9 or printers' wed to act on rated in this 34 completed,

- Brack or oz. ; oil berte, 10 drops: e whites of must be ajapt to take od.
Uso in small dissolred in LI quantitics,
E.-Dissoliso 10 spirits for a few hours blue, black, if carefully ble hue. 88Es.-Becsd to mako a vith 1 lb . of ler carefully s and lay it let it hang
ozs. ; lamp. ndiau red, 100thness. als. of clear nove it from ags between ien add 1 lb . slices $1 \frac{18}{4} \mathrm{lbs}$. the varnish hin, so as to r and firing peathin is In type very black ink, , 7 lbs ; in. ; grind this g goes on. uired shade. ith boiling ge. Apply aper should there when
est possible
bolation of aniline black in water or alcohol, and soak thick ansized paper thoroughly to imbibe mirture, and then dry. Put in a botttle dud add water as required. ter of I'aris, sometimes of Paper.- Paper is adulterated with plasweight. Brown paper to the extent of 30 per cent., to increase the turcrs say, to givo it a nice brown with ochro and clay, the manufacis, to mako it heavier. White soan, with a few pounds of alum, formoap, glue, starch, and dissolved resin with the pulp. Four or five pounds oxize for printing paper to mix beautiful biue thinge to fine writing paper of cobalt (smalts), pire a the rags. Writing paper is slzed paper, when added to 100 lbs. of time into a composition mado from by being dipped 5 or 6 sheets at a a large pile of it being afterwards prins and other animal substances, although machines now exist making fore force out tho superfluity, lengthe, aried, and cut into sheets, at tho writing paper, sized with parted to pape inches wido. Almost any desired 60 feet a minute in od ou paro 132 by the uso of several of tho coloring shado may bo im portion the varions requires great skill and judgmengments mention-
To Pulp Straw ingredlents for coloring tho pulp to rightly proboller, with a largo for Paper Makivg-Tpolp.
steam equal to from hent being attained in to 150 pounds per squaro inch a pressure of boiler, by passing it throperheating the steam after the extreme silica is destroyed through a coiled pipo over after it leaves tho freed from thed, and the straw softened to puip are, and thus tho bleached and beatkall by working it in cold waip, which, after being
To Transfer Pictures rdinary rag machino. arayngo- Sool prciures from Paper po
canstic potash to the print in a saturated solution OOD FOR RE-ENler pressure the block under rol1 oz.; Veuice turpentins, \&C.-Tako of gum sandarac, 4 ozs, ; mastic, frequently shaking, and it is ready fohol, 15 ozs. Digest in a bottlo, sible, good plate glass of tho size of the use. Directions: use, if posover it with the above varuish, beginning picture to be transferred, so picture firmly and erenly as you proceed, so the side, press down the paper caution; put asido, and let dry, perfect no air can possibly carefully with with water, and remore it pety then moisten tho of the pictur the fingers; if managed eit plecemeal by rubbing Paper for the glass will bo effected. water, 10 parts; digsughtsmen, \&C.-Powdered tragacanth, 1 part; smoothly upon the paper and strain through clean gauze; then lay it paper will take either oil or water col stretched upon a board. This To Arply Decalcoin or water colors.
fully with the prepared rarnish (which can be olitained pictures carelures), with an ormamenting pencil, bein can be obtained with tho pionish on tho white paper. In a ferr meing careful not to get the rarWhen thoro panel, and tho paper can be res the pleture will be ready particular to pughy dry, it should bo rarnlshed like by wetting it, and particular to purchaso only these transfer pletares an oil painting. Be pletures which are covered

548 MACEINISTS, ENGINEEIS', \&C., RECEIPTS.

with a gold leat on the back, for they will shom plainly on auy colored surface, while the plain pictures are used ouly on whito or light ground.
Exgravina on Wood.-In order to mako this subject rightly understood we will state that the \log of box is cut into transserse slices, 1 inch in depth, in order that the face of tho cut may bo on a level with the surface of the printers' type, and recelve the same amount of pressure; the block is then allowed to dry, the longer tho better, as it prevents accidents by warping and splitting, which sometimes happens after the cut is executed, if too greea. The slice is ultimately trimmed into a square block, and if the cut is large, it is mado in various pieces and strongly clamped and secured together. Tho upper surface of the wood is carefilly prepared, so that no inequalities may appear upon It, and it is then consigned to the draughtsman to receive the drawing. Ho covers the surface with a light coat of flake white mixed with weak gum water, and the thinner the coat the better for the eugraver. The French dranghtsmen use an abuidance of flake white, but this is linble to make tho dmalng rub out under the engraver's hands, or deccive him as to the depth of line ho is cutting in the wood. The old drawings of the cra of Durer seem to have been carefully drawn with pen and ink on the wood; but tho modern dra ving being yery finely drawn with the pencil or silver point is obliurated easily, and there is no mode of "setting" or fecuring it. 'o obviate this danger the wood engraver covers tho block with paper, and tears out a small pieco to work through, occasionally removing the paper to study the general effect. It is nor lif busiuess to produce in relief the whole of the drawing; with a great variety of tools he cuts away the spaces, however minute, between each of the pencil lines, and should there be tints wauted on the drawing to represent sky and water, ho cuts such parts of tho block into a series of close lines, which will, as near as he can judge, print the same gradatiou of tint; should he find he has not done so completely, he can re-enter cach line with a broader tool, cntiling away a small shaving, thus reducing their width and consequently their color. Should he make some fatal error that cannot otherwise be rectified, he can cut out the part in the wood, and wedge a plug of fresh wood in the place, when that part of the block can be re-engraved. An error of this kind in a wood-cut is a very troublesomo thing; in copper engraving it is scarcely any trouble; a blow with a hammer on the back will obliterate the error on the face, and produce a new surface, but in wood the surface is cut entirely away excent where the lines occur, and it is necessary to cut it deep enough not to touch the paper, as it is squeesed through the press upon the lincs in printing. To aid the general effect of a cut, it is sometimes usual to lower the surface of the block before the engraving is executed, in suoh parts as should appear light and delicate; they thus recelve a mer touch of the pajer in the press, the darker parts receiving the whole pressure and coming out with double brilliancy. When careful print ing is bestorred on cuts it is sometimes usual to insure this good effect by laying thin pieces of card or paper on the tympan, of the slape nceded to secure pressure on the dark parts only.
Dir sinking. - When a dio is required for a coin or medals, the angrarer talses a plece of soft steel of suitablo dimensions, gencrally
aly on auy in whito or
; rightly un. verse slices, ly be on a vo the same longer tho rhich somete slice lsulθ, it is mado ether. Tho no inequale draughtsa light coat ner tho coant ise an abui; rub out unof line ho t rer seem to od; but tho cil or silver setting " or r covers tho through, oct. It is now ing ; with a minnte, bes wauted on parts of tho ecan judge, not done so tool, cutting consequently ot otherwiso lge a plug of an be re-entroublesomo blow rith a and prodnco away except nough not to 1 the lines in imes usual to suted, in such ceive a men Ig the whole careful printh is good effect of the slage

- medals, the ns, geucrally the coin or other article required, on this he hollows out the exan with small, well-tempered asion by cutting away the steel by degresa, is thoroughly accomplished the-hardened tools. As soon as this work, hot in a crncible with charcoal steel is hardened by being heated red into cold water. When a great and oil bone-dust, and then plunged quired, the original die is termed number of coins of one sort are refrom it by taking impressions from the matrix, and copies are made and is called the pnocheon, and from in soft steel, which is in relief, ened, other dies are produced by presich, when it has been hardmatrix, and in intaglio, which are pressure, exactly similar to tha they are fit to transmit an impression to chardened in their turn before The metal nsed for our coinage whether my metal nsed for money. bronze, is stamped in a cold and solid wether gold, silver, copper, or also be produced by a method called sate; but medals and oasts oan metal is used in a soft state. For this casting en cliche, in which the sisting of $1 /$ lead, $1 / 4$ tin, and 11 bismnth parpe an alloy is used, conboiling point, 212^{3} Fah. When the metal, whieh fuses readily at the consistenoy, the die is placed upon it and is soft, resembling paste in a smart blow from a mallet: the surface of the impression produced by from coming into contact with the cold of the metal sets instantly, the form that has been given to it. Copies, and thus seadily retains made in this way, but each face will bopies of medals may be readily and these must bo joined to give representained in a separate piece, plete form. Ornamental work is representations of the coin in a com, ting, cornices, parts of cruet-stands trays in thin metal for gas fitdies, on one of which the pattern is, trays, de., by means of a pair of in intaglio, the metal being placed bermed in relief, and on the other the desired shape by pressure. Dies atween them, and brought into ing articles in gatta-percha and leatherso made in metal for formggures on the cloth covers of leather, and producing embossed paper, do. proved immane Ensely supavino.-As regards steelplate engraving, it has steel plate is first engraved with the old copper plate system. A soft ished style of art either by hand required subject in the most finbined, and the plate is then hard or mechanically, or the two comthen rolled over the hardened plate, machinery, until the engraved impression great pressure by powerful low lines of the original becoming ression appears in relief, the holis re-converted to the condition of ridges upon the cylinder, the roller Which it serves for returning the of ordinary steel, and hardened, after wonized plates, every one of which impression to any number of decarof the original, and every which becomes absolutely a counterpart enormous number of 150,000 imp, when hardened, would yield the difference between the first and theressions, without any perceptible engraving of the Queen's head the last. In one instance, from one were produced from the original the postage stamp, over 6,000 plates re multiplied in the same way. Great plates for bank-note printing rarious processes of annealing and cat cation must be used in the lessaess would result in ruining the hardening, as only slight earein use in the Bank of England is as mollows: the work. To be hardenod
is enclosed in a wrought-iron box with a loose cover, a false bottom, and with three ears projecting from its surface about midway; the ateel is wamended on all sides with carbon from leather, driven in hard, and the eover and bottom are carefully luted with moist clay; thus prepared, the case is placed in the vertical position, in a bridge fixed aernss a great tub, which is then filled with water almost to touch the fat bottors of the case; the latter is now heated in the furnmoe as quickly as will allow the uniform penetration of the heat. When sumeiciently hot, it is removed to its place in the hardening tub, the cover of the iron box is removed, ana the neck or gudgeon of the crlisder is grasped beneath the surface of the carbon, with a long pair of temge. upor which a couplet is dropped to secure the grasp. It only remains for the individual to hold the tongs with a glove whilst a smant tap of the hammer is given to their extremity; this knocks out the false bottom of the cass and the cylinder, and the tonge preseate the cylinder from falling on its side, and thus injuring its delicate bot still hot marface. For square plates, a suitable frame is attached by four alight claws, and it is the frame which is seized by the tragr; the latter are sometimes held by a chain which removes the risk of accident to the individual. The steel comes out of the wrater as monoth to the touch as at first, and mottled with ail the tints of case-hardened gunlocks.
Wertise Isscriffions on Metals.-Take $\ddagger \mathrm{lb}$. of nitric acid and 1 or of ramiatic acid. Mix, shake well trgether, and it is ready for nee. Corer the place you wish to mark with melted beeswax; when cold, wnite your inscription plainly in the wax clear to the metal with a sharp inaticument ; then apply the mixed acids with a feather, carefully filing each letter. Let it remain from 1 to 10 minutes, according to appearance desired; then throw on water, which stops the process, and remove the wax.
Encarsc Fletds.-For copper.-Aquafortis, 2 ozs.; water, 50 om For etoct-Iodine, 1 oz.; iron filing, $1 / 2 \mathrm{dr}$; ; water, 4 ozs. Digest till the irsen is dirsolved. F'or fine touches.-Dissolve 4 parts each of ver. digria, sean salt, and sal-ammoniac, in 8 parts vinegar, add 16 parts water: lusil for a minnte, and let it cool.
Escantery' Border Wax.-Beeswax, 1 part; pitch, 2 parts; tallow, 1 part. Mix. Engravers' cement.-Rosin, 1 part; brick dust, 1 part. Iter with heat.
Morlde AsD Dies.-Copper, zino, and silver in equal proportions; melt togecher under a coat of powdered charcoal, and mould into the form you desire. Bring them to nearly a white heat, and lay on the thing rom mouli take the impression of, press with sufficient force, and yya wing get a perfect and bcautiful impression.

Cabr Eagrspings. Take the engraved plate yon wish to copy and arrange a support of suitable materials round it, then pour ou it the following alloy in a state of perfect fusion: tin, 1 part; lead, ft parts; on a oseman printing press, and offer a ready mode of procuring cbeap oopies of the works of our celebrated artiste.
Blice Smacil Ink.-Triturate together, 1 pt. pine soot and 2 ple Prusisa lume with a little glycerine, then add 3 pts. gum arabic and sufficient sifreerine to form a thin paste.
Isveufele stevcil Ines. 1. Varnish, such as is used for ordi- Sulphato of manganese, 2 parts; lith spts. tarpentine as desired. 2 . in fine powder aud triturated to lamplack, 1 part; sugar, 4 purts; n!i. Sed.- Vermilion, 4 parts; sulphato of inon a little watef. Permancent Any other color will answer hesides red. 1 part; drying oil to mix. lilee Rcling Ink. Good vitrior red. the iudigo, add it to the ritriol, let it 4 ozs.; indigo, 1 oz .; pulverize days, or until dissolved; then fill the tand exposed to tho air for 6 t fill, boiling it beforo uso. black Rulina Ink.-Take good black Ink, and add gall as for binc; do not cork it, as it To Pbint a picturee frome tien luining black. See 16 picture is soaked in a solution, fire Prant Itserfe.-The page or acid. This produces a perfect dirfusion potassa, and then of taitarin potassa through the texture of tho unprinted crystals of bitartarate of this salt resists oll, the luk roller may moted part of the paper. As pace, without transferring any part of its bo passed over tho sur-
 in stale urine; ings orer with it till they are cloth in the mixture, and rub the paint and clean water; dry them gradually, and wash thom with a spougo tion. Should the dirt not bo casily romoved them over with a clean the paintings too quantity of soft soap. Bo rery careful no prepara - very careful not to rub tures may bo instantly restintings. -The blackened lights of old pirwith deutoxide of hydrogen diluted their original hue by touching themof water. The part must be after with six or eight times its welght and water. Hagic Papere. - Take lard oil, or sweet oll, mired to tho ence of cream, with either of the forlowing on, mired to the consistis desired: Prussian blue, lampblallowing paints, the color of which either of which should be rubbed with in tilian red, or chrome green, and winh. Use rather thin but firm a knife on a plato or stone unand wipe off as dry as convenient; then paper; put on with a spongo, paper, or between newspapers, and press them between uncolored it is reat substance upon them until the surps laying books or some Pubse fior use. Robber Hand Stamps, common type, oii the type and place the desired name and address in the form ; now mix plaster of paris to guard about $\frac{1}{2}$ inch high around and allow it to set. Have your vuris to the proper consistence, pour in in long strips 3 inches wide and anized rubber all ready, as made size of the intended stamp, remove the of an inch thick, cut off the place both the cast and the rubber in a serew cast from the type, and beat to thoroughly soften the rubber, then tupress, applying sufficient cast and remain until the rubber receives thrn down the screw hard tharp knife, and cold, when it is removed exact impression of the chary knife, and cemented to tho handle ready for use.

552 JIACHINISTS, ENGINEERS', \&C., RECEIPTS.

To Make Doon Piatrs. - Cut your glass the right size, and make it perfectly clean with alcohol or soap; then cut a strip of tin- foil sufficiently long aud wide for the mame, and with n piece of i;ory or other burnisher rulb it lengthwise to make it smooth; now wet the glass with the tongue (as saliva is the best sticking substance), or if the glass is very large, use a weak solution of gum arabic, or the white of an egg in half a pint of water, and lay on the foll, rubling it down to the glass with: a bit of cloth, then also with the barnisher; the more it is burnisned the better it will look; now mark the width on the foil which is to be the heigh; of the letter, and put on a straight edge, and hold it firmly the foil, and with a sharp knife cut the foll, and take off the sunerfluous edges; then either lay out the let. ters on the back of the foil (so they sliall read correctly on the front) by your own judgment, or by means of pattern letters, which can be purchased for that purpose; cut with the knife, carefully holding down the pattern or straight edge, whichever you vie; then rub down the edge of all the intters with the back of the knife, or edgo of the burnisher, whlch prevents the black paint or japan, which you next put over the back of the plate from getting under the foil; liaring put a line above and one belew the name, or a border around the plate or not, as you bargain for the job. The japan is mado by dissolring asphaltum in just enough turpentine to cut it; apply with a brush, as other paint, over the back of the letters, and over the glass forming a background. This is used on the iron plate of the frame also, putting it on when the plate is a littie hot, and as soon as it cools, it is dry. A little lanpblack may be rubbed into it if you desire it any blacker than it is without it.
Reliableformulae for Photographers.-No. 1. Silver Bath for Albumen Payer, for Summer use.-Crystal nitrate of silver, 40 grains; uitrate of ammonia, 35 grains ; filtered rain water, $1 \mathbf{o z}$.; saturatd solution bicarbonate of soda, about 8 or 10 drops, or enoligh to mado the bath sliyhtly alkaline. No. 2. For winter use. Nitrate of silver $2 \frac{1}{2}$ ozs. ; nitrate of soda 2 ozs.; glycerine 3 ozs . ; pure riter 40 ozs. Nake it a little alkaline with aquas ammonia. No. 3. Another Silver Bath. Silrer, from 40 to 45 grs. (according to temperature;) nitrate of ammonia, 20 gis. distilled or ice water, 1 og . Float 45 seconds to 1 minnte. No. 4. Sal Soda Toning Bath. Distilled or melted ico water 64 ozs. ; acid solntion chloride of gold, (4 grs. to the oz.) 102. ; zaturnted solution of sal soda, $\frac{1}{\mathrm{oz}}$. Make it a full hall hour befoso you wiwh to uso it, and during the cold weather use the water slighty warm. No. 5 . Chloride of Lime Bath. Water, 40 ozs. ; chloride of limes, 5 grains ; chloride of gold, 4 grs. No. 6. Bicarbonate of Soda Bath. Chloride of gold solution (1 gr . to the oz. of water,) 102 .; luke warm water, 10 ozs . ; bicarbonate of soda, (saturated solution,) 10 minims. Make up fresh every time you prepare to trine. Make halt an hour before using. Precipitate the gold in the old solutions with protosulphate of iron. No. 7 Fixing Bath. Hyp/sulphite of soda, 1 part to 8 of water, and if the paper blisters in the washing, soap the prints for 5 minutes in a solution of common salt. No. 8. Buth for Salting the Paper. Pure rain water, 60 ozs . ; chloride of ammonium, 360 grs. ; gelatine, 120 grs.
Photoghapil Paintingin Oil Colons.-Tints for the Firss Paintina.-Flesm,-White avid Light Red.-White, Naples jellow,

3, and make tin-foll sufof $1 ; 0$ ory or 10w wet tho tance), or if abic, or the oil, rubling 3 burnisher; k the width n a straight ife cut the out the let. n the frout) hich can be lly holding ; then rub , or edge of , which you o foil; hararound the a ado by dispply with a er the glass t the frame a as it cools, rou desire it

ser Bath for

 $r, 40$ grains; ; saturatid igh to mabo ate of silver ater 40 ozs. other Silver e ;) nitrate 5 seconds to melted ico e oz.) 1 oz. ; hour beio: 0 ater slightly chloride of ate of Soda) 1oz.; luke lution,) 10 Make hall ations with ite of soda, ag, soap the Buth for immonium,the Fins? dees yellow, and vernilion. Whito, vermilion, and light red. Gray, Pearly,
and Half Tints. Whit verde. White, black, India redion, and black. Whito and terro Ligit red and raw umber. - Indian and rave umber. Deen Shades.--White and Indian red (powerful rod, lakennd black. Carnations. White and lake. Hals.-Lightit color). White and rose madder. White and Roman ochre. White nair:-White nud yollow ochre. parts. White and raw umi er for and Vandyke brown for the dark draw and burnt umber. White and raw parts. Dai\% Brown Ifair. dyke brown. Tints for the Second And Timer. White and VanLights. White and Naples yellow. Cambtiond Painting. High and ultrmarin red, rose, madder, and whito. Rose madder and with the addition with any of tho yellows. Whits a Tints. Whito be conrerted into ar a little raw umber. The ahito and terre verte, and white. Indias een grays. Gray Tinis.-Ultre green tiuts may Indian red, and raw red, lake, black and whito Wramarine, light red, madders, with ultry umber. Pueple Tints.-Any of the, ultramarina dian-red, purplo lake ande and whito. Pooverful shatolakes or red Sitrong Glazing Coke, and black. Indian red ril Shadow Tints. Indyke brown, Indian red, Ligitt red and lake. Brown raw and black. Ground Colons. - Ped, and lako asphaltum. Dramerder. Varvermilion, and blongearly.-White, vermilion, and blurg.-bace red and black. 1 lioo White and black. Grav,-wbuc. White, ochre, terre verte Black, white, and rav and umber. Stone- - whito. Olive.-Yollow Huc, vermilion, nuw umber. Sky.-FF.-Raw umber and rellow. White. Cloulls.-Indianite. Edyes of Clouds and whito. French bine, and whito. Brown red, lako, and whito. Brow ochro and Photograpif Water pexion.-Light red, a littlo cons.-Flesm Tints. No. 1. Fair Comdo careful in using the latter, and in or vermilion, and Indlan yellow. dren, allow the vermilion to predominte flesh tints of very fair chilalli, if the face bo fuil of color, add a litto; carnations, rose madder, dling Complexion.-M Mel the same a little vormillon to it. 2. Afid, must bo in excess over the other colore No. 1, saving that the light red rel and Dark Complexion.-Light red and Indis, rose madder, and may add a littie Inti, and, if tho complexion indian yellow, or light porrerful color indian red, but it must be spanine generaily ruddy, you antions chiefr, and likely to impart a purplo tongly used, as it is a yellew. The lake, but if tho complexionpo tone to tio flesh. Carrermilion, inclining mons for children's portraits arm, lake and a littlo madder, and n litt more to tho latter tint. Aged persons hadder and their cheeks and lips. The to givo a cold appearance to thavo roso as general washes, for these tiats, Nos. 1, 2 , and 3 , are indispensable whicharo to be wortor the purpose of recelving the indispensable life. Uncolored photc. ver thein to bring up thio complerier colors, beginner will, perhaps, ". portraits vary so much complexion to the the washes. Iffernaps, aut soine diffeulty in minuch in tone, that the so much Indian yellow note that the warm-toned ones do not require Kibosents or Cabro the cold ones do. oil, is a llauld substanec, of a dark color, exuding from the carth and

554 MACHINISTS, ENG̈NEERS', \&C., EECEIPTS.

containing certain liquid and solld hydrocarbons such as benzole, or henzine, kerosenc, paraffine, asphaltum, \&cc., in n state of solution, in different proportions. It differs greatly in composition, some sampies containing solid parafine and benzole in large quantities, while others do not. Petroleum is separated from its different products by eareful distily ation at different temperatures. Tho crude material is first lieated in a retort to a temperature of about 100° Fah. This causes a light of of a strong odor to pass over into the condenser. The resldue is then distilled at about 120° to 160°, the result being burning oil. When this is distilled off, steam is forced into the retort and a lienvy oil, fit for lubricating purposes, comes over, n black, tarry mass being left behind. The light oll is now used for minema turpentine, and as a grease solvent. It is often of a dark color, which is casily removed by agitation, first with snlphuric acid and afterimards with soda-ley and water. In many finstances this light ofl (benzinc) is sold for illuminating purposes under the name of Sunlight Oil, Combination Burning fluld, Lightning oii, \&re. I knew a gentleman in Philadelphia who paid one man over $\$ 3000$ for the receipt ? making, together with the sole rlght to manufacture, vend and sui, a compound of this kind in that city. The curions, or those interested, will find the receipt minder the name of the "Forthern Light" under tho Grocer's Department in this work. Truth requires meto state that this article requiros to be landled with great caution when used for ligiting purposes-many lamentable accidents having resulted from a careless use of it. The heavy lnbricating ofl, when cooled down to 30° Fah., often yields parafthe in large quautities, which is separated by straining and pressure. The asphaitum nay lo used for pavements, or mired with grease as a lubricant for heavy machinery. The most important product is, liowover, the burn oil, which is now used as a cheap and effcient illuminating age: in nearly every household in this country. An averago sample of petroleum contains, necording to W. B. Tegetmeler, 20 per cent. of benzine or mineral turps, 65 per cent. of burning oii, 22 per cent. of lubricathing oil, and 8 per cent. of carbonaccous and tarry matter.

To Deodonize Benzirie.-Shake repeatedly with plimbate of sods (oxide of lead dissolved in caustic soda), and rectify. The following plim is said to be better. Shake repeatedly with fresh portions of metallic quicksilver; let it stand for 2 days, mid rectify.

To Puilfy Petroleum on Kerosene Oil.--Tho distilhate or crude burning oil is converted into ordinary burning oil by bein? placed into a tank when it is vioiently agitated by forcing air through ft, and while thus agitated, 13 to 2 per cent. sulphuric acid is added, after whifeh the agitation is continned 15 or 30 minutes. The oil is then allowed to settle, when the neid and Impurities are remored, and any acid remaining in the oil is nentralized. It is then taken to shailow bleaching tanks, where it is exposed to light sad air, and allowed to settlo. It is next heated by means of a coil of stealli pipo ruming through it, to expel all gascous vapors which will ignite at a temperature below 110° Falir. The oil is now called a fire test on and if ready to be berreled and sent to market. Kcrosene oil is decolorized, by stirring it up with 1 or 2 per cent. of oil of vitriol, which will carionize the colloring minter, then with some mille of lime of some other cnustic alkall, settling, and re-distiling.
benzole, or of solution, 1, soms samtitilies, while products by o mnterial is Fah. This condenser. result being ato the retort er, a black, for mineml : color, which d afterwards oll (benzine) Sunlight Oil, ew a gentle receipt ? end and \cdot Buh, ose interestn Light" unsquires me to caution when s having re ing oil, when ;o quautities, altum may lo ant for heary the burnis inating age. sample of per cent. of ben. per cent of y matter. mbate of sods The following gh portions of
distillate x of oll by being ng air through acid is added, 3. The oll is are remored, then taken to id air, and alof steam pipo will ignite at a fire lest oul iene ofl is de. ? vitriol, which ille of lime of

To Bleacti Firmp

parts of the oil with 40 parts. wathake strongly for some minutes, 300 8a; allow the misture to stind in containing 1 part permangate of potasfilter. This renders the oil coloriess. parm pace for some hours, and then by weight of oil, put a mixture of 6 pato purify oil. Into 1000 parts parts water, agitate the barrel well until tholution of ammonia and 6 icalir, may be done in 15 minutes. The the alkall is perfectly mixed, residue is used for ays repose, the oil is decanted an senled hermet-- Hace in a close the manufacture of sonp. chloride of lime, 1 lb. 100 lbs . crude coal oil 25 Clarify Coal Oil. turo is violently 1 lib . soda, and $\& \mathrm{lb}$. oxide of manmans. water, 1 lb . clear oil is decanted and and allowed to rest for inanese. The mirmixed with 25 lbs. resing distilled. The 100 lors. coal oil when tho manipulation; it remin oil; this is one of the principal oil aro to be them iuodorons. The des the gummy parts from thipal points in the cess, or the oils, may be distillition apoken of may the oll, and renders piated.
ore they are defocated s.nd precifared by putting zine and lead for fino mechanism can bo preflorence olive oil, and placing in a cool ging, in equal parts, into greod to s. Unequalled for sewing machinos platil the oil beoomes .. quite a mingeed and Cotion Serdos, de. cording to the enter machinery is used, more or In making linseed is first passed throupriso and capital of tho manurns expensivo ac. the rollers is matogh iron rollers, to be crushed or jects each seed to to revolvo more rapidly than or ground, one of meal is taken from pulling, as well as to a crusho other, which subanother crushing prome the the "chasers," "rushing process. Tho aro two large circular mons sorere than the first is anbjected to thick, rolling upon a thindes about 5 feet diameter, The chasers iark or cider mill. unis to keep it from adhese heavy stones start tho of old-fashioned The meal is nert put adoring to tha chascrsit the oil from the seed, jer a firo until the wnto an iron cylinder, wholstened with water. oil depends upon this heris evaporated. Much of the kept rovolving yet it must be brought up to process. It must not be sco of making If give out its oil. T'io up to a high temperature, so that it vill readi them are patented, and otheses are of varions structure, some readthe vats or hoops hand others not open to public inspection some of each other arainst twing about 2 bushels each, ซero placed In one, fomdations of this two inmense beams or upri, wero placed opposito the meal by 2 large kept uider pressuro eris worked by hydranlio forced down upon $\therefore 2 \mathrm{at} 92$ bughels of about an hour, and the pover. Tho meal is ught and day. Th seed every 24 hours, the mill presses worls up beshel of seed, a he product is not far fromill being kept running reed and the skill in pre or iess, according to fals. of oil from is afn generally sold by the tog. The cakes as tilken quality of tho ported in this form, tho ton without grindins tikien from the press, mill, the celses are put when there is a market in the generally exand sent to the feed ut under the chasers, market in the vicinity of the and seat to the feed stores. Tho price of the cal into meal, bagged 0 price of the cake is from $\$ 30$ to \mathbf{g}_{40}
per ton; ground into meal it retails at abest $\$ 2$ pcr 100 ibs. The process of making the coiton seed oil and cake is nearly the same. The seed of the upland cotton is surrounded with a husk, to which the cot. ton adhores. It is surrounded with a soft down aftor it loaves the gin, and in this condition it is purchased from the planter: The seed makes better oll and better meal when it is deprive of this bull and down. The yield of oil is about 90 gallons per 100 bushels of the Sia Island, or 2 gals. to 56 lbs. of the hinlled cotton seed.

To Make Coal Oil.-Break the coal or shalo into small plozes and put from 10 to 16 cwt. in au irou retort, heatod to a dull red color Late the retort door and keep up the retort for 24 hours. By this process a vapor is thrown off which passes through ranges of cistern until it cundonses, when it is run into cisterns. This crude oil, when refined and purified, is sold as paraffino oil, and solid paranine foi' making candles is made from it.

Neat's Foot Oil.-After the hinir and hoofs havo been remored from the feet of oxen, they yiohd, when boiled with wnter, a peculiar fatty matter, which is known as Neut's Foot Oil; after standing, it doposits some solid fat, which is separated by fitration; the oil then does not congeal at 320 , and is not lable to become rancld. It is often mised with other oils. This oil is used for various purposes, such as hamess dressing, oiling tower clocks, \&w. Talloso Oil.-The oil is obtained from tallow by pressure. The tallow is melted, and when separated from the ordinary impurities by subsidence, is poured into vessels and allowed to cool slowly to abcut 80°, when the slearine separntes in granules, which ray be separated from the liguid part by straining through flannel, and is then pressed, when it yields a fresh portion of liquid oil. It is used in soap manufacture, \&u. Lard oil is ohtained from hog's lard by pressure, when the liquid part separates, while the ard itsele becomes much harder. According to Braconct, lard yiolds 0.62 of its weight of this oil, which is nearly colorless. It is employed for greasing wool, and other purposes.

Economio Lubrecatons. -1 . India rubber, 4 lbs.; dissolved in spts. turpentine; common soda, 10 lhs ; glue, 1 lb .; water, 10 gals.; oil, 10 gals. Dissolve the soda and glue in the water by heat, then add the oil, and lastiy the dissolved rubber. 2. To Lessen Frviction in Machinery.-Grind together black lead with 4 times its weight of lard or tallow. Camphor is sometinieg added, 7 lbs to the hnindrel weight. 3. Anti-F'riction Grease.-Tallow, 100 lbs .; pulm oil, 70 llws .; boil together, when cooled to 80°, strain throngh a sieve, and mis with 28 lbs . soda, and 1 f gals, wate:. For winter take 25 lbs . more oil in place of the tallow. 4. Booll's Ilailway Axle Grease.-Water, 1 gal. ; clean tallow, 3 libs.; puln oii, ullos. ; common soda, $\frac{1}{2} 1 \mathrm{~b}$.; or tallow 2 lbs. ; palin oil, 10 lbs. Heat to about 2120 , and stir well until it cools to 70°. 5. Drill Lubricator.-lior wrought iron, use 1 lb . soft soap mixed with 1 gal. of boiling wates. It insures good work and clean cutting.
to Remedy Slif of Dhivina Belts.-Dab on a little of the etleky oil which oozes awiy from the bearings of machinery.

Blasting l'owdins.- Leduco separately to powder, 2 1arts chlorite of potassa and 1 part red sulphuret of arsenic ; mix very lightly together, or powder separately, 5 parts chlorate of potassa ; 2 jarta red sulphnret of arsenic, and 1 part ferrocymide of potassinm
（prossiate of potassa）；mix carcfully，or，mix carefully as before， after haring separately reduced to powder equal parts chlorate of po－ tassi and ferrocyanide potassium．These possess eight times the ex－ plosivo force of gunpowder aud must be used with the greatest cau－ tion．
blasting Rocks，\＆c．－In small blasts， 1 lb ．of powder will loosen abont 4 f tons．In large blasts， 1 lb ，of powder will loosen about 2 f tons； 50 or 60 lbs ．of powder，enclosed in a resisting bar hang or propped up against a gato or barricr，will demolisis any ordinary con－ struction．One man can bore，with a bit 1 inch in diameter，from 50 to 60 inches per day of 10 hours in granite，or 300 to 400 ins．per day in limestono，Two strikers and a holder can bore with a bit 2 ius．in diameter 10 feet per day in rock of medium liardness．
To make Dualin．－Dualin is mado from paper stock，saturated with nitrate of potassium and dried in a furnace．Then ground and mised with nitro－glycerinc．Component parts of nitro－glycerine． To $4 ⿻ 肀 二$ nitric acid，add 1 lb ．of glycerinc．
Labor on Embankments．－Single horse and cart．A hmrso with a loaded dirt cart employed in cxeavation and embankment，will make 100 lineal feet，or 200 fect in the distance per minite，while moving．The time lost in loading，dumping，awaiting，etc，\Rightarrow min－ ntes per load．A medium laborer will load with a cart in 10 hours， of the following earths；nee：sured in the bask：Giavely earth 10. Laam 12，and Sandy earth 14 cuble yards；carts are loaded as follows： Descending hauling，$\frac{1}{8}$ of a cubic yard in bank；Level hauling 2－7 of s culle yard in bank；Ascendiny hauliny，\ddagger of a cubic yard in tank， Loosening，\＆c．In loam，it three－horse plow will loosen from 250 to 800 cubic jards per day of 10 hours．Tha cost of loosening earth to be loaded will be from 1 tc 3 cents per cubic yard，when wages aro 105 ceuts per day．The cost of trimining and bossing is abont 2 cents per cubic yard．Scooping．A scoop load will measure j－i0 of a cu－ bic yard，ineasured in excavation．The time lost in loading，unload－ ing and trimming，per load，is $1 \frac{1}{3}$ minnies．The time lost for erery 70 feet of distance，from excaration to bank，and returwing is 1 minute． In Double Scoopiny，the the lost in loading，turning，\＆c．，will be 1 minute ；auL in Single Scoopiny，it will bo 1 it miuutes．（Elluzooxi） dinoris．
Maulnge Stone－A cart drawn by horses over an ordinary road riil travel 1.1 miles per hour of trip．A 4－horse team will haul from 25 to 36 culvic fect of lime stcue at each load．The time expended in londing，unloading，\＆c．，including delays，averagis his vianutes per trip． The cost of loading and unlonding a cart，usluf；a horse cram at the guarry，and unloading by hand，when labor is $\$ 1.2 \mathrm{xper}$ day，and a horse is cents，is 25 cents per perch $=\mathbf{2 4 . 7 5}$ cubic feet line woris done by ＂n animal is greatest when the velocity with which he moves is bof the gientest with whilch ho can move when not impeded，and the force then exerted 45 of the utmost force the animal can exert at a dead puil
Has：－ 270 cuble fect of new meadow hay，and 216 and 243 rom hrge or old stacks，will weigh a ton， 297 to 324 cuble feet of dry dover weigh a ton．
les－To compute the number of tons an Icc－house wil contain，ene eulate the number of cubiz feet in an ice－honse，und divide by 2 z ：
this gives tho number of tons the fce-house will contain it if is closely packed.
Eartir Digonva-Number of cubicfeet of carth in a ton. Lnoso earth 24 ; coarse sand 18.6. Clay 13.6. Earth with gravel 17.8. Chay with gravel, 14.4. Common soil 15.6. The volume of carth and sand in bank exceeds that in embankment in the following proportions; sand 1-7, clay 1-9, gravel 1-11, and the volumo of rock in embankments quarried in largo fragments exceeds that in bank fully one balf.

Wirigrt of Eartri, Bocts, \&ce-A cuble jard of sand or ground weighs about 30 cwt . ; mud, 26 ewt. ; marl, 26 cwt. ; clay, 31 cwt ; chalk, 30 cwt ; sandstone, 39 ewt. ; shale, 40 cwt ; quartz, 41 crt ; granite, 42 cwt. ; trap, 42 cwt. ; slate, 43 cwt .

To Determine Weigitt of Live Cattie.-Measure in inches the girth around the breast, just behind the shoulder blade, and the length of the back from the tail to the fore part of tho shoulder blade. Muitiply the girth by the length, and divide by 144. If the girth is less than 3 feet, multiply the quotient by 11. Il between 3 and 5 feet, multiply by 16. If between 5 nnd 7 feet, multiply by 23 . If between and 9 feet, multiply by 31 . If the animal is lean, deduct $1-20$ from the result, or take the girth and length in fect, multinly the equare of the girth by the length, and multiply the prodnct by 3.36 . The result will be the answer in pounds. The live weight multiplied by 6.05 , gires a near approximation to the net weight.

Gauging Streasis.-Multiply the square root of the cenbe of tho height in inches of the water cil the sill of the weir or gange by the constant 17.13, which will give the number of gallous per minute. If the water has any initial velocity it must be determined by esperiment, and in that case multiply the square of the height by the squaro of the velocity, and by 0.8 ; to the product add the cube of tho height, extract the square rogt of the sum, and multiply by 17.13 as before.
Stowage of Coars.-The following Information will be raluable to m'my coal dealers and consumers who may be in doabt as to the capticity of their coal bins. A box 4 feet long, 3 ft ., 5 in ., wide, and $2 \mathrm{ft}, 8 \mathrm{in}$., deep, has a capacity of 36 t cubic feet, and will contin 2000 lbs., or one ton of Beaver Meadow or Lehigh (American) conl. The spaces occupied by one ton of tho undermentioned English coals, economic welght are:-Haswcll's Wallseud, 45.25 enbic feet. North Percy, Hartley (Newcastle) 40% enbic feet. IBalcarras Arley (Jatcashlre) 44.35 cubic feet. Cannel Wigan, Lancashiro) $46 \% 37$ cubic feet. Duffryn (Welsh) 42.09 eubic feet. loutypool (Welsh) 40.22 cubie feet. Hence, a shed 16 feet high, 20 feet broad, and 30 fect long, will hold over 212 tons of Haswell's Wallsend (Newcastle) coals, about 207 tons of Cannel, and $2: 8$ of Duffryn. The average space oncupled by one ton of Newcastle coal, cconomic weight, is 44 cubie fect, that of oue ton of Lancashire coal, 44 , cuble feet, aud that of 1 ton of Welsh coal, 41 cubic fect. Therefore a shed of the abore dimensions, would, on the averago, hold 217 tons of Newcastle coal, 216 of Lancarhiro, and 234 of Welsh. From the above data, any intending purchaser can easily calculate the capacity of his coal bins. sheds, \&e., and in many cases secure a good bargain by laying in: large stock when coals are chr pp.

Composition Tacks for Muntz Metal on Silips.-Copper 87 parts, zinc 4 purts, tin 9 parts.

Lnoso 8. Clay nd sand sortions; embantfully ono
gestlats of J. If. Cheeveirs expeibiments witit vulcanized HUDDER BELTING AND LEATHLIR, DITTO.
Rubber.
Lbs. 1 Lbs.
Belt slipped on Iron pulley at 90

Deductions from the above: Rubber belts for equivalent resistances with leather belts, may be reduced respectively 46,50 and 30 per cent.

Vulcanized Rubier belting has greater endurance than leather, its resistance to slipping being from 50 to 84 per cent. greater.

Mill for Spinning Wool and Weaving Merinos.-Nineteen machines to prepare tho combed wool, having together 350 rollers; 16 mules with 3,400 spindles; one winding machine of 60 rollers to prepare the warp; 2 warping machines; 2 self-acting feeders; 100 -power looms; 2 lathes for wood and iron, and one pump require in all 30 horse power. Produce: 13,600 cops of woolen thread, of 45 cops to the pound, each measuring 32 yards. The looms make 115 revolutions per minute, and produce daily 4 pieces of double width merino of 68 yards each, and 4 pieces of simple merino of 1.2 to 1.4 yard broad, and each 88 yards long.

Cotton Factory.-Condensiny Engine, Cylinder, 37 in. dlam. Stroke of piston, 7 ft . Volume of piston space, 53.6 cubic ft Average pressure of steam, 16.73 lbs . per square inch. Recolutions, 17 per minute. Friction of Engrine and Shafting, (indicated) 4.75 lbs. per sq. inch of piston. Indicated Horses poicer, 125. Total power=1. Available, deducting friction=717.
(The foregoing has reference to an English mill, for driving 22,060 Hand mule spindles, with preparation, and 260 looms, with common sizing.)
Remalis.-Each additional horse's power will drive 305 haudmule spindles, vith preparation,
or 230 self-acting
or 104 throstle
or 10.5 looms with common sizing.
Including preparation:
1 throstle spindle $=3$ hand-mule, or 2.25 self-acting spindles.
1 self-acting spindle $=1.2$ hand-mule spindles.
Exclusive of preparation, taking oniy the spindle:
1 throstle spindle $=3.5$ hand-mule, or 2.56 Felf-ncting spindles.
1 self-acting spindle $=1.375$ hand-inule spindies.
The throstles are the common, spinning 34 twist for power loom reaving ; the spindles revolve 4,000 times per minute. The selfacting mules are,one half spinning 36 's weft, spindles revolving 4,800 ; the other half spiming 3e's twist, spindles revolving 5,200 . The hand-muies spinning about equal quantities of 36 's weft and twist. Weft sphindies 4,700 , and twist spindles 5,000 rev. per minute. Average breadth of looms 37 ins. (weaving 37 inc. cloth), making 123 pleks per minute. All common calicoes about 60 reed, Stockport munt, and 68 picks to the inch. No power consumed by the sizing. When the yam is dressed inster d of sized, one horse's power cannot
drive so many looms, as the dressing machine will ahsorb from 17 th .14 of the power.

Size for Dressina Cotton Yarn on Warps.-Flour 280 llos ; tallow 1 lb . ; add $\frac{1}{2}$ to 2 per cent. of the amount of flour employed if paraflue. Tho paraftine may be mado to replace tho whole, or a part of the tallow employed.

Beautiful Sizing for Linen.-Crystallized carbonate of boda, 1 part ; white wax, 4 to 6 parts ; stearine 4 to 6 parts ; pure white soap, 4 to 0 parts ; fino Paris white or carbonate of magnesia 20 parts ; jotato starch, 40 parts ; fne wheat starch, 160 parts ; boil with suffeciont water to form 1600 parts altogether, adding, if desired, some ultramarine to counteract the yellow tint of the linen. The linen is starched with this preparation, afterriards steamed and dried, then sprinkled with soap-water and placed in the stamping mill, afterwards steamed and calendered.
The Marinex's Compass.-The needlo or magnet is sald to poiut always to the morth, azd as a matter of courso thio other points, as cast, west, \&c., aro easily found by the needlo pointing north and south. In certain parts of the word, however, the needle does not point to the north, but is drawn considerably to the right or left of true north. This is called the variation of the compass, and mast be known accurately by the navigator in order to correct aud steer the right course. For instance in crossing the Atlantic Ocenu, the variation of the compass amounts in salling vessels to 23 or 24 points westerly, and the course steered must be corrected accordingly. Say that you wish to make a due east course, you must atecr 21 or 2 p points south of that or to the right hand in order to make a direct course.

Off the Cape of Good Hope in the South Atlantic Ocean, strango enongh, the variation of the compass in ships bound to India or Anstralia is $2 \frac{4}{4}$ points easterly, and in order to make it due enst course itis necessary to steer 23 to the north or left of her course, while again to wards the equator or centre of the glove there is hardly any perceptible rariation of the compass nt nil. The way of finding out how much the compass varies in different parts of the rorld, is by observatlons of the sun tiken with the compass, and the difference betireen the trus and maguetic or compass bearing is the variation, which must be applied as a correction to the course stecred. We have, however, in fron ships or steamers what is called the deviation of the compass to attend to besides the variation. This is the local attraction caused by the iron, and must be carefully understood be. fore steamers or iron ships attempt to go to sea. $\Lambda \mathrm{s}$ in steamers of the Allan or Cunard line, each vessel before proceeding on her first voyage must be carefully swung, and magnets fixed to the deck, be sldes smaï chains placed on each side of the compasses in boxes, iv order to counteract the attraction of the iron. Thus the compasse: are so nicely balanced with the magnets and iron, that it is rare indeed at this day that they get out of orderon a trmns-Atlantic passage. The consequences to either steamer or sailing slilp whowe compasice are astray would be terrible to contemplato, even if it were but one half point, on dark winter nights approaching the land. These dithculties are now happily obvinted by the discoveries of modern science. and their avolication to correcting the compass at sea,
a 17 ts
s ; tal. oyed ul or a part
soda, 1 Ite soap, rts ; ${ }^{10}$ cufficint in ultrastarched spriukled steamed

1 to point points, as orth and does not or left of and must and stect ić Occal 23 or 24 accordingnust stect to makea
in, strango Pia or Aliscourse it is o agaiu toy perceptout how by obsercrence berariation, ercd. We devintion tho local rstood becamers of her first deck, bo boxes, $\mathrm{i}=$ compasse: is rare inc passage, pompasics but ofio hese dift macience
heat of Water in Steam Boilers, warming of buildinge, so -The following table shows the temperature of water by Frahrenhelt'e and Centigrade scales of measurements, allowing 14.Gibs. per square inch to atmosplicre :-

Value of Fuel. - The evaporative power of Coke in the furnace of a steam boiler, and under pressure, is from $7 \frac{1}{5}$ to 9 lbs . of fresh water per lb . of coke ; that of charcoal $\mathbf{1} \frac{\mathrm{lbs} \text {. of fresh water per } \mathrm{lb} \text {. }}{}$ The craporative power of 1 cubic foot of pine wood is equal to that oil. 1 cubic foot of fresh water ; or, in the furnace of a stean boiler, and under pressure, it is $4{ }^{3} \mathrm{lbs}$. fresh water for 1 lb . of wood. One cord of hardhoood and 1 cord of soft wood, such as the general average in Canada, is equal in evaporative effects to 2000 lbs. of anthracite coal. One cord of the kind of wood used by American river steamers in the West, is equal to 12 bushels (960 lbs.) of Pittsburg

Return Flue Botler. woal ; 9 cords cottrin, ash and cypress wood are equal to 7 cords yellow ilie. The densest woods give the greatest heat, as chareonl gencmites more heat than flam3. The evapurative power of peat in tho surnave of a steam boiler, and under pressure, is $3 \frac{1}{2}$ to 5 lbs . of fresh water for every lb. of fuel. ذisuminous coal is 13 per cent. more effective than coke for equal weights, and in England ths effects ars alike for equal costs. In an experiment under a pressure of 30 lbs . th. pine wood evaporated 3.5 to 4.75 lbs . water, 1 lb . Lehigh coal, 8.2 tc 8.75 !be. The least consumption of coal yet attained is 1 ? ! be
per Indicated horse-power. It usually rarios in diferent engines from 2 to 8 lbs.. Lailwny experiments demonstrato 1 ton of Cumberland conl, (2240 lbs.) to be equal in evaporating offect to 1.25 tons of anthracite coal, and 1 ton of anthracte to bo equal to 1.75 corcis pino wood; also that 2000 lbs . Lackawanna coal are equal to 4500 lbs. best pine rood. Much depends on the kind of boiler used. The li:turn F'lue Boiler gives very good results in economizing heat. Seodiagram above.

Specific Gravitr.- Is the density of the matter of which any undy ls composed, compared with tho density of another body assumed as tho standard, or 1000 . This standard is pure distilled water for liquids and sollds, and atmospheric air for gascous bodies and vapors. Thus as gold is 19, and silver 10 times heavier than water, those numbers 19 , nud 10 are snid to represent the specific gravity of gold and silver. The heaviest known substance is Irdium, used for pointing gold pens; Its speclfic gravity is 23. The lightest of all liquids lias aspecific gravity of 0.6, It fs called chlmogene, and is made from petroieum, It is exceedingly volatils and combustible, being in fat a llquefied gas. Carbonic neld gas or choke damp is 600 times lighter than water, common air 800, street gas about 2000 and puro hydrogen the lightest of all substances, 12,000 times. The heaviest substanco has thus $23+12,000$, or more than a quarter of a million times moro weight than nu equal bulk of the lightest; and the substance of which conicts consist, has by astronomers leen proved to be oven peveral thousand times lighter thian hydrogen gas.

Arifoved Fhiction Matches.-About the best known preparatiou for friction matches consists of gum aniobic, 16 parts by weigh; phosphorus, 9 parts; nitre, 14 parts; peroxyde of manganese, in powder, 16 parts. The gum is first mado into a mucllage with water, then the manganese, then tho phosphorus, and the wholo is heated to about 130° limh. When tho phosphorus is melted the nitre is added, and tho wholo is thoroughly stirred until the mass is a uniform puste. The wooden matches prepared first with sulphur, are then dipped in this and afterward dried in the aif. Friction papers, for carrying in the pocket, may bo made in the samo manner, and by adding somo gum benzoin to the mucilage they will have an agreeable order when Ignited.

Lurroved Colomed Fires.- White.-Saltpetro, 2 parts; sulphur, 2 parts; antinony, 2 parts. Red. Nitrate of strontia, 20 parts; chforate of potash, 5 parts; sulphur, $0 \frac{1}{2}$ parts; claarcoal, 1 part. Blue. Chlorate of potash, 9 parts; sulphur 3 parts; carbonato of copper, 3 parts. Yellovo.-Nitrnto of sodn, 24 parts; nutimony, 8 parts, suiphur, 6 parts; charcoal, 1 part. Gircen.- Nitrate of baryta, 26 parts; chlorate of potash, 18 paits; sulphu:, 10 parts, Violet.-Nitrato of strontin, 4 parts; chlorate of potash, 3 parts; sulphur, $\overline{5}$ parts; carbointe of copper, 1 part; calomel, 1 part.
J'o Rf-coverillamiens in lifanos.-Get felt of graduated thicknees, cut it in strips the exact width, touch only tho two ends with glue, not the part striking the strings. . Hold la place with springs of narrow hoop fron.

Water.- F'resh Water.-The componcut parts by weight and measure is, Oxygen, 88.9 by weight, and 1 by measure, Ilydrogen, 11.1 by welght, and 2 by measure. One cubic inch of distilled water at ita maximum density of $3 \Im^{\circ} .83$, the harometer at 30 inches, weighs

MACHINISTS, EXGINEERS', \&C., RECEIPTS.

nes from nberlaud is of anorcis pino) liss. best so liturn o diagram
hich any body asiled water odies and an water, grarity of a, used for all liquids made from ng in fat nes lighter uro hydrot substanco times more ie of which ren pereral
m preparaby weight; ngances, iu with water, o is heated nitre is adsa uniform \mathbf{r}, are then papers, for ner, and by
an agrees; sulphur,
, 20 parts; part. Blue. of copper, 3 parts, sulA. 26 parts; -Nitrato ol parts; car-
rated thicko ends with - springs of
reight and Ilydrogen, tilled water hes, welghs

2x3.6937 grs. A cubic foot weighs 62.5 lbs. Rated by the British Imperial standard, a cubic ft of water at 62° weighs 998.224 ozs., 35.84 cubic ft. of water weigh 1 ton, 39.14 cubic it. of ice weigh 1 ton. Sca-Water. 1 cubic ft. Weighs 64.3120 lbs. ; 34.84 cubic it^{2} weigh 1 ton and contains from 4 to 53 ozs. of sait per gal, varying in different parts of the globe; carbonle acid, 02 parts in every 1000 of water. The saline matter in the Dead Sca is 21.722 parts in every 100. Dr. Scoresby's observations of the lieight of waves in tho North Atlantic Ocean record $24 \mathrm{ft}, 30 \mathrm{ft}$., the highest 43 ft ., and tho mean 18 ft in western gales. French olservers in the Bay of Biscay state a height of wave of 36 ft.; Captain Wiikes writes of 36 ft. in thio Pacific and Sir J. Ross of 22 it in the South Atlantic. Heights of waves in northwest gales off the Cape of Good Hope have been computed at 40 ft., those off Cape Horn at 32 ft., in the Diediterranenr. Sea at 15 ft ., aud in the German Occan at 14 ft., but in the British waters they are only found to average 8 to 9 ft . The velocity of ocean storm wares was observed by Dr. Scoresby in the North Allantic to be about 32 miles per hour ; Capt. Wilkes records it nt 20.t miles in the Pacific, and French mariners in the Bay of Biscay at 60 miles an hour. Dr. Scoresby has ealimated the distance between or breadth of his Atlantic storm wares at about 600 feet from crest to crest which is ouly about half of that stated by sonne others, and Dr_{r}. S. states that the waves of 30 ft . height movo nt the rate of 32 miles per hour. The mean force of the Atlantic waves for the summer months is over 600 lbs . per sq. ft., during wiuter 2086 lbs. During a severe galo 6383 lbs. per square ft . has been noted. Corrosive effects of Sea-Water on Metals, per square foot. Steel 39 grs, iron 38, copper 0 , zinc 8 , galvanized iron 1.6 , $\operatorname{tin} 2$.
Braznsg Cast Iron.-There aro two ways of joining east iron. 1. Fit the broken pieces exactly together in moulding sand and pour melted iron over the parts to be joined. When cold chip off the superfluous metal and you will havo a joint scarcely to lo detected. 2. Well tin the parts to be joined, fit together in sand as abovo, and pour melted brass over them.
Macintosi Clotir. -The material is merely two layers of cotton cemented with liquid India rubber; but the junction is so well effected that the three become, to all intents and purposes, one. Tho stout and well-woven cloth is coiled upon a horizontal beam liko the yard beam of a loom; and from this it is stretched out in a tight state and a neariy horizontal direction ; a layer of liquid or rather pasto-liko solution is applied with a spatula, to a considerablo thickness, and the cloth is drawn under a Enife edge which scrapes the solution and diffuses It equally orer every part of the cloth, which may bo 30 or 40 yards long. The cloth is then extended out on a horizontal framework to dry; and when dried a second coating is applied in tho same way, and a third or fourth coat if necessary. Two pieces, thus coated, are next placed face to face with great care to prevent creasing or distortion ; and being placed between two wooden rollers, they aro so thoroughly pressed as to unito durably and permanently. Cloth, thus comentod and dcubled and dried, may bo cut and mado into

IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic Sciences

Corporation
garcents which will bear many a rough trial, and many a deluging, Defore rain or water can penetrato.
To Petrify Wood-Gum salt, rock alum, white vinegar, chillk and pebbles powder, of each an equal quantity. Mix weli together. If, alter the ebullition is over, you throw into this liquid any wood or porous substance, it will petrify it.

To Construct an Eolian Marr. - Make a box with the top, bottom, and sides of thin rood, and the ends $1+\frac{1}{2}$ in beech, forn it the same length as the width of the window in which it is to be placed. The box should bo 3 or 4 inches deep, and 6 or 7 iuches wide." In the top of the box, which acts as a sounding board, make 3 circular holes about 2 inches in diameter, and an equal distance apart. Giue across the sounding board, about 23 inches from each end, 2 pieces of hard wood $\frac{1}{4}$ inch thick, and $\frac{1}{2}$ inch high, to serre as bridges. You must now procure from any musical !ustrument maker twelve stcel pegs similar to those of a pianoforte, and 12 small brass pins. Insert them in the following manner into the beech : first commence with a brass piu, then insert a stecl neg, and so on, placing them alternately $\frac{f}{2}$ in. apart to tho number of twelre. Now for the other end, which you must commence with a steel peg, exactly opposite the brass pin at the other end, ther.. brass pin, and so on, alternately, to the number of 12 ; by this arreagement you have a stecl peg and a brass pin always opposite each other, which is done so that the pressure of the strings on the instinument shall be uniform. Now string the instrument with 12 first riulin strings, making a loop at one end of each string, which put orer the brass pins, and wind the other ends round the opposite steel pegs. Tune them in unison, but do not draw them tight. To increase the current of air, a thin board may be placed about 2 inches above the strings, supported at each end by 2 pieces 6 wood. Place the instrumient in a partly opened window, and to increase the draft, open the opposite door.

To Constnuct a Metronome.-Take a chean clock movement and substitute for the pendulum a wire with a sliding weight, marking the wire with a file at the different points of graduation. Used to indicate the proper time in music.
To Bend Glass Tudes.-IIold the tube in the upper part of the flame of a splrit-lamp, revolving it slowiy between the fingers : when red hot it may be easily bent into any desired shape. To soften large tubes a lamp with a donble current of air should be used, as it gives a much stronger heat than the simple lamp.

Black Lead Pexcils.-The best pencils are made by grinding tho black lead into a fine impalpable powder, then forming it into blocks by compression without any cementing substance, and finally sawing it up lito the square prisms, which, when placed in groovesin wood, form the black lead pencils of commerce. The color can be graduated to any lesired tinge by the intermixture of very finely ground clay. By the process of Prof. Brodie, the most intractally graphite may be rednced to the fincst powder with great case. The mineral is coarsely powdered and mixed with 1-15th of chlorate of potash, to which mixtiure is added twice its weight of suipluric acid. Chloric acid is disengaged, and, after the mass has cooled, it is well washed, drled, and leated to reduess. During the latter operation,
deluring, gar, cli.1k together. y woud or
top, bot1, form it t is to bo 7 iuches ng board, an equal 2] inclics nd 4 inch any musiof a pinanowing manen insert a art to tho must comit the other r of 12 ; ly ways oppo3 strings on rent with 12 ring, which d the oppothem tight. laced about 2 picces orv, and to
the black lead swells and becomes reduced to so fine a powder that it will swim upon water, a little fluoride of sodium is used to dissolve the silicious impurities. The finest quality is found near Burrowdale in Cumberland, England. It is nearly pure carbon, and perfectly free from grit. It is used principally in the manufacture of lead pencils, the coarser quality being used, when ground, for polishing iron work, glazing gunpowder, as a lubricator for machinery; compounded with four times, its weight of lard or tallow, and in the manufacture of crucibles for melting inctals, as it is very intractable in an intense beat.
Phillmp's Fref Ammetlator.-Consists of a case containing water, within which is a smaller case containing chlorate of potash and sugar. Dipped in the latter is a small tubo containing sulphuric acid; when this tube is broken the chlorate of potash and sugar become ignited, throwing off large quantitics of mixed gases which are nou-supporters of combustion; the action is maintained by the water in the outer case becoming heated. The gases aro conveyed to the fire by means of a flexible tabe fitted with a proper nozzle and stopcock. I hare seen still another kind constructed of copper in quite an elegant style, fitted with shoulder straps, \&c., for easy transportation, ill which the gases were generated by means of chemicals on the princliple of what may be seen ercry day in the effervescence of carbonic acid gas from the intermixture of seidlitz powders in water. The chemicals being introduced from white and blue paper packages into the water contained in the conper case.
Manufacturi of Corn Starch.-Watt's Patent.-The com is steeped in water, ranging in temperature from 70° to 140° Fah., for about a week, changing the water at least once in 24 honrs. A cortain amount of acid fermentation is thas produced, causing the starch and refuse of the corn to be easily separated afterwards. The swollen corn is ground in a current of clear soft water, and the pulp passed through sieves, with the water into rats. In theso the starch gradually settles to the bottom, the clear water is then run off by a tap, and the starch gathered and üried in a proper apartment for the purposo.
Refining of Sugar.- Both cane and beet-root sugar are refined on the same principle, by mixture with limewater, boiling with auimal charcoal, and filtration through twilled cotton. In some establishments bullock's blood is used to aid in the clarifying. The albumen of the serum becomes coagulated on the application of heat, forming a network, which rises to the top of the liquor, carrying with it a great part of the impurities. The reddish syrup obtained by the first filtration is next passed through filters into large vats, twelve or fourteen feet deep, upon which are laid coarse ticking, coarsely ground animal charcoal, and a second layer of ticking. The syrup is allowed to flow over the snrface of the filter, and runs slowly through the charcoal, coming out perfectly colorless. The concentrated syrup is then boiled in vacuo, by means of which two important results are arrived at. The viscid liquid would boil in air at 230° Fab., at which temperature a quantity of uncrystallizable sugar wonld be formed. By performing the opesation in a racuum-pan the boiling point is brought down to 150° or 160°, no formation of nncrystallizable sugar talics place, and

566 MACIINISTS, FNGINEERS', \&C., RECEIPTS.

a great snoring in fucl is effected. When the oosecntration reaches a cortain point, tho syrup is transferred to a ressell heated by steam to 170°, and forcibly agitated with wooden beaters, uatil it forms thick and granular. From the heating-rats it is transferred into inverted conical moulds of the well-known shapen at the bottom of each of which is a movable plug. The eyrup is well stirred to provent the formation of air-bubbles, and them left at rest for several hours, at the end of which time the plug is removed, and the uncrystallized syrup runs out. The loaves are farther freed from all colored matter by a portion of perfectly collorless syrup being run through them. They aro then dried in a stove and finished for market by being turned in a lathe. Crushod or granulated suynr is made by cansing the granular syrup to resolre in a perforatei drum, by which means tho uncrystallizalle portion is separated from tho crystals by centrifugal force.

Button Manuracture.- Metal buttons are formed of an inferior kind of brass, pen ier, or other metallic compositions. For button metal, see a variety of alloys on pages 291 amd 222 Buttons with shanks are usually made of these compositions, whicis is supplied to the manufacturers in shcets of the required thichness. By means of fly presses and punches, circular disks called blamkz, are cut out of these sheets. This is mostly performed by females, who can furnish about 30 blanks per minute, or 12 grous per hour. IIand punching is the general mode of cutting comt blanks, but moro complicated machines, which cut out 8 or 10 blanks at a time, are in use. After being punched, tho cdges of the blanks are very sharp, and require to be smoothed and roumdod. Their surfaces aro then planishod on the face by placing them separately in a die under a small stamp, and allowing them to receive a small blow from a polishod steel hammer. In this state they are ready to reccive the shanks or small metal loops by whish they are attiched to the dress. They are made by a machine in thich a coil of wire is gradually advanced towards a pair of shears which cuts off short pieces. A metal finger then presses against the middle of earl plicee, first bending it and then pressing it into 2 vice, when it is compressed so as to form a loop; a hammer then strikes the tiro cuds, spreading them into a flat surface, and the shank is pushed out of the machine ready for use. The shanks are attiched to the planks by women, with iron wire, solder and rowin. They aro then put into an oren, and when firmly united, form plain buttons. If a crest or inscription is wanted, it is placed in a die and stamped. Buttons aro gilded by gold amalgam, by being pat into an earthen pan with the proper quantit: nf gold to corer them, amalgamated with morcury in the followis manner : the gold is put into an iron ladle in thin strips, and as small qusatity of mercary, say 1 part of mercury to 8 of gold, added to it, the ladle is lield over the fire till tho gold and mercury are perfectly waited. This amalgam being put into tho pan with the buttoma, as much aquafortis, diluted with water, as will wet them all orec, is thrown in, and they are stirred up with a brush till the acid, by its afinity to tho copper in the buttons, carries the amalgam to erery part of their surlace, giving it the appearance of silver; this done, the acid is washed away with clean watcr. This is ealled the quicking pro-
reaches ry steam it forms red into ottom of tirred to x sereral and the eed from rup being ifinished ated sugnr perforated separated
an inferior For batton trons with is sapplied By means are cut out , who can tour. Hand s, but moro a time, ato ks are very neir surfaces tely in a dio a small blow
we are ready to are atticlich nuts off slior dide of ench 3. When it is tikes the tiso mk is pushed Eached to the hey are then battons. it and stamped. to an earthen amalgamated - put into an ercary, sin 1 is held oret This amat ch aquafortis, rown in, and renity to tho part of their quicking pro-
cess. In drying off, the pan of buttons is heated by a charcoal Are expelling the mercury in the form of a vapor, which, under the improved system, is conducted into on oblong iron flue or gallery, gently sloped downwards, having at its end a small vertical tulvo dipped into a water cistern, for condensing the mercury, and a large vertical pipe for promoting the draught of the products of tho combustion. Tho gold thus deposited in an exceedingly thin film upon thie onttons, presents a dull yellow color, and must now be burnished ; this is effected by a piece of hematites, or bloodstone, fixed on a handle and applied to the button, as it revolves in the lathe.

To mender Wood Indestrictible,-Rolbins' Process. The apparatus used consists of a retort or still, which can be made of auy size or form, in which resin, coal tar, or other oleaginous substances, together with water, are placed in order to subject them to tho heat. Fire being applied beneath the retort containing the coal tar, ecc., oleaginous vapor commences to rise, and passes out through a connecting pipe into a large iron tank or ehamber (which can also be built of any size), containing tho timber, \&c., to be operated upon. The licat acts at once upon the wood, causing the sap to flow from every poro, which, rising in the form of steam, condenses on the body of the chamber, and discharges through an escapo pipe in the lower part. In this process a temperature of 212° to 250° Falir. is sufficlent to remore the surface moisture from tho wood; bnt after this the temperature should bo raised to 300° or more, in order to completely eaturate and permeate the bolly of the wood with the autiseptic rapors and heavier products of the distillation. The hot vapor coagulates the albumen of the woyd, and opens tho pores, so that a large portion of the oily product or creosote is admitted; the contraction resulting from the cooling process liermetically seals them, and decay seems to bo almost impossible. There is a man-hole in the retort, used to chango or clean out the contents; and the rood chamber is furnished with doors made perfectly tight. The whole operation is completed in less than oce hour, rendering the wood proof against rot, parasites, and the attacks of the Tcredo novilis or maval worm. Germnn Stono Coating for Wood.-Clalk, 40 parts; resin, 50 parts; linseed oil 4 parts; melt together. To this add 1 part of oxide of copper, afterrards 1 part of sulphuric acid; add this last carefully; apply with a brush.
hion Tude manufactire.- In the present method of manufacturing the patent welded tube, the ond of the skelp is bent to the circular form, its entire length is raised to the welding heat in an appropriate furnace, and as it leares tho furnace almost at the point of fusiou, it is dragged by the chain of a dram-bench, after tho mansher of wire, thougha a pair of tongs with two bell-shaped jaws; theso are opened at the timo of introducing the end of a skelp, which is welded without the agency of a mandril. By this ingenious arrangemeat wrought iron tubes may be made from the diameter of 6 inches internally and abont 1-8 to 3-8 of an inch thick, to as small as 1-4 of f:Il inch diameter and 1-10 bore, and so admirablo is the joining effected In those of tho best description that they will withstand the greatest pressure of water, steam, or gas to which they have been subjected, and flicy admit of being bent both in tho heated and cold state, almost with impunity. Sometimes the tubes aro made one upon the other

568 . MACHINISTS, ENGINEERS', \&C., RECEIPTS.

wheu great thickness is required; but those stont plpes, and those larger than 3 inches, are but seldom required. The wrouglit iron tubes of hydrostatic presses which measure abont $\frac{1}{2}$ an inch internully, and 4 to sof an inch thick in the metal, are frequently subjected to a pressure of four tons on each square inch

Brass 'Tubes.-Brass or other tubes are formed of rolled metal' which is cut to the desired width by means of revolving dises; in the large sizes of tubes, the metal is partially curred in its length by means of a pair of rolls, when in this condition it is passed through a steol hole or a die, a plug being held in such a position as allowe the metal to pass between it and the interior of the hole. Oil is used to lubricate the metal, the motion is communicated by power, the dralsing apparatus being a pair of huge nippers, which holds the brass, and is attached to a chain and revolves round a windlass or cylinder. The tube in its unsoldered slate is annealed, bound round atintervals of a few inches with Iron wire, and solder and borax applied along tho seam. The operation of soldering is completed by passing the tubes through an air stove, heated with "cokes" or "breezes" which melts the solder, and unites the two eyes of the metal, and forms a perfect sube; it is then immersed in a solution of sulphuric acid, to remore scaly deposits on its surface, the wire and extra solder having been previously removed; it is then drawn through a "finishing hole plate" when the tube is completed. Mandril drawn tubes are drawn upon a very accurately turned steel mandril, by this means the inbernal diameter is rendered smooth. The tubes drawn by this prozess are well adapted for telescopes, syringes, sinall pump cylinders, Sc. The brass tubes for the boilers of locomotive engines are now made by casting and drawing without being soldered, and some of them are drawn taper in their thickness. Tubes from 1-10 inch internal diameter and 8 or ten inches long, up to those of two or three finches diameter and 4 or 5 feet long, are drawn vertically ky means of a strong chain wound on a barrel by wheels and pinions, as in a crane. In Donkin's tube drawing machine, which is applicable to making tubes, or rather cyliuders, for paper-making and other machinery, as large as $20 \frac{1}{3}$ inches diameter, and $0 \frac{1}{2}$ feet long, a vertical screw is used, the nut of which is turned round by toothed wheels driven by six men at a windlass. The fluted tubes of pencil cases are drawn through oramental plates, with elevations and depressions corresponding to the impressions left on the tube.

Lead Pire, is made by forcing lead, while heated to a plastic state, over ail amnular mandril or die to form the coro, by means of hydraulic pressuro.

Cutlery Mantfacturai-There are three kinds of steel employed in manufacture of different articles of cutlery, common steel, shear steel, and cast stecl. All edge tools which require to be tenacious without being very liard, are made of shear steel. Tho best scissors, razors, penknives, \&c., are made from cast steel which is able to take a very fine polish, common steel is only used in making cheap articles of cutlery. In making good table-knives, shear stecl und cast steel are generally preferred. In the ordinary method of making knives, tho blades are cut ont of a sheet of steel, and the backs, shoulders and tangs of Wrought iron, aise attached to the steel hlades by welding at tho forge. The knife is then grounc to the
proper shape, and the blade polished and hardened. The fork manufacture is a distinct branch of industry, and the manufacturern of table knives generally buy their forks from the fork makers ready to be put into ther handles. In making table knlves, two mer are generally employed ; one is called the foreman, or maker, and the other the striker. Pen knives are usually forged by a single land, with hamuer and anvil simply; they are hardened by heating tho blades red-hot, and dipping them into water up to the shoulder. hazors are also hardened in the same manner. The grinding and polishing of cutlery are generally performed by machinery, the business of the grinders is divided into grinding, glazing and polishing. Griudiug is performed upon stoues of various dimensions. "hose articles which require temper being ground on ret stones. Giazing is a process ly which lustre is given to cutlery ; it is performed with a glazier, consisting of a circular piece of wood, sometimes covered with leather, or an alloy of lead and tin; it is fixed on an axis like a grindstone. The polishing process is the last, and is performed on a eimi' : piece of wood covered with buff leather. Only articles of cast steel which have been hardened and tempered are subjected to this operation.

On Needle Mfanufacture, Temperina, \&c.-This small but important implement has to go through the hands of about 120 workmen duriug the process of manufacture. The steel wire, being drawn to the proper size, is submitted to varions tests to ascertain its quality, and is then cut into proper lengths by shears, which, by striking 21 blows in a minute, cut in 10 hours fully 400,000 ends of steel wire, which produce about 800,000 needles. These are passed on for further manipulation to other workmen, who straighten and point the picces of wiro. After pointing they are cut in two, so as to form two separate needles of equal length c.nd quality. For each different sizo a small copper plate is employed. It is nearly square, and has a turned-np edge on two of its sides, the one is intended to receive all the points, while the other resisto the pressuro of the shears. On this plate a certain number of wires are put with their points in contact with the lorder, and they are cut together flush with the plate, by means of a small pair of shears moved by the kneo of the workman. These even wires are now taken to the head-fattener. This workman, seated over a table with a block of steel before him aboct 3 inches cubo, takes up from 20 to 25 needles between his finger and thumb, epreading them out like a fan, with the points under the thumb, he lays the heads on the steel block, and, with a small flatfaced hammer strikes a few successive blows upon them so as to flatten them in an instant. The heads, having become hardeued by hammering, are now aunealed by heating and slow cooung, and aro handed to the piercer, gencrally a child, who forms the eye in a second by laying the head upon a block of stecl, and by driving a small punch through one side with a smart tap of the hammer, and then exactly opposite on the other. The eyes are then trimmed by driviug the punch through them again on a lump of lead and, after laying the needle with the punch sticking through it, upon the block of steel, hammering the head on the sides, which causes it to tako the form of the punch. Tne next operator makes the groove at the eje and rounds the head, which he does with a small file. The
needles, luing thus prepared, are thrown by the workmen pell-mell into a sort of drum or box, in which they are made to arrange themselves in parallel lines by means of a fev dexterons shakes of tho workman's arm. They are now ready to be tempered, for which purpose they are ranged on sheet-Iron plates, about 30 lbs . Weight at a time, containing from 250,000 to 500,000 needles, and are placed in u proper furnace, where they are heated to a bright redness for tho farger ncedles, and to a less intense degree for the smaller ; they are then removed, and invorted suddenly over a bath of cold water in such a way that all tho needles may be immersed at tho same time, yet separate from each other. This has the effect of making them very liard and brittle. The water being run off, the needles are removed for further operations. Some manufacturers lieat the needles by means of immersion in melted lead, others threw them into a pan along with a quantly of grease, which, being placed on the fire, the oily matter soon lgnites, and after it burns out, the needles are found to be in the proper cemper ; those which are twisted in the tempering being afterwards straightened by the hammer on the anvil.
Polishing is the next and most expensive and prolonged operation. This is effected on bundles containing 500,000 needles intermixed with quartzoze saud, and a little rape-sced oil. Thirty of those bundles are exposed to the vibratory pressure of wooden tabies, which mako about 20 horizontal double movements per minute, cansing tho bundles to rim over 2 feet each time, or 800 feet per hour. This agitation is leppt up about 18 or 20 hours, causing such a morcment and attrition as to polish the needles in the bags or bundles: They are then removed from tho packets into wooden bowls and mixed with sawdust to remore the grease and other impurities, placed in a cask, which is turned by a winch; more sawdust is introduced as required, and the turning is continued until tho needles become clean and bright. They are then winnowed by a fan to clean them from the sawdust and reftese matter, and are subsequently arranged in regular order on a suall, somewhat concave, iron tray. The operation of making ap the rolls or bags, polishing, winnowing and arranging them, have to be repeated ten times on the best needles. It is found that emery powder mized with quartz and mlca or pounded granite is preferable to anything else for polishing needles by friction in the bags at the first, emery mixed with olive oil, from the second to the seventh operation, putty, or oxide of tin for the eighth and ninth, putty with very little oil for the tenth, and lastly bran to give a finish. In this mode of operating, the needles are scoured in a copper cask studded in the interior with raised points to increase the friction and a quantity of hot soap suds is introduced occasionally to keep them clean. The cask must be slowly turned upon its axis for fear of injuring the mass of needles it contains. They are finally drled in the wooden cask by attrition with saw dust, then wiped with a linen rag or soft leather-the damaged ones being thrown aside. The sorting is performed in dry apartments, where all the points are first luid the same way, and the needles arranged in the order of their polish with great rapldity. The workman places 2000 or 3000 needies in an iron ring two inches in diameter, and sets all their heads in one plane, then, on looking carefully at their points, he easily re-
cognizes the broken ones and removes them with an instrument hands of the pointer in order these defective needles pass into the articles of inferior valuo. Th to be ground again, when they form now be straightened, and the wheedes bent in tho polishing must tact of the finger and thumb of the are finally arranged by tho quantitles for paeking into blof the sorter, and welghed out into touch to them by taining 25 needleg papers. The bluer puts tho final and thumb, and pressing their points atime between his fore-finger of compact micaceous schist, points against a small hone-stono small latho, turning them briskly rangular in form, mounted in a cast, while he polishes and impry round, giving the points a bluish On File Manufacture froves them. donbly hard by a process called are made of bars of steel, rendered quired size at tho tilt hammer, and double conversion, drawn the reoues by the hammer and common then shaped, the square and flat half-round, and three-angled forms, by meany, but thoso of round, In the above shapes, which fit into a broove lof bosses and dies mado The stecl blanks having been thus groove left for them in the anvil. softened, to render them capable of pormed, aro next annealed, or of them together in a brick oven, rendeing cut, by placing a number tho interstices with sand (to pren, rendered air-tight by filling up all Which it is rery liable, if air be adme the oxidation of the steel, to play as equally as possible all round until) and then making a fire beat is discontinued, and the steci and until they are red hot when the uncorcred. The surfaco to contain tho cool gradually before it is smooth as possiblo by grinding or filing; the teeth is now rendered as next and ground chisel, each incision being teeth are then cut with a by different process, that of hardening, is p made separately: The files with a makers, the ordinary method periormed in various ways dation and send of composition or protecting howerer, is to cover the plunged in cold frg of the steel when heated varnish to prevent oxt-filo-makers coat then water to cool them as quickly, lastly, they are cow-dung, or pitheir files, before tempering, with a possible. Some the cuttings from thor, which not only protects the a composition of substance, which conducen of the fire, but furnishes sharp angles of the finished work conduces greatly to still further hardighy azotized of a buth of melted 1 know several filo manufacturerden and steelify coated with a ted lead for tempering purposes. The make uso introduced for asy composition to prevent any The files are first as It is culled a short time into melted lead, or oxide "adhering, then ed lead may band then plunged into the temper the "metallic bath" ents, to prevent oxid covered with charcoal, or other suitable ingredtLept buming on tho surface In somo manufactories a charcoal fire is Pey Making.- Pensface of the melted lead.
got, as peculiar elasticity is requ made of tho best stecl that can bo tuined if poor stecl were used. The in them, which could not be oblong and 4 inches broad; these slips are the cut into slips some 3 feet diluted sulphuric acid so as to remove then, plunged into a pickle of nest it is passed between heary rolle the scales from the surface; thickness required, and made fit to unde which it is reduced to tho mating. This is performed by a undergo tho first process in pen a pertormed by airl, who, scated at a stampingo
press provided with a bed and corresponding punch,speedly cuts out tho blank, which is perfectly flat. The next step is to perforate the hole which terminates tho slit, and to remove any superfuous steel which might interfere with the elasticity of the pen. The embryo pens are then annealed in a muffle, and the maker's name stamped upon them. The pens are next transferred to another class of workmen, who, by means of a press, cither make the pens concave, if they are merely to be nibs, or, if they are to be barrel pens, they roll the barrel together. : The next process is termed the hardening, and consists in placing a number of pens in an iron box which is introduced into a muffle. After they become of a deep red heat they are plung: ed into a tank of oil, and, when they get cool, the adhering oil is removed by agitation in circular tin barrcls; tempering is the next step, by heating to the necessary elasticity in a warm bath of oll; and, finally, the whole number of pens are placed in a revolving cylinder along with sand, ground crucible, and other cutting substances, whici tends to brighten them up to the natural color of the steel; next the nib is ground down finely, with great rapidity, by a girl, who picks it up with a pair of pliers, and, with a single touch on an emery wheel, perfects it at once. The slit is now mado by means of a press. A chisel, or wedge, with a flat sido, is affixed to the bed of the press, and the descending screw has a corresponding chisel-cutter, which passing down with the greatest accuracy on the pen, which had been placed on the chisel affixed to the bed, and the slit is made and the pen complete. They are next colored brown or blue, by placing them in a revolving metal cylinder, under which is a charcoal stove, and, by watching narrowly the different gradation of color, the requisito tint is speedily attained; a brilliant polish is subsequently imparted by immersing the pens in lac dissofved in naphtha; they are then dricd, connted, selected and placed into boxes for sale.

Gond Pens.-Gold pens are made much in the same manner as stecl, with this important difference, that, as they cannot be tempered in the same way that steel is, the necessary elasticity is imparted to them by hammering, and by rubbing then with a small hard stono and water, instead of the tempering, \&c., in oil. As gold is too soft of itsclf to make a durable pen, it is found necessary to aitach a minute portion of an alloy of irridium and osmium, by soldering to the tips. This makes au extremely hard and durable point.

Tinning Small Articles.-Dissolve as much zinc scraps in muriatic acid as it will take up, let it settle, then decant the clear, and it is ready for use. Next prepare a suitable iron vessel, set it ores the fire, put your tin therein, and melt it, and put as much mutton or beef tallow as will cover the tin about $\frac{1}{4}$ inch thick. This prevents the oxidation of the metal; but be very careful that the tallow does not catch fire. The iron, or any other metal to be tinned, must bo well cleaned, either with scraping, filing, polishing with sand, or inimersion in diluted vitriol. Proceed to wet the articles in the zinc 50lution, then carefully immerse them in the tallow and melted tin; ina very short time they will become perfectly timned, when they may be taken out.

To Tin Iron Wire.-Clean the wire thoroughly in a pickle made of sulphuric acid and water (acid, 1 part, water, 2 parts' cover it with a solution of muriate of zinc, und dip in melted tin.
cdily cats out perforate the erfluous steel The embryo ame stamped lass of worlncave, if they, they roll the ing, and conis introduced ey are plungring oil is rethe next step, oll; and, inving cylinder tances, whicil cel; next the , who picks it emery wheel; of a press. A of the press, -cutter, which lich had been made and the placing them al stove, and, the requisito ntly imparted they are then
ne manner as t be tempered is imparted to lll hard stone old is too soft aitach a min. oldering to the
scraps $\ln \mathrm{mu}$ the clear, and sel, set it orer much mutton This prevents lie tallow does nned, must bo h sand, or in:in the zine sonelted tin; in: n they may be
a plckle made " cover it with

encounter the most tremendo power, and nice adaptation to successfully
ship is justly of modern enginead to rank as the proudest nie, the modern ocean steamEngineors of steamships For the Yodelling of Veasent of man in the line for the cylinders and ces have found that the best lubrican page 429. the main bearings seldomtor-oil fer the bearings. Whbricanta are glyccrine employed with advantag become heated. Only the best castor-oil is used, little to be desired. Comparative Weigity of Ibo weighs nearly 45 per cent. less than and Wood Hulls.-An iron hull resel with an iron frame and oak planking hull. The weight of hull of a of wood, is as 8 to 15 . Lebsicant for Tump be easily turned by using a mixturs. - It is said that steel annealed to a straw color can mich resisted the bost tempered tools haveleum and tarpentine as a iubricant. Alloya rith the point turner common planing, been turned by the use of petroleum alone. insilde rests, \&o., use tup, like a common diamond side tool, stout and short, and vith a taper from the point to thened up to a point, with the for planing under, as amond point tool, cutting from the side part of about 2 inohes. For squaring up Tar United States from the bide.
ud mixtures, patented by Gernment Temperiva Seciet. The foll
and Tempering Co., of Boston, Garman and siegfried, and owned by following process figt of using in their shoston, Mass., oost the U. \&. Gowned by the steel Refining tambility to the poorest shops, and is said to impart Government $\$ 10,000$ for the 1 dirst heat the stecl to a kinds of steel. Siegiried's specificatinary hardness and tith chloride of sodinm a cherry red in a clean smith's firication reade as follows: work the steel in thla (common salt), parifying the fire and then cover the steel pought into nearly its condition, and while subjected to thiso by throwing in salt. cuposed of the foilowing inhed form. I then substitute for the salt a comill it is it by weight of each of thy ingredients, and in about the follo the ealt a compound copper, sal-neach of the following substances : chloride oilowing proportions: One ists of potassa (salten and sal-soda, together with of of sodium (salt), sulphate vely heat the steal (tpetre), sald ingredients being pulverin part by weight of pure tililitie thoroughly and treat it by covering with this mixture mixed; I niterefre and heat it s refned and brought into its finished mixture and hammering it the following slowly to s cherry red, and then plangorm. I then retirn it to quired quantity: of rain wist in substanttally the plonge it into a bath composed : of nitrate of rain water, 1 gal, alum, sal-soda, sulphate of copper, of for the A. These quantites and (saltpetre), 1 oz ., and of chiorido copper, of each $1 / 1 /$ best, but it is manifest thaportions are stated as being what I ragard ss practicality principles of my invention."

OLIVER ETANS; TIEE WATt OTAMERIOA. Inventer of the Iilgh-Pressure Steam Engine.

In 1\%03, Oliver Evans, a native of Newport, Delaware, Invented the Higtpressure Engine, and in 1804 he constructed an engine in Phlladelphia, working on the high-pressure system, and placed it on a large scow mounted on wheels as shown in the following cut. Although the whole weight was equal to 20 barrels of four, yet his small engine propelled it up Market street and round the circuit to the Water Worke, where it was launched into the Schuylkill. A paddiowheel was then applied to its stern, and it thus sailed down that river to the Delaware, a distance of 16 miles, in the presence of thousands of spectators.

In milling appliances, he invented the grain elevator, the conveyer, the dill, the descender, and the hopper-box, besldes other labor-paving inventions of great utility to the miller, He also wrote the "Young Steam Engincer's Guide," and a highly valuable work entitled "The Young Millwright's Guide." Although equally deserving of fame, he failed to reap the substantial honors accorded to Watt in England.

- Papier Mache, is usec for fancy articles, such as the covers for albumg, intstands, blotting books, paper kniven, etc., as well as for the cells of galvanic batteries. It is obtained from old paper made into a pulp with a solution of lime, and gum or starch, pressed into the form required, coated with linseed oil, baked at a high temperature, and finally varnished. The palp is sometimes mixed with clay, sand, chalk, etc., and other kinds are made of a paste of pulp and lime, and used for ornamenting wood, inlaying, etc.
about 7 $17,500 \mathrm{f}$ second ont of th heard on of the H York, he hore in $5,300 \mathrm{yds}$ landing i he heard, of 2 miles liss, that
11,$470 ;$ 11,$470 ; "$
18,$000 ;$ St Moscow reighs 12

Priming Powder for Prrcussion Cips,
gunpowder to very fine dust; mix to 2 CAPs.-Reduce 40 parts of chlorate of potassa, 21 parts, previously rin paste with water, next adil make the paste rather thin and deposit a sman to very fine powder;
Be cap. The mixture is liable to weight of linearnisir.- Melt India nubber if incantionsly hand!ed.

Artificiseed oil, and thin with spirits turpentinil pieces w.th its very fine fial Coral. - Yellow resin, 4 parts; weme.

Gold Bearnamental work, \&c. membranes of crecum a solution of alam and lastly with first with plain water, then with Home-made Mrcroscope,-Remo solution of isinglass and spices. make a small insert a piece of window clase bottom from a cominon Canada balsam eye hole in the lid. In this hole int the inside black, and

To Remove Tin allow it to cool. It possessesert a single drop of a solution of blue from Copper Vessels in magnifying power. boil the scrap tin vitriol. To remove tin from parse the article in Sound. - In dry ais soda ley in presence of litharge without acid, about 775 . - Indry air at 820 sound trace 1 litharge.
$17,500 \mathrm{ft}$. in in per hour; in water, ${ }^{\prime} 4,900 \mathrm{ft}$. per . per second, or second. In water, $10,378 \mathrm{ft}$; and in wood fro per second; in iron, out of the water but bell leard at $45,000 \mathrm{ft}$., conld 12 to $16,000 \mathrm{ft}$. per heard on the gromnd at in. In a balloon the barking of in the air of the Hussar frigat an elevation of 4 miles. Ding of dogs can be York, heard the pade, 100 ft . under water, at Hellers on the wreck hove in sight paddle wheels of distant st, at Hell Gate, near New 5,300 yds. ; a militae report of a rifle on n still dats before they landing in Egypt wary band at $5,200 \mathrm{rds}$. The fire may be heard at he heard, during was distinctly heard 130 nie fire of the English oj: of 2 miles. The calm weather, every word of a sermonieson says lths ; that of the Citr of Notre Dame, Montreal 11,470; "Bir Berty Hall, N. Y., 22,300 lbs of Que., welghs 28,560 18,000' St Big Ben," Westminster, 30,350 ibs. ; of St. Panl's, London, Moscow i Peter's, Rome, 18,607; Ronen, Great Tom," of Oxford, Weighs 120,000 ${ }^{2}$; one unhang at Moscow 440 e, 40,000 ; St. Ivan's, ells of galvanic solution of lime linseed oill, baked imes mixed with pulp and lime

TABLE OF FOREIGN WEIGHTS AND MEASURES

REDUCED TO THE STANDARD OF THE UNTTED STATES.

(The two r^{\prime} ht hand figures are the hundredth parts of a whole pumber.)

CE	
Decimetre (1-10th metre)	3.04 inci.es.
lt...................... 2.00	
Hectoiltre 26.42 galls.	
Decalitre ${ }^{\text {9.08 }}$	
Millier.................. $2 \cdot 205$ libs.	
Kilogramme 2221 lbs .	
109 lbs. 1 centner......... 108	
Alm of wine............ 41.00	
Amsterdam foot	
Antwerp foot.	
Khineland foot	1.03 feet.
Amstersdain ell....	$2 \cdot 26$ fe
Ell of the Hague	$2 \cdot 28$ fee
Ell of the Brabant...... $2 \cdot 30$	
netherlands.	
$\underset{\text { Mudde of Zak.......... }}{\substack{\text { Mat } \\ \text { Vatolitre......... } \\ 2642 \\ \text { bu }}}$	
Kan litre................. 2'11	
нимвигя.	
Last of grain	$89 \cdot 64$ bu
Ahm of wine.............. 38	
Ell... 1.92 feet.	
100 lbs. of 2 Cologno marks each 103.11 lbs.	
Quiutal, 110 lbs........... $113 \cdot 42$ libs.	
Sheffel of graid	
Eimar of winc........... 18.1.	
Ell of cloth................ $2 \cdot 19$ feet.	
100 lbs .1 centner........ i $10 \cdot 28$ lbs. Barrel or toende of corn, $3 \cdot 95$ bush.	
Viertel of wine.......... $2 \cdot 0$	
Copenliagen or Rhine. land foot.	
Kan of corn........... 7 742 bush.	
Last.................... 7500	
Ell of cloth	
russia.	
100 lbs . of 32 laths each..	
Chertwert of grain........ 5.95	
Petersburgh foot.......... $1 \cdot 18$ feet.	

Quintal, on 4 arrobas....... $101 \cdot 441 \mathrm{lbs}$,
Arroba $25 \cdot 36 \mathrm{ibs}$
Arroba of wingo.en 4.43 zalls
Fanegn of grain..........en 1 1.60 Eush, PORTUGAL
100 lbs. $101 \cdot 191 \mathrm{bs}$ 22 1bs. (1 arroba)............ $22 \cdot 25$ lbs. 4. arrobas of 22 lbs. (1 quintal)
89.0: \%is.

Alquiere................... $4 \cdot 75$ buxh.
Mojo of grain................. $23 \cdot 03$ bubb
Last of salt.................. 70.00 bush,
Almude of wine............ 4.37 galle.
sicily.
Cantar ogroso $192 \cdot 50$ lbs.
Cantaro sottile.............. $175 \cdot 00$ lbe.
100 lbs..................... 70.00 ibs .
Salma grossa of grain....... $9 \cdot 77$ buish,
Salma generale............. 7 785 bush:
Salma of wine.............. 23.06 galls.
Cantaro groso................ $196 \cdot 50$ lbs.
Cantaro picolo............... 106.00 1bs.
Carro of grain............... 59.24 bush
Carro of wine...............264.00 galls
Rubbio of grain.. 8.36 bubh,
Barih of wine. $15 \cdot 3 \mathrm{~g}$ galla
aENOA.
100 lbs or peso groso....... 76.8 ibs 100 lbs . or peso sottile...... $69 \cdot 89 \mathrm{lb}$. Mina of grain............... 343 bush.
Mezzarola of wine. \cdot........ $39 \cdot 22$ galle. florence and legiorn.
100 lbs . or 1 cantaro........ 7486 lbs .
Moggio of grain.............. $16 \cdot 59$ bush.
Barile of wine.............. 12.04 galle. venice.
100 lbs. peso groso.......... $105 \cdot 18$ lbs.
100 lbs. peso sottile......... $64 \cdot 04$ lbe.
100 lbs. peso sottile......... 64.04 lbs
Moggio of grain..... 9.08 bush
Auffora of wine............. 137.00 gelle
trieste.
$100 \mathrm{lbs}$. . . $123 \cdot 60 \mathrm{lbs}$.
Stajo of grain................ $2 \cdot 3$ bub
Orina or elmer of whe..... 1494 galle
Ell for woolens.............. 2:22 feet.
Ell for silk................... 2.10 feet
malta.
1.00 lbs .1 cantar.
. $174 \cdot 50 \mathrm{lbs}$.
Salma of graln 8:22 buid
Foot.

100 lbs . (1 quintal)............ $129 \cdot 48 \mathrm{llds}$
Oke 2:83 lles
Quillot of grain............... $1 \cdot 46$ bus
Quillot of wine:............ 13.50 gai
CHINA.
Tall
16 tails i catty
1.331 k

100 catties 1 picui.
133.251 lm
...00 89.05 lis.
4:75 busb.
23.03 bush.
70.00 bush. $4 \cdot 37$ gals.

....192:50 jbs .

$\cdots \cdot .17500 \mathrm{lbs}$. 70.00 lbs . 9.77 busb. $7 \cdot 85$ bush. 23.06 galls.
...... $196 \cdot 50 \mathrm{lbs}$. $.106^{\circ} 00 \mathrm{lbs}$. 52. 24 buch $.264^{\circ 00}$ gall.

8.36 buth,	328 318			38413	
15.31 gallis	$\begin{array}{lll}13 \\ 4 & 1204 \\ 412\end{array}$	156 168	$\begin{array}{ll}308 & 321 \\ 224 \\ 336\end{array}$	416 448 15	
76	45820	180	2240 2460	48016	158
\%9.89 ${ }^{\text {chb }}$	16.128	192	256	51217	1712
${ }_{3} \cdot 43$ bush.	${ }^{136}$	204	272408		18 14
39922 galls.	18.14	218	288432		19.15
GIIORS.	152	228	304455		20.18
. 74.861 lt -	150	240	320		22
$10^{6} 59$ busb.	211263	22^{2}	336804		23
. 12.04 g gall	${ }_{21}^{22} 17{ }^{176}$		352		24
E.		288	368		25
. 105.18	${ }_{25} 200$	300	40		10
${ }_{9} .08$ bush	261208	$3: 2$	$4{ }^{6}$		23 212
37°	216	324	43^{42}		2914
3.601	23.224	336	44^{8}		3015
.123.601		348	484		318
.. $14 \cdot 9 \mathrm{pall}$	31243	372	496		33
2.22 feet.	[2] 256	384	512		
....... 2-10	2		5		36
$17+5$	35 280	420	544		37 38 38 8
.1. 8.22 buil	36.288	432	57^{6}		3312
0.85		444	592		to 14
	39712	456	603		48 48 18 18 18
2		$\begin{aligned} & 400 \\ & 480 \end{aligned}$			18

PAPER TABLE FOR PRINTERS' AND PUBLISHERS' USE 5

Showing the quantity of paper required for printing 1000 copics, (incurling 56 extra copies to allow for mastage), of any usual sized Book from 8 vo . down to 32 mo . If the ganntity required is not found in the Table, double or treble some suitable number of pages or quantity of paper.

	$\begin{gathered} \dot{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$						p's. Qs
1	8	12	16	24	33		2
2	16	24	32	48	64	2	4
3	24	36	48	72	90	3	6
,	32	43	64	96	128	. 4	8
5	40	60	80	120	160	5	10
6	48	72	95	144	192	6	12
	56	84	112	168	224	7	14
8	64	96	128	192	256	8	15
9	72	108	144	216	288	9	13
10	80	120	160	240	320	11	
11	83	132	176	264	352	12	2
12	96	144	192	288	384	13	4
33	104	156	208	312	416	14	6
14	112	168	224	336	448	15	8
35	120	180	240	360	480	16	10
16	128	192	256	384	512	17	12
17	136	201	272	408		18	14
18	144	218	288	432		19	15
t_{9}	152	228	304	455		20	18
20	160	240	320	450		22	
21	163	252	336	504		23	2
22	176	264	352			24	4
23	184	276	368			25	6
21	192	288	384			26	8
25	200	300	400			27	10
26	203	$3: 2$	416			28	12
7	216	324	432			29	14
28	224	336	448			30	15
29	232	348	464			32	8
80	240	360	480			33	
31	248	372	496			34	2
32	256	384	512			35	4
13	264	396	528			36	6
3	272	408	544			37	8
35	280	420	560			18	10
36	288	432	57^{6}			139	12
37	296	444	592			40	14
38	304	456	603			42	16
39	312	468				42	18
401	320	480				144	

NAMES AND DIMENSIONS OF

VARIOUS SIZES OF PAPER.

PRINT.

Medium...................... ${ }^{19}$	$\times 2.4$
Royal, (20 x 24)............... 20	$\times 25$
Super Royal. 22	$\times 23$
Imperial. 222	$\times 33$
Medium and a half.......... 24	+ 30
Small Double Medium.... . 24	$\times 35$
Double Medium............. 24	33
Double Royal............. ${ }^{\text {a }}$ 2	40
Double Super Royal. 23	x. 42
Double Super Royal. 29	$\times 43$
Broad Twelves............. 23	$\times 41$
Double Imperial............. 32	46

FOLDED.

TLAT.

N. B. -The weight of a ream of paper and the price per pound being given, the cost per ream or quire may be known at once by consulting the Ready Reckonez Table.

To Remove Printer's Ink form Paper Pulp.-Potaci' 4 lbs; digsolve in as little boiling water as possible, and add $3 \frac{1}{2}$ lbs. tallow, boil for 3 hours, and add while coolling and stirring, 3 gals. rain water. Boil the paper pulp, keeping it covered with water, and to each 20 gals. pulp, add 1 gal. of the above mixture; beat and stir thoroughly, and the black printing ink will rise to the surface; skim it off as long as it continues to rise.

Colored Paper. - The papers made from colored rags are the brown packing paper and coarse colored paper, such as sugar and pin papers. According to Wagner, colored pin paper requires to every 80 kilos (see the French measures and their English equivalents described elsewhere) of dry pulp the several under-mentioned sub-stances:-

	$\{2.05$	Kilos	Acetate of Lcad,
	0.45		Bichromate of Potash,
Blue.	2.05	"	Sulphate of Iron,
	1.05	"	Ferrocyanide of Potash,
Green	3.00	"	Blue,
Violet.	1.05	"	Extract of Logwood,
Rose.	6.00	${ }^{4}$	Extract of Brazil Wood,
Buff.	$\left\{\begin{array}{l}3.00 \\ 300\end{array}\right.$	"	Oil of Vitriol, Chloride of Lime

Ultra marino and anilino blue are also used in coloring. In variogated paper chemical, mineral and vegetable colorings are used according to the desired coloms, Body colors are rendered fluid by a solution of gum arabic or alum in the size, which can be applied by a brush or sponge when only one side is to ke colored. Variegated and tapestry papers are an important part of the mauufacture.

French Composition for Printer's Rollers.-For a 24 -inch roller, take Russian isinglass, $\frac{1}{2} \mathrm{oz}$; gelatine $\ddagger \mathrm{oz}$; when the usual composition, compounded of glue, 1 lb ; molasses 1 pt . is ready for pouring add the above to it; let all boil 15 minutes longer, then cast in the usual way.

Pasteboard and other Papers.-Pasteboard is made in 3 ways: 1. By placing the puip in a form: form-board. 2. By pressing several damp sheets to folm a thick card; elastic pasteboard. 3. By pasting together the finished paper sheets; sized pasteboard. 1. Form-board is an inferior kind employed for ordinary purposes of packing, bookbinding, etc. It is made, from waste paper, refuse rags, and the coarse parts of the pulp. Clay or chalk is sometimes present to 25 per cent. of the weight of this pasteboard. It is made in a coanst ribbed form, goes through the same process of knotting as the paper sheet, and is dried and dressed under a roller.
2. Elastic pasteboard is of better material, and presents a smoother surface; 6 to 12 sheets of paper previously dampened are placed together and pressed into one compact sheet. A separate and harder Find of pasteboard is the thick elastic board, used for binding booke The inner layer is made of coarse stuff, saw dust, etc. 3. Size pasteboard, or cardboard is made of 2 to 15 sheets of sized paper, presed and satined. There are varieties of this cardhoard, such as Bristol board, London-board, the former being extensiveiy used fur water color drawings, mounting-board, orıamental-board, etc. vamish and grind with York Brown, when well strong lithographle Wress or varnish and gold size equal parts. This will thin down Another Wraph printing, for paper, cloth silk, \&c do for letter or rub over with pood as with common printer, acc.
to eet, then shake good pale or other colored bronze po then dust on soft brush. or brush off the superfluous bronze pow, allow it Gold Printing. - Haye gith aronze witht job, and use gold size instead of inf cut the proper form to suit your Apply the gold leaf to the size until the the usual way on the type. 8 giders tip, or by a dextersus until the impression is covered, using the right hand slightly moistenuse of the thamb, and forefinger of companying paper and apply to the size. the gold leaf with the acdown gently with a ball or soft cushion When all is covered dab it the size hasd remove the superfluous gold of cotton or other proper Use a good firm weil applied it will assume a soft brush, and if Colored Inks for for gold and bronze printing and appearance. rannish, the preater Printers. - 21 Tints for grinding, and the present requirements compound a surplus quantity, a good muller tugredients, in each ants. Grind, blend, and finely over and aboro mooth good ink each and every instance and finely pulverize the in English rermilioe from gritty particles. Good work demanda and lake. Briaion, with a little lake. Der a good Red, grind Scarlet, add a Prassian blue Beittle portion of vermilion to vermilion. Ders for other shad bright Pale Bloe, cobalt, also to carmine. Bler, mry the colors by varye. Green, to pale chrome verditure and indigo Eherald Green varying the proportions of the add Chincse blue; udd the emerald until grind pale blue with a little different pigments. blae. Deep Brown, burnelor suits. Deep Bronze Be blue, then hike Pale Brown, burnt umber, with a smonnze Blur, Chinese Lrisc, add a little count sienna with a little quantity of scarlet the proportions of carmine to cobalt blue; for a paret lake. Dees rou prefer. Bine each. Bright Pink, crimson, pale lilac, reverse BLVE INK; carmine and ble inks intermixed, will erolvermine as blue, a Greey Ime and biue, will yield a Purpere iveive a Derp and black, a Brow, yellow and carmine, a Verme Ink; yellow and Green Int bronze Green; jellow, blue, and binin; yellow Copper carmine, yellow and black, a Brown and black, a Deep black in pr Plate Printer's Ink is made by addin
printing proper quantity to the usual linseed oil adding Frankfort Gold nit. See page 545.
deen menear. - According to the Deen, medium, fine, red, pale rect, de color, gold leaf is demoninated ? of silver admits very little alloy, the orange, l mon, pule uchite, \&c. dop silver and $2 \frac{1}{2}$ copper, making' 5 in quantity being usually about 6 parts pure gold, 12 silver and 6 conper. A medium kind is made of rneatl lugots $1.4 \times \mathrm{in}$. and $3-16$ coper. The gold is first made inrpeatedly between 2 polished ateel in. thick. The ingot is passed ibbon only 1-800 in. thick. The rollers, until it becomes a long deces, 150 of these are interleaved ribbon being cut into inch aquare parchment case called a lueaved with thicls paper, and enclosed in patinued series of blows administered with a 16 lb subjected to a long in
anmer, and tc
all parts of both surfaoes equally. When each piece has been stretched out by this beating to 4 in . square, the hatch is opened, the pieces are cut into 4 of 2 in . square each, and these are interleaved in a book of gold-beater's skin called a shoder, the 150 pieces being now 600. Another beating with a 91 lb . hammer epreads out these as before and another cutting augments the number from $\mathbf{6 0 0}$ to 2400 . These are separated into 3 packets of 800 each, and each of theso packets is again beaten in a book of gold beater's skin called a mould; this beating, lasting 4 hours, is done with a 7 Ib . hammer. The leaves of gold now reduced to the proper thickness, are cut into $\frac{1}{1} \mathrm{in}$. equaro which are interleaved in books and made up in packs. Leaf gold is the thinnest substance produced in the meechanical arts, being only the 280.000 of an inch in thickness, a single grain covering 56 aquare ins. Dentist's gold is thicker than the ordintary leaf gold.
Artificial Writing Slate.-Sand (fine), 82 parts; lampblack, 8 parts; boiled linseed or cotton seed oil, 10 parts; boil thoroughly together, then add spirits turpentine in order to reduce the mirturs for easy application to a thin piece of paste-board. When dry, apply another coat, dry again, give it a third coet and finish off by rubbing smooth with a piece of cotton wasto scaked in epirits turpentine. Makes most superb memorandum booke, \&e.; use a slate pencil.
The Drummond Light is produced by directing a jet of mired oxygen and hydrogen upon a pencil of pare lime, the gases being conveyed in separate tubes or pipes, to withem a very short distance from the aperture at which they are to be delivered, and the flowing together and mixing in a very minute qmantity before combustion takes place. This arrangement is adopted to ensure safety. Tho gases are used in the proportion of 2 of hydrogen to 1 of oxygen, which form a dreadfully explosive mixture.
To Engrave on Coppir. New Method-Coat the copper with any of the silvering solutions described in this work, cover this with colored varnish, then draw the lines with a sharp point in the manner of using a diamond for stone engraring, and etch them in with perahloride of iron.
To Enamel Copper Vegsels.-Palrerize finely 12 parts of fror spar, 12 parts unground gypsum, and 1 part borax, and fuse together in a crucible; when cold, mix with water to a paste, and apply to tho interior with a paint brush; when dry the ressel should be thoroughly baked in a muffle or furnace.

- Temperina Points of Toois.-After being tempered the volume of the tool is slightly increased, and consequently is specificgrarity is decreased. As the expansion or increace, of volume is so very slight, it is quite immaterial which is plranged into the liquid first; however, every moment the edge is kept out it is cooling, and tho tempering may be renderec! defective thereby. Mercury tempers the hardest, then water, theu salt water, them of of various kindsas whale oil. As oil cools the metal more slowly, it is not tempered so hard but the tenacity is increased.

Hard Tinning Compound. - An allow of nickel, iron and tin hes been introduced as an improvement in timming metals; by the firm of Blaiso. \& Co., Paris. In an experiment to show the tenacity of the nickel, a piece of cast iron tinned with the compound was subjected order to produce thortions of nickel and iron mired conting upon ozs. of sheet iron, to 10 tinning, are 10 ozs. of the with the tin, in crucible to prevent the 10 lbs of tin. These mete best nickel and 7 necessary for the fusion of then of the tin by the high mixed in a oz. of borax and 3 ozs. porne nickel ; the metals arg temperature an hour, when the cos. pounded glass. The fusion are covered with 1 flux. In tinning metals with this run off throngh a completo in half in the ordinary manuer. To Recover Gond. usual, and fuse the mass with QuAriz. - Pulverize the quartz reck as immerse thin plates of wrought and oxide of irou. When fused, soon become coated with a thin firm in the mixture. The plates adhering gold, wersed in a bath of melted lead, which are then withquartz and the onen the plates can at once be returned removes tho require. Another operation repeated as frequently as the the fused quartz pyrites or lend is to when the metal is dissemint case may whole with a lead, is to pulverize the ore is usuanated through portions of sand, freed from impuritics by the heary metals behind. the lighter which is afterwards distil being amalgamated with it is further from 2 to 10 per cent of off. In thils stato it ge, quich-silver, by being finely cent. of silver or tellurium, it ge, erally contains acid until every other conand boiled with concentruther refined alloyed, loses nuch of constituent is boiled out Gonted sulphuric fusibility and hard of its ductility and mallentility Gold by being first, by rubbing the ars. Gold alloys are assayed , but gains in black flinty variety article on a touchstone (whed in two ways, which is touched with jaspar) so as to make (which is a velvety; that of a similar streak aqua regia, and the effect is metallic strent, this means an expeak made by an alloy si effect is compared with alloy in any mixtuerieuced operator can estimn composition. By tion regarding ture correctly within one estimate the amount of Refining Go the second process can be seen cent. Full informaGold Mining and Silver. alone nearly 600 tons of ore are.-From the velins of Gilpin County Nearly 500 lodes have been assayed or mily, or 180,000 tons annually. miles in diameter ; fully a thousand or mapped in a circle of thros more or loss work performed on each. From have been rocorded, and than 8 miles lodes are known to exist, upom fifteen to twenty miles than 20 miles of shafting, the deepest being 800 Which there is not less the crevices, of drifting on these veins, follow feet. There is not less $\$ 40$ to $\$ 130$, and the official assays show the ore the ore deposit in stamps, are for ton. The tailings, or refuse of to be worth from to 20 per cent. of the be worth $\$ 20$ per ton, notwith put through the arerage shipments of precious metal passes down the strean from 10 00 anuually. The machinen from this one county the stream. The consists of 83 stame machinery required for this ty verges on $\$ 2,000,-$ and 1507 stampse of mills, 185 engines in this immense production bams, of which thero are over place, in use horse power
ron and tin bes ; by the firmol tenacity of the d was subjected
horse power. There are 30 engines used at the shafts of mines for raising ore from the veins and keeping them free from water. Theso mills contain from δ to 50 stamps, mostly driven by steam. The ore, brokeu into fragments, is fed into a battery in which the stamps are raised aud allowed to fall, crushing the ore fine enough to flow throngh a screen placed in front. Mercury is fed in this battery, and the pulverized ore mixed with sufficient water is then made to flow over wide plates of copper amalgamated with quicksilver. The gold, or part of it, adheres, forming an annlgam with the mercury, which is afterwards scruped off, squeezed hard, and the lump retorted in a close recort of iron for the purpose of vaporizing the mexcury and getting the gold almost pure; the retorts being subsequently shipped to the East for minting. Each stamp is calculated to do from $\frac{1}{2}$ to $:$ of a ton in 24 hours, requiring about one horse power to each stanp head. Most of the ore is reduced in leased mills abandoned by companies. These mill men charge their customers between $\$ 3$ and $\$ 4$ per ton for doing this work and returning tho retort of gold. Tho tailings are partially caught in the best mills on blankets, and reworked at a profit ; the bulk, however, passes outside, a portion stopping to be shovelled into a pile, the balance going on to the stream. The waste is nearly or quite equal to the gross yield in bullion, The most profitable branch of veiu mluing and reduction by tho smelting process was undertaken by Prof. Hill in 1867, in connection with some Boston and Providence capitalists, and is managed with much ability, energy and skill, compensated by cnormous profits, of Which the outside public know little or nothing, from the vigilance with which all such information is suppressed. From tio road sido you see from 20 to 30 piles of ore sending forth sulphuroug manations futo the air. These piles are first started on a layer oz wood, aud are run up in a pyramid form some 5 to 6 feet, with diameter at base of from 16 to 20 feet, and then fired, the sulphur affording the only fuel, after the exhanstion of the wood, to keep the fire going from four to six weeks. This ore has been passed through the sampling works nud been paid for, the amount lying thus in piles at one time nmounting to, perhaps, $\$ 80,000$. After roasting sufficiently to driro off the sulphur, and oxidize a portion of the iron, these piles are cooled and the ore carried to the smelting furnaces, where under a heary heat, more sulphur is driven off, and the silica or gangue mat ter is mado to unite with the oxide of iron to form a slag. At the end of the smelting some 8 or 10 tons are thus reduced to one called " matte," containing from $\$ 1,500$ to $\$ 2,000$ in the precious metals, and from 40 to 60 per cent of copper. This product is then shipped in bags to Swansea, England, for separation into the several metals contained. The establishment contains three sinelting furnaces and three calcining furnaces, capablo of reducing from 20 to 25 tous of ore per day. The tailings which are concentrated along the streams, and are also sold to this cstablishment, average from $\$ 35$ to $\$ 40$ per ton. Theso works are doubtless tho most profitable of the kind known in tho world. In working tolcrably high grade sulphuretted ores, if the facilities do not adinit of sciding them to England, the best way is to crect a common furnace, laving the fire surfaces of good soap stone; then, to every 150lbs. of ore, put in one bushel of charcoal and 10 per cent of salt. Tho ore will readily melt to a slag, and will be
mines for iter. These steam. The the stamps ugh to flow battery, and ade to flow : The gold, reury, which o retorted in mescury and intly shipped from $\frac{1}{2}$ to o each stanp ned by comen $\$ 3$ and $\$$ of gold. Tho lankets, nud de, a portion to the stram. d in bullion. action by the in connection nanaged with ous profits, of the vigilance tis road sido uf manations or wood, and umeter at baso ding the only re going from the sampling is at one timo riently to driro hese piles are vhere under a or gangue matg. At the end to one called ous metals, and shlpped in barg etals contained. Id three calcinf ore per day. s , and are also er ton. Theso I known in the tted ores, it the - best way is to ;ood soap stone; harcoal and 10 lag, and will be pretty well desulpharized. Tho slar
cold can be broken up, and worked in can be drawn off, and when Recovering Silver by rie like free gold ore. known by this name is sometime Patio Process.-The operation In one instance at the haciendames conducted on an immense scale. an cstinlishment the floor of whia Regia near Real de Monte, there is most substantial manner, slightly sis 1, acres in extent, built in tho The flooring consists of well matched to facilitate the flow of wnter. ceptacle sometimes contains as matched pine boards, and this vast reslime, 30 tons of sait, 3 tons sulphate as 1000 tons of argentiferous mercury in rarious stages of the 2malgam of copper, and 18,000 lbs. of thy this takes plare in the well kualgamating process. The reason affinity between the diffcrent ingredien manner is because there is an On Correspondences.-Theredients employed in the operation. betrecn different materials, arises from above referred to as existing planted in cach substance by the Creaton a nature inseminated or insa mutual affinity exists between them thor, by virtue of which such takes place, they, as it were attract each that when an intermixturo mutual embraco. Closely connected each other, and rush together in the cause of their existence and origin, with these affinities, as showing respondences a most wonderful and wo have in the science of corits varied ramifications, so deeply and instructive study, entering in but what com, that there is nothing, and can inherent nature of erery ance of the subje within its consideration. The thing in the universo consideration thect is such that it is deserving of vastly mould be a violan the transient notice of a single pastly more elaborato this place, the reader of order to enter into an extenragraph, but as it
Mercury or OUICr isferred to tho appendix for furd explanation in milion color. Its qucksilver.-The ore is cinnar further illustration. quantitics at tho Npecific gravity is 8098 . It is produr of a bright verfrom the tom New Almaden mine in Santa produced in immense The process by which Jose, which is 54 miles from San County, 12 miles plicity. There are 6 fue fluid metal is extracted is on Francisco, Cal. the mine, and separatedaces, near which the ore is of great sinare first broken up and according to its quality ore is deposited from furace doors. $u p$ and then all ?s piled up under sharger masses thongh not a strog ore is next heaped on the under sheds near tho quifssilrer is strong fire is applied; as the furnaces, and a steady and is conducted imed, and being condensed ore becomes heated the to small pucted by pipes, which lead along the folls by its own weight, 1 to 2 galions or reservoirs imbedded in the earth bottom of the furnaco day, while large metal. The furnaces are each containing from ninstantiy tricko drops or minute streams of the going night and fied to the ercking down into the receivers, from pure metal aro rits, the largest of stase and deposited in large cast iren it is carquicksilver. Seven which is capable of containing 20 tanks or estract the quicksil or eight days are required to fing 20 tons of bose who qerely her and remove the residuum. pat those who whandie the quicksilver are the metal are scris about the furnaces and innt injured thereby, Hendants on the scriously affected. Salivation is commo fumes of bour every three furnaces are compelled to common, and tho bour every three or four weeks, when a fled to desist from their
on. The horses and mules are also salivated, and from 20 to 30 of them die every year from the effects of the mercury.

Smelting of Corper, - After the ore is raised from the mine, it is freed from its matrix and sorted, the purest portions being broken into pieces the size of a nut. The fryst calcination is effected in a reverberatory furnace, the lieat not being raised too high. At tho end of 12 hours the ore is converted into a black powder, containing sulphide of copper, oxide and sulphide of iron, and earthy inpurities. The roasted ore is next fused with a quantity of silicious slag, by which means it is converted into a fusible slag, consistiug of silicate of iron and sulphides of iron and copper, which sink through the slag, forming at the bottom a heary mass, termed a matt. The matt thus procured is, while melted, run Into water, by which it is granulated. The product obtained is called coarse metal. It is roasted once more for twenty-four hours, by which means the larger proportion of the sulphide of iron is converted into oxide. It is then calcined with some copper ore linown to contain oxide of copper and silica. The oxide of copper traniforms any remaining sulphide of iron into oxide, which is taken up by tho silica to form a slag, through which the sulphide of copper sinks. This matt contains about 80 per cent. of copper, and is knoirn by the name of fine metal. It is cast into pigs, tho lower portions of which contaln most of the impurities; the metal extracted from the upper portions being known in the market as best selected copper. The fine metal has now to be freed entirely from sulphur by a final calcination, at a heat just short of that required to luse it. During the process the metal becomes oxidized at the surface. The oxide thus formed decomposes the rest of the sulphide, sulpharous acid escaping, the metallic copper remaining befind. The metal obtained is run off into moulds, forming ingots full of babbles, from the escape of the sulphurous acid gas. These ingots, which are known as pimple, or blistered copper, from their pecular appearance, have now to undergo the process of reflining. They are placed in a reverberatory furnace, and liept in a melted stato for upwards of 20 hours, to oxidize the last traces of forelpn metals. Slags are formed on the surface and skimmed off, and a great deal of oxide is produced which is absorbed by the metal. To reduce this oxide, the surface of the melted metal is covered with an. thracite or charcoal, and towards the last a young tree is thrust in. This process, which is called poling, disengages the whole of the oxygen from the oxide diffused through the mass. The above is, as nearly as possible, the method of copper-smelting, as employed in England, the processes adopted in Saxony and North America being nearly indentical with it, the difference merely being modifications to suit the various impurities contained in the ore. When the oreconsists of oxide or carbonate of copper only, it is reduced to the metallic state by simple fusion with charcoal and subsequent poling.

Smbiting of Lead. -The ore having been brought to the surface, is first sorted by hand, the purest portions being set aside ready for smelting. The rest is broken by hammers into lumps as large es a walnat, and again sorted. The remainder is then crushed in a mill, and sifted throngh coarse sieves, the coarser portions being set aido for the atampers, and the finer being subjected to the process ofjivo
om 20 to 30 of 5
the mine, it is being broken is effected in a high. At the owder, containm , and earthy tity of sillcious slag, consisting er, which sink nass, termed a un into water, s called coarse ours, by which m is converted ore linown to pper transforms aken up by tho f copper sinks. and is knomm lower portions extracted from . best selected y from sulphur required to fuse at the surface. - sulphide, sulg behind. The ots full of babThese ingots, n their peculiar refining. They I a melted stato ices of forelgn meed off, and a the metal. To orered with anree is thrust in. 10 whole of the The above is as as employed in America being ng modifications Then the ore cond to the metallic poling.
it to the suriace, aside ready for ps as large as as ushed in a mill, 3 being set aside be process of jiv

MACEINISTS, ENGINEERS', \&C., RECEIPTS

 ginf. This consists in plunging a sievo contrining the ore into water, landing the largexterously, so that the smallest particles pass throurgh tallic portious uppermost the sieve, with tho lightest aud least mofrom gangue, about 1, tons of the sorted galena be tolerably freo its weight of lime, and heated to doll is mixed with 1-15th to 1 -40th nace, through which a current of air is is ess in a reverberatory furlarge portion of the sulphur is burnt air passing. By this means a lead and sulphate of lead being formed as sulphurous acid, oxide of maining undecomposed. When tormed, aud much of the ore resunfliently far, the furnace doors are roasting has been carricd The sulphate and oxide of lead re-act hat aud the heat is raised. a large quantity of sulphurous acid is on the undecomposed sulphide, ing large quantities of metallic lead behormed which passes off, lear${ }^{\text {and a }}$ quantity of lime thrown in, which fo The fire is now damped, allowing the wetallic lead to be drn forms a very infusible slag, smelted with an additional portion of off into moulds. This is melted in a shallow pan in a reverbera ore. Lead is refined by being auy tin or antimony it may contain in ory furnace. By this operation a hadleful of the lead under this operationized and removed. When talline surface; the process is discontinined, cools with a peculiar cryslead for. thor some purpose, such for instance the metal is run off should be almanufacture of flint glass, it is necessary making of red stance, amounting chemically pure, as a proportion spoil the batch Souly to a few grains per ton, would color thper for inwhen it contains only may be proftably extracted from lead even process. This process dee or four ounces to the ton, by Pattinson's the first portions that crystallizon the fact that, as lead solidifies, therefore, performed by melting the pure lead. The operation is, lowing it to cool gradually; as it cools nietal in an iron pot and alremored by a perforated ladle, and th, the crystals of pure lead aro with fresh portions of lead until the the process continually repeated to the ton. It is then submitted to cipellationtains about 300 ounces To Construct a baroultere cupellation.long and of a smooth evenimerer. - Get a strong glass tube 34 inches hamp and blow pipe, or Bunsen bumpe ove end by means of a spirit clean, dry mercury, excluding all bubblad fill the tube with pure, finger over the open end of the tubo bubles of air. Now place your ${ }^{\text {small cistern or vessel partially filled, and cautiously insert it in a }}$ your finger until the end of the filled with mercury. Do not remove the sarface of the mercury in the tabe which it covers is safely below serted remove your finger and the vessel. When the tube is thus inof the mercury is nearly 30 ins. above tents will fall until the height cistern beneath. In'the barometer the level of the mercury in the 31 inches and seldom falls below 27 the mercury never rises above qroored wooden case, the scale 27 . The tube may be fitted into a final adjustment made by compartson in the proper place, and the Sireltiva of tin. -To extract tson with a correct instrument. Trashed to get rid of the lighter et the metal, the ore is first stamped or it It is then roasted to tree it particles of sand or earth adhering to washed to carry off the sulphat 1 rom arsenic and sulphur, and again ed ore is mixed with from one-ffth copper and oxide of iron. The washod anthracite, or clarcoal, and fift to one-eighth its weight of powderportion of lime to form a fusible
slag with any of the remaining gangue. The charge is placed in tho hearth of a low crowned reverberatory furnace, and the doors aro closed up. Heat is applied very gradually for flye or six hours, caro being taken to raise the temperalure high enough to cause the cirbon to reduce the tin without nielting the silicious gangue, which would form with the binoxide an enamel too troublesome to remove. When nearly all the tin is reduced, the heat is raised considerably, the slars being thus rendered fluid and capablo of fioating on the surface of tho melted metal. The tin is then run off into cast iron pans from which it is ladled off into moulds to form ingots. The tin thus procured is farfrom being pure, itis therefore submitted to the process of liguation, which consists in heating the ingots to incipicut fusion. By thls means the purer tin, which fuses at a comparatively low lient, separates, running down and learing the impure portions behind. The less fusjble portion, when remelted forms bloch tin, and the part which has run out is arain melted and run out with wet stakes. The steam thus formed bubbles up to the surface, carrying with it all the mechanical impurities contained in thetin. The mass is then skimmod and allowed to cool. When just about to set, the upper half is ladled out, the other metals and impurities haring sunk into the bottom half, from the tendency that this metal has to separate from its alloys. The finest quality of tin is frequently heated to a temperature just short of its melting point. At this heat, it becomes brittle, and is broken up into masses, showing the crystals of the metal, and forming what is kuorn as grain tin. The formation of crystals is to some extent a guarauteo of its purity, since impure tin does not become brittle in this maly. English tin generaliy contains small quantitios of arseuic, copper, iron and lead. Tin fuses at 4420 Fahr, but it is not sensibly volatilized at that or any higher temparature. For the mauufacture of tin plate tho best soft charcoal iron is obllged to be used. After it has been rolled and cut to the requisite size, its surfaco is made chemically clear by immersion for a few minutes in dilute sulphuric acid. Tho slieets are then heated to a red heat in a reverberatory furnaco, withdrawn, allowed to cool, hammered flat, passed between polished rollers, and are now washed ju diluto acid. This preparation is needed to free tho surface of the iron from the slightest portion of oxide, to which tho tin would not adhere. In order to tin them they are plunged one br oue into a vessel of tallow, from which they are transicerred to a bath of tin. From this they are taken, after a certaln time, allowed to drain, and dipped again. The superfluons tin at tho edgo of the plato is removed by dipping it in the melted tin ouce more, and detaching it by giving the plate a slarp blow.
Royal British Washing Powder.-Soda ash, 10 lbs; carbonato of soda (ordiuary soda), 10 lbs. ; crush into coarse grains. Hare a thin solution of glne, or decoction of linseed oil ready, into whicl pour the soda until quite thleck, and spread out on boards, in a warm apart. ment, to dry, then pack up into nice square packages for sale, labcl. ling neatly. Used to soften hard water; finds a ready sale at a good profit. Another Way to soften Hard Water. Stir 1 oz . fresh lime in a bucket of water, pour all into a barrel of water, ruminage well; when it settles, the water will be soft, pure, and fit for use. Selter Aperient. Calcined magnesia, 1 lb . ; tartaric acdd, in crystais, $1 \frac{1 \mathrm{lbs} . \text {; }}{}$ lpaf augar, $1 \frac{1}{2} \mathrm{lbs}$; blcarbonato of soda, 1 lb . l'owder all carcfulls,
placed in the the doors aro ix hours, caro ase the cirbon , which would move. When ably, the slags surface of tho as from which as procured is ss of liguation, sion. By thls ent, separates, The less fusiart which has he steam thus he mechanical d and allowed lout, the other from the tena finest quality of its melting ip into masses, is known as t a guarauteo 3 in this may. c, copper, iron volatilized at of tin plate tho as been rolled cally clean by Tho sheets are vithdrawn, ald rollers, and ded to free tho to which tho lunged one by arred to a bath ne, allowed to go of the plato and detaching
lbs; carvonato nins. Have a to which pour a warm apurt. Cor sale, labclsale at a good - fresh lime in ummage well; ruse. Scltzer ystals, $1 \frac{1}{2}$ lbs.; c all carefulls, diere. 1 tablesy in warm dry bottles, after passing throngh a finc Lioutid Black Lead an tumbler of water nets ans a mild cathartic powdered store polish, can be thing gond and rellable substitute for los.; spts. turpentiue, 2 gills; water, 2 gallo: black lead, pulverized, 2 CSEFLL ITEMS tained by frnud, or from note dated on Sunday is void. A note opor stolen, it does not release the intoxicated, is vola. If a noto ho lost of a note is exempt from liability maker, ho mnst pay it. An endorser honor within 24 hours of its in, if not served with :otice of its disroid. Notes bear interest only non-payment. A nito by a minor is sponsible for their agents. Enly when so stated. Principnls are rosible for the wholeamount of the debts of in partnership is responlaw excuses no one. It is a fraud to de of the firm. Ignorance of the compound a felony. The law compels nol a fraud. It is illegal to pencil arement withont a consideration is one to do impossibilities. The acts of one in law. A receipt for money vid. Signatures in lead day cannot be partner bind all the others. tract made with enforced. A contract with Contracts mado on Sun. must be under seal.
concerning land

	\$ 10.	In Ten Iears	Fifty Tears
11		. 130	.. ${ }^{\text {2,900 }}$
27		50	- 5,800
		1,300	11,000
1.37			21,000
		6,500	. 116,000

. . . $0,500$. . 116,000
cents per day from the tipears that if a mechanic, or clerle sares 28 thest will anount to $\$ 2,000$, and 21 till he is 70 , the total with in. the important sum of $\$ 20,000$. Save all saving of $27 \frac{1}{4}$ cents reaches ner fur a thine of possible want, but act you can in a prudent mane sud liberally by assisting those in justly by paying your debts canse. On Profane Stwearing,-Let every ma tenance this abominable habit, and shum man do his best to disconnpossible ray. No respectable person will an an accursed sin in erery of it. Business men who makor practico allow himself to be guilty aroided by the best class of custon practice of it will find themselves can suffer no mental punisliment equal for I know that some persons profled to listen to profane languare. Be that inflicted by being comworth swearer, will not be credited Besides, every man known as a Act Wris, even when he may be spenting the truth good opinion is is by imparting Your Part, Don't be sealing the truth.
is by imparting happiness to others Secpish.-Kemember that it thers, and making ourselves useful,
that wo recelve happiness. Stand by this truth, livo it ont, and al. ways keep doing something useful for the common good, doing it well and acting sincerely. Endearour to keep your heart in the attitude of cherishing good will to nll, thiuking and speaking evil of no one, and always with a kind word for every body. Selfishness is its own enrse; it is a starving vice. The man who does no good gets none. Ife is like the heath in the desert, neither yielding fruit nor secing when good cometh, a stunted dwarfish, miserable shrub. Let all your infiacuce be exerted for the purpose of doling all you can for the common good and individual welfare of every onc.

Married Life, its Joys And Sorrows.-A good wifo is the greatest earthly blessing. A wife never makes a greater mistako than when she endeavours to coerce her huband with other weapons than those of love and affection. Those weapons are a sure pill if he has any thing human left in him. Forbear mutual upbraidings. In writing letters, during temporary separation, let nothing contrary to love and slncere affection be expressed; such letters from a wife hare a most powerful emotional effect, sometimes little understood by those who write them. It is the mother who moulds the character and destiny of the child as to the exteriors, thercfore let calmuess, peace, affection, and firmness rule her conduct towards her children Children are great imitators, whether they have scolding or peacefn] mothors, they are generally sure to learn from the examples set beforo them, and thus the consequent joy or sorrow is transferred to other familles, therefore let mothers take heed to their conduct. It is not possible to exercise judgment and prudence too much before entering on the married life. Be sure that the affections on both sides areso perfectly intertwined around each other, that the two as it were, form one mind ; this requires time, and a thorough mutual knowledge on both sides. Marry in your own religion, and into a different blood aud temperament from your own. Bend your whole powers to avoid depreciatory remarks, jibing and anger in every form, and specially avoid everlastingly dishing up auy unsuccessful past action that was done from a good motive and with the best intentions at the time. Let nothing foreign to tho spirit of love and mutual affection interveng to cause distance between husband and wife ; to this end let self-denial rule over each, and reciprocal unselfishness. Avoid habitual fault-finding, scolding, \&c., as you would perdition itself; many men tremble as they cross their threshold into the presence of scolding wives Let husband and wife cultivato habits of sobriety, and specially avoid drunkenness in every form. What a dreadful spectacle it is to see a husband transiormed into a demon, tottering homeward to a brokenhearted wife, whose noble self-sacrificing devotion to him seems to partake moro off the nature of heaven than of earth. Never part, ever for a journey, without kind and endearing words, and as a kiss symbolizes nuion from interior affection, do not dispense with it on such occasions, repeating it when you return. In one word, let love rule supremo.

In all your dealings with woman, take a lesson from the coolng dore, speak softly, deal gently, kindly and considerately with her in every way. Let every husband arid every wife cherish for each other the heavenly flame of affection, and let no mide, harsh, or embittered erpression on elther side chill the sacred fire. If ever adoration of the
th, and alo ling it well attitudeol 0 one, and own curse; one. Ile is ecing when all your inor the com-
wife is the tter mistake her weapons s sure pull is upbraidiags. ing contrar from a wile - nnderstood the claaracter let calmuess, her children. nt or peacefol ples set beforo erred to other luct. It is not oofore cutering th sides aroso sit were, iom knowledge on different blood bowers to avoid prm, and specpast action that ons at the time. ction interreno end let self-deAroid habitual olf; many men scolding wives specially avoid le it is to see a rd to a broken 0 him secms to
lever part, eren l as a kiss symanse with it on one word, let
the cooing dore, th her in every each other the embittered erdoration of the
ereatnre may hopo for pardon, surely tho worship rendered by man to a kind, pure, affectionate and loving wifo, heaven's best gift, may invoke forgiveuess. What countless millions of women lisve sacrifced health, strength and lifo in attendance on sick and dying husbands, childron and strangers? How many have perished by rushing through fire and water to save their children, and staryed themselves that they might lire? In how many hospitals has she proved herself an angel of mercy, and her sweet voico uttered words of confort and clieor? Therefore let woman havo her full rights, even that of voting if she desires it, foragood woman's influence will ever be ased for a good purposo ; but let woman act towards man as indicated in the above advice for man to act towards woman, and she would be all but omnlpotent, for man in a manner would move heaven and earth to serve her, and would do nnspeakably more for her than can ever be done by all the fussy croakers, old maids, and woman's rights associations and lecturers in the creation. Love in the family is tho one thing ncedful to regenerato the earth and causo the wilderness to become as Eden, and the desert to blossom as the rose. Reversed lore and discord have broken more hearts, and caused more sorrow, estrangement, and downright death, than war, pestilence and all other causes combined. It palsies energy and ambition, engenders gloom and despair, and transforms manhood into an iciclo. Statistics provo that the married live lenger on the averago by several years, than the unmarried, a most satisfactory proof that the married state is proeminently the life designed for man, therefore let all interested do their utmost to make it the happiest.
In reference to the maintenance of hialth, many valuable prescriptions and much good advice will be found under tho Medical Department in this work, but truth requires us to state that for the purpose of mitigating the pains and labour incident to woman at the most eventful and critical periods of her life, nothing within the whole compass of nature will compare with water, in its varied applications. This mimation is made for the purpose of directing enlightened and intelligent action on the subject as necessity may call for it. Past experience sustains us when we say that all may enjoy the great blessfing of good health in the free nse of the bath, the temperats use of proper diet, pilenty of exercise, purs alr, warm clothing and abstincuco from every excess inimical to health.
Children and Home Conversation-Children hunger perpetually for new Ideas. They will learn with pleasure from the lips of parents what they deem drudgery to learn from books, and even if they have the misfortune to be deprived of many educational advantages they will grow up intelligent if they enjoy in childhood the privilege of listening to the conversation of intelligent peopla. Let them hare many opportunities of learning in this way. Be kind to them, and don't think it beneath you to answer their little questions, for they procced from an implanted faculty which every true man and Foman should take a great delight in gratifying.
Home after Business Hours.-Happy is the man who can find that solace and that poctry at home. Warm greetings from loving hearts, fond glances from bright eyes, and welcome shouts of merry liearted children, the many thousand little arrangements for comfort and enjoyment, that silently tell of thoughtful and expectant lore, these are the ministrations that reconcile us to the prose of life.

Think of this ye wiven and danghters of bnsiness men ! Think of the toils, the anxieties, the mortification and wear that fathers undergo to secure for you comfortable homes, and compensate them for their toils by making them happy by their own fireside.

Weil Worthy of Imitation.-A worthy Quaker thins wrote :"I expect to pass through this world but once. If, therefore, there be any kindness I can do to any fellow being, let me do it now, let me not defer nor neglect it, for I will not pass this way again." Were all to act thus how many would be made happy !

Another Sensible Quaker.-A Quaker lately proponnded tho momentous question to a fair Quakeress, as follows: "Hum ! jea and verily; Penelope, the spirit urgeth and moveth me vonderfully to beseech thee to cleave unto me, flesh of my flesh, and bone of my bone." "Hum I truly, Obadiah, thou hast wisely said. Inasmuch as it is not good for man to be alone, lo, I will sojourn with thee."

Table Conversation.-Instead of swallowing your food in sullen silence, or brooding over your business, or severely talking abont others, let the conversation at the table be genial, kind, social and cheering. Don't bring any disagrceable subject to the table in your conversation, any more than you would in your dishes. Avoid zcandalizing people, and never cherish a jubilant feeling over the infirmitics or misfortunes of others. The more good company you have at your table the better. Hence the intelligence, refineinent $:=$ d appropriate behaviour of a family given to hospitality. Never feel that intelligent visitors can be anything but a blessing to you and yours.

Keep the House Clean a:id Well Ventilated.-A nei.t, clean, fresh aired, sweet, cneerful, well arranged house, exerts a moral influence over its inmates, and makes the members of a family peace able and considerate of each other's feelings; on the contrary, a filthy squalid, noxions dwelling, contributes to make its inhalitants selfisu, sensual, and regardless of the feelings of others. Never sleep in a small close bedroom, either during summer or winter, without fred rentilation from door or windows, unless otherwise supplied with abundance of fresh air. It will le seen that a person's house usualiy corresponds with his character.
Safe Business Rules.-Business men, in business hours, attend only to business matters. Social calts are best adapted to tho soclay circle. Make your bnsiness known in few words, without loss of time. Let your dealings with a siringer be most carefiluy considered, and tried friendship duly eppreciated. A mean aci will soon recoil, and a man of honour wirl be esteemed. Leafo "Tricks of trade" to those whose education was never completed. Treat all with respect, confide in few, wrong no man. Be never afraid to say No, and always Phompt to acknowledge and rectify a wrong. Leave nothing for to-morrow that should be done to-diy. Because a friend is polite. do not think his time is valueless. Ilaro a rlace for everything, and every thing in its place. To preserio Jong friendship, keep a short credit, the way to Get credit is to be punctual; the way to preserve it is not to Use it much. Settle often ; have bhort accounts. Trust no man's appearances, they are often deceptive, and assumed for the parpose of obtaining credit. Rogues generally dress well. The rich are generally plail men. Be wele satisfied before yon give a credit, that those "o Whom yod give it are bafe mex to be trusted.
hink of the ers undergo m for their
ns wroto :refore, thero , it now, let vay again."
ponnded tho 'Hum ! yes Tronderfully bone of my i. Inasmich n with thee." food in sullen talking abont ud, social and table in your shes. Avoid ling over the company you efinement $c=A$ Never feel that 1 and yours. -A me.t, clean, arts a moral in a family peaco ontrary, a filthy hlitants selfifu Tever sleep inia r , without iree supplied with 3 house usually
ss hours, attend adapted to tho rords, without st carefolis A mean acz EEMED. Learo rer completed.
mas. Be nerer e and rectify a edone today. Hueless. Haro 3. To preserio et crevit is to USE it macb. appearances, e of obtaining enernily plusis that those to

Habits of a Man of Business.-A sacred regard to the princlples of justice forms the basis of every transaction, and regulates the conduct of the upright man of business. 1. He is strict in keeping his engagements. 2. Does nothing carelessly or in: a hurry. 3. Employs nobody to do what he can easily do himself. 4. Leaves nothing undone that ought to be done, and which circumstances permit him to do. 5. Keeps his desigus and business from the views of others, yet he is ca: ...d with all. 6. Is prompt and decisive with his enstomers, and does not overtrade his capital. 7. Prefers short credit to long ones; and cash to credit at all times, either in buying or selling; and small profits in credit cases with little risk, to the chance of better gains with more hazards. 8. He is clear and explicit in his bargains. 9 Leaves nothing of cousequence to memory which he can and ought to commit to writing. 10. Keeps copies of all his important letters which he sends away, and has every letter, invoice, \&c., belonging to his business, titled, classed and put away. 11. Never suffers his desk to be confused by mauy papers lying upon it. 12. Keeps ererything in its proper piace. 13. Is always at the head of his business, well knowing that if he leaves it, it will leave him. 14. Holds it as a maxim, that he whose credit is suspected is not to be trusted. 15. Is constantly examining his books, and sees through all his affairs as far as care and attention will enable him. 16. Balances regularly at stated times, and then makes out and transmits all his accounts current to his customers, both at home and abroad. 17. Avoids as mucis as possijle all sorts of accommeodation in money matters and lav-suits where there is the least hazard. 18. Ile is economical in his expenditure, always living within his income. 19. Keeps a memomudum book in his pocket, in which he notes every particular relative to appointments, addresses, and petty cash matters. 20. Is cantious how he becomes security for any person. 21. And is generous when urred by molives of humanity. Let every man act strictly to these babits; when once begun will be easy to continue in, ever remembering that he had no profits by his pains whom Providence does not prosper, and success will attend his efforts. Let him also remember that the true achievements of life do not consist in making startling strikes, but in the solid performance of daily duty.

How to Make a Fortune.-Cornelins Vanderbilt, on being interrogated as to the best way to make a fortune, is reported to have sald in reply, "There is no secret about it, all you have to do is to attend to your business and go abead." "There is nothing," said George Law, "so easy as making money when you have money to make it with; the only thing is to see the crisis and take itatits flood." Alexander T. Stewart, the millionaire merchant prince of New York, who died April 10, 1876; once said to an anxion:s enquirer, "I consider bonesty and truth great aids in making a fortune." This was sterling advice, and when it is supplemented by good management, ardent applicaticn to business, and strong self-reliance, as it was in an emineut degree in Mr. Stewart's own case, it cannot fail to tell with irresistable power in favor of the man who follows it.

True Chapity.-Mr. Stewart's idea of charity was that ir. order to help men you must assist them to get work to help themselves, and not cherish in them a spirit of cringing dependence by giving them money for nothing. "Himself a man of strong self-rellance,
he believed that the best service you could do men was to teach thera to rely on themselves-to present them opportunities which only could be improved by individual effort. He had no charity for idle. ness, or tie ambition to reap when you have not sown." As observed by his executor, Judge Hilton, "It is more charitable to furnish employment to men aud women, than it is to destroy their self-resped by giving them money, as to paupers. Mr. Stewart never believed in helping people to live without work. We have 9,600 persons on the pay roll of A. T. Stewart \& Co., and I think that I will best carry out Mr. Stewart's views, and be practically charitable by maintaining the business which will keep those 9,600 persons in honorable employment, so that they can support chemselves and the thousands of fam!lies dependent upon them." Of Mr. Stewart's honesty and rigidly fair dealing there are numerous accounts. "What do you mean by saying What you know to be untrue," he once demanded of a clerk who was trying his best to convince a woman that a piece of calico would not fade. "The calico won't wash, she'll demand her money back and she'll be right. I dou't want goods represented for what they are not." It was this perfect honesty towards his customers that was Mr. Stewart's leading characteristic ; and it was his invariable custom. when questioned as to his explanation for his success, to reply with. much emphasis. "Truth, truth is the talismanic word; and if I have one earthly wish or desire greater than another, it is that in this respect my example may be commended and followed by young men entering into business, and especially by young merchants." Onthis firm basis of truth and integrity he conducted his colossal business, not by reckless risks or bargains, but by steady adherence to business, perfect system, and close attention to the least details as well as the largest.

It is much to be regretted that Mr. Stewart did not, during his long and most successful business career, see fit to inangurate and carry out to completion any such system of public beneficence as was at all commensurate with tho ample means at his command, and that the performance of such important offices should be delegated or in. trusted in an optional way, to another. Every man, prospered and blest with the almost boundless prosperity meted out to Mr. Sterant, owes a duty to society which shonld never be neglecited in this way. The gencrous conduct of that great and good philanthrophist, George Peabody, is in this respect most worthy of double honor, and his esteemed name will be deservedly and gratefully remembered by gen. erations yet unborn, for the memorable services which he rendered in his princely bequests to the industrious poor of London, and the education of the colored population of the Sonth.

The following extracts from a letter written by Dr. Franklin tothe Rev. George Whitefield (in response to a letter of thanks for reliel derived by the latter from the application of electricity in a case of paralysis) very ciearly defines the mutual duty of mankind to each other. The following is the first part of Franklin's letter :-

Philadelphia, June 6, 1753.
Sir : I recelved your kind letter of the 2 d inst., and am glad to hear that you increase in strength. I hope you rill continue mending till you recover your former health and firmness. Let me know
each thera which only ty for ideAs obserr. to furnish sel--respect believed iu sons on the st carry ont ntaining the ble emplosinds of tami. d rigidly fair an by eaying lerk who mas so would not ney back and that they are ; that was Mr . fable custom to reply with. ; and if I hare is that in this by young men unts." Onthis ossal busineses, nce to busines, as well as the
not, during his inaugurate and peficence as mas mand, and that delegated or in. prospered and to Mr. Sterant, fed in this mar. rophist, George nor, and his embered by gen. ch he rendered London, and the
Franklin tothe hanks for reliel cits in a case of haikind to each tter:-
, June 6, 1753. and am glad 0 b. Let mend. Let me know
whether' you still use the cold bath, and what effect it has. As to the kindness you mention, I wish it could have been of greater service to you. But if it had, the only thanks I shouid deslre is, that you would always be equally ready to serve any other person that may need your assistance, and so let good offices go round, for mankind are all of a family. For my own part, when 1 am employed in serring others, I do not look upon myself as conferring favors, but on paying debts.

In my travels and since my settlement, I have received much kinduess from men, to whom I shall never have any opportunity of making the least direct return, and numberless mercies from God, who is infinitely above being benefited by our services. Those kindnesses from men I can therefore only return on their fellow-men and I can only-show my gratitude for those mercies from God, by a readiuess to help his other children and my brethren. For I don't think that thanks and compliments, though repeated weekly, can discharge our real obligation to each other, and much less those to our Creator. Yon will see in this my notion of good works, that I am far from expecting to inerit heaven by them. By heaven we understand a state of happiness infinite in degree and eternal in duration ; I can do nothing to merit such rewards. He that for giving a draught of water to a thirsty person, should expect to be paid with a good plantation, would be modest in his demands, compared with those who think they deserve heaven for the little good they do on earth. Even the mixed imperfect pleasures we eujoy in this world, are rather from God's goodness than our merit ! how much more such happiness of heaven I for my part, I have not the vanity to think I deserve it, the folly to expect it, nor the ambition to desire it, but content myself In submitting to the will and disposal of that God who made me, who has hitlierto preserved and blessed me, and in whose fatherly goodness I may well confide, that he will never make me miserable, und that even the afflictlons I may at any time suffer, shall tend to my benefit.
Correspondence or Symbolic Meaning of Colors.- Whits was the emblem of light, 1 eligious purity, imnocence, faith, joy and life. In the judge, it indicates integrity, in the sick, humility, in the woman, chastity.

Red, the ruby, signifies fire, divine love, heat of the creative power, and royalty. White and red roses, express love and wisdom. The red color of the blood has its origin in the action of the heart, which corresponds to, or symbolizes love. In a bad sense, red corresponds to the infernal love of evil, hatred, etc.

Blue, or the sapphire, expresses heaven, the firmament, truth from a celestial origin, constancy and fidelity.

Yellow, or gold, is the symbol of the sun, of the coodness of God, of marriage, and faithfulness. In a bad sense, yellow signifies inconstancy, jealousy and deceit.

Freen, the emerald, is the color of the spring, of hope, particularly of the hope of immortality and of victory, as the color of the laurel and palm.
$V i o l e t$, the amethyst, signifies love and truth, or passion and suffering. Purple and scarlet signify things good and true from a celestial origin.

Black corresponds to despair，darkness，earthliness，mourning， negation，wickedness and death．

The Best Things．－The best theology－a pare and beneficent life．The best philosophy－a contented mind．The best law－the golden rule－The best education－self－knowledge The best state－ mauship－self－goverument．The best medicine cheerfulness and temperance．The best art－painting a smile on the brow of childhood．The best science－extracting sunshine from a clondy wray．The best war－to war agninst internal evils and selfishness．The best music－the laughter of an innocent child．The best journalism－printing the true and the beamaiful only on mem－ ory＇s tablet．The best telegraphing－flashing a ray of sunshine into a gloomy heart．The best blography－the life which writes charity in the largest letters．The best mathematies－that which doubles the most joys and divides the most sorrows．The bert navigation－steer－ ing clear of the lacerating rocks of personal contention．The best diplomacy－effecting a treaty of peace with one＇s own conscience． The best engineering－building a bridge of love，faith，and trust，in the Divine，over the river of death．

Save A Little．－Every man who is obliged to work for his lip－ Ing，shonld make a point to lay up a little money for that＂rainy day＂which we are all liable to encounter when least expected．The best way to do this is to open an account with a savings bank．Ac－ cumulated money is always safe；it is al rays ready to use when needed．Scrape together five dollars，make your deposit，receive your bank book，and then resolve to deposit a giren sum，small though it be，once a mouth，or once a week，according to circum－ stances．Nobody knows without trying it，how easy a thing it is to save money when an account with a bank has been opened．With such an account a man feels a desire to enlarge his deposit．It gives him lessons in frugality and economy，weans him from habits of ex－ travagance，and is the very best guard in the world against intemper： ance，dissipation and vice．The following table is appended in order to exhiblt the time required by money to double iteelf when loaned at the designated rates of interest ：－

Rate per cent．	Time in which a Sum will double．	
	Simple Interest．	Compound Interest
2	50 years．	23 years 1 day．
2 1－2	40 years．	28 years 26 days．
3	33 years 4 months	23 years 164 days．
3 1－2	28 years 208 days．	20 jears 64 days．
4	25 years．	17 years 246 days．
4 1－2	22 years 81 days．	15 years 273 days．
5	20 years．	15 years 73 days．
6	16 years 8 months	14 years 327 days．
8	14 years 104 days．	10 years 89 days．
9	11 years 40 days	9 years 2 days．
10	10 years．	7 years 100 days．

WAGBS TABLT.

HALARIES AND WAGEE BY THE TEAR, MONTH, FEEK OR DAY, SHOT゙ING WHAT ANY SUM YROM $\$ 20$ TO $\$ 1600$ PER ANNUM, IS PER MONTH, WEEK OR DAY.

Per Tear	Per Month.	Per Week.	Per Day.	Per Year.	Per Month	Per Week.	Per Day
${ }^{1} 20$ is	${ }_{\text {c }}^{\text {c. }}$	- ${ }_{\text {e. }}^{.} \mathbf{3 8}$	- ${ }^{\text {e }}$	- 280 is	${ }_{23.33}$	${ }^{\text {c }}$ c. ${ }_{\text {c }}$	- ${ }^{\text {c }} 7$
25	- 2.08	. 48	. 07	285	23.75	5.47	. 78
80	2.50	. 88	. 08	290	24.17	5.56	. 79
35	2.92	. 67	. 10	295	24.58	5.66	. 81
40	3.33	. 77	. 11	300	25.00	5.75	. 82
45	3.75	. 86	. 12	310	25.83	6.95	. 85
B0	4.17	. 96	. 14	320	26.67	6.14	R8
65	4.58	1.06	. 15	325	27.08	6.23	. 89
60	5.00	1.15	. 16	330	27.50	6.33	. 00
65	5.42	1.25	- 18	340	28.33	6.52	. 83
70	5.83	1.34	. 19	350	29.17	6.71	. 06
75	6.25	1.44	. 21	360	30.00	6.90	. 99
80	6.67	1.53	. 22	370	30.83	7.10	1.01
85	7.08	1.63	. 23	375	31.25	7.19	1.03
80	7.50	1.73	. 25	380	31.67	7.29	1.04
95	7.92	1.82	. 26	390	32.50	7.48	1.07
100	8.33	1.92	.27	400	33.33	7.67	1.10
105	8.75	2.01	.29	425	35.42	8.15	1.16
110	9.17	2.11	. 30	450	37.50	8.63	1.23
115	9.58	2.21	.32	475	39.58	0.11	1.30
120	10.00	2.30	. 33	500	41.67	9.59	1.37
125	10.42	2.40	. 34	525	43.75	10.07	1.44
130	10.83	2.49	. 36	550	45.83	10.55	1.51
135	11.25	2.59	37	575	47.92	11.03	1.68
140	11.67	2.69	. 38	600	80.00	11.61	1.64
145	12.08	2.78	. 40	625	52.08	11.99	1.71
150	12.50	2.88	. 41	650	54.17	12.47	1.78
155	12.92	2.97	. 42	675	56.25	12.05	1.85
160	13.33	3.07	. 44	700	58.33	13.42	1.92
163	13.75	3.16	. 45	725	60.42	13.90	1.90
170	14.17	3.26	. 47	750	62.50	14.38	2.05
175	14.58	3.36	. 48	775	64.58	14.86	2.12
180	15.00	3.45	. 49	800	66.67	15.34	2.19
185	15.42	3.55	. 51	825	68.75	15.82	2.26
190	15.83	3.61	. 52	850	70.83	16.30	2.33
195	16.25	3.74	. 53	875	72.92	16.78	2.40
200	16.57	3.84	. 65	900	75.00	17.26	2.47
203	17.08	3.93	. 58	925	77.08	17.74	2.53
210	17.50	4.03	. 58	\%0)	79.17	18.22	2.60
215	17.82	4.12	. 59	975	81.25	18.70	2.67
220	18.33	4.22	. 60	1000	83.33	19.18	2.74
225	18.75	$4 \cdot 31$. 62	1050	87.50	20.14	2.88
230	19.17 .	4.41	. 63	1100	91.67	21.10	3.01
235	19.58	4.51	. 64	1150	95.83	22.06	3.15
240	20.00	4.60	. 66	1200	100.00	23.01	3.29
245	20.42	4.70	. 67	1250	104.17	23.29	3.42
250	20.83	4.79	. 69	1300	108.33	24.03	3.56
255	21.25	4.89	. 70	1350	112.50	23.89	3.70
260	21.67	4.99	. 71	1400	116.67	26.85	3.84
265	22.08	5.08	.73	1450	120.84	27.80	3.78
270 275	22.50	5.18	. 74	1500	125.00	28.77	4.11
275	22.92	5.27	. 75	1600	133.34	30.68	4.38

Note.-If the desired sum is not in the table, double some number ; for instance if the salary or wages is $\$ 2000$, double the sums opposite $\$ 1000$, and so on with the rest.

WAGBE TABLD.
WAGES TABLE, OALCULATED ON A SCALE OF TEN HOURS LABO PER DAY. THE TIME, IN HOURS AND DAYS IS WOTED IN THE Left hand column, and the amount of wages vider the respective headings as noted beinow.

If the desired number of days or amount of wages is not in the table, double or treble any suitable number of days or amount of money as the caso may be, until you obtain the desired number of days and the wages to correspond.

To Rfduce the Pbich of Wheat, in Sterling, per Imperial Quarter, to Dollars and Cents.-Redice the shillings per quarter into dollars and cents, at 24.2 cts. per shilling, and divide by 93 , the nanber of United States bushels in an imperial quarter.

Example.-Required the price of wheat per U. S. bushel in Liverpool, when it feiches 58s. 6d. per imperial quarter. 58s. 6d, equals \$14 15, which, divided by 9 s , gives $\$ 1.51 \frac{1}{2}$ the price per bushel.

INTEREST TABLE,

HOURS Ladoz OOTED IN THE cs uxdeataz

not in the table, noney as the cass nd the wages to
per Imperial ings per quarter by 93 , the nume
hel in Liverpool, equals $\$ 14$ is

AT $8 I X$ PER CENT., IN DOLLARS AND CENTS, FROM ONE DOLLAR TO TEN THOUSAND.

	1 day.	7 days.	15 days.	1 mo.	3 mos.	0 mos.	12 mos.
8	\$ 0.	\$ c.	§ c	8 c.	S c	\$ c.	8 c
1	00	00	$001 / 4$	001/2	011/2	03	00
2	00	$001 / 4$	$001 / 3$	01	03	03	12
3	00	0014	$003 / 4$	$011 / 2$	$041 / 2$	09	18
4	00	$001 / 8$	01	02	06	12	24
5	00	0017	$011 / 6$	$021 / 2$	071/2	15	30
6	00	00^{3}	011	03	09	18	36
7	00	$003 / 4$	$013 /$	031/2	101/2	21	42
8	03	01	02	$0 \pm$	12	21	48
0	00	01	$021 / 4$	$011 / 2$	131/2	27	51.
10	00	$011 / 4$	$021 / 2$	05	15	30	60
20	$001 / 4$	$021 / 2$	05	10	30	60	120
80	0013	$031 / 2$	$071 / 2$	15	45	100	180
40	003/4	$011 / 2$	10	20	60	120	240
50	01	06	$121 / 2$	25	+ 75	150	300
100 200 0	$011 / 2$	$113 / 4$	25	50 100	1150	300 600	600 1200
300	05	35	75	1150 150	450	600 000	1800
400	07	461/2	100	200	600	1200	2400
500	08	$581 / 3$	125	250	750	1500	3000
1000	17	1161	250	500	1500	3000	6000
2000	33	$\begin{array}{llll}23 & 3 & 1 / 3\end{array}$	500	1000	3000	6000	12000
3000	50	350	750	1500	4500	0000	18000
4000	67	$4661 / 2$	1000	2000	6000	12000	24000
5000	83	5831	1250	2500	7500	15000	30000
10000	167	11 661/2	2500	5000	15000	30000	60000

AT gEVEN PER CENT., IN DOLLARS AND CENTS, FROM ONR DOLLAR TO TEN THOUSAND.

$\begin{array}{r} 48 \\ 0 \\ 0 \end{array}$	
$\begin{aligned} & 48 \\ & 4.8 \\ & \text { in } \end{aligned}$	
$\begin{aligned} & \text { 4. } 8 \\ & \text { ~ } \\ & \text { n } \end{aligned}$	
$\begin{aligned} & \text { y } 8 \\ & 0 \\ & \text { v } \\ & \text { i } \end{aligned}$	
$\begin{array}{r} 0 \\ 4 \\ 4 \\ \hline \end{array}$	
$\begin{aligned} & \text { in } 8 \\ & \text { si } \\ & \hline \end{aligned}$	
$\begin{aligned} & \dot{4} 8 \\ & \dot{U} \dot{0} \\ & \infty \end{aligned}$	
$\begin{aligned} & \dot{0} 8 \\ & 0 \\ & 0 \\ & n \end{aligned}$	
$\begin{aligned} & 58 \\ & 4 \\ & 4 \\ & n \\ & \hline \end{aligned}$	
$\begin{aligned} & \dot{4} 8 \\ & 0 \\ & \dot{y} \\ & \dot{m} \end{aligned}$	
$\begin{aligned} & 18 \\ & 0 \\ & 0 \\ & \text { N } \end{aligned}$	
$\begin{aligned} & \text { í8 } \\ & \text { U } \\ & \text { n } \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { i } 8 \\ & 0 \\ & 0 \end{aligned}$	
$\begin{aligned} & \text { si } \\ & 0 \\ & 0 \end{aligned}$	
$\begin{aligned} & \text { 5. } 8 \\ & 0 \\ & 0 \end{aligned}$	
$\text { 4. } 8$	
世木	
$\begin{aligned} & \text { © } 8 \\ & \text { © } 8 \\ & \text { Hn in } \end{aligned}$	$\dot{\mathrm{A}} \dot{\mathrm{y}} \dot{\mathrm{H}} \dot{\mathrm{H}} \dot{\mathrm{H}} \dot{\mathrm{m}} \dot{\mathrm{N}} \dot{\mathrm{N}} \mathrm{M} \dot{\mathrm{N}} \dot{\mathrm{N}} \dot{\mathrm{N}}$
$\begin{aligned} & \text { yi } 8 \\ & 0 \end{aligned}$	
¢ ${ }_{\text {¢ }}^{4} 8$	
¢ั\％	
บัก	
呙	508

$\stackrel{8}{6}$	
$\stackrel{4}{4}$	
－	ニ\％
－	
边	Fwnio
48	F85
${ }^{4}$	
4	Erispo
	－
	¢\％？
${ }^{4} 8$	里
${ }^{4} 8$	
－	8\％${ }^{\text {¢ }}$
－	
－	$88^{\circ} 0^{\circ}$
－	
giol	
告年	

READY RECKONER.

READY RECKONER, to find the Price of any Number of Pounds, Yards Pleces, or Bushels, from 2 cents to 83.00 .
The first column contains the NUMBER, the top columns the PRICES.

Nos	2 ct.	3 ct .	4 ct.	5 ct .	6 ct .	$6^{1 / 4}$ ct.	7 ct .	$8 \mathrm{ct}$.	0 ct.	10 ct .	11 ct.
2	4	6	. 8	. 10	. 12	.121/2	. 14	. 16	. 18	. 20	. 22
	. 6	. 9	. 12	. 15	. 18	.183/4	. 21	. 21	. 27	. 30	. 33
4	. 8	. 12	. 16	. 20	. 24	. 25	. 28	. 32	. 36	. 40	. 44
B	. 10	. 15	. 20	. 25	. 30	. $311 / 4$. 35	. 40	. 48	. 50	. 515
6	. 12	. 18	. 24	. 30	. 36	. 37	. 42	. 48	. 54	. 60	- 61
7	. 14	. 21	. 28	. 35	. 48	.433/4	. 49	. 68	. 63	. 70	. 37
8	.14	. 24	. 32	. 40	. 48	. 50	. 56	. 64	. 72	. 80	. 88
9	. 18	. 27	. 36	. 45	. 64	. $5631 / 4$. 63	. 72	. 81	. 90	. 99
10	. 20	. 30	. 40	. 50	. 60	. $621 / 2$. 70	. 80	. 90	1.00	1.10
11	. 22	. 33	. 44	. 65	. 66	. $685 / 4$. 77	. 88	. 99	1.10	1.21
12	. 24	. 36	. 48	. 60	. 72		. 84	. 96	1.08	1.20	1.32
13	. 26	. 39	. 52	. 65	. 78	. $811 / 4$. 01	1.04	1.17	1.30	1.43
14	. 28	. 42	. 66	. 70	. 84	. 871	. 98	1.12	1.26	1.40	1.54
15	. 30	. 45	. 60	. 75	. 00	. $038 /$	1.05	1.20	1.35	1.50	1.6
16	. 32	. 48	. 64	. 80	. 96	1.00	1.12	1.28	1.44	1.60	1.76
17	. 34	. 51	. 68	. 85	1.02	1.061/	1.19	1.36	1.63	1.70	1.87
18	. 36	. 64	. 72	. 90	1.08	$1.12{ }^{1} /$	1.26	1.44	1.62	1.80	1.98
19	. 38	. 87	. 76	. 95	1.14	$1.18 \frac{1}{4}$	1.33	1.52	1.71	1.90	2.09
20	. 40	. 60	. 80	1.00	1.20	1.25	1.40	1.60	1.80	2.00	2.20
25	. 50	. 75	1.00	1.25	1.50	1.561/4	1.75	2.00	2.25	2.50	2.5
30	.60)	. 90	1.20	1.50	1.80	1.87\%	2.10	2.40	2.70	3.00	3.30
40	. 80	1.20	1.60	2.00	2.40	2.60	2.80	3.20	3.60	4.00	4.40
50	1.00	1.00	2.00	2.50	3.00	3.121/8	3.50	4.00	4.50	5.00	5.50
60	1.20	1.80	2.40	3.00	360	3.75	4.20	4.80	5.40	6.00	6.60
70	1.40	2.10	2.80	3.50	4.20	4.371/2	4.90	6.60	6.30	7.00	7.70
80	$1.61)$	2.40	3.20	4.00	4.80	5.00	6.60	6.40	7.20	8.00	8.80
90	1.80	2.70	3.60	4.50	5.40	ర.621/2	6.30	7.20	8.10	9.00	9.90
100	2.00	3.00	4.00	8.00	6.00	6.25	7.00	8.00	0.00	10.00	11.00
Nos	12 ct .	121/2ct.	13ct.	14 ct .	15 ct .	16 ct .	18 ct .	183/4ct.	19 ct .	20 ct .	$21 \mathrm{ct}$.
			. 26	. 28	.30	. 32	. 36		. 38	. 40	. 42
3	. 36	. $371 / 2$. 39	. 42	. 45	. 48	. 64	. $561 / 4$. 67	. ${ }^{\text {(i0 }}$. 63
4	. 48	. 50	. 52	. 56	. 60	. 64	. 72	. 75	. 76	. 80	. 84
5	. 60	. $621 / 8$. 65	.60	. 75	. 80	. 90	. $933 / 4$. 95	1.00	1.08
6	. 72	. 75	. 78	. 84	. 90	. 96	1.08	$1.121 / 2$	1.14	1.20	$1 \cdot 26$
7	. 81	. $871 / 8$. 01	. 98	1.05	1.12	1.26	$1.311 / 4$	1.33	1.40	1.47
8	. 96	1.00	1.04	1.12	1.20	1.28	1.44	1.50	1.52	1.60	1.68
9	1.08	1.121/2	1.17	1.26	1.35	1.44	1.62	1.ti83/4	1.71	1.80	1.89
10	1.20	1.25	1.30	1.40	1.50	1.60	1.80	1.871/2	1.90	2.00	2.10
11	1.32	$1.371 / 8$	1.43	1.54	1.65	1.70	1.98	$2.061 / 4$	2.09	2.20	2.31
12	1.44	1.50	1.56	1.68	1.80	1.92	2.16	2.25	2.28	2.40	2.52
13	1.56	1.621/2	1.69	1.82	1.05	2.08	2.34	2.433/4	2.47	2.60	2.33
14	1.68	1.75	1.82	1.96	2.10	2.24	2.52	2.621	2.66	2.80	2.94
15	1.80	$1.871 / 8$	1.95	2.10	2.25	2.40	2.70	$2.811 / 4$	2.85	3.00	3.15
16	1.92	2.00	2.08	2.24	2.40	2.66	2.88	3.00	3.04	3.20	3.36
17	2.04	2.121/2	2.21	2.38	2.85	2.72	3.06	3.183/4	3.23	3.40	3.57
18	2.16	2.25	2.34	2.52	2.70	2.88	3.24	3.311%	3.42	3.60	3.78
19	2.28	2.371/2	2.47	2.68	2.85	3.04	3.42	3.561/4	3.61	3.80	3.99
20	2.40	2.50	2.60	2.80	3.00	3.20	3.60	3.75	3.80	4.00	4.20
25	3.00	3.121/8	3.25	3.50	3.75	4.00	4.50	4.683/7	4.75	5.00	5.25
30	3.60	3.75	3.90	4.20	4.50	4.80	5.40	6. $621 / 2$	6.70	6.00	6.30
40	4.80	5.00	8.20	8.60	6.00	6.40	7.20	7.50	7.60	8.00	8.40
80	6.00	6.25	6.50	7.00	7.50	8.00	9.00	0.371/2	9.50	10.00	10.50
60	7.20	7.50	7.80	8.40	9.00	9.60	10.80	11.25	11.40	12.00	12.60
70	8.40	8.75	9.10	9.80	10.50	11.20	12.60	13.121/2	13.30	14.00	14.70
80	0.60	10.00	10.40	11.20	12.00	12.80	14.40	15.00	15.20	16.00	16.80
90	10.80	11.25	11.70	12.60	13.50	14.40	16.20	16.871/2	17.10	18.00	18.90
100	12.00	12.50	13.00	14.00	15.00	16.00	18.00	18.75	19.00	20.00	$\underline{21.00}$

READY RECKONER.

nds, Yards

 prices.0 ct. 11 ct.

20 o

The first column on the left contains the NUMBER of the Articio, and the column on the tops of the tables the PRICE.

Nos	22 ct .	23ct.	24 ct .	25 ct .	26 ct .	27 ct .	28 ct.	$29 \mathrm{ct}$.	30 ct .	$31 \mathrm{ct}$.	31/4cto
2	44.	. 4	析	50	52	54	56	. 58	. 60	22	$1 /$
3	. 66	. 69	. 72	. 75	78	. 81	84	. 87	. 90	03	
4	. 88	. 02	. 06	1.00	1.04	1.08	1.12	1.16	1.20	1.24	1.2
	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1.45	1.60	1.05	1.561/4
	1.32	1.38	1.44	1.50	1.56	1.62	1.68	1.74	1.80	1.80	1.87 /3
7	1.54	1.61	1.68	1.75	1.82	1.89	1.96	2.03	2.10	2.17	
8	1.76	1.84	1.12	2.00	2.08	2.16	2.24	2.32	2.40	2.48	2.50
9	1.08	2.07	2.16	2.25	2.34	2.43	2.52	2.61	2.70	2.79	2.811/4
10	2.20	2.30	2.40	2.50	2.60	2.70	2.80	2.90	3.00	3.10	
11	2.42	2.53	2.64	2.75	2.80	2.97	3.08	3.19	3.30	3.41	
12	2.64	2.76	2.88	3.00	3.12	3.24	3.36	3.48	3.60	3.72	
13	2.86	2.99	3.12	3.25	3.38	3.51	3.64	3.77	3.90	4.03	$4.061 / 4$
14	3.08	3.22	3.36	3.50	.64	3.78	3.92	4.06	4.20	4.34	免
15	3.30	3.45	3.60	3.75	3.90	4.05	4.20	4.35	4.50	4.85	
16	3.52	3.68	3.84	4.00	4.16	4.32	4.48	4.64	4.80	4.96	5.00
17	3.74	3.91	4.08	4.25	4.42	4.59	4.76	4.03	5.10	5.27	/
18	3.98	4.14	4.32	4.50	4.68	4.86	5.04	5.22	5.40	5.58	
19	4.18	4.37	4.56	4.75	4.94	5.15	5.32	5.51	5.70	5.89	5.035
20	4.40	4.60	4.80	5.00	5.20	5.40	6.60	5.80	6.00	6.20	6.25
2	8.50	5,75	6.00	6.25	6.60	6.75	7.00	7.25	7.25	7.75	7.81
30	6.60	6.90	7.20	7.50	7.80	8.10	8.40	8.70	0.00	9.30	
40	8.80	9.20	9.60	10.00	10.40	10.80	11.20	11.60	12.00	12.40	12
b0	11.00	11.80	12.00	12.50	13.00	13.50	14.00	14.50	15.00	1550	15.621/2
60	13.2	13.80	14.40	15.00	15.60	16.20	16.80	17.40	18.00	1860	18.
70	15.4	16.10	16.80	17.50	18.20	18.00	19.60	20.30	21.00	21.70	
80	17.80	18.40	10.20	20.00	20.80	21.60	22.40	23.20	24.00	24.80	
00	10.80	20.70	21.60	22.50	23.40	24.30	25.20	20.10	27.00	27.90	
100	22.00	23.00	24.00	25.00	28.00	27.00	28.00	29.00	30,00	31.00	
Nos	32 ct .	33ct	$331 / 2 \mathrm{ct}$.	34 ct	35 ct	36 ct .	37 ct.	371/2ct.	38 ct .	$39 \mathrm{ct}$.	0 ct .
	. 64	. 66		68	70	72	. 74	.	14		0
3	. 96	. 99	1.00	1.02	1.05	1.08	1.11	1.121/2	1.14	1.17	1.20
4	1.28	1.32	$1.331 / 6$	1.36	1.40	1.44	1.48	1.50	1.52	1.56	1.60
5	1.60	1.65	1.66	1.70	1.75	180	1.85	1.871/2	1.90	1.95	2.00
	1.92	1.98	2.00	2.04	2.10	2.16	2.22	2.25	2.28	2.34	2.40
7	2.24	2.31	2.33	2.38	2.8	2.52	2.59	2.621/2	2.66	2.73	2.80
	2.60	2.0	2.66	2.72	2.80	2.88	2.96	3.00	3.04	3.12	3.20
9	2.88	2.97	3.00	3.06	3.15	3.24	3.33	3.37	3.42	3.61	3.60
10	3.20	3.30	3.33	3.40	3.50	3.60	3.70	3.75	3.80	3.90	4.09
11	3.52	3.63	3.66	3.74	3.85	3.96	4.07	$4.121 / 2$	4.18	4.29	4.40
12	3.84	3.96	4.00	4.08	4.20	4.32	4.44	4.50	4.56	4.68	4.80
13	4.16	4.29	4.331	4.42	4.55	4.68	4.81	$4.871 / 2$	4.91	5.07	5.20
15	4.48	4.62	4.662	4.76	4.90	5.04	5.18	5.25	5.32	5.46	5.60
15	4.80	4.95	5.00	5.10	5.25	5.40	5.55	5.621/2	5.70	5.85	6.00
17	5.12	5.28	5.331	5.48	5.60	5.76	5.92	6.00	6.08	6.24	6.40
17	5.44	5.61		5.78	5.95	6.12	6.29	$6.371 / 2$	6.46	6.63	6.80
19	5.7	5.9	6.00	6.12	6.30	6.48	6.66	6.75	6.84	7.02	7.20
20	6.40	6.60	6.662	6.80	6.00 8	6.82 7.20	7.40	7.50	7.60	7.80	8.00
2	8.00	8.25	8.334	8.50	8.75	9.00	9.25	9.371/2	0.50	9.75	10.00
3	9.60	9.90	10.00	10.20	10.50	10.80	11.10	11.25	11.40	11.70	12.00
40	13.80	12.20	13.33	13.60	14.00	14.40	14.80	15.00	15.20	15.60	16.00
60	16.00	16.50	16.66	17.00	17.50	18.00	18.60	18.75	19.00	19.50	20.00
60	19.20	19.80	20.00	20.40	21.00	21.60	22.20	22.50	22.80	23.40	24.00
70	22.40	23.10	23.33	23.80	24.50	25.20	25.90	26.25	26.60	27.30	28.00
80		26.	26.66	27.20	28.00	28.80	29.60	30.00	30.40	31.20	32.00
90	28.80	29.70	80.00	30.60	31.50	32.40	33.30	33.75	34.20	35.10	36.00
0	32.00	33.	33.331/3	34.00	35.00	38.00	37.00	37.50°	38.00	39.00	\$0.00

601

READY RECKONER.
Tho frst column on the left contalns the NUMBER of the Articie, and the column on the tops of the Tables tho PRICE.

Non	41 ct .	42 ct .	43 ct .	44 ct .	45 ct .	46 ct .	47 ct .	48 ct .	49 ct .	50 ct .	51 ct .
2	${ }_{1.23}$	1.26		1.32	1.35	$\frac{.02}{1.38}$	$\begin{array}{r} .94 \\ 1.41 \end{array}$	$.06$	$\begin{array}{r} .08 \\ 1.47 \end{array}$	1.00	1.02 1.53
4	1.64	1.68	1.72	1.76	1.80	1.84	1.88	1.02	1.06	2.00	2.04
	2.05	2.10	2.15	2.20	2.25	2.30	2.35	2.40	2.45	2.50	2.55
	2.48	2.52	2.58	2.04	2.70	2.76	2.80	2.88	2.94	3.00	3.06
7	2.87	2.04	3.01	3.08	3.15	3.22	3.20	3.36	3.43	3.50	3.57
	3.28	3.36	3.44	3.52	3.60	3.68	3.76	3.84	3.92	4.00	
9	3.69	3.78	3.87	3.06	4.05	4.14	4.23	4.32	4.41	4.50	4.59
10	4.10	4.20	4.30	4.40	4.50	4.60	4.70	4.80	4.00	5.00	8.10
11	4.51	4.62	4.73	4.8	4.95	8.06	¢ 6.17	5.28	5.39	5.50	5.6I
12	4.92	5.04	5.16	5.28	5.40	5.72	${ }^{5.64}$	5.76	5.88	6.00	6.12
13	5.33	5.48	${ }^{6.59}$	5.72	6.85	5.98	6.11	6.72	6.37	8.50	6.63
14	5.74	5.8	6.02	6.16	6.30	6.4	${ }^{6.58}$	6.72	${ }_{7}^{6.80}$	7.00	7.14
18	${ }^{6.15}$	6.30	6.45	6.60	6.75	6.00	7.05	7.20	7.35	7.50	7.68
16	${ }^{6.56}$	6.72	6.88	7.04	7.20	7.36	7.52	7.68	7.84	8.00	8.16
	6.97	7.14	7.31	7.48	7.65	7.82	7.09	8.16	8.33	8.50	8.67
18	7.38	7.56	7.7	7.8	8.10	8,28	8.46	8.64	8.82	0.00	9.18
19	7.79	7.98	8.17	8.30	8.55	8.74	8.93	0.12	0.31	9.50	. 69
20	8.20	8.40	8.60	8.80	9.00	9.20			80	10.00	10.20
25	10.25	10.50	10,75	11.00	11.25	11.50	11.75	12.00	12.25	12.50	12.75
30	12.30	12.60	12.90	13.20	13.50	13.80	14.10	14.40	14.70	15.00	15.30
40	18.40	16.80	17.20	17.60	18.00	18.40	18.80	19.20	19.60	20.00	20.40
50	20.50	21.00	21.50	22.00	22.50	23.00	23.50	24.00	24.50	25.00	25.50
	24.60	25.20	25.80	26.40	27.00	27.60	28.20	28.80	20.40	30.00	30.60
1	28:70	20.40	30.10	30.80	31.50	32.20	32.90	33.00	34.30	35.00	35.10
80	32.80	33.60	34.40	35.20	36.00	36.80	37.60	38.40	39.20	40.00	40.80
90	36.90	37.80	38.70	39.60	40.50	41.40	42.30	43.20	44.10	45.00	45.92
100	41.00	42	43.		45.	46.00	47.	48.00	49.00		51.00
No	52 ct .	53 ct .	54 ct .	55	56 ct .	57 ct .	58 ct .	59 c	coct.	61 ct .	
	1.0	1.06	1.0	1.10	1.12	1.14	.	1.18	1.20		
		1.51	1.62	1.65	1.68	1.71	1.74	1.77	1.8	1.8	86
	2.08	2.1	2.16	2.20	2.24	2.28	2.32	${ }_{2.36}^{1.8}$	2.40	2.4	2. 48
	2.60	21	2.70	2.		2.85	2.90	2.95	3.00	3.05	10
	3.12	3.18	3.24	3.30	3.36	3.42	3.48	3.54	3.60	3.6	3.2
	3.64	3.71	3.78	3.85	3.92	3.99	4.06	4.13	4.20	4.27	4.34
8	4.16	4.2	4.3	4.40	4.48	4.56	$4.8 \pm$	4.72	4.80	4.88	4.96
	4.68	4.77	4.86	4.95	5.04	5.13	5.22	5.31	5.40	5.49	5.58
10	5.20	5.30	5.40	5.50	5.60	5.70	5.80	5.90	6.00	6.10	6.20
11	5.72	${ }_{6}^{5} .8$	5.94	${ }^{6} .05$	6.16	6.27	6.38	6.49	6.60	6.7	
13	6.76	6.89	7.02	7.15	7.28	7.41	${ }^{6} .64$	7.67	7.20	7.93	8.06
14	7.28	7.42	7.56	7.70	7.84	7.98	8.12	8.26	8.40	8.54	8.68
15	7.80	7.95	8.10	8.25	8.40	8.55	8.70	8.85	9.00	0.15	. 30
16	8.32	8.48	8.64	8.80	8.96	0.12	9.28	9.44	9.60	9.76	2
17	8.84	0.01	0.18	0.35	9.52	9.69	9.86	10.03	10.20	10.37	10.54
18	9.36	9.54	9.72	9.00	10.08	10.6	10.44	10.62	10.80	10.98	11.16
19	9.88	10.07	10.26	10.45	10.64	10.88	11.02	11.21	11.40	11.69	11.78
20	10.40	10.60	10.80	11.00	11.20	11.2)	11.60	11.80	12.00	12.20	12.40
25	13.00	13.25	13.50	13.75	14.00	14.25	14.50	14.75	15.00	15.25	15.50
30	15.60	15.90	16.20	18.50	16.80	17.1	17.40	17.70	18.00	18.30	18.60
40	20.80	21.10	21.60	22.00	22.40	22.60	23.20	23.60	24.00	24.42	24.80
80	26.00	26.50	27.00	27.50	28.00	28.50	29.00	29.50	30.00	30.50	31.00
60	31.20	31.80	32.40	33.00	33.60	34.20	34.80	35.40	36.00	36.60	37.20
70	36.40	37.10	37.80	38.50	39.20	39.90	40.80	41.30	42.00	42.70	43.40
80	41.60	42.40	43.20	5	44.80	45.60	46.40	47.20	48.00	48.80	43.60
90	46.80	47.70	88.60	49.50	50.40	61.30	62.20	63.10	54.00	54.00	55.80
00	52.00	53.00	84.00	S5.00	56.00	57.00	68.00	59.0	60.0	61.	62.00

READY RECKONER.

If the Number required is not found in the Tables, add two Numbers to gether $;$ forinatance, if 35 bushels are required, add the prices oppoaito 30 and 5 together; and so for 365 bushels-treble the value of 100 , and add 60 and 5 together.

ct. 51 ct .
 1.00 1.50 2.00
 1.02 1.53 2.04 2.55 3.06 3.87 4.08 4.50 8.10 $5.6 I$ 6.12 6.63 7.14 7.65 8.16 8.67 9.18 9.69 10.20 12.75 15.30 20.40 25.50 30.60 35.70 40.80 45.92
 50.0

61 ct.	62 ct.
1.22	1.24
1.83	1.86
2.44	2.48
3.05	3.10
3.66	3.72
4.27	4.34
4.88	4.96
5.49	5.58
6.10	6.20
6.71	6.82
7.32	7.44
7.93	8.06
8.54	8.68
9.15	9.30
9.76	9.92
10.37	10.54
10.98	11.16
11.59	11.78
12.20	12.40
15.25	15.50
18.30	18.60
24.42	24.80
30.50	31.00
36.60	37.20
42.70	43.40
48.80	49.60
54.90	35.80
61.00	62.00

$61.00 \quad 62.00$

		63 c	64ct.	65 ct .	60 ct .	00/3ct.	67 ct .	68	69 ct	70 ct .	71 ct.
	1.2	1.20			1.32						
3		1.88	1.92	1.95	1.98		2.01	2.04	2.07	2.10	. 13
	2.50	2.52	2.56	2.60	2.64	2.662	2.68	2.72	2.76	2.80	2.84
	3.12	3.15	3.20	3.25	3.30		3.35	3.40	3.45	3.50	3.05
		3.78	3.81	3.90	3.96		4.02	4.08	4.14	4.20	4.26
	4.37	4.41	4.48	4.65	4.62	$4.663 / 3$	4.60	4.76	4.83	4.00	4.97
	5.00	5.04	5.12	8.20	3.28		5.36	5.44	5.52	5.60	568
	5.62	67	5.76	. 85	. 94	6. 0	6.03	6.12	6.21	6.30	. 39
10	6.25	30	0.40	. 50	. 60	6.66	6.70	6.80	8. 90	7.00	. 10
11	6.8	6.93	硡	. 10	26		7.37	. 48	. 58	7.70	81
12	7.50	7.66	7.68	7.80	92	8.0	8.04	8.16	8.28	8.40	. 32
	8.12	8.19	8.32	8.45	58	8.662	8.71	8.8	8.9	9.10	23
	8.75	8.80	. 96	9.10	24		9.38	9.52	9. 66		4
	9.37	9.4	9.60	9.78	9.90		10.05	10.20	10.35	10.50	10.65
16	10.00	10.08	10.24	10.40	10.56	10.66	10.72	10.88	11.04	11.20	11.38
	10.62	10.71	10.88	11.05	11.22		11.39	11.56	11.73	11.00	12.07
	11.25	11.34	11.6	11.70	11.8		12.06	12.24	12.42	12.60	12.78
19	11.87	11.97		12.3	12.54		12.73	12.92	13.11	13.30	49
20	12.50	12		13.0	13.20		13.40	13.	13.80	0	20
	15.6	15.	16.00	16.2			16.75	17.	17.25	17.50	75
	18.7.5	18.00	19.20	19	19.80		20.10	20.40	20.70	21.00	21.30
	25.00	25.20	25.60	26.0	26.40		26.80	27.2	27.60	28.00	28.40
	31.25	31.50	32.00	32.50			33.50	34.00	34.50	35.00	35.50
	37.50	37.8	38.40	39.0	39.6	0.00	40.20	40.8	41.40	42.00	42.60
	43.75	44.1	4.80	45.50	46.2	46.60	46.00	47.6	48.30	49.00	49.70
	51.00	60.4	51.20	52.00			6 6.00	61.40	65.20	56.00	
	31.25	86.70	57.60	58.60			60.30	61.20	62.10	63.00	
100	62.60						67.00	68.00	69.00	70.00	00
	72 c	73 c			78	$77 \mathrm{ct}$.		c	80	ct.	32 ct .
	2.1	2.19	2.22		. 2	. 31	2.3	2.37	2.40	2.43	. 46
	2.8	2.92	2.0	. 0	. 04	. 08	3.12	3.16	3.20	3.24	. 28
	3.60	3.65	. 70	3.75	3.80	3.85	3.90	3.95	4.00	4.05	1.10
	4.32	4.38	4.44	4.50	4.56	4.62	4.68	4.74	4.80	4.86	4.92
	5.04	5.11	5.18	5.25	8.32	6.39	5.46	5.63	5.60	5.67	. 74
	5.78	5.84	. 92	6.00	6.08	6.13	6.24	6.32	6.40	8.48	\%
9	6.48	6.67	6.6	6.75	6.8	6.93	7.02	,	7.20		
10	7.2	7.30	7.4	7.60	.	7.70	7.80	7.	8.00	8.10	
11	7.92	8.03	8.14	8.25	8.30	8.4	8.58	8.69	8.80	8.91	9.02
12	8.6	8.7	8.88	. 0	9.12	9.24	9.36	9.48	. 6.4		68
	3.0	9.49	9.6	9.75	9.8	1.01	10.14	10.27	10.40	10.53	10.66
14	10.08	10.22	10.3	10.50	10.64	10.78	10.92	11.06	11.20	11.34	11.48
15	10.80	10.95	11.10	11.20	11.40	11.55	11.70	11.88	12.00	12.15	12.30
	11.52	11.68	11.84	12.00	12.16	12.32	12.48	12.64	12.80	12.0	13.12
17	12.24	12.41	12.58	12.75	12.92	13.09	13.26	13.43	13.60	13.	13.94
1	12.96	13.14	13.32	13.50	13.68	13.86	14.04	14.22	14.40	14,	14.76
19	13.68	13.87	14.06	14.25	14.44	14.63	14.82	15.01	15.20	15.39	15.58
20	14.40	14.60	14.80	15.00	15.20	15.40	18.60	15.80	16.00	16.20	1640
	18.0	1825	18.50	18.75	19.00	19.25	19.60	19.75	20.00	2.	2.00
	21.6	21.90	22.20	22.50	22.8	23.10	23.40	23.70	20	24.30	24.60
	28.8	29.20	29.6	30.00	30.40	30.80	31.20	31.	32.00	32.40	32.80
	36.0	3680	37.0	37.6	38.00	38.50	39.00	39.	40.	40.60	11.00
60	43.20	43.80	44.40	15.00	45.60	46.20	48.80	47.40	48.00	48.60	20
70	50.40	51.10	51.80	62.50	53.20	53.90	64.60	85.30	66.00	88.70	
	57.60	58.40	59.2	60.	00.80	61.80	62.40	63.20	64.00		
90	64.80	65	66.60	67.	68	69.30	8.20	71.10	72.00		
00											

READY RECKONER.

If the Number required is not found in the Tables, add two Numbers to gether; for instance, if 35 bushels are required, add the prices opposite 20 and 5 together; and so for 365 bushels-treble the value of 100 , and add 60 and 5 together.

ambers to es opposita of 100, and

ct.	92
1.8	1.84
2.73	2.76
4.50	4.60
3.46	
. 28	7.36
19	8.28
0.10	
10.01	10.1
10.92	11.0
11.83	11.96
12.74	12.88
3.65	
14.56	14.72
5.47	15.64
16.38	18.56
17.29	17.48
8.20	18.40
22.76	23.00
27.30	${ }_{27}^{27.60}$
30.40	36.80
45.50	46.00
54.60	55.20
63.70	64.40
72.80	-
	${ }^{82}$

6.	\%
8.	12.
10.	13.
12.	18.
14.	21.
16.	24.
18.	27.
20.	30.
22.	33.
24.	36.
26.	39.
28.	42.
30.	45.
32.	${ }_{51}$
34.	${ }_{54}^{51 .}$
36.	${ }_{57}^{54 .}$
40.	60.
80.	75.
60.	90.
80.	120.
100.	180.
120.	18.
142.	210
160.	240
180.	270.
200.	300

Weiger, Etature, \&o., of MAx.-The mean wtight, and stature of tho luman body at birth, and at every subsequent age, together with the expectaney of life from 20 to 70 years of age, is us follows.

males.			females.			Years.		years.		
Ase	Feet.	Lbs.	Ase	Feet.	Lbs.	Age.	Expectancy.	Age.	Expectancy.	
0	3.64	7.05	0	8.62	6.42	20	$41^{1 / 2}$	45		
2	2.60	25.01		2.56	23.53	21	40\%	47	$23^{1 / 4}$	
4	3.04	31.38	4	3.00	28.67	32	40	43	$221 / 2$	
6	3.44	38.80	6	3.38	35.29	23	$391 / 3$	\%9	22	
9	4.00	49.95	9	3.92	47.10	24	$383 / 4$	50	$21^{1 / 4}$	
11	4.35	59.77	11	4.26	56.57	25	38	51	$20 / 4$	
13	4.72	75.81	13	4.60	72.65	26	$37^{1 / 4}$	52	193/4	
15	5.07	96.40	15	4.92	89.04	27	$361 / 2$	53	19	
17	5.35	186.56	17	5.10	104.34	23	$35^{\circ} \mathrm{\%}$	54	$181 / 6$	
18	$5 \cdot 44$	127.59	18	5.13	112.55	29	35	55	$17^{3 / 4}$	
20	5.49	132.45	20	5.16	115.30	30	$34^{1 / 7}$	56	17	
30	5.52	140.38	30	5.18	119.82	31	33%	57	161/4	
40	5.52	140.42	40	5.18	121.81	32	33	53	$151 / 2$	
50	5.47	139.95	50	5.04	123.86	33	$321 / 2$	59	15	
60	$5 \cdot 33$	136.07	60	4.97	119.76	34	$35 / 4$	60	$14^{1 / 2}$	
70	5.32	138.27	70	4.97	123.60	35	31	61	4	
80	5.29	127.54	80	4.94	103.80	36	$3{ }^{301 / 4}$	62	$131 / 2$	
90	5.2.)	127.54	90	4.94	103.81	37 38 3	27 ${ }^{3 / 4}$	63 64	13.12	
	Mean.....103.66						39	231/4	65	129/9:
							40	273/4	66	$11 / 4$
				Mean.... 93.73			41	27	67	$10^{3} /$
				42	261/9	63	$101 /$			
				43	$253 / 4$ 254	69	93			
				44	$251 / 4$ $241 / 2$	70	91/6:			

The weight of the maie infant at birthis 7 lbs . avolrdupois: that of the female is not quite $61 / 2 \mathrm{lbs}$. The maxinum weight ($1401 / 2 \mathrm{lbs}$.) of the male is attained at the age of 40 ; thant of the female (nearly 124 lbs .) is not attained untll 50 ; from wiich ages they deciine afterwards; tho male to $1271 / 2 \mathrm{lbs}$., the female to $100 \mathrm{lbs} .$, nearly a stone. The full grown adult is 20 times as heavy as a new born infant. In the tirst year ho triples his weight, afterwards the growth proceeds in geometrical progression, so that if 50 infants in their first year weigh 1000 lbs.. they will in the second weigh 1210 lbs.; in the third 1331 lbs.; in the fourth 14 GH 1 lbs. the term remaining very constant up to the ages of 11-12 in females; and 12-13 in males; where it must bs nearly doubled; afterwards it may be contlinued, and will be found very nearly correct up to the age of 18 or 19 when the growth proceeds very slowly. At an equality of ago the male is generally heavier than the female. Towards the age of 12 years only, an individus! of each sex, has the same weight. The male attalins the maximum weight about the age of 40 , and he begins to loso it very sensibly towards 60 . At 80 he loses about 13.2328 lbs. ; and tho stature is diminished $2 \cdot 756$ inches. Females attain their maximum weight about 50 . The mean weight of a mature man is 104 lbs , and of an average woman 94 lbs . In old age they lose about 12 or 14 lbs . Men weigh most at 40, women at 50 and begin to lose weight at 60 . The mean weight of both sexes in old age is that which they had at 19.
When the male and female have assumed their complete development, they weigh almost exactly 20 times as much as at birth, while the stature is about $31 / 2$ times greater.
Children lose weight during the first three days after. birth; at the nge of a week thep sensibly increase; nfter 1 year they triple their weight; then they require 0 years to double their weight, and 13 to quadruple it. In a chill the head is equal to a fifth part, and in a full grown man to an eighth part of the height of the individual. The human akeleton peighs from 9 lbs, 6 ozs. to 16 lbs ., and the blood 27 or 28 lbs A calinined haman body leaves a residuym - of only. 8 ozs . All besides is rastinnit to the gaseous elements.

	铬
\％	出

$\text { . } \underset{\underset{u}{\dot{~}}}{ }$		
总	嵒管	A
		言
		品
貔		
	－aranb 30 ${ }^{\text {aptg purs }}$	拍

LEAD BEING \&

$\begin{array}{l\|l\|l\|} \text { Tin } \ldots ~ & \text {.. } 4 \\ \text { Copper } & 4.3 \\ \text { Yeilow Brass....... } & 4.6 \\ \hline \end{array}$	

Gun Metal
Cast Iron.
English Iron Blistered Steel. 16.6 Swedish Iron $9-9$

Shear Strel...........17.0
CAPACITIES, SIZE AND WEIGHT OF COPPERS.

Depth in Inches.	Gallons		$\begin{gathered} \text { Depth } \\ \text { in } \\ \text { inches. } \end{gathered}$	Gallons:		$\begin{gathered} \hline \text { Depth } \\ \text { in } \\ \text { inches. } \end{gathered}$	Gallons	$\begin{gathered} \text { Weight } \\ \text { in } \\ \text { pounds } \end{gathered}$
$93 / 4$	1	$8^{1 / 2}$	24	15	2218	$293 / 2$	29	$4 ¢ 1 / 2$
121/4	2	3	$24^{1 / 2}$	16	24	30	30	45
14,	3	$4^{1 / 2}$	25	17	25%	32	36	5
$35^{1 / 2}$	4	6	251/2	18	27	34	43	641/2
$161 / 2$	5	$71 / 2$	26	19	251/2	35	48	72
$171 / 3$	6	9	261/2	20	30	35	53	$79^{1 / 2}$
$181 / 2$	8	101/2	263/4	21	$3{ }^{31}{ }^{1 / 2}$	37	${ }_{68} 8$	87 74
$171 / 3$ $201 / 4$	8	12	27 $271 / 4$	22 23	33 34 34^{2}	33 39	68 67	741/3
201/4	${ }^{9}$	$131 / 2$ 15	27 $271 / 9$ 27	23 24	$3{ }^{3}{ }^{2} / 2$	39	77	1001/2
$22^{1 / 2}$	11	161/2	$273 / 4$	25	$33^{-1 / 2}$	45	104	156
22	12	18	28	26	37	50	146	219
$22^{1 / 3}$	13	191/2	$28^{1 / 3}$	27	$40 \frac{1}{2}$			
- $31 / 4$	14	21.	29	28	42			

WEIGHT OF SQUARE AND RCUNDCAST IRON.

Square per Foot.				Round per Font.			
Size.	Weight.	Size.	Weight.	Size.	Weight	Size.	Weight.
Inches square.	Pounds.	Inches Square.	Pounds.	Inches Diam.	Pounds.	Inches Diam.	Poungs.
	.78	${ }^{4}$	50.	1/6	SI	$41 / 3$	41.76
8	1.22	$41 / 8$	53.14	\%	- 25	43	4.27
$3 / 4$	1.75	41/3	56.44	3	1.35	4)3	46.97
3	2.39	438	57,81	3	3.87	$41 / 3$	49.70 .
	3.12	41/3	63.23	8	2-45	43	- 52.50
11/3	3.95	478	66.84	136	3-10	$43 / 4$	55.37
$11 / 8$	4.88	$43 / 4$	70.50	1/4	3.83	4\%	${ }^{58.32}$
138	5.90	4\%	74.26	13	4.64	5	61.35
$13 / 3$	703	5	78.13	$11 / 3$	$5-52$	51/8	$6+46$
13	8.25	$51 / 8$	82.08	13\%	6.43	$51 / 3$	67.64
$83 / 4$	9.57	$51 / 3$	86.13	13/4	7-51	53	70.09
17/8	10.98	53	90.23	138		$51 / 3$	74.24
$2{ }^{2}$	12.50	$51 / 3$	94.53	210	9.81	58	77.65
$21 / 8$	14.11 15.81	5/8/8	98.87	$21 / 8$	11.88	$53 / 3$	91.14.
$21 / 4$	15.81 17.62	$53 / 4$	103.32 107.86	$23 /$	12.42	$51 / 3$	${ }^{84.717^{1}} 8$
$21 / 2$	17.62	${ }_{6}^{5 / 8}$	107.86	238	13-34		83.35 95.87
21/3	19.53 21.53	$61 /$	112.50 122.08	$2{ }^{21 / 2}$	${ }^{35-53}$	61/9	95.87 r03.63
$23 / 4$	23.63	$61 / 3$	132.03	2 H	${ }^{19} .58$	63/4	111.83
2\%	25.83	$63 / 4$	142.38	238	20.23		120.26
3	28.12	7	153.12	3	22.13	$71 / 4$	129.
3,6/6	30.58	$71 / 4$	164.25	$331 /$	23.76	73	133.05
$31 / 2$	33.	$71 / 3$	175.78	33	$25-92$	73	147.18
33.8	35.59	$7^{3 / 4}$	187.68	$3{ }^{3 / 8}$	27-95	8	157.03
$31 / 3$	38.28	8	200.12	$3{ }^{2}$	30,16	$81 / 4$	167.05
$33 / 8$	41.06	$81 / 4$	212.56 $\mathbf{2 2 5} 5$	3%	32.25	$81 / 3$ 83	177.17 187.01
33	43.94	$81 / 3$	225.78 239.25	33/4	34	$81 / 4$	187.9 t 198.79
3/8	46.92	874 9	239.25 253.12	33	3205 $32=7$	$931 /$	198.79 210.

...17.0	
S.	
	Weight in pounds
	$41 / 2$
	45
	64/2
	731/2
	87
	74/3
67	10017
	$1061 / 2$
	156

41.76
44.27
46.97
49.70
52.50
55.37
59.32
61.35 $6+46$ 67.64 70.09 $74 \cdot 24$ 77.63 91.14 84.71
83.35 95.87 103.69
111.83 120.26 129. 133.05 147.48
157.03 167.05 177.17 187.91 198.77 210.

WEIGHT OF IRON PER TOOT

Kownd.		Square.		Fiat.		Flab.		Fiat.	
$\underset{\sim}{0}$	W5':.	$\stackrel{\text { N }}{n}$	W $g^{\prime \prime}$ t.	Size.	W g^{\prime} t.	Size.	$W^{\prime} g^{\prime} t$.	Size.	$W_{g_{s}^{\prime}} t .$
1/6	.163	$1 / 4$. 833	13/4x ${ }^{1 / 3}$	2.91	4i/2x ${ }^{3 / 4}$	27.25
35	.368	38	- 468	$278 \times 1 / 4$. 937	$2.1 / 3$	3.33	$5 \times 3 / 4$	12.50
$1 / 2$. 654	$1 / 2$.833	21/4x ${ }^{1 / 4}$	1.04	21/4x ${ }^{3 / 2}$	3.74	$51 / 2 x^{3} / 4$	23.75
\%	8.02	18	8.30	13601/4	1. 14	281/2x1/2	4.16	6"x3	15.00
$3 / 4$	1.47	$8 /$	2.87	11/2x1/4	8.25	$23 / 4 \times 1 / 2$	4.59	- \dot{x}	12.06 2.91
J	2.00	37	2.55	$13 / 4 \times 1 / 4$	1.45	$3 x^{1 / 2}$	5.00	11/8x 74	28
1	2.61	1	3.33	$2 \times 1 / 4$	2.66	$3^{1 / 2} \times 1 / 2$	5.83	(x\%	
11/3	331	1818	4.21	21/4x1/4	1.87	$4 \cdot x^{1 / 2}$	6.60	x	. 01
$11 / 4$	4.09	$21 / 4$	5.20		2.03	5	8.33	1/2x 7	87
133	4.95	138	6.30	$23 / 4 \times 1 / 4$	2.29	$6 \mathrm{x}^{1 / 4}$	10.00	23/4x 7	. 10
11/3	5.89	1 $1 / 3$	7.50	$3 \times 1 /$	2.50	1×5	2.08	$2 \cdot x / 4$	5.83
15/8	6.91	158	8.80	$31 / 41 / 4$	2.70	1 $1 / 8 \times 5 / 8$	2.34	$21 / 4 \times 7 /$	6.56
$13 / 4$	8.08	23/8	10.20	$31 / 2 \times 1 / 4$	2.91	$12 / 4 \times 1 / 8$	2.60	$23 / 2 \times 7 / 6$	7.29
27/8	9.20	$27 / 3$	11.71	$33 / 4 \times 1 / 4$	3.12	238058	2.86	$23 / 4 \times 7 / 6$	8.02
2	10.47	2	23.33	$4 x^{2} / 4$	3.33	$81 / 2 x^{3 / 8}$	3.	$3 \times 7 / 2$	8:75
21/3	11.82	21/8	25.05	$41 / 2 \times 1 / 4$	3.75	$13 / 4 \times 5 / 8$	3.64	$31 / 2 \times 7 / 8$	10.20
$21 / 4$	13.25	$21 / 4$	16.8:	$5 \times 1 / 4$	4.17	$2 \times 5 / 8$	4.16	$4 \times 3 /$	21.66
$23 / 8$	14.76	$21 / 2$	20.00	$6 \times 1 / 4$	5.00	$21 / 4 \times 5$	4.68	41/2x 36	13.12
$21 / 2$	16.36	$23 / 4$	25.20	1×38	1.25	21/3x\%	5.20	5×76	14.58
$23 / 4$	19.79	3	30.00	$81 / 8 \times 36$	1.40	$23 / 4 \times 5 / 3$	$5 \cdot 72$	$51 / 2 x 7 / 8$	1604
3	23.56	31/3	32.55	1/8	1.56	$3 \times 5 / 3$	6.25	$6 \times 7 / 8$	27.50
31/3	25.56	$31 / 4$	35.20	,	1.78	$31 / 2 \times 5 / 8$	7.29	51/8xi	3.75
$31 / 4$	27.65	338	37.96	11/2x 36	1.87	4×5	8.33	21/4xi	4.16
338	29.82	$31 / 2$	40.80	$13 / 4 \times 3 / 8$	2.18	5×56	10.48	138×8	4.53
31/2	32.07	33/4	46.87	$2 \times 3 / 8$	2.50	6×5	12.50	11/2x]	5.00
31/4	36.81	4	53.33	$21 / 4 \times 3 / 8$	2.81	. $\times 1 / 4$	2.50	13/4x	5.83
4	41.88	$41 / 4$	60.20	$21 / 2 \times 18$	3.12	$11 / 8 x \% 4$	2.81	2 xf :	6.66
41/8	44.54	$41 / 2$	67.50	23/4x 3 \%	3.43	11/4x ${ }^{3}$	3.12	$21 / 4 \times 8$,	7.50
41/4	47.28	$43 / 4$	75.20	$3 x^{36}$	$3 \cdot 75$	138×3	3.43	$21 / 2 \times 1$	8.33
4%	50.11		83.33	3 $/ 2 \times 3 / 8$	4.37	$11 / 2 x^{3 / 4}$	3:75	23/4x2	9.16
41/2	53.01	$51 / 4$	93.20	4×36	5.00	$33 / 4 \times 3 / 4$	4.37	3 x	10.00
43/4	59.06	$51 / 2$	102.20	$5 \times 3 / 8$	6.25	$2 x^{3} 4$	5.00	$31 / 2 \times 1$	11.66
5	65.45	6	112.20	$6 \times 3 / 8$	7.50	$21 / 4 \times 3$	5.62	4×1	13.33
$51 / 4$	73.02			$1 x^{1 / 2}$	1.66	21/2x $/ 4$	6.25	4/2x1	15.00
5	80.03			11/8x $1 / 2$	1.87	$23 / 4 x^{3 / 4}$	6.87	$5{ }^{\circ} \times 1$	6.66
$51 / 4$	87.08			1 $1 / 4 \times 1 / 4$	2.08	$3, x^{3 / 4}$	8.50	5 $1 / 2 \times 2$	8.33
6	95.06			$13 / 8 \times 1 / 8$	2.29	$31 / 2 \times 3 / 4$	8.75	$6 \cdot x 8$	20.00
6\%	112.02			$11 / 2 \times 1 / 2$	2.50	$4 \times 3 / 4$	10.00	61/6x	21.66

WEIGHT OF FLAT STEEL PER FOOT.

Cast Iron being $\mathbf{1}_{1} \mid$ Bar Iron, being $\mathbf{1 ,} \mid$ "White Pine, being i,

Bar Iron equal

TABLES FOR ENGINEERS AND MACTINISTS.

ARITHMETICAL SIGNS AND THEIR SIGNIFICATION. $=$ Sign of Equality, and signifies as $4+12=16$.

+	$"$	Addition
\times	$"$	Subtraction "
Multiplication "		
\vdots		

as $8+8=16$ the sum.
as $12-4=8$ the remainder.
as $12 \times 3=36$ the product.
as $24 \div 3=8$ or $24=8$.
Evolution or Extraction of
thus $8^{2}=64$ Involution, or
thus $3^{8}=27$ the Raising of
The following table shows weight in tons required to tear asunder bars x inch square of the following materials.
Oak.............. 51/6 tons. Wrought Copper.. 15 tons
Fir.............. 5/ " English Bar Iron..25 "
Cast Iron........ 73/
Wrought Iron..... io

READY RECKONER TABLE

Yor computing Wages, Rent, Board, etc. The sum will be found heading the colunns, and tne days and weeks on the extreme left hand column. If the desired sum is not in the Table, double or treble two or three suitable numberm

TIME.	\$2. 50.	\$2.75.1	\$3.00.	\$3.25.	\$3.50.	\$3.75.	84.00.	\$4.25.	8-50.	\$4.730
	.36 .72	. 39	. 43		- 90	. 53	. 57	.61 1.21	.64 1.28	66
	1.08	$\begin{array}{r}1.17 \\ \hline\end{array}$	8.29	3.39	2.50	2.68	2.78	1.22 1.82	1.93	3
	44	2.56	2.71	1.86	2.00	2.14	2.28	2.43	2.57	2.75
	1.80	1.95	2.14	2.32	2.50	2.68	2.86	3.03	3.21	3.39
	2.15	2.34	2.57	2.78	3.00	3.21	3.43	3.64	3.86	4.07
	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75
	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50
	$\begin{array}{r}7.50 \\ \hline\end{array}$	8.25	9.00	9.75	30,50	21.25	12	12.75	13.50	14.25
	10.00 12.50	11.00	12.00 25	33.00	24.00	15.00	36	17.00	13.00	19.00
	12.50	13.73	25.00	16.25	17.50	88.75	20.00	21.25	22.50	23.75
TIME.	\$5.00.	\$5.25.	\$5.50.	\$5.75.	\$6.00.	\$6.25.	\$6.50.	\$6.75.	\$7.00.	\$8.00
8								. 96		
	2.43	2.50	2.58	2.64	8.72	8.78	2.86	2.92	2.00	2.28
	2.14	2.25	2.37	2.46	2.28	2.67	2.79	2.88	3,00	3.52
	2.86	3.00	3.15	3.28	3.44	3.56	3.72	3.84	4.00	4.26
	3.57	3.75	3.94	4.10	4.30	4.45	4.65	4.80	5.00	5.72 6.86
	4.28 5.00	4.50 5.25	4.73 5.50	4.92	5.16	5.34 6.25	S.58	5.76	6.00	6.86 8.00
	5.00	5.25	5.50	$5 \cdot 75$	6.00	6.25	6.50	6.75	7.00	8.00 86.00
	10.00 15.00	10.50 25.75	11.00 16.50	11.50 17.25	12.00 28.00	82.50 18.75	13.00	13.50 20.25	14.00 21.00	16.00 24.00
	15.00 20.00	25.75 21.00	16.50 22.00	17.25 23.00	28.00 24.00	18.75 25.00	29.50 26.00	20.25 27.00	21.00 28.00	24.00 32.00
	25.00	26.25	27.50	28.75	30.00	3 x 25	32.50	33.50	35.00	40.00

WEIGHT OF LEAD PIPE-DIFFERENT SIZES.

SIZE AND CAPACITIFS OF CRIDS AND BOXES.

Crib $61 / 2 \mathrm{ft}$. long, $33 / 4 \mathrm{ft}$. broad, $31 / 2$ deep, $631 / 2$ bush. $1 / 2$ peck.
Box 4 ft. long, $3 \mathrm{ft} .5 \mathrm{in}$. wide, $2 \mathrm{ft}$.8 in . deen, $363 / \mathrm{g}$. ft ., 8 ton of coal.
Stone or Box $41 / 2 \mathrm{ff}$. long, $21 / 2 \mathrm{ft}$. wide, 2 feet deep, $22^{1 / 2}$ cubic feet.
Box 2 ft . long, if foot 4 in . wide, 2 ft .8 in . deep, $20.722 \mathrm{cu} . \mathrm{in}$. 2 barrel. Box 2 ft. long, ifoot 2 in . wide, ifoot $a \mathrm{in}$. deer, 5.376 cu in. $1 / 2$ barreh Box if foot 2 in . long by $168-10 \mathrm{in}$. wide and 8 in . deep, 2 bushel.
Box $12 \times 112-10 \mathrm{in}$., 8 in . deep, $1.0752-10 \mathrm{in}$. or $1 / 2$ bushel.
Box $8 \times 84-\mathrm{tc}$ in. and 8 in . deep. 537 6-10 cu. in. or 1 peck.
Box 8×8 in. and $42-10 \mathrm{in}$. deep, $2638-10 \mathrm{cu}$. in, or $1 / 2$ peck.
Box $7 \times 4 \mathrm{in}$, and $48-10 \mathrm{in}$. deep, $3344-10 \mathrm{cu} . \mathrm{in}$. $1 / 2 / \mathrm{gzilom}$
Box 4×4 in, and 42 -so in. deep, 672 -10 cu. in. 8 quart.

DIAMETERS, CIRCUMIFERENCES AND AREAS OF CIRCLES.

Exaimple.-Required the circumference of a circle, hoop, or ring; the diameter being 3 ft .4 in . In the column of circumferences, opposite the Indicated diameter, stands $10 \mathrm{ft} .5 \mathrm{~s} / \mathrm{in}_{\text {. }}$ the circumference required. The just allowance for contraction of the metal is its exact thickness, or 1 to breadth, if it is bent edgeways, which must be added to the diameter.
The millwright can at once ascertain the diameter of any wheel hemsy require, the pitch and number of teeth being given.
Example.-If a wheel is ordered to be made to contain 60 teeth, the pitch of the teeth to be $37 /$ inches, the dimensions of the wheel may bo known simply as follows :-Multiply the pitch of the tooth by the number of teeth the wheel is to contain, and the product will be the circumference of wheel thus-
$37 /$ inches pitch of the tooth.
$10 \times 6=60$ the number of teeth.
Feet $1941 / 2$ inches the circumference of the wheel. The diameter answering to this circumference is 6 ft . 2 in., consequently with one half of this number as a radius, the circumference of the wheel will le described.

$\begin{aligned} & \text { Dia in } \\ & \text { inch. } \end{aligned}$	Circunl. in inch.	Area in sg. inch.	Side of $\Longrightarrow \mathrm{sq}$.	Din in inch.	Cir. in 18. in.	Ares in sq. inch.	Area in 8. It.
\% 1-16	-196	-0030	-0504	4 In .	$101 / 2$	12-566	-0879
- 1-8	-392	-0122	-1107	$41 / 8$	10%	13-364	-0935
4 3-16	-589	-0276	-1661	41	113	14-186	-0993
- 1-4	-785	-0490	-2115	48	1 18\%	15-033	-1052
+ 0-16	-981	-0767	-2669	11%	1 21/8	16-904	-1113
- 3.3	1-178	-1104	-3223	45	$121 / 9$	16-800	-1176
7-16	$1-374$	-1503	-3771	43%	$1 \begin{array}{ll}1 & 2 \\ 1\end{array}$	17-720	-1240
t				$47 / 5$	$131 / 4$	18-668	-1306
1-2	-870	-1963	-4331	5 in.	$133 / 8$	19-638	-1374
9-16	1-767	-2485	-4996	$51 / 8$	131%	20-629	-144t
8-9	1-963	-3068	-5438	51	141%	21-647	-1515
11-16	2-159	-3712	-6093	58	$147 /$	22-690	-1588
3-4	2-356	-4117	-6646	51%	1 51/4	23-758	-1663
13-16	2-552	-5185	-7200	56	$185 / 8$	24-850	-1739
7-8	2-748	-6013	-7754	53	16	25-967	-1817
15-16	2-945	-6903	-8308.	5\%/3	1 63/6	27-108	-1897
1 in.	$31 / 9$	-7854	$1 / 8$	6.12.	1 63/4	28-274	-1979
\% 11/8	$31 /$	-9940	$7 / 883-32$	$61 / 8$	171	29-464,	-2068
\% 11\%	37%	1-227	1 in.	6%	175%	30-679	-2147
¢ $13 / 6$	$41 / 4$	1-484:	13 3-16	68	1. 8 .	31-919	-2234
11%	$45 / 8$	1-767.	- 5-16	61%	$188 / 8$	33-183	-2322
$16 /$	$51 / 8$	2-074	- 1 7-16	65\%	1. $83 / 4$	34-471	-2412
14	$51 / 8$	2-405	19.16	63%	1. 918	36-784	-2504
1\%	5%	2-761	1 11-16	6\%	$1.91 / 2$	37-122	-2598
2 in.	$6^{1 / 4}$	3-141	13/4	7 In.	110	38-484	-2693
21/6	65/8	3-546		$71 /$	$\pm 10^{3}$	39-871	-2791
$21 / 4$	7	3-976	2 in.	71	1.10%	41-282.	-2889
$23 /$	73	4-430	$21 / 8$	78	1111	42-718	-2990
21%	7\%	4-908	$23-16$		111%	44-178	-3092
25	$8{ }^{1} 4$	6-412	2 5-16	75	1.11%	45-663	-3196
23	$85 / 5$	5-939	2 7-16	78%	20%	47-173	--3299
$21 / 8$	9	6-491	2 9-16	7\%	208	48-707	-3409
8 in .	$93 / 8$	7-068				80-265	-3518
$31 / 8$	93\%	-7-669	28%	$81 /$	2. $11 /$	81-848	-3629
$81 / 4$	$101 / 4$	8-295	$27 / 3$	81	$2.1 / 8$	83-456	-8741
36	105/8	8-946	8 in.	83	$2.21 / 4$	60-088	-3856
31%	11.	9-621			2 2\%	86-745	-3972
35	113/6	10-320	$81 /$	86	23°	68-426	-4089
88	119/4	11-044	$3 / 8$	83	23%	60-132	-4203
3\%	121/8	11-798	3^{7-16}	8\%	23%	61-862	- 4880

CLES,

ing; the osite the ed. The ess, or tos liameter. el hexisy teeth, tho el may bo the nume circum.
the wheel. nsequently the wheel

Area in

 sq. ft.-0879
-0935
-0993
-1052
-1113
-1176
-1240
-1303

- 1441
-1515
-1588
- 1663
-1817
-1897
-1979 -2063 -2147 -2234 -2412 -2504 -2098 -2693 -2291 -2889 -2990 -3093 -3196
-3299 -3409 -3518 -3629 -3856 -9972 -4089
-4203 -4330

DIAMETERS, CIRCUMFERENCES AND AREAS OF CIRCLES, \&C.

Dia. in 1t. in.	Cir. In ft. in.	Aren in sq. inch.	Area in sq. ft .	Dia. in ft. in.	Cir. in it. in.	Area in sq. inch.	Area in sq. it
0	$2 \quad 41 / 4$	63-617	-4453	14	$421 / 4$	201-062	1-4074
$91 / 8$	245	65-396	-4577	$141 / 8$	$425 / 3$	204-216	1-4203
$91 /$	$2 \quad 5$	67-200	-4704	$1 \quad 41 / 4$	43	207-391	1-4517
$93 / 8$	$2 \quad 53 / 8$	69-029	-4832	$143 / 8$	$433 / 8$	210-597	1-4741
$91 / 2$	$2 \quad 53$	70-882	-4961	1415	4351	213-825	1-4967
95/8	$3 \quad 614$	72-759	-6093	145	441	217-077	1-5195
931	:3 65/8	74-662	-5226	1 48\%	4412	2:0-303	1-5-121
$97 / 8$: 7	76-588	-5361.	14%	45	$293-654$	1-5605
10	2.73	78-540	-5497	5	453	226-980	1-0653
101/8	2.75	80-615	-5636	1 b1/8	451	230-330	1-6123
10^{1}	$2.81 / 8$	82-516	-5776	151	4618	233-705	1-63k9
103	$2{ }^{2} \quad 81 /$	84-510	-6917	16%	461	237-104	1-6597
$101 / 2$	28%	86-599	-6081	$151 /$	467	210-628	1-6836
105/8		88-664	-6206	156	478	243-977	1-7078
103/4	$2 \quad 93$	90-762	-6353	15^{3}	473	247-450	1-7321
10\%/8	2 101/8	92-835	-6490	$51 / 8$	481	250-317	1-7566
11	$2101 / 2$	95-033	-6052	6	$481 / 2$	251-463	1-7812
111/8	2107	97-205	-6874	$1 C^{1} 1 / 8$	4878	258-016	1-8061
111	$2 \begin{array}{lll}2 & 11 \\ 2\end{array}$	99-402	-6958	101	$491 / 4$	261-387	1-8311
113	$2{ }^{2} 113 / 4$	101-623	-7143	163	498	265-182	1-80662
111\%	$3 \quad 30$	103-869	-7290	$16^{1 / 2}$	410%	268-803	1-8816
115	301%	106-139	-7429	165	4101	272-447	1-9071
$113 / 4$	$3 \quad 0 \%$	108-434	-7590	1 6	41078	276-117	1-9328
11\%	$311 / 4$	110-753	-7752	1 6\%	$4111 / 4$	279-811	1-9386
1	$3 \quad 15 / 8$	113-097	-7916	7	$4115 / 8$	283-529	1-9847
$1 \quad 1 / 8$	$3 \quad 2$	115-468	-8082	1 71/8	50	287-272	1-9941
1 1/4	$3 \cdot 21 / 2$	117-859	-8250	171	$5 \quad 01 / 2$	291-039	2-0371
18	3 2\%	120-276	-8419	173	5 0t/a	29t-831	2-0637
$1.1 /$	$3 \quad 31 / 4$	122-718	-8590	171	5111	298-648	2-0904
18	$3 \quad 35$	125-185	-8762	175	5 5 15/8	302-489	2-1172
1 ¢	$3 \quad 4$	127-676	-8937	$173 / 4$	$5 \quad 2$	306-355	2-1443
$1.1 / 8$	3 4 $4 / 8$	130-192	-9113	$171 / 8$	5 23/8	310-245	2-1716
$1 \cdot 1$	3 42/4	132-732	-9291	8	5 '27/	314-16)	2-1990
1 11/8	$3 \quad 11$	135-297	-9470	$181 / 8$	$5 \quad 31$	318-099	2-2265
$111 / 4$	$3 \quad 5 \%$	137-886	-9642	$181 / 4$	$5 \quad 35$	322-063	2-2543
$113 / 8$	36	140-500	-0835	1.83	54	326-051	2-2922
$111 / 2$	$3 \quad 63 / 8$	143-139	1-0019	1819	$5 \quad 438$	330-064	2-3103
115	$3 \quad 63$	115-802	1-0206	$185 / 8$	5 1 4	334-101	2-3388
$1 \begin{array}{ll}1 & 13\end{array}$	$3 \quad 71$	148-489	1-0294	1.8%	$5 \quad 51 / 8$	338-163	2-3670
1.17/8	$3 \quad 11 / 2$	151-201	1-0584	$1.87 / 8$	5 51\%	342-250.	2-3953
12	$3 \quad 7 \%$	153-938	1-0775	19	6 5\%	346-361	2-424
$121 / 8$	388	156-699	1-0968	$1 \quad 91 / 8$	5 6\%	300-497	2-4583
1. $21 / 4$	3 83)	159-485	1-1193	191	$5 \quad 61 /$	354-657	2-4824
$123 / 8$		162-295	1-1360	193	$5 \quad 71 / 8$	358-841	2-5117
$121 / 2$	3916	165-130	1-1569	$101 / 2$	$5 \quad 71 /$	363-051	2-6412
125	$3 \quad 8 \%$	167-989	1-1749	195%	$5 \quad 71 / 8$	367-284	2-5708
$1: 23 / 4$	3 101/4	170-873	1-1961	$1 \quad 98$	51817	371-543	2-6007
1 : $27 / 8$	$3 \begin{array}{lll}3 & 10 \%\end{array}$	173-782	1-2164	$197 / 8$	$5 \quad 83$	375-k26	2-6306
$1: 3$	$3111 / 8$	176-715	1-2370	110	5 91/8	380-133	2-6808
1 31/9	3 111\%	179-672	1-2577	$1.101 / 8$	5 91/2	384-465	2-6691
1.314	311%	182-654	1-2785	$10^{1} 4$	$5 \quad 96$	388-822	2-7016
1.35	4017	185-681	1-2998	1 10\%	$5{ }_{5}^{5} 101 \%$	393-203	2-7224
1.317	- $4.05 / 6$	188-692	1-3208	1 101\%	$5 \quad 105$	397-608	2-7632
135	$4 \quad 1$	191-748	1-3422	1 105/	$5 \quad 11$	402-038	2-7980
$133 /$	4 i 1%	191-828	1-3637	$1 l_{1}^{1} 109$	$5111 / 2$	406-493	2-8054
1.3%	41%	197-933	1-3855	$1101 /$	5 11/8	410-972	2-C65

DIAMETERS, CIRCUMFERENCES AND AREAS OF CIRCLES, \&c.

돌.	 ज
或岳	
트ํ	
트ำ	
틏̇̇	
들 Ü̃	ర\%
벼ํ	

DIAM., \&c. OF CIRCLES, CONTENTS IN GAIS., AREA IN FPET

IN Fr.ET

Gallons.
$1 \mathrm{ft} . \operatorname{In}$ dpth 188.6045 194. 1330 199.8610 205.6133 223.9472 229.4342 24.1564 267.6122 287.8033 308.7270 330.3859 $352.76 \% 5$ 375.9062 399.7668 424.3625 449.2118

478.7563

 502.5537 530.0861 658.3522
B87.3534

 617.0876 647.5568 678.2797710.6977 743.3686 776.7746 810.0143

848.1890

 881.3966 917.7395 954.8159 992.674 1031.1719 1070.4514 1108.0645 1151.2129 1192.6940 1234.9104 1277.86151321.5454 1365.9634 1407.5165 1457.0032 1503.6250 1550.9797 1599.0696 1647.8931 1697.4516 1747.7431 1798.7698 1850.6301

1903.0254

 1056.2537 2010.2171Scantling reduced to one inch boaid measure.

SCANTLING AND TIMBER MEASU MEASURE.

 utiduced to one rimber measureEXPLANATION, -To akcertain NCHBOARD HEASURE, ber, any 18 Feet Long and 2 hy 3 limber of Feet of Scantlin columns, and 18 in the left liand colnches. Find 2 beantling or Tim. If the Scantling is longer together. If shorter, take part off sone in the Table, add two lengthe

7-16Exco
\qquad ลి
 13.14

 \begin{tabular}{l}
13.16

\hline 104.

121.3

138.8

156.8

173.4

190.8

208.

225.4

242.8

260.

277.4

294.8

312.

329.4

346.8

364.

381.4

398.8

410

 $|$

14.14

\hline 98.

114.4

130.8

147.

163.4

179.8

106.

212.4

228.8

245

261.4

277.8

290.8

310.4

326.8

343.8

359.4

375.8

392.

 $|$

14.15

\hline 105.

122.6

140.6

$157 . \mathrm{C}$

175.

192.6

210.

227.6

245.

202.6

280

297.6

314

332.6

350

367.6

385

402.6

\end{tabular} 5 14.16

15.15
112.6
131.3
150.
168.9
187.6
206.3
225.5
243.9
262.6
281.3
300.6
318.9
337.6
356.3
375.
393.9
412.6
431.3
450.

	8.11	8
． 4	58.8	
．	66.	
． 8	73.4	
73.4	80.8	
		${ }^{96}{ }^{6}$
	，	104.
3.4	102.8	
	110.	120
	117.4	128
3.	124，8	136.
	132.	144
8．8	139.4	152
3.4	146.8	160.
．	154.	168
6.8	161.4	176
3.4	168.8	13
）．	176	19

［． 1
$\infty \rightarrow \infty$

道

LUMBER AND LOG MEASUREMENT AT SIGHT．

$\stackrel{9 \varepsilon}{\text { que }}$	
$\begin{aligned} & \overline{\varepsilon \varepsilon} \\ & \cdot u \mathrm{u}!\mathrm{a} \end{aligned}$	
$\begin{gathered} 2 \varepsilon \\ \text { une! } q \end{gathered}$	8 ర్లか
$\begin{gathered} 1 \varepsilon \\ \text { we! } \sigma \end{gathered}$	Y ¢
$\begin{aligned} & \hline \text { oॄ } \\ & \text { ur! } \sigma \\ & \hline \end{aligned}$	స్ \％운
$\begin{gathered} 6 z \\ \text {-uv! } a \\ \hline \end{gathered}$	＂。
8^{82}	
$\begin{aligned} & \hline L z \\ & \cdot u v!\sigma \end{aligned}$	
$\begin{gathered} \hline s z \\ \text { ur! } \sigma \\ \hline \end{gathered}$	
$\begin{array}{\|c\|} \hline \dagger z \\ \cdot \boldsymbol{u r !} \alpha \\ \hline \end{array}$	
$\begin{gathered} \hline \varepsilon z \\ \cdot \boldsymbol{u r e} \cdot \mathrm{a} \\ \hline \end{gathered}$	N゙
$\begin{array}{\|c} \hline z z \\ \text { ur! } \alpha \\ \hline \end{array}$	ద్ల స్ ా్ల p
$\begin{array}{\|c} 12 \\ \text { ure! } a \\ \hline \end{array}$	
$\begin{array}{\|c} \hline \text { oz } \\ \cdot \underline{\text { ure }} \end{array}$	\％¢ M \％\％¢
$\begin{gathered} \hline 6! \\ \text { "ure } \sigma \\ \hline \end{gathered}$	운on
$\begin{gathered} \hline 8^{1} \\ -\mathrm{ur!} \mathrm{a} \\ \hline \end{gathered}$	
$\begin{array}{\|c} \hline 41 \\ \text { ure! } \\ \hline \end{array}$	
	280\％
$\begin{aligned} & \hline+1 \\ & \text {-ure! } \sigma \\ & \hline \end{aligned}$	
$\begin{gathered} \hline \varepsilon! \\ \text { we! }(\mathbb{I} \end{gathered}$	
$\begin{gathered} \hline 81 \\ \text {-ur!a } \\ \hline \end{gathered}$	
$\begin{array}{\|c} \hline 11 \\ \text { ur! }(1) \\ \hline \end{array}$	
$\begin{aligned} & \hline \text { or } \\ & \text { utura } \end{aligned}$	

Showing the Cubical contents (fractions of feet omitted) of Round Logs, Masts, Spars, etc. Length of Log is shown in left hand column. Dia- \quad If the desired diunensions are not shown, double some numberso

∞	
	-
	-
	-
-	
	-
	の్ల స్
	ウo
∞	
-	

WOOD AND BARK MEASUREMENT AT SIGFT.
The Cord of Wood or Bark is 8 ft . long, 4 ft . high, and 4 ft . wide, $2 s$ established by law in most of the States and the Dominion of the columins, number of feet in the left hand column.

									\$3 50	\$4	\$4 50		\$ 50		\$6 50	$\$ 7$	\$7 50	-
	. 0	. 01	. 01	. 02	.02	. 02	. 02	. 02	. 02	. 03	. 03	. 03	. 04	. 04	. 05	. 05	. 05	.c6
2	. 02	.02	.03	.03	. 04	. 04	. 05	. 05	. 05	. 06	. 07	. 07	. 03	.09	- 10	. 10	11	.12
3	. 03	. 04	. 04	. 05	. 05	. 05	.07	. 07	. 03	.09	.10	. 11	. 12	.14	.15	.16	.17	. 18
4	. 05	. 06	. 06	. 07	. 03	.0)	. 07	- 10	-10	- 1	.14	. 15	$\cdot 17$.13	.20	$\cdot 21$.23	.25
	.05	. 07	. 03	. 0.7	- 10	$\cdot 18$.12	.13	. 13	. 15	.17	.17	.21	.23	.25	.27	.29	. 38
6	. 07	. 03	-09	-11	. 13	-1]	.14	.15	.16	.13	. 21	.2]	.25	.23	. 30	. 32	.35	. 37
7	. 0	$\cdot 10$	-11	-13	.11	$\cdot 15$. 16	.17	$\cdot 19$. 21	. 24	.27	.30	. 32	.35	.38	.48	. 43
	-0)	418	$\cdot 11$	11	. 16	13	-19	.20	. 21	.21	.28	-31	.34	$\cdot 37$. 40	. 13	.46	. 50
13	,	, 23	. 25	. 25	.31	- 35	. 37	. 49	-4)	. 49	. 56	. 62	. 68	. 74	. 88	. 87	.93	1.00
3	. 23	.33	. 31	. 42	. 47	- 52	. 96	. 61	. 65	. 75	. 84	.93	\$.03	1.12	1.21	1.31	1.48	1.50
32	$\cdot 33$. 41	. 59	. 56	.61	.67	.75	.81	.87	1.093	1,18	1.25	1.37	1.150	8.6 a	8.75	1.87	2.00
49	7	. 39	. 63	- 9		. 89	. 94	1, Cl	8.09	1.35	1.49	1.59	1.72	1.87	3.03	2. 19	3.34	1. 30
		. 06	- 75		-98	[1.03	1,13	1.23	1.31	1.59	1, 615	1.87	3.66	3.35	3.44	3.63	3.81	3.00
	.61			${ }^{\circ} 95$	1,09	1,39	1,13	1.42	1.51	1.75	1.96	2, 13	3.49	2.6.2,	3.84	3.06	3.38	3.90
	-	. 88	1.0	8.13	1.35	1.	1.50	1.63	1.75	3.00	2.25	2,50	2.75	3,00	3.25	3.50	3.75	4.00
	. 84	-9*	1.13	127	1.41	1.55	1.63	1.83	1.96	2.35	2.53	3.81	3.09	3.37	36	3.93	4.38	4.50
		1.0.)	1.25	1.41	1. 56	1.72	1.83	2.03	2.18	2.50	2.81	3.13	3.43	3.74	4.06	4.37	4.68	5.00
	.93	1.15	1.38	1.	1.64	1.81	1.97	2.13	2.29	2.62	2.95	3.23	3.60	3.94	1.36	4.59	4.92	5.25
88	1.03	1.20	13^{8}	\%. 55	1.72	1.89	2.06	2.23	2.40	2.75	3.09	3.43	3.78	4.12	4.47	4.81	5.16	5.50
	1.03	1.36	1.44	1.	1.80	1.98	2.15	2.33	2.51	2.87	3.23	$3 \cdot 59$	3.95	4.30	4.67	5.03	5.40	$5 \cdot 75$
9010	1.13	1.31	1.50	1.69	1.88	2.06	2.25	2.44	2.62	3.00	337	3.75	4.12	4.49	4.87	5.25	562	6.00
104	1.22	1.42	8.63	8.83	2.03	2.23	2.44	2.64	2.84	3.25	3.65	4.05	4.47	4.87	5.28	5.69	6.09	6.50
112	1.31	1.53	t .75	197	2.19	2.41	2.62	2.84	3.06	3.50	3.93	4.38	4.80	5.24	5.69	6.12	6.56	7.00
	1.41	1.64	1.83	2.11	2.34	2.53	2.81	3.05	3.23	3.75	4.21	4.68	5.15	5.62	6.09	6.56	7.03	
123	1.50	1.75	2.	2.25	2.50	2.75	3.00	3.25	3.49	4.00	4.50	5.00	$5 \cdot 50$	6.00	6.50	7.00	7.50	800

62

Fowl
Goose Gelat Comir

Cabba Carrot Egg, Apple Ale.. Fish . . Potato Porter III cast Wroug
In cast In castII timb Stone \&

Time Required for Digestion of different Articles of Foods heing Obsehvations made by Dr. Beauyont, Surgeon ix the United States Army, on the Canadian, St. Martin, thaough an Orifice in mis Stomach, caused by a gunsiot wound.
Apples, sweet and mellow..... 160 sour and mellow...... 2 4
Heart, Animal, fried 30sour and hard........... 2 so
Barley, bolled 2
Bear.3, bolled. 230
Beans and Green 345
Boef, roasted rare 3
3
3
Steak, brolled. 245
boiled, with mustard, etc.tendon, bolled.530
tendon, fried
Beets, bolled 345
Bread, Corn, baked 315
Wheat, baked, fresh. 30
Butter, melted 30
Cabbage
crude, vinegar2
crude, viu'r, boil'd.430
Carrots, boiled 315
Cartilage, bolled 415
Cheese, old and strong 3
Chickens, fricasseed 245
Custard, baked 4
Ducks, roasted 430
Dumplings, Apple, bolled.
330
Egss, boiled hard
bolled soft.330
fried 2
whipp 30
Fish, Cod or Flounder, filed. 30Cod, cured, bolled${ }^{2}$
Salmon, salt'd and boil'd 4
Trout, bolled or fried30
Fowls, boiled or roasted 4
Goose, roasted 3
Gelatine, boiled................. 230 Venison Steak, broiled.
Rice, boiled
Lamb, boiled......... 2
Meat and Vegetables, hashed. 30
Milk, boiled or fresh. 218
Mutton, roasted 315Oysters, raw55
roasted 315
stewed. 30
Parsnips, boiled
30
30
Piga, Suckling, roasted 230
Feet, soured, boiled 100
Pork, fat and lean, roasted 515
recently salted, boiled.. 30 415
" ${ }^{4}$ iried,...
" ${ }^{4}$ iried,...
Potatoes, bolled.30
baked 20
Sago, boiled 145
Sausage, Pork, brolled 20
Soup, Barley 130
Beef and Vegetables 4
Mutton or Oyster. 330
Sponge-cake, baked 230
Suet, Beef, boiled. 530
Mutton, boiled 30
Tapioca, bolled 2
Tripe, soured. 1
Turkey, roasted Wild 218
boiled 230 230 2
Turnips, boiled 330
Veal, roasted. 450
45
Brains, boiled 145 145Comparative Value of Various foods as Pronuctive of dyna-MIC Force, when Oxidized in tire Body.
Cabbage 1. Veal, lean. $2.8 \mid$ Pea meal.
Carrots \ldots white of....... 1.2 Mackerel. 3.8 Wheat flour 9.
Lag, white of....... 1.4 Ham, lean. 4. A rrowroot 9.3
Mik................... 1.5 Bread, crumbs 5.1 Oat meal 0.3
. 1.5 Egg, hard boiled. 5.4 Cheese. 10.4
Ale 1.8 Egg, yolk 7.9 Cocos 16.3
Fish 1.9 Sugar. 8. Butter. 17.3
Potatoes 2.4 Isinglass . 8.7 Fat of beef 21. 6
Porter 2.6 Rice. 8.9 Cod liver oll 21 .7
Safe LoAd in Structures, including Weigitt of Structure.

To convert Imperial Gallons into United States Wine Gallons multiply the Imperial by $1 \cdot 2$. To convert U. S. Gallons into Imperial multiply the U. States Wine gallons by 833 . S1 U.S. Ale Gallons equal $60 \mathrm{~lm}-$ porial Gallons, therefore to convertone into the other add or deduct $1-60 t h$. Sfecifio Gravities and Weiohts of Metals; Woods, Liquids, \&iG. Engineers' and Contractors' Pocket Book.

metals.				stones, earths, etc.			
Names.				Names.			
Platina	19500	1.417	. 7053	Marble, average	2720	170.00	
Pure go	${ }_{1}^{19258}$	1.435	. 69965	Granite, ditto...	2651	165.68	13\%
Mercury	13560	2.038 2.435	. 41904	Purbeck stone..	${ }_{2570}^{2601}$	162.56	
Pure silve	10474	2.638	. 3788	Pristol ditto	2554	159.62	14
Bismuth.	9823	2.814	. 3552	Millstone.	2484	155.25	141/
Copper, cas	8788	3.146	${ }^{.3178}$	Paving stone....	2415	150.93	$148 / 4$
Brass, cast	${ }_{7824} 8910$	${ }_{3.533}$	${ }^{.32956}$	Craigleith ditto.	${ }_{2143}^{2362}$	${ }_{13}^{147.62}$	16^{3}
${ }^{\text {sh }}$	8396	3.293	. 3037	Chalk, Britioh..	2781	173.81	12\%
Iron, cast	7264	3.806	. 263	Brick...	2000	125.00	17
- ba	77800	3.59	.279	Coal Scotch...	1300	${ }_{79}^{81.15}$	271/4
- har	7883	${ }_{3.537}^{3.630}$		二 Stawcordsh'e	1240	${ }_{77} 78.50$	29
Tin, cast	7291			- Cannel.....	1238	77.37	29
Zinc, cast	7190		. 26				

Specific Gravitirs, \&c. of Materials Continued.

Names.				Names.		
Lignumvitzo...	1331	83.31	263/4	Actd, sulphur	1850	18.5
Box, French....	1328	83.00	27	- nitric... ...	3271	127
- Dutch.....	912	58.00	$381 / 2$	muriat	1200	12.0
Ebony, Indian..	1209	75.56	291/2	fluoric	1060	10.6
- American	1331	83.18	27	citric.	1034	10.3
Oak, just felled.	1113	69.56	$321 / 1$	W- acetic......	1062	10.6
- seasoned.	743	${ }_{6.43}$	481	Water from Baltic	1015	10.2
Bog oak of Irel'd	1046	${ }_{6}^{65.37}$	314	from the Dcad	1240	12.4
Mahogany, Sp'sli	1063	66.43 39.81	:1384,	Sea. \qquad	1029	10.3
Medlar tree.	944	59.00	38	- iterranean...		
Logwood.	913	57.06	391/4	- from the r rish	1028	10.2
Olive tree	927	57.93	381/2	Channel		
Beech.	852	53.25	42	- Ice............	1001	10.1
Ash...........	845	52.81	421/2	- distilled	1000	10.0
Alder	800	50.00	$443 /$	Oils, expressed		
Apple-tree......	793	49.56	$451 / 4$	linseed........	940	9.4
Plun-tree.......	765	47.18	4714	swect almond.	932	0.3
Maple...........	752	47.00	471/2	whale.....	923	9.2
Teak......	750	46.87	48	hempsecd.....	926	9.3
Cherry-tre	715	44.68	50	Olive..........	915	9.2
Elm.	673	42.06	$631 / 4$	Olls, essential		
Walnut.	671	41.93	6319	cinnamon.	1043	10.4
ked pine.	657	47.06	$541 / 2$	lavender....	894	8.9
Yeilow do.	652	40.76	55	turpentine...	870	8.7
Pear tree.	650	40.62	55	amber.....	868	8.7
Sycamore, chestnut, and lime trec, each....	604	37.75	691/4	$\begin{gathered} \text { Alcohol of com- } \\ \text { merce, at } 60^{\circ} \\ \text { Falrenhelt } \end{gathered}$	825	8.2
Willow......... ${ }^{\text {a }}$	685	36.50	6114	Alcohol, absolute...	797	7.9
Poplar,white Sp.	529	33.06	$673 / 4$	Ether, nitric........	908	9.1
- cominoll..	383	23.93	93	- muriatic.....	729	7.3
Cedar,	661	3 .. 06	64	Proof spirit.........	922	9.2
White pine.	551	34.43	65	Tar......	1015	10.1
Larch.	530	33.02	68	Vinegar, distilled..	1009	10.1
Cork.......	240	15.00	149			

EXPANSION OF LIQUIDS IN VOLUME FROM 32° TO 212° FABRENHEIT.

1000 parts of water

become 1046
oil
mercury
spirits of wine
$\begin{array}{ll}" 1 & 1080 \\ " & 1018 \\ " & 1110 \\ " & 1373\end{array}$

The heat that would raise 1 lb . of water 1° would raise a pound of air 80.7 ; 1 lb . air $=$ about 11 cubic feet.

One pound of steam will raise 3657 cublc feet of air 10°, and cause it to expand from 32° to 42°, about 3733 cuble feet.

Permanent Loans on Bridges, \&c.
For rough calculations the weight of the bridge itself may be assumed to be (in wrought iron bridges) :
For 30 feet spans, single line.......................... 860 lbs. per foot run.
" 60

16	64
16	18
68	66

Dense crowds average 120 lbs. per square foot.
For flooring, 158 to 224 lbs. per aquare foot, exclusive of the weight of the flooring, is generally allowed.

In storehouses, from 224 to 450 lbs . per square foot.
40
625

Pitch of teeth in inches.	Thickuess of teeth in inches.	Breadth of teeth in inches.	Strength of teeth in horse power at			
			3 feet per 4 feet per 6 feet per 8 feet per			
			second.	seccond.	second.	second.
3.99	1.9	7.6	20.57	27.43	41.14	51.85
3.78	1.8	7.2	17.49	23.32	34.98	46.64
3.57	1.7	6.8	14.73	19.65	29.40	39.28
3.36	1.6	6.4	12.29	16.38	24.56	32.74
$3 \cdot 15$	1.5	6.	10.12	13.50	20.24	26.98
2.91	1.4	5.6	8.22	10.07	16.44	21.92
2.73	1.3	8.2	6.58	8.78	13.16	17.54
2.52	1.2	4.8	6.18	6.91	10.36	13.81
2.31	1.1	4.4	3.99	6.32	7.98	10.64
2.1	1.0	4.	3.00	4.00	6.00	8.00
1.89	. 9	3.6	2.18	2.91	4.36	5.81
1.68	. 8	3.2	1.53	2.04	3.06	3.08
1.47	. 7	2.8	1.027	1.37	2.04	2.72
1.20	. 6	2.4	. 64	. 86	1.38	1.84
1.05	. 5	2.	. 375	. 50	. 75	1.00

Teeth of Wneels.-Multiply one-fourth of the square of the pitch in inches by the breadth of the teeth in inches; the product is the horses' power that the teeth will trausmit when the pitch line passes through 4 ft. per second.

In quick speeds or fractional pitches, it may be more convenient to take the following rule :-Multiply the square root of the pitch in inchen by the breadth of the teeth in inches; the product is the horses' power at 16 ft . per second.

A general rule to ascertain the length of the teeth is, to take $1 / 3$ of the pitch for the distance from the root to the pltch line, and $1 / 4$ of the pitch for the distance from the pitch line to the top.

When wheels drive pinions, let no pinion have less than 8 teeth ; rath. er 11 or 12 if convenient.

When pinion drive wheels, letno pinion have less than 6 teeth; rather 8 or 9.

The number of teeth in a wheel should be prime to the number of teeth in its pinion.

To increase or diminish velocity in a given proportion, and with the least quantity of wheel-work, let the number of teeth on each pinion be to the number of teeth on its wheel as $1: 359$. Even to save space aud expense, never let the ratio exceed 1:6.-Buchanas.

Hicks's Rule for Calculating tife Strengtif of Shafts.Multiply the horses' power by the assumed number (300), and divide the product by the revolutions per minute ; the cube root of the quotient will be the diameter required.
heating Power of Peat as Compared witir Wood.
100 lbs. turfy peat, air dry, average........................... 95 lbs. pine wood.

Comparison of He………….....
100 cubic feet of turfy peat $=33$ cubic feet pine wood in logs.

	"	fibrous		$=90$		'	
"	6	earthy	"	$=145$	6	6	6
6	${ }^{6}$	pitchy	"	$=184$	6	6	\cdots

Peat, coal, or coke $=25$ to 35 of the peat by weight.
Turf is 30 feet deep in upper marshes and it grows 30 inches in a century. In Hanover it grows 8 feet in 60 years. There are in many bogs 3 separated strata or layers of large trees separated by 10 or 12 feet of turl and heath. A carbonizing process gives them the appearance of being burnt. The bogs of Ireland cover $2,830,000$ acres to the depth of 5,12 and even 30 leet; the bogs are ascribed to the prevalence of shallow lakea, which promote the growth of mosses and aquatic plants.

Blowing Emaines.

VELOCITY. power at $\overline{\text { er } 8 \text { feet per }}$ second.
51.85
46.64
39.28
32.74
26.98
21.92
17.54
13.81
10.64
8.00
5.81
3.08
2.72
1.84 1.00
e of the pitch t is the horses' assea through
convenient to itch in inchen rses' power st
take $1 / 3$ of the $1 / 4$ of the pitch

8 teeth ; rath . ; teeth ; rather the number of , and with the each pinion be save space and

OF SHAFTS.OF Sivide the e quotient will

W00D.
lbs. pine wood.
$\begin{array}{ll}" & " \\ " & "\end{array}$

logs.

nches in a cenin many bogs 3 12 feet of turl ance of being depth of 5 , 12 ce of thallow ants.

Capacity of air vessels $=20$ times the capacity of the blowing cylinder if the cylinder is single-acting.
$" \quad$ " 10 times of double-acting.
Velocity of air In the passages sliould not exceed 35 feet per second. Density of blast for iron furnaces, from $21 / 2$ to 3 lbs . per square inch.

Each smith's forge requires 150 cube feet of air perminute. Density of smith's forge blast $1 / 4 \mathrm{lb}$. per square inch. Each ton per hour metted in cupola requires 3,500 cube feet per minute. Euch finery forge require: $100,(100)$ cube feet per minute for each toll retined. Each blast furnace 40 cube feet per minute for each cube yard capucity of furnace. Molesworth. Afanuficture of Pig Iron-Coke or Anthracite Coab- 18 to 20 tous of air are required for each ton.

Charcoal.- 17 to 18 tons air are required for each ton. 1 ton of air at $34^{\circ}=29,751$, and at $60^{\circ}=31,366$ cuble feet.

Pressure.-The pressure ordinarily required for smeiting purposes is equal to a column of mercury from 3 to 7 inches.

Pipes.-Their area, leading to the reservoir, should be 2 that of the blast cylinder, and the velocity of the air should not exceed 35 feet per second.

A ton of pig iron requires for tts reduction from the ore 310,000 cubio feet of air, or 5.3 cubic foet of air for each 1 b . of carbon consumed. Pressure, 7 lb . per square inch.

All ordinary eccentric fan, 4 ft . diameter, with 5 blades 10 ins. wide and $1 \pm$ ins. length, set $19-16$ ins, eccentric, with an inlet opening of 17.5 ins. diameter, and an outlet of 12 ins. square, making 870 revolutions per minute, will supply air to to tuyeres, each of $1 \% / \mathrm{sins}$. diameter, and at a pressure per square inch of 5 linch of mercury.

An ordinary eccentric fau blower, 50 ins. diam., running at 1000 revolutions per minute, vill give a pressure of 15 ins. of water, and require for its operation a power of 12 horses. Area tuyere diacharge 500 square lus.-Haswell.

Properties of Fuel.

Kind of Fuol.					
Bituminous Coal	7 to 9	80	265	50	44
Anthracite.	8 to 10	32	282	84	40
Coke.	8 to 10	86	245	31	72
Coke, Nat'l Virginia...........................	8 to 9	80	260	48	48
Coke, Cumberland...............................	8 to 10	80	250	32	70
Charcoal.....................................	5 to 6	96	265	24	104
Dry Wood	4 to 5	44	147	20	100
Wood, 20 per ct. Water	4	34	115	25	100
Turf, dry (peat) .	6	51	165	28	80
Turf, 20 per ct. water.........................	5	40	132	30	75
Illuminating gas. .	13.8	.	194	0.37	2980
Oil, wax, tallow..	14	77	200	59	37
Alcohol.... ...	9.56	58	151	52	42

Memoranda Concerning Coal and Iron.

First notice of stone coal is B. C. 371.
The coal fields of England were the first practically developed.
First record of stone coal used in England was A. D. 820.
Records of regular mining in England tirst made in 1180.
Coal first usedin London in 1240 .
First tax laid on coal in England in 1370.
Tax was repealed in 1831, having been taxed 400 years.
First patent for making iron with pit coal was granted to Simeon
Sturtevant, in 1612 , but was not successful.
Iron first made in a blast furnace with pit coal with success by a Mr
Darby, of Colebrook Dale, Euglaud, in 1713.
627

on Coal, Steay Heating, Etc.

In 1747 iron was made in England with pit coal, suitable for the mas ufacture of cannon.

In 1788 the production of Iron with pit coal in England was 48,300 tons; with charcoal, 13,000 tons.

In 1864 the production of iron in Great Britain was $8,000,000$ tons.
Wooden rails in mines were used in 1777.
Cast-iron rails in mines were used in 1790 .
Wrought-iron raile in mines were nsed in 1815.
Coal gas tirst made use of practically in 1788.
ameimean Coal Fields.-First coal heids worked in America were the bituminous fields at hichmond, Va., discovered in 1750 . This coal was used at Westham, on the James River, to make shot and shell dur. ling the War of Independence.

The first use of Anthracite coal was in 1768-69.
First used for smithing purposes in 1790 .
First used to burn in a cominon grate in 1808.
First successful use of Anthracite coal for the smelting of iron was in 1839, at the Pioneer Furnace, at Pottsville, Pa. It had been tried on the Lehigh in 1826, but was unsuccessful.

The great ahaft of the Philadelphia and Reading Iron Company has been suink to a depth of $1,569 \mathrm{ft}$. from the surface to the great manmoth coal vein which attains a thickness of 25 feet, in that distance passing through no less than 15 coal seams, of which 6 are workable and have an average thickness together of 61 feet. Even then there are a number of coal seams underlying these.

Ventilation.
Each person requires at least from 3 to 4 cubic feet of air per minute. Ordinary windows allow about 8 cubic feet a minute to pass. Sleeping apartments require 1000 cubic feet of space to each occupant. An ord?. nary gas flame requires as much air as 9 persons.

Warming by Stream.
When the external temperature is 10° below freezing point, in order to maintain a temperature of 60° or,

One superficial foot of steam pipe for each 6 superficial feet of glass in the windows ; or,

One supericial foot of steam pipe for every 6 cube of air escaping for ventilation per minute ; or,

One superficial foot of steam pipe for every 120 feet of wall, roof, or ceiling; or,

One square foot of steam pipe to 80 cubic feet of space ;
One cube foot of boiler is required for every 2,000 cube feet of space to be heated ;

One horse-power boiler is sufficient for 50,000 cube feet of space. Steam should be about 212°. -Molesicorth.

As usually estimated, 1 square foot of pipe is amply sufficient to heat 75 to 80 cnbic feet of air in exterior rooms, and 100 feet in interior rooms. Thickness of Boiler iron, and Pressure allowed by United States Laws.
Pressure equivalent to the Standard for a Boiler 42 inches Diameter and $1 / 4$ inch Thick.

Wire Guage	Thickness in 16ths.	Dinmeter in Inches.						
		34 ins.	36 ins.	38 ins.	40 ins.	42 ins.	44 ins.	46 Ins
No.		Jbs.	Lbs.	Lbs.	Lbs.	I.bs.	Lbs.	L.bs.
1	5	169.9	160.4	152.8	144.4	137.5	131.2	125.5
	$41 / 2$	158.5	149.7	141.8	134.7	128.3	122.5	117.2
3	41/4	147.2	139.1	131.8	125.1	119.2	113.7	108.8
4	4	135.9	${ }^{198.3}$	111.6	115.5	110.	105.	100.4
5	$32 / 3$	124.5	117.6	111.4	105.9	100.8	96.2	93.1
${ }_{7}^{6}$	$331 / 2$	113.2 101.9	106.9 96.2	101.3 91.2	69.6 86.6	91.7 88.5	87.5 78.7	83.7 75.3
	3	101.9	96.2	91.2	86.6	82.5	78.	${ }^{6} \mathbf{2} 3$

Notis on Strematif of Boilers.

Boiler Plates and Bolts. -The tonsile strength of Iron plates and bolts ranges from 42,500 to 62,000 lbs. Meair tensile strength of copper plates, $33,000 \mathrm{lbs}$. up to 120°; temperature at $220^{\circ}=32,000 \mathrm{IWs}$; at $550^{\circ}=$ 25,000 lbs.

Bursting or Collapsing Pressures.-Iron plates should be based upon strength $2-5$ that of ultimate strength of the inetal ; for use in balt water, at $1 / 2$ that of its ultimate strength.
lesistance to collapse nuch less than to bursting.
Strentth of Stay Bolts.-Of iron, for use in salt water, should be taken at 1-7 ; fresh water, $1-6$; copper, $1-5$ of uitisnate tensile atrength.

Stay-bolts, when screwed and riveted, are $1 / 3$ stronger than when scrow ed alone.
helative Strength of Riveted Joints per Square inch of Sifgle Plate.-Single-lapped, machine riveted, rivets 3 diameters, centre to centre, $25,000 \mathrm{lbs}$. ; hand riveted, $24,000 \mathrm{lbs}$; stagyered riveting, and equidistant from centres, $30,500 \mathrm{lbs}$; abil joints, hand riveted-rivets not "staggered," and equidistant from centres-single cover or strip, 30,000 lbs. ; ifivets set "square," single cover or strip, 42,000 lbs. ; double covers or strips, $55,000 \mathrm{lbs}$.

To Find Requisite Quantity of Water for a Boiler.
Add 15 to the pressure of steam per square inch, divide sum by 18 , multiply the quotient by .21; product is quantity in U.S. gallons per minute for each horse-power.

To find Height of a Column of Water.
To Supply a Steam Boiler acyainst any Pressure of Steam required.
Multiply pressure in pounds upon a square inch of boller by 2.5 ; product will be height in feet above the surface of the water in boller.

Cold Water and feed Pumps.
The cold-water pump usually $=$ diameter of cylinder $\times 0.3$ when stroke $=1 / 2$ stroke of engine.
The cold-water pump usually $=$ diameter of cylinder $\times 0.42$ when stroke $=1 / 4$ stroke of engile.

Velocity of water in pump passages should not exceed 500 fcet per minute. Pump valves should not be of less area than $1 / 4$ area of the pump.

Feed Pumps for Figh Pressure Engines.
Diameter $=\mathbf{1 - 1 1}$ diameter of cylinder when pump's stroke $=$ stroke of the engine.
Diameter $=1 / 8$ diameter of cylinder when $1 / 3$ stroke of the engine.
Diameter $=1 / 6$ diameter of cylinder when $1 / 4$ stroke of the engine.
Feed I'umps for Condensing Engines.
Diameter $=1-11$ diameter of cylinder when $1 / 2$ stroke of the engine.
Diameter $=1 / 3$ diameter of cylinder when $1 / 4$ stroke of the englie.
Depreciation of Machinery, etc.
Per annum on first cost.

	Depreciation.	Wear and Tear.	Total.
Engines	6 per cent.	3 per cent.	9 per ceut.
Bollers	$10 \quad 4$	$3{ }^{\prime \prime}$	
Machines.	71/2 "	$31 / 2$	11.6
Millwerk and Gearing.	4%	21/2 "	61/2 16
Bands and belts.......	- $\quad 1$	$45 \quad$ "	$45 \quad 16$

Imon Tunning Tools.
Surface-bored should be at the rate of............... 78.54 feet per minute Surface turned " " 157.08 i" "

Form of Iron-Cutting Tools.
To form and place any tool te cut any surface, let the end be so formed and placed as to make the least possible angle with the surface to be cint, and whatever degree of acuteness may be consldered requisite; let the keenness be given by hollowing out the surface on which the shavinge blide.

Table for Foretellino the Weather tarovah the lunationa OF THE MOON.
(Dr. Henschell axd Adax Crarke.)

If the Now Moon, the First Quarter, the Full Moon or the Last Quarter, enters-	In Summer.	In Winter.
Between miduight and 2) A. M.	Fa	Hard frost, unless wind is S . or E .
Bet. 2 and 4 A. M............	Cold, fr't showers.	Snowy and stormy.
" 4 and 6 A. M	Kain.	Kaill.
" 6 and 8 A	Wind and rain	Stormy.
118 and 10 A. M.	Changeable.	Cold rain if wind is W., snow if E .
"10 a	Frequent shower	Cold and high wind.
At 12 M , and 2 P , M..........	Very raluy.	Snow and rain.
Bet. 2 and 4 P, M	Changeable.	Fair and mild.
M	Fair. if wind N	Fair.
116	Fair if wind $N .\{$ W., rainy if $\mathrm{S} .\{$ or S. E.	Fair and frosty if wind is N. or W., raill or snow If S. or S. E.
" 8 and 10		
10 and midnight	Fair.	Fair and frosty.

Onservations. - 1 . The ncarer the time of the moon's change, fint quartor, full, and last quarter, is to mid-night, the fairer tho weather durling 7 following days. Range for this is from 10 at night till 2 next morning. 2. The nearer to mid-day the phases of the nooll happen, the more foul or wet weather during the 7 days following. 3. The moon's clange entering from 4 to 10 of the afternoon, may expect fair weather.

Force: of the Wind.

$\begin{aligned} & \text { Miles } \\ & \text { per } \\ & \text { Hour. } \end{aligned}$		$\begin{gathered} \text { Feet } \\ \text { per } \\ \text { Second. } \end{gathered}$	Force In pounds per square foot.	Description.
1	88	1.47	. 005	Hardly perceptible
2	176	2.03	. 020 \}	Just perceptible.
3	264	4.4	. 044 \}	Just perceptibie.
4	352	5.87	$\left.\begin{array}{r}.079 \\ 0.123\end{array}\right\}$	Gentle breeze.
8	440	7.33	0.123	
10	880 1,320	14.67	$\left.\begin{array}{l}0.492 \\ 1.107\end{array}\right\}$	Pleasant breeze.
20	1,760	20.3	1.970	
25	2,200	36.6	3.067 \%	Brisk gale.
30	2,640	44.0	4.4293	High wind.
85	3,080	51.3	6.027 ,	High wind.
40	3,520 3,960	58.6 66.0	$\left.\begin{array}{l}7.870 \\ 9.800\end{array}\right\}$	Very high wind.
60	4,400	73.3	12,304	Storm.
60	6,280	88.0	17.733)	
70 80	6,160	102.7	24.153 31.490	Great storm.
80 100	7,040	117.3 146.6	$\left.\begin{array}{l}31.490 \\ 49.200\end{array}\right\}$	Hurricane.

Loss of Lionit by Use of Sinades.-F. H. Storer.

Glass, etc.	Th'kness.	Loss.	Glass, etc.		$\begin{aligned} & \text { Th'k. } \\ & \text { ners. } \end{aligned}$	Lost.
	Ins.	Pr Ct.			Ins.	TCt.
American Enamelled..	1-16	51.23 13.08	Window	, d'ble, Eng.		9.39
	1-8	13.08	${ }^{\prime}$	" Ger		${ }_{4}$
English	1-8	6.15	16	,ige, gro	1-10	65.75
Porcelain Transpar'cy.	1-3	97.68	${ }^{1}$	green......	1-16	81.95

 unes for various Puapoges. hous Nations.
A load of unhewn tim-
ber.......................
A load of squared ilm -
ber...................... 80 "
A load of inch boards.. 600 sq. ft .
A load of two-inch
planks 300 " Thile is.................... 6480
A hunired of deals.... 120 in The Italian mile is........ 1760
A hundred of ualls.... 120 "i
A hundred of hails.... 120 "
A thousand of bricks... 1200 "t The Swedish and Danish
A load of bricks....... 500 "
A load of llme.......... 32 bushels. The mile is..................... $7341.8^{\prime \prime}$
A load of sand.......... 36 " The Arabian inile is...... 2143 "
A sack of potatoes, or The Werst "4. . 1168 or 2025
coals...................24 lbs. The Tuscan ${ }^{\text {(}}$ " 1167 or 1337 "... 1808 "
A bushel of salt or fiour 66 14
A bushel of wheat..... 60 "
A bushel of barley.... 50 "
A bushel of oats.... .. 40 "
The Turkish "
The Flemish ".... .68689 "

The British league, or three times our geographical mile of 60 to a degree, or 20 st5 yards, is 6075 yards. The Brabant league is 6096 yards. The Danish and Hamburg league 8244 yards, the German league 8101 , the long German ditto, 10126 yards, the short do. 6859, the Portuguese league is 6760 yards, the Spanish 741 C yards, the Svedish 11700 yaris. All of them parts of a degree, but made before the length of a degree was accurately determined.

To Test Quality of Steml.
Good tool steel, with a whito heat, will fall to pieces; with bright red lieat will crumble under the hammer; with middling heat may be drawn to a needle-point.

To test hardening qualities, draw under a low heat to a gradually tapered aquare polnt and plunge into cold water ; if broken polnt will scratch glass, the quality is good.

To test tenacity, a hardened piece will be driven into cast-iron by a hardened hammer-if popr, will be crumbled. Excellence will be in proportion to tenacity in hard state. Soft steel of good quality gives a curved line fracture and uniform gray texture. Tool steel should be dull silver color, uniforia, entirely free from sparkling qualities.

Aquafortis, applied to the surface of steel, produces a black spot; on fron the metal remains clenn. The slightest vein of iron or steel can be readily detected by this method.

Steel Sphings.
Rule 1st-To find elasticity of a given steel-plate spring: Breadth of plate in inches multiplied by cube of the thickness in 1-16 inch, and by number of plates; divide cube of span in inches by product so found, and multiply by 1.66. Kesult, equal elasticity in 1-16th of an inch per ton of load.

Rule 2d-To find span due to a given elasticity, and number and size of plate: Multiply elasticity in sixteenths per ton, by breadth of plate in inches, and divide by cube of the thickness in finches, and by the number of plates ; divide by 1.6 C , and find cube root of the quotient. Result, equal span is inches.

Rule $3 d$-To find number of plates due to a given elasticity, span, and size of plates: Multiply the cube of the span in inches by 1.06 ; multiply the elasticity in sixteenths by the breadth of the plate in inches, sind by the cube of the thickness insixteenths; divide the former product by the latter. The quotient is the number of plater

Rule 4 th-To find the working strength of a given steet-piate spring: Afultiply the breadth of plate in inches by the square of the thickness in sixtcenths, and by the number of plates; multiply also the working span in inches by 11.3; divide the former product by the latter. Result, $e \quad a l$ working strength in tons burden.
late bth-To find span due to a given strength and number, and size of plate: Multiply the breadth of plate in inches by the square of the 631

On Metals, Stair-caseg, Paints.

thickness in sixteenths, and by the number of plates; multiply, also, the atrength in tons by 11.3 , divide the former product ly the latter. Result equal working spanin inches.

Rule 6 th-i'o Hind the number of plates due to a given strength, span, and size of plate : Multiply the atrength in tois by span in inches, and divide by 11.3 ; multiply also the breadth of plate in inches by the square of the thickness in sixtecnths ; divide the former product by the latter. Result, equal number of plates.

The span is that due to the form of the spring loaded. Extra thick plates must be replaced by an equivalent number of plates of the ruling thickness, before applying the rule. To find this, multiply the number? extra plates by the square of their thickness, and divide by the square of the ruling thickness; conversely, the number of plates of the ruling thickness to be removed for a given number of extra plates, may be foum in the same way.

Lineal Expansion of Metals.
Produced by ralsing their temperature from $32^{\circ}{ }^{\circ} 212^{\circ}$ Fahrenielt.
Zinc..................... I part in 322|Gold...................... 1 part in 682
Platinum................. " 351 Bisinuth " 719

TIn (pure)................. " ${ }^{403}$ Iron........................ " 812

Till (impure).
Silver..
Copper
Brass
Falmouth tin
English brass rod
Brass wire.
Blistered steel

800 Antimony
${ }_{923}$
524 Palladium "t 1000
681 Plathum.................. ". 1100
884 Filnt glass 1248
462 Soft rolled iron.......... "، 819
528 Prism of cast iron....... " 901
517 Retlector metal......... " 517
870 Lieflined silver............ " 623
Stair-Cases.

Width of	Height of	Widtli of	Height of
Tread.	1 liser.	Tread.	Miser.
${ }_{7} 6$ tuches..	$81 / 2$ inches.	10 inches.	1/2 inchen.
${ }_{8} \mathbf{8}$	71/2	11.	1/2
4	$7^{1 / 2}$	13	${ }^{\text {/2/2 }}$

Painting.
1 gal. priming color will cover 50 superficial yards.
1 "white zinc
" white paint
$\begin{array}{ll}60 & 4 \\ 4 & 4\end{array}$
" lead color
" black paint
60
C. stone color

60
" yellow paint
44

" blue color

" green paint ""
" bright emer.green"
". bronze green "
the who
longer.
Sext id When wrap u

10 repeate logwoor mersior color su line co stiffeni water, rith a : dip at 0 and fix acid ga

Paists, Inks, Dyg, ETC. White Paint. Inside work.
 Outaide work.
 White jead, ground in oll. 80 80.
 Boiled oil 14.5 9.
 9.
 Spirits turpentine.............................. 8. 4.

Raw oil.
New wood-work requires 1 lb . to the square yard for three coats.
lead Color.-White lead ground in oil 75 parts, lamp black 1 part, bolied linsoed oil 23 parts, litharge 0.5 parts, Japan varnish 0.5 parts, opirits turpentine $2 \cdot 5$ parts. Lamp black and litliarge are ground sepa rately with oil, then stirred into the white lead and on.

Black Paint.-Lamp black 28 parts, litharge 1 part, Japan varnish 1 part, boiled linseed oil 73 parts, spirits turpenting 1 part.

Gray or Stone Culgr for Buildings.-Whitelead in oll 78 parts, boiled oil 9.5 parts, raw oil 9.5 parts, spirits turpentine 3 parts, Turkey umber 0.5 parts, lamp black 0.25 parts. One square yard of new brickwork requires for 2 coats 1.1 lb ., for 3 coats 1.5 lb .

PAINT FOR TARPAULINs.-1st. Olive. Liquid olive color 100 parts, beeswax 6 parts, epts, turpentine 6 parts. Dissolve the beseswax in spts. turpentine, with a gentlo heat, and mix the paint warm. id. Add 12 ozs. beeswax to 1 gal , linseed oil, boil it two hours; prine the cloth with the mixture, and use it in the place of boiled oil for mixing the paint. Cream Color. (For Buildings.)

1st coat. 2d coat.
White lead, in oll............................. 66.66
French yellow..................................... 3.33
Jspan varnish.................................. 1.33 1.33
Rsw oil 28.00 24.5

One square yard of new brick-work requires for first coat, 0.75 lbs. ; for second, 0.3 lbs.

Chear'Paint for Simeds and Fences.-Melted pitch 6 lbs., lliseed dil 1 pt., brick dust, or yellow ochre, 1 lb .
To the above we add the following valuable Items:-
To Waterproof AWnisgs.-Immerse first in solution containing 20 per cent. of soap, and repeat the process in a copper solution of equal strength, then wasli and dry.

ANILINE INKs.-1. Violet. Dissolve 1 part of aniline violet blue in 300 parts of water. A beautiful ink. 2. Blue Ink. Dissolve 1 part of soluble Paris blue in 250 parts of water. 3. Red Ink. Dissolve 1 part soluble fuchsin in $\mathbf{2 0 0}$ parts boilling water.

INDIA on Cinnese Ink.-Calcined Iamp black 100 parts. Boghead phale black, in impalpable powier, 50 parts ; Indigo carmine in cakes, 10 parts ; Carmine lake, 5 parts; Gum arablc (best quality) 10 parts ; Purified ox-gall 20 parts; Alcoholle ext. of musk, 5 parts; jissolve the guns in 50 to 60 parts of pure water and filter through a cloth. The indigo, carmine. lake, lamp black, anc shale black are mixed with the liquid and the whole ground on a slab with a muller like ordinary colors, but much longer. Now add the ox-gall and ext. of musk slowly, grinding well th. Sext iry in the air away from dust, mould into cakes and dry again. When quite firm, compress into bronze moulds with any deaired design, wrap up in tin foil and again in gilt paper. A splendid article.

To Ifye, Stiffen and Bleach Felt IIats.-Felt hats are dyed by repested immersion, drawing and dipping in a hot watery solution of logwood 38 parts, green vitriol 3 parts, verdigris 2 parts; repeat the immersions and drawing with exposure to the air 13 or 14 times, or until the color suits, each step in the proccss lasting from 10 to 15 minutes. Aniline colors may be advastagcously used distead of the above. For a stiffening, disnolve borax 10 parts, carbonate of potash 3 parts, in hot Water, then add shellac 50 parts, and boil until all is dissolved; apply *ith a sponge or a brush, or by immersing the hat when it is cold, and dip at once in very dllute sulpliuric or acetie actd to noutralize the alkali and fix the shollac. Felt hats can be bleached by the use, of sulphurte scid ges.
be first cost, for stoppling 2 yds. super-
to be found ad from the
litharge- 6.3
bend in the - thesil let it
the bolled
$20 \cdot 4$ parts. oll shoul

LAUKDRY SECRETS.-A spoonful of ox-gall to agallon of vater will eet the colors of almost any goode soaked in it previous to washing. A tea-cup of lye in a pail of water will improve the color of black gonda. Nankin should lie in lye before being washed; it sets the color. A strons tea of common hay will preserve the color of French linens. Vinegarin the rinsing water for pink or green calicues will brighten them. Sods answers the same end for both purple and blue. To bleach cot ton cloth, take one large spoonful of sal-sodia, one pound of chloride of lime, for thirty yards; dissolve in clean soft water, rinse the cloth thoroughly in cold soft water in order that the cloth may not rot. The above amount of cloth, with the bleaching compound may be whitened in from tem to fifteen minutes.

SUGGEsTions To Amtisans.-Never consider time wasted that in spent in learning rudimente. In acquiring a knowledge of any sit or handicraft the greatest difticulty is experienced at the beginning, because our work then possesses little or nothing of interest. Our firt lessons in drawing, or music, or with tools, are very simple; indeed so simple are they that we are disposed to undervalue their importance. The temptation is to skip a few pages and begin further on in the book. But such a course is fatal to success. To lenrn principles thoroughis is to succeed. Be content to learn one thing at a time, whether it be to push a plane square and true, or draw a straight line. Whatever jou leann, learn it absolutely, without possible question. This will enable you to advance steadily, step by step, year after year, and some day you will wonder why you have been cnabled to distance the genlubet who once seemed so far in advance of you.

Set your heart upon what you have in hand. Valuable knowledge is acquired only by intense devotion. You must give your entire mind to whatever you undertake, otherwise you fail, or succeed indifferently, which is but little better than failure.

Learn, therefore, to estimate properly the value of what is called leisure time. There is entirely too much of this in the world. Do not mistake our meaning. IRest is necessary and play i: woll in its place, but young men who hope to do something in life must not expect to play one third of their time.
r While you resolve to acquire a thorough knowledge of your art, be equally as anxious to know something beyond it. A craftsman ought to be ashamed of himselt wholknows nothing but the ufe of his tools. Having the time to acquire it, be careful to properly estimate the value of knowledge. Remember of what use it will be to you in ten thousand instances as you go along in life and be as conscientlous in learning rudiments here as elsewhere. Learn to spell correctly, to write a good plain hand, ats to punctuate your sen tences.

Do not dress ieyond your means; never spend your last dollar, unless for food to keep yourself or some one else from starving. You will always feel better to keep a ilttle monev in your pocket. At the earlient ponsible opportunity save up a few dollars and place the amount in a savings bank. It will serve as a magnct to attract other money that might be foolishly spent.

Just as soon as you can command the means, huy a piece of ground. Do not wait until you have saved enough to pay all down, but begin by paying one third or one quarter. Do not be afraid to go in debt for land, for it increases in value.

Marry as soon as you are able to support a wife and can find a good woman who is willing to accept you. - The Americars Builder.

In commending the sbove advice the editor would enterpose a salutary caution regarding the deposit of money in Savings Banks, while many succesoful businesa men, and other possersed of exuberant imaginatiou cay that there is no such word as fall, it is palpably manifest that the collapse of no loss than eleven Savings Banks in New York and its vicinity during the past fow months, has furnished ruinous proof to thousands of dopoilors that the contrary is the truth. In making deposits then, be eure that your cavings are put in a safe place and that the integrity of the men to whom you intrust them is beyond question.
ed, bet spin rer beill is to run, eras to be This diffe upon It Fill $\frac{1}{5}$ mand of in howe wide To feed s Divi dact teeth o gear 0 ber, an wheel for the
n of water will to washing. A of black gunds. color. A strong ens. Vinegar in en them. Sols ch cotton cloth, ide of lime, for b thoroughiy in 3 above amount 1 in from ten to
wasted that is e of any art or e begiming, be. erest. Our firt nple ; indeed so leir importance. on in the book. iples thoroughly whether it be to Whatever you This will enabie r , and some day nce the genluber
aable knowledge your entire mind eed indifferenly,
of what is calied 18 world. Do not well in its place, not expect to piay
e of your art, be afteman ought to use of his tooin. stimate the value in in ten thousand thous in learning 5 , to write a good
last dollar, uniem rving. You - At the earlient the amount in : other money that
plece of ground. wh, but begin by Pin debt for land,
a can find a good uilder. terpose a salutary nks, while many imaginationcuy that the collappo 8 vieinity during thousands of deeposits then, be the integrity of

Miscellaneous Rules, \&c., for Engineers, Mill-owners, Mechanics, \&c.

Gearing a Compound Lathe.-The term Compound or double geared, as arplied to the screw-cutting gear of a lathe means that there exists, betweeu the gear wheel which is fastened to and revolves with the lathe spindle and the feed screw, two gear wheels of different diameters and revolving side by side, at the same number of revolutions, by reason of being fixcd upon the same sleeve or axis. The object of this arrangement is to make, between the speed at whlch the lathe mandril or spindle will run, and the speed or revolution at which the feed screw will run, a greater amount of difference than is possible in a single geared lathe, and thus to be able to cut threads of a coarser pitch than could be cut in the latter. This is usually accomplished by providing two intermediate wheels of different diameters, both being held by a feather in a sleeve revolving upon an adjustable pin for the purpose.
It is obvious that the smallest of these compounded or conpled wheels will gear into and with the wheel or gear on the feed screw ; and that the changes of gear may be made upon the gear running on the lathe mandril and that rinning on the feed screw, without disturbing the pair of intermediate (and compounded) gears referred to. In many cases, however, only the wheel upon the feed screw need be changed, since a mide range of pitch may be obtained by changing that wheel only.
To find the number of teeth in the wheel required to be placed on the leed screw, we have the following rule :
Divide the pitch to be cut by the pitch of the fced screw, and the prodact will be the proportional number. Then multiply the namber of teeth on the lathe mandril gear by the number of teeth on the smallest gear of the compounded pair, and the product by the proportional number, and divide the last product by the number of teeth in the largest wheel of the compounded pair, and the product is the number of teeth for the wheel on the feed screw.
Suppose, for example, the gear on the lathe mandril contains 40 teeth running into the largest of the compounded gears which contains 50 teeth, and that the small gear of the compounded pair contains 15 teeth; what wheel will be required for the feed screw-its pitch being 2, and the thread requiring to be cut being 20 ?

$$
\begin{aligned}
& \begin{array}{cccc}
\begin{array}{c}
\text { Pitch } \\
\text { required. }
\end{array} & \begin{array}{c}
\text { Pitch of } \\
\text { feed serew. }
\end{array} & \begin{array}{c}
\text { Proportinnal } \\
\text { number. }
\end{array} \\
20 & \div & 2 & =
\end{array} 10 \\
& \text { Then- }
\end{aligned}
$$

$40 \times 15 \times 10 \div 50=120=$ the number of teeth required upon the wheel for the feed screw. In the above example, bowever, all the necessary wheels except one are given ; and since it is oten required to find the necessary sizes of two of the wheels, the following rule may be used :
Divide the number of threads you wish to cut by the pitch of the feed Mrew, and multiply the quotient by the number of teeth on one of the driving wheels, and the product by the number of teeth on the other of the driving wheels ; then any civisor that leaves no remainder to the last product is the number of teeth for one of the wheels driven, and the quotient is the number of teeth for the other wheel driven.
[In this rule the term "wheel driven" means a wheel which has moo Bon imparted to it, while its teeth do not drive or revolve any other wheel ; hence the large wheel of the compounded pair is one of the
wheels driven, while the wheel on the feed screw is the other of the wheels driven.]
Example.-It is required to cut 20 threads to the inch, the pitch of the feed screw being 2 , one of the driving wheels contains 40 teeth and the other 15 :

Pitch required to be cat.		Pitch of feed ezrew		Teeth in driving		Teeth in Civieg		
20	\div	2	\times	40	\times	15	$=$	6000.

Then, $6000 \div 50=120$; and hence one of the gears will require to contain 50 and the other 120 teeth; if we lave not two of such wheels, we mny divide by some other number instead of 50 .

Thus: $6000 \div 60=100$; and the wheels will require to hare, respectively, 60 and 100 teeth.
If there are no wheels on the lathe we proceed as follows:
Divide the pitch required by the pitch of the feed screw ; the quotient is the proportion between the revolutions of the first driving gear and the feed screw gear.

Example. Required the gears to cut a pitch of $\mathbf{2 0}$, the feed screw pitch being 4 ; here $20 \div 4=5$; that is to sar, the feed screw must revolire five times as slowly as the first driving gear, we now find two numbers which, multiplied together, make five: as $24 \times 2=5$; hence nue pair of wheels must be geared 22 to 1 and the other pair 2 to 1 , the small wheel of each pair being used as drivers, because the thread required is finer than the feed screw. Rose's Complete Practical Machinist, II Carey Baird \& Co., Philadelphia.

HIPPED ROOFS, MTLL HOPPERS, \&C.
To find the various Angles and proper Domensions of Materials whereby to construct any fiyure ehose form is the Frustrum of a proper or inverted Pyramid, as Hipped Roofs, Mill Hoppers, de.

A B C D represents the desired size of plan for a roof, ET represents the height; draw the line A E to meet the apex or ridge $E K$ on plan; from E, at right angles with C E and equal to the desigued height draw the line E T then the line T C, equal the length of the struts or corners of the roof ; from C, with the distance C \mathbf{F}, draw the are $\mathbf{T} \mathbf{H}$, continue the diagonal C E until it cuts the arc E H, throagh which, and parallel with the apex E K, draw the line IL, which determines the required breadth for each side of the roof : from C, meeting the line I L, draw the line C G, or proper angle for the end of each board by which the roof might re quire to be covered, and the angle at T is what the boards require to bo made in the direction of their thickness, when the conners or angles require to be mitred.
To Compute the Number of Revoletions of a Pinion on Drivey when the Number of Revoletions of Driveri and the Diametzo of the Number of Teeta of Deryer and Driven are givzs. -Multiply the number of revolutions of driver by itis number of teeth
ther of the pitch of the eeth and the
000.
quire to conwheels, wo e to lave, re-
; the quotient ving gear and
eed screw pitch must revoire 1 two numbers hence one pair to 1 , the small ead required is Machinist, I!

Materials teherem of a proper or its diameter, and divide the product by the number of teeth or the: umeter of the driver.
Proportion of Circles.-Toassist machinists in enlarging or reducing achinery wheels without changing their respective relocitien.

T represents the on plan ; from feight draw the or corners of the \mathbf{H}, continue the nd parallel with equired breadth Iraw the line C c roof might reds require to bo rs or angles to hion or Drivez the Diametre an are givera umber of teeth
nt, lay off two circles, D F and G I, the size of the largest wheels thou wish to change to a large or small machine, with the central H of the smaller circle G I on the periphery of the largent circle D hen describe two lines Q C and S A tangent to the circles as shown gram, then draw the line $\mathbf{R} \mathbf{B}$ through their centres; now if you io reduce the machine outline a circle of the size you wish to reit to; if, say, one-half, have the centre K one-half the distance E to P and lay off the circle $J L_{\text {, and on }}$ its periphery N as a ceny off a circie $\mathbf{M} 0$ with their perinleries touching the tangent lines ind $S A$, as shown in diagram. This will make the circle J I onethe size of the circle D F. and the circle M O one-half the size of the GI leaving $J L$ and is O in the same proportion to each other Fand GI.
reduce one-third, have the centre K one-third the distance from E ${ }^{2}$ one-fourth, have, the centre \mathbf{K} one-fourth the distance from \mathbf{E} to

P, \&c. This reckoning may be applied beyond the centre E for enlarglas machine wheels, and will enable the nechanic to make the alteration without changing their respective velocities.
To Compute the Diameter of a Pinion when the Diameterop the Driver, and the number of Teeth in Driver and Driven are given.-Multiply the diameter of driver by the number of teeth in the pinion and divide the product by the number of teeth in the driver, adod the quotieut will be the diameter of pinion.

To Compute the Number of Reyolutions of a Driver, whed the revolutions of Driven añe Teeth or Diameter of Drify and Drivenare given.-Multiply the number of teeth or the diameter of driven by its revolutions and divide the product by the numbero teeth or the diameter of driver.
Tu Compute the Number of Teeth in each Wheel for a Traf of Sple Wheels, each to haye a given Velocity.-Multiply the number of revolutions of the driving whee by its number of teeth, anf divide the product by the number of revolutions each wheel is to mak io ascertain the number of teeth required for each.

To find the Circumference of any Diameter.-From the cen B describe the circle AC G, with the desired diameter; next place corner of the square at the ceutre B, and describe the lines B D and B then draw the chord $\mathrm{D} F$; three times the diameter added to the d tance from the centre of the chord D E F to the middle of the subtend $\operatorname{arc} D G F$, will be circumference desired.
To find the Circumperence of a Circle, or of a pelurt Multiply the diameter by $\mathbf{3} \cdot 1416$, or as 7 is to 22 so is the diameter to circumference.
The areas of circles are to each other as the squares of their diamet and a circle contains a greater area than any other plain figure boun by an equal outline.
to Comptete the area of a circle.-Multiply the circumferene one quarter of the diameter; or multiply the square of the diamete 7854 ; or multiply the square of the circumference by 07958; or m ply half the circumference by half the diameter; or multiply the sq , of half the diameter by $3 \cdot 1416$
to find the circumprrence of an ellipge.
Rule.-Multiply half the sum of the two diameters by $3 \cdot 1416$, and product will be the circumference.

Example.-Suppose the longer diameter 6 inches and the shorth ameter 4 inches, then 6 added to 4 equal 10 , divided by 2 equal B . m plied by $3 \cdot 1416$ equal $15 \cdot 7030$ inches circumference.

E for enlargtisa - the alteration

x Diameter or

 nd Driven abe of teeth in the the driver, andDriver, whes ter of Drive 1 or the diameter y the numbero
eel for a Tais Y. - Multiply th ber of teeth, and wheel is to makis
R.-From the ceal ter ; next place lines BD and B added to the le of the subtend
r of a pelier the diameter to
es of their diamet lain figure bous
he circumferenct of the diamete: oy O7958; or m ELLIPSE.
3 by $3 \cdot 1416$, and
and the shothe by 2 equal B. 14

Power and Capacity of Saw Mills, Saw filing, \&c.-As a rule it 4 admitted by mill-men that for $10,000 \mathrm{ft}$. per day about 20 horse-power is required ; for $20,000 \mathrm{ft}$., 30 horse-power ; and for $30,000 \mathrm{ft} .40$ hursepower. To secure these results it is inidispensable that the operatos should make sure of having a good mill and intelligent first class worknen to run it. In hanging the saw, see that the mandril fits accurately in the boses, so that it will run without heating. When flat collars are used, the steadying pins should be made with a shoulder, as where any other form of pin is used it often happens that a burr or bunch is raised at the coner where the pin enters the collar. Both saw and collar should be tested with a straight edge ; it frequently happens in turning collars that through the lightness or springing of the tool, irregularities in the grain of the Iron, \&c., the work may not be perfectly true, and in this case the rtmost care should be taken to ascertioin and correct the deficiency, if my exists, by applying, before the mandril is taken from the lathe, a fine fle of just the proper spring, against the face of the collars in order to rmove any nueven surfaces that may have been left upon them. If they re not perfectly true, apply a pair that are so, independent of the mandril collars, and so rigid that screwing up the collars cannot act upon or impair the saw.
The saw being tested and found correct, place it on the mandril and tighten up the collars by hand, slowly revolving the saw at the same time, nad if it proves to be truthfully hung, screw it home with a wrench tight, nd test again with straight edge to see if all is right, revolving the saw and observe closely whether it runs true or not. For large saws a high mathority recommends collars that have a perfect bearing of about $\frac{1}{2} \mathrm{in}$. 0 the outer rim, the other part clear, as they hold tighter than a solid, atfaced collar, because they are more apt to come fair against the saw. To correct saws out of round, hold a piece of grindstone or cobblestone gainst the points of the teeth while the saw revolves, this will grind brn the most prominent teeth ; or the longest teeth may be marked with whalk while the saw is in motion, and afterwards filed down.
The following figures will afford valuable aid to the operator. In fig. the teeth represented by the dotted lines show the teeth as the saiv ares the factory; the lines at B,C, and D show the condition to which key are frequently reduced by bad filing. These defective teeth contain chamber for the circulation of saw dinst, and teeth filed with sharp, pare corners at the bottom frequently break, as shown at A, tooth C. his kind of filing is most destructive to both saw and files, and requires least double the power necessary to operate a saw with teeth of the wper shape. For good work it is absolutely essential to file back to the xphery line, and the best work will be done, the least labor expended, less power will be required to operate, when the shape of the teeth made to conform to the pattems illustrated by Figs. 2 and 3, which represent the forms best adapted for sawing soft and hard wood rectively. In filing circular saws, an immense saving will be effected by ing from the face or under side, instead of from the top, or upper part the tooth, as in the former case the full diameter of the saw is retaiued a much greater extent.
Pif. 4 , at A, represents a tooth that requires gumming, or chambering in proper shape, as shown at D. This leaves free scope for the dust, hout too much crowding, and the useless consumption of power. A dd gummer is an article that no sawyer can afford to dispense with, it res much valuable time and heavy outlay for fles, besides doing more dd and much better work. A good swage or upset is equally import. for the purpose of bringing the teeth of the saw to a sharp, keen edge

dition
anil, n
carse.
times
felled

When your Tooth what e Clambering

DIAGRAMS TO ILLUSTRATE SAW-FILING.
bringing up corners and vacaucles occasioned by wear, and spreading the points, so as to case tho body of the saw in passing throngh the log. lig. 5 , at A, B, C, D, and E, exhibits the different set required for saw teeth as effected by tho swage ; tho dotted lines khow the undercnt, and Hig. 6 shows the old and new style tooth. Fig. 7, at C, represents the con-

Fia. 7.
dition the tooth should be in for work. Point B shows a tooth that is dill, and a great many teeth are broken, as shown at D, from this very casce. The tooth of a 24 inch circular faw parses throngh the $\log 2000$ times per minute, 120,000 times per hour, or $1,200,000$ times per day, hnpelled by a tremendons force through knots, \&e., aud if not kept sharp

Mat 8tyic Tooth

FILING.

the sovere strain is bound to break the teeth. If the teeth were kept property set and well filed the work would be performed in better shape with half the power. Eirs. 8 and 9 represent riylit and left hand saws, and a very slight inspection of the cuts will cuable any person to observe a mast importint distinction in ordering circular saws. In operating the mili, avoid the use of short bearings for the mandril, and short, tight belts, these, together with the mandril crowding against the collar, are apt to cause heating. A long, free belt, with long bearings, and a saw cutting freely, will give the best resulty in every case.

Fio. 9 LEFT-HAND SAW.
The improved pattern of saw teeth, \&c., outlined above, is the form originated and commended by the celebrated saw manufacturing firn of Henry Disston \& Sons, of Philadelphla, and is the result of the anxious study, expericuce, and careful labor of many years. The high standing of the firm, together with the excellent reputation of their goods, furnish a sufficient guarantce that every improvement introduced by them will be found based on correct principles.

Saw Mill.-Tivo Vertical Sares of 34 in. Stroke, Lathes, \&e. Crlinder 10 ins. diam. by 4 ft . Stroke. Picssure 90 to 100 lbs . per square in., full stroke. Revolutions, 25 per minute. Boilers, three plain cylindricul, 30 ins. in diam. by 20 ft . in length.

Note. This engine has cut of yellow pine, 30 ft . by 18 ins . in one minute, Engineers \& Contractors Pocket-Book:
For further information on Sniw mills, see page 87.
Weight of Lumber per Thousand (M.) Feft Board Measere. 1

2,500	1 lhs.
3,000	6
4,000	"
3,500	4

2,700	lbs.
4,000	6
5,000	"
4,000	"

3,000 lbs. 5,000
eth were kept 12 better shape eft hand siws, rson to observe a operating the nd short, tight the collar, a:e ngs, and a saw
bove, is the form facturing firm of to the anxious he high standing heir goods, furoduced by them
es, dec. Cylinder ; square in. finl n cylindrical, 30
. in one minute,
nd Me.sitre.

SECTIONAL, VIEW OF A COMPLETE FLOUR MILL.

The above cut, from the Mill Stone, published by the well known mill furmishing firm of Nordyke \& Marmon Co. of Indianapolis, Ind., affords a sectional view of a complete flour mill with a three zill outft, two runs for wheat, and one rmn for com.
The Nfin Process of Milhing, High-ground and Parent Flour, ETC. -In ennsidering this important subject, John W. Honkins writes to the Mill Stonf as follows:-The new process means a first-class' steam engine, grinding the flour and henting the mill on a cent's worth of coal to the bushel of wheat, taking the wheat from the car on the side line and uever touching it by manual labor until the four barrels are taken
from the packer, linstend of the shovelling and sweating which was and still is in vogue in some places.
Where witer power is used instead of steam, the new process means the use of turbine wheels, glving over 80 per cent. of the full power of the water, instead of the ofd breast wheel glving only 50 ; the boss golng into a nico warm mill on a frosty whter moruing and finding every that golug right, instead of going into min ice-bound mill of tho old breast. whecl style, with a couplo of half starved youths trying to cut her looso and knock her to picees fit the same time.
The now process means nicely turned iron shafting and pulleys, with belt gaarlag, in place of wooden slafts and cog gearing, with two or three old millwrights slashing around with sledge hammers to keep them wedged, and assisted oceasionally by two or three millers making frattic efforts to start the break downs. It also means closely jointed old stock burrs, and plenty of them -36 inches in diameter for middllings, and from 42 to 48 inches for wheat, according to the harduess or softhess of the wheat-all in perfect balance and true smooth face, and the hands thereof to be from one-third to one-fourth of the whole surface of the burrs, instead of one-half as in by-gone times. It does not, however, mean auy particular patent dress, the common equalizing dress is good enongh ; but it does mean that the furrows shall be smooth and straight in all directions, not less than two inches broad and deep enough at tho cye to bury tho largest grain of wheat, and about the fourth of that at the skirt, the draft of the feather edge to be one finel to the foot in dian. eter of the burr, and all furrows of the same kind to bear the same rela. tion to the centre and circumference, and also that the miller shanl hare the power and means to alter the speed of any run without affecting the remainder, i. c. speed to be altered instead of draft.
To mill under the new process means that the chop shall roll instead of slide between the burrs, or, in other words, the eubstitution of a system of granulation in placo of grinding.
Wo know a millwright who was lately called to reconstruct tho bolting machinery of a considerable merchant mill. Upon mentionlug tho word purifier, the head miller in charge of the mill gave a jump as if ho had recelved a mild stroke from a galvanie bittery. "I waut," says ha "nothing but fine cloths, and plenty of them, Nos. 12, 14 and 16, ," 0 which I would only say that it must follow, as a matter of course, that $\#$ you grind so closo as to grind a fourth of the brait into powder, it will require fino cloths to take it out, and even they will fail to do it perfectly, whereas if the griuding is properly done, $\mathbf{X X}, 10$, and 12 , will be thi thing.
We come now to the middlings-the largo partleles which have with. stood the action of the burrs most, and which have at the same time the highest specific gravity and tho greatest bulk. They must be separated from the very light, dead fine brown dust (which is prinelpally pulveried bran, insoluble in the acids of the stomach), the first would not go through the superfine cloths, on account of their bulk, neither would th latter, on account of their lightness. They must, however, not only to separated, but also graded, and while this is almost impossible of necom. plishment with cloths alone, it is rendered comparatively easy by the us of cloths and blast combined, and therefore the necessity of the purifie: I do not refer to uny particular make or patent in the way of purifien, as there are several good ones in the market, and nuy number of poos ones, but whatever kind is used should have capacity enough, and do their work well.
The old process or system that required a man to jump on tile bum every twepty-four or twenty-sis hours and slash them all over with

sch was and

cocess means ull power of te boss going ig cevery that o old breast. cut her loose
pulleys, with , with two or to keep them making fratic inted old stock middlings, amd or soltuess of ind the lands surfaco of the 3 not, how crer. dress is good jth and straight enough at the furth of that at the foot in diam. un the sunc rela. niller shall haro out affecting the
all roll instead of tion of a system
struct the bolting Itiouing tho word ump as, if ho had want," says he, 2,14 and $16, " \omega$ of course, that 4 oowder, it will 1 to do it pertectly, dd 12 , will bo the
which have with. the same time tho nust bo separated acipally pulverized rst would not ${ }^{\circ}$ neither would tio ever, not only to possible of accom. ly casy by the uso rity of the purifice y naynber of poos y enough, and do
ump on the bum mall over with
piek so as to make them cut up 15 bushels of wheat an hour, and make 24 bushels of flour to the 100 bushels of wheat, is fast becoming obsolete.
Tho idea of making such flour elther for home consumption, or to ship to foreigners, is played out ; the foreiguers, In particular, have stopped buying such flour, and want the wheat instead to grind for themselves. Instead of this old-timo sysiem it is now required of the milier that the face of the burrs shall be smooth and true, and if any high places develop thenselves they must be gently touched by the hand of a master either with pick, diamond, or emery wheel, mid not more than six bushels an bour should bo ground on a pair of burrs, and thls should be ground cool or not at all. Moreover, it should be ground high enough to tako off a broad, clean bran, and to make one half middlings, and finally last, though not least, the substitution of the new process, as herein delinented In outline, means to reallize 20 cents per bushel more out of the wheat than by the old style, and a showing of a good and satisfactory balance on the right side of the ledger at the end of the year. At least such is tho new process or high-grinding system, as I understand it.
Fast and Slow Grinding. Valuable Advice to Milizirs. On this all important subject, J. M. Truax, a practical miller, writes to the Sill Stone as follows :-" The quantity to be ground must depend npon the texture or density of the stone, the draft, the number and depth of furrows, and the grinding without heating. No more grinding should be donc than can bo done without heating. The heating is the stoppling spot. The quantity that every mill ought to grind is that quantity that can be ground and not heat, whether It is 5 , 10 , or 20 bushels per hour. If every miller will observe this as his guide, he will do the best work that he is able to do.
In speakling of lieating, I mean to say that the grain should not be so heated by pressure or rubbing, as will start the juice or essential oils of the grain. If the grain oil is started by friction, that friction produces hent, and that heat dries and evaporates the grain juice, and the virtue of the flour is impalred. Any amount of cooling will not repair the damage done by heating. The steam that rises from the hot running uill is the vapor from out of the essential oils of the grain, and is lost in the bread. To recommend tho grinding of 10,15 or 25 bushels of wheat per hour, is bad advice, imprudent. Millers differ in the selection of stones, and differ abont their dress, and the motion of their mill. One will have one kind and way, and another another kind and way ; but whatever way they select, when they go to grinding, their quantity per hour should be that which they can grind and not heat, whether it is 3, 5, 10 or 20 bushels per hour. Do not impair tho substance for the bulk per hour. Blood heat is as high as can be warranted without impairing the product. It may , be an ambition to grind fast, but an old adage is "laste makes raste." If millers are ambitious, let that ambition be applied to the making of a perfect running mill. Select the very best burrs, and put in a thorouglily common sense dress; a dress that will granulate the whole kernel as nearly as possible. Keep the stones as far apart as posslble, and keep the texture or grain of the stones clean. Let this be the miller's ambition. But stop adding to quantity when the mill is at blood heat. and as much less heat as they are able to, and let tho bread makers and eaters have fin the flour nll the virtue that mother earth has produced.
One of the great evils in milling is low grinding, and its evil effects are only gecond to those produced by fast grinding. Wheat is composed of two parts-an juner and un onter part. The imer part is meaty, and the outer is a shuck, or skin, or hull ; the meaty is pulverizable, while he hull or covering is a leather-like substance, and has thickness, which hickness equals the meshes of No. 14 or 15 bolting cloth. Now, the
fuestion arises, how shall the miller grind this compound kernel and clean this leather-like covering, and granulate the inuer meat to a propor fineness for bread purposes, and not over rub or grind to dust a part of tie hull? This is the question. And how is wheat behig ground all over tia world to-day ? I need not answer, for all know that heary grinding has been the order. The lands or face of one burr rubs tho other, ornearly so. So much so that that portion of the bran that is canglit between the face of the mill near the skirt is more than twice overground, and this overgrinding or rubiving the bran makes a orown dust, and biackens the flour. It is like brown paint, and bolts with the flour and goes into the bread.
This is a mistake, and slould be avoided. Bran may make bread, but not the bread millers feel proud of. And to avoid this, millers must ruh a ligiter mill. Heayy grinding is an evil. It not only powders a portion of the bran and blackens the flour ; but grinds at the same time a jortion of the kemel to dust ; also destroying its juicy substance ; and at tho same time the fine ground dust is rubbed into the texture of the stone, and the face of the stone becomes glazed and smooth, and of course dull.
Millers, so dress your mill as will enable yon to grind tho imer part of the kernel to flour, and avoid making brown paint dust from the bran. A miller that rums a heavy mill is likely to look for a medicine to doctor his flour. Medicine for flour is a poor substitnte for a good dress and clean stones. Bread eaters mulh preier the full lifo of the cereals, not a doctored articlo. Grain once killed by overgrinding and heating will not be brought to lifo by the best mediches. All the flour-doctors in tho world can not repair the life that is nirst produced in natural growth. They may help a deadened flour, but a whole reparation is impossible. Throw away the drugs ! Let us have a pure flonr."
balancino Millstones.-To examine the conditions relative to balancing, and to trace the effects produced by an umbalanced runner, to theircause, we refer to the adjoining figure in which R, R, represents Ω section of the rumer-stone ; $1,1 B, a$ section of the nether stationary or bed-stone, S, the mill-spindle provided at the upper end with a steel pivot P, upon which the rumer-stone is suspended, so as to admit of freo oscillation. The distance from the face F, F, of the runner-stone to the pivot P, is found in practice to be from 5 to 8 inches, according to tho size of the stone. Sluce the thickness of the ranner-stone varies from 12 to 20 inches, this would bring the centre of gravity of the rusner-stono below the point of suspension P, a condition favorable to stability, or, in other words, the millstone, when disturbed, will oscillate until equilibrium is restored. It will not be so casily upset. In order that the rumerstone may be in "bodance," or the distance between the face F, F, of the rumer-stone and the face of F^{\prime}, F^{\prime}, of the bed-stone, be equal, when the latter is perfectly horizontal, and former freely suspended ; the welght of the portion of the rimer on cne side of the line, A, A, drawn throngh the point of saspension P, and perpendicular to the faces F, F,' must bo equal to the corresponding half on the other side of the same line. Should this not be the ease, the deficiency is easily made up by cutting a cavity at the light side, near the circmiference, and filling it with at mount of lead sufflecent to estabiish a proper equilibrium.

Mill stones when balanced while at rest are nsually fourd, when running, not to retain an equal distance between the face ; ons side will drag -bar harder on the meal subjected to its action, consequently a millstone in this condition will grind unevenly. It is said to be out of "running balance."

From the very nature of the constructlon of the French millstone (the kind used at present most exclusively), being an assemblage of blocka
kernel and to a propdust a part : cround all that heary rre rubs thio mran that is than twice es a brown its with tho
e bread, but ors must runt ers a portion me a prortion ; and at tho if the stone, course dull. o inner purt om the brant. no to doctor dress and cereals, not a ting will not octors in the ural growth. s impossible.
relative to ed rumer, to R, represents stationary or with a steel admit of freo $r-$-stone to the ording to the aries from 12 ru!ner-stono ability, or, hu Intil equilibriat the rmmere F, F, of tho nal, when tho the weight of awn through , F , mnst bo line Should lting a muity tis amount of
r, when rundide will dray lently a millout of " rull
fillstone (the se of block
ealled "burr blocks," of various sizes, and on an average abont $\overline{5}$ inches thick, the remaluder of the body of the mill stone being made up of spawis, all cemented together with phaster of Paris; it is evident that the material can not easily be distribnted symmetrically as to weight. To illustrate-conceive a line \mathbf{E}, E , drawn through the pivot P , and parallel to the face F,F. Wo will also suppose a section f_{f} inches thick cut out of the center of the mill stone. Such section from in mill stone 4 feet in dimeter would weigh abont 260 pouncls, taking the weight of the plaster at 90 pounds per cubic foot, and that of the burr block at 160 pounds.

Now it may happen that in the constructlon of the mill stone, 45 pounds may be placed to the right of the center line A, A, and below the horizontal line E, E; 35 pounds may come above this line on the same side of $A, A ; 55$ pounds and 25 pounds may chance to be on the opposite, belew and above \mathbf{E}, \mathbf{E}, respectively. The sum of the weights on the riglit of A, A, is equal to the sum of the weights on the left, viz. : so pounds. The standing balance still obtains. The center of gravity !f, aud ! $\%$ of cach half of our section taken separately, however, will not be ju or at qual distances from the line E, E, with the material ti: us distributed; bit will fall above on the right ' 9 i", and below on the left to $f^{\prime \prime \prime}$; a line joing these centers of gravit. Hitake the direction \mathbf{N}, \mathbf{N}. Now when amill stone so constructed is 1ahont its axis A, A, the center of grity $\left(g^{\prime \prime \prime}\right.$ wilt rise, and $g^{\prime \prime}$ tend to fall. The lino \mathbf{N}, \mathbf{N}, would become parcer horizontal as the speed increases, the line E, Le, becomes inclined and the face F, F, untrue. The dill stone is out of "rmuning balance."
The amount of pressure prinuced in our example assumed, we compute as follows: Wo draw a line throngh the center of gravity 9 " pardilel to the face F, F, until ic, meets the perpendicular line A, A; we simlarly, draw a line through $\boldsymbol{y}^{\prime \prime}$ '. We will also suppose the centers of grav-
 line E, E. The ceritrifugal for:3 would be given, by the known expresfinn $\frac{m v 2}{r}$ where m, ropresents the mass, or the weight divided hy the
force of grarity, in our case for $\frac{1}{2}$ of the section $\frac{80}{32} r$, is the velocity in
this instance, for the point 9 ' or ! $/$ "' and in a stone 4 feet in diameter at 175 revolutions per minute, 18 feet per second, about ; r represents tho radius, equal to $P, \ell=1 \mathrm{ft}$. in our case. Hence substituting these values is the formula, we obtain $\frac{80.18 .18 .}{3.1 .}=810$ lbs. for the centrifugal force. The part of this force which is effective in producing the pressure at X equals 810. Cosine of the angle EP $x=734$ pounds nearly: The force acts with the lever arms g g " ${ }^{\prime \prime}$ inch and $P X=25$ inches. We have, thercfore, for the total pressure at the point $X \underset{4}{74} \times 2=14.68$ pomends ; an amount frecuently present in mill stones in actual use, producing, by this unequal pressure, a flour or meal less adsantageous to the miller, both as regards quality and quantity.

What is required, therefore, to adjust the "Rumning Balance" without disturbing the "Standing Balance" is to add or remove the same weight from each side. Thus, if we add 10 pounds to the part weighing 25 pounds, and the same amomint to the part weighing 45 pounds, we have not disturbed the stimding balance, while we have made the weights of the parts above aud below the lino E , E , equal respectively.

To balance in an actual case, we proceed as follows: First, pat the run-ner-stone in good standing-balance, having leveled the bed-stone, an' tramined the spindle previously. We then raise the stone, place thu strips of wood between the faces, start the rumer and turn off tho back true with the face with a chisel, having first arranged a firm rest. Wo then remove the strips, run the stone at its proper speed, and mark the high side by bringing a pencil against it. The high side requires, as we have seen, an addition of weight at the top, close to the ciremmerence, and the opposite low point at the bottom, near the circumfereuce and the face. By means of two long leather straps, we tie several bars of lend at these places, repeating the operation mitil the proper amount of weight is fomed, which is then securely fixed to the stone, making a proper allowance for any platster removed from the stone, or any waste in. curred in melting the lead.
tion

Several patent balances which facilitate the operation have heen introduced. A more common one consists of a cast iron box, which is insert. ed in the stone at the circminferice, nud in which a weight can be raised or lowered by means of a scres. All that is required in this casc is to find the high point in the mamer described; raise the weight at this point, and lower it at the opposite low point, thus taking weight from tho upper lialf of the stone and ulding it to the lower half and the reverse.

It is not to be supposed that if a mill stone is put in good runving haiance, that it will remain in this condition for any lengtli of time. Bua on the contrary, its balance will change from the effects of tho weather; that is, by an uacqual absorption of mosstaie. duc to an mequal distribn-
velocity m dianncter at prescuts the these values al force. The c at X equals orce acts with therefore, for ; an amount y this mequal oth as regards
alance" withnove the same part weighing ounds, we hare the weights of y. rst, puit the run. bed-stone, ar one, plam thu rn off the back firm rest. No i, and mark the requires, as to: circumference.
circumference ie several bars of roper amount of pr any wasto m.

have heen introwhich is insert ght can be raised in this case is 't - weight at this weight from tio ba the reverse. bod rumbing las. hi of time. Bua of the weathet uncqual distribs
tion of the plaster forming the back, and from an unequal wear of the face as weli. It is, therefore, expedient to frequently examine the balanco and adjust the same. V. Bachman in Mill Stone.
The art of balancing mill stones is greatly simplified by an ingenions arrangement used by the Nordyke \& Marmon Co., of Indianapolis, Ind., tho imbed 5 cast iron boxes, like the one represented in the right hand cut. In the body of the rumer stone. They are placed in the rumer with the lid of the box a little below the plaster back with the rounding pari in contact with the band. The left hand figure illustrates the inner adjustable box, and serew for adjusting the same when in the stone. It rill be noticed it has two parts, divided by a partition. The cover to this inner box, shown in the central figure, is secured with a serew, and fits down upon the box and close over the division, so that either side may be used when the weight is wanted at a point between any two of the balance boxes. These balance boxes gives the miller full control of the runner; a wrench is the only tool required, and the requisite weights, when one placed in the bos, are not linble to derangement like those ordiuarits used.

HE NORDYKE \& MARMON PORTABLE GRIST MILL.
The above illustration represents a Portable Grist Mill mado by the cxsire mill furnishing firm of Nordyke, Marinon \& Co., Indamapolis, L It is constructed of the best French burr, is self-oling, self-feeding, justable-balanced, and is well calculated to render eficient service to mers, saw-mill owners, \&c., as it dispenses with skilled attendance, is 4 adapted to any kind of sultable power, and is capable of grinding 20
bushels of come per howr. The great rariety and immense number of first class water and ste um miils crected by this firm all over the fertile reg:ong of the West and Gouth, form a sufficient attestation of their abilities and resources as flouring mill contractors, enginepre, and mechanical experts. In addition to their regniar mill furaishiag business, which has expanded to vast proportions since its establishment in 1851, this firm publish the Mill Stone (terms $\$ 1$ per ammun), a monthly journal of paramount utility to every miller, farmer, and neehanic of this periodical, suffice it to say, that one of the articles transferred to these pages and credited to tho Mill Stone, has been pronounced by a practical man belonging to the cmif, to be worth of itself $\$ 10$ to any railler. The articles are pregnant with interest to every miller and will donbtiess be read and studied with the attention which they deserve.

Numiner of Meshes in Boltisg Clotm.-The following Table exhibits the number of meslies contained in each number of cloth from No. 0000 to No. 1G, or Dufour \& Co.'s Auchor Brand of Bolting cloth :

	0000	tai	400	No.	tai	8,iH
	000		50.6	8	 8,414
"	00	"	1,03	" 9	"10, с60
"	0	"	1,764	" 10	"	.12,100
"	1	"	.2,204	" 11	"	.11,400
"	2	"	3,600	، 12	"	.16,90
"	3	"	4,005	${ }^{6} 13$	"	10, 000
"	4	"	4,624	* 14	"	.22,500
"	5	"	.5,154	" 15	"	.25,000
،	C	"	6,400	${ }^{6} 16$	"	

Mile Stone Dress.-On this subject a practical miller writes to the Mill Stone as follows: "In the unst place the burr must bo brought to a perfectly true face, and then lay of the furrows with a straight eage, $1 ;$ inches wide at the eyo, and $1{ }^{1}$ inches wide at the skirt. Let the flare bo on tho feather edge, and jast as many quarters as may be thought best, and which will depend somewhat on the speed. I generally give a fouf foot burr from 13 to 16 leading furnows, stepping them off with a pair of compasses on the outside edge of barr, from 9 to 12 inches apart, and

then divlding the spaces between them into quarters. The accompanis draft of the dress that I use will give a very good idea of my plan. Tha been using this dress for rears, and fiad it gires better satisfaction quallty of flour thum any other dress I ever nised. It frinds cooler a longer than the old style of dress, and st will grind wet or damp wha better, because there is less friction aboat it and there is more room $t \sim$ meal to get out frow under the burrs, and therefore the meal mns nter."

e number of firs

 he fertile regions heir abilities and chanical experts. icla has expanded firm publish the xaramount utility lical, sufflee it to ad credited to the ging to the erath o pregnant with studied with thoing Table exhibits th from No. 0000 loth :

7,74
8,14
10,00
12,160
14,400
16,500
19, Co
23.50
.25,(c)
23,20
ller writes to the st be brought to s straight eige, Let the flare bo be thought beth, arally give a tous off with a pair of inches apart, and

The accompanriu of my plan. Ths ter satisfaction frinds cooler 2 et or damp who is more room e the meal mis
-PEED. CAPACITY, dC., og MLle STONES.
Estimate of the Speed, Fower, Catidcity áni Vitess of Miligrones as practiced in Great Britain for gininding Wheat wherle
no Exifacst on Come on Combined Blast and Exhaust are Used. The Afiller.

In reference to the foregoing Table, The Mill scotch engineer and millwright whose experienceques the opinion of a an authority, to the effect that there shouly brience entitles hmin to rank as tery of millstones, viz.: 3 ft . 3 ft . 6 ins only four standard diameThich tho speed shonld bo 17 i revolntions. 4 ft . 4 ft. 6 ins. for 115 for the other sizes respectiver revolutions for the 3 ft ., $150,1: 15$, and would each absorb 6 indicated ho y, and he estimates that all their sizes per hour; in other words, the smallest stone to grind 4 bushels of wheat equal duty, would requiro is much power to at its high rate of speed, with of the largest stone with its low rate of spe propel it as would be talien presses a conviction, based on rate of speed. The same anthority exmprovement could be effected on thexpesience of 30 years, that in vast fable by taking the 4 foot stone the system presented in the above inlversal use ingrinding wheat. It is reng at 135, as the standard ior thonk the 30 constructed that the eclocity recommended further that all minls leasure, when in operation, either by rup of the stones could be varied nt ers or drums, or by a separate eurby ruming cach pair by conical pul. aiterent varieties of wheat, may dime, as the state of the weather, or tho Concerning the blast and, may dmand
"It is stated by some parties fust the Miller remarlas:
Hast that, by the adoption of that systeme to the combined Biast and E.xWhat eight bushels of wheat cosystem, a saving of wor in effected, arer, sowever, being unlinited, ino ground by six-horse power. The most hadefinitely, in the above propurtionty ground can be increasel e millstone, sixteen bushejs proportion, according to the welght of m. The application of the Exhanst, drawn belng ground on this sysruming millstone, does not prodnce drawing the air through the eye of ospheric pressure, the nillstones grina greater current than that of ataresponding amount of economic prind somewhat faster, and there is a ty. Many advantages in this respect the millstones working more smple Exhaust, having for its respect result from the adoption of om the millstone case." ${ }^{\text {ar }}$ fors cbject the removal oniy of the stive

To Remove Glaze from Millstones.-Take the burrs, clean all the flour off with a broom and wash them with first rate viuegar. This will leave the stones free from glaze. The better way is to wash the stonesat night and leave them to dry until morning. A miller who has used the method for 25 years, recommends to take $u p$ the stones while warm, and wash them with a mixture of one half pail of soft water and one quart sharp vinegar, applied with a woollen cloth. Leflel's Neus.
Speed and Pitcin of Boly,-An experienced miller writes on thin subject as follows :
Many years of practical experience in custom milling and in grindips all kinds of wheat, hard and roft, wet and dry, has convinced ine thas the best speed to give a bolt cloth to accomplish the most and best work. is 200 feet per minute. The reel should have $\frac{\ddagger}{q}$ to $\frac{8}{8}$ inch pitch per foot and should be kept as full as its capacity requires. Recls when workng on hard wheat should have more pitch than when working on soft wheat More millers get into trouble with their bolts by running them too fas than by any other cause. The faster you run the cloth after yon get n to 200 feet per minnte, the less it yill bolt and you can give it speed enough to carry all the flour, middlings and bran together out of the till end of the reel. Leffel's Neces.

the holmes and blanchard portable min

The above illustration represents an excellent type of a geared Portabl 'Grinding Mill manufactured by the well known mill furnlshing frm Holmes \& Blanchard, Boston, Mass. They aiso manufacture the sair class of mill, at less cost, with vertical pulley. The stones aro made one entire piece from the best French burrs, and are well adapted io flouring wheat, grinding corn, grain, feed, plaster, salt, coffee, spices, , The makers claim that the capar ty of their mills, of which they bulld great variety, can be increased to almost any extent, by an increase power or speed, or they can be woiked with light power by diminilite the speed and quantity of work. Their mills, now numbering many he
burrs, clean ail the - viuegar. This will to wash the stonesat er who has used the stones while warm, of soft water and ove Leftel's Neu's. miller writes on this
alling and in grindins -s convinced ine that most and best work, ${ }_{8}^{8}$ inch pitch per foot Reels when working orking on soft whea: unning them too lat loth after you get up ou can give it speed gether out of the till

CALCLLATIONS FOR DELTS, dc.

dreds of every size and class, are highly spoken of by tho purchasers, and the writer can bear witness to the utility of one winich rendered exwick, Canada, untll its canununity on his own premises in New Brunswhich destroyed the mill building wisefunaess was terminated by a fire The following Table exhibits the with all its contents. ance, \&e., of the Holmes \& Blane pronerspeed. power required, perform-
are in position.-Add the cirg Driving Belt befone the Prelelye product by two, and add the quotionference of the two palleys, divide tho between the centres of the two shatits thus obtained to donblo the distance tequired. For a cross belt, add the circumich will give the length of belt the distance bet by three, and divide by two the of the tiro pulless, mul-Horse-power of a beutres of both shafts will quoticnt added to doublo the ridth, the sum divided equls relocity in feet per the length required.
One inch single belt
Donble belts alsont 700 ft . mer 1000 ft . per minute $=1$ horse power.
and 00 ft . per minute, per one in in width power.
Tor double beits of great length ore
fer minute per inch of width per ho over large pulleys, allow about 500 ft . Power should be commun per horse-power.
beit, the upper side to carry the slack through the Iewer ranning alde of a Average breaking wei the slack.
201 bs ; 3 ply rubber, 600 its of a belt, $3-16 \times 1$ inch ridth. The co-eflicint of liss. The strength $\times 1$ inch wide. Leather, of Weight, rubber $=1-3$ of safety for a laced belt is belt inereases as its To Detrember $=1-3$ do.

> he distance in innti, Whene to cut Bu the upper sinches from centre of BELL Holes in Floons.-Measuro he distunce frome make a mark over the ring shaft to mader side of floor, marle on the floontre of shaft on inachecentre of shaft. Now measure istance between theor immediately benchithe to be driven to fioor, making aper, draw off the two narks. Transfer centre, then measure the iameters at off the driving and the driverer these figures to a bourd or at the distance from each other and the fis, after finding their - other and the floor line previously
obtained, and draw the lines representing the belt cutting the floor lines which will show where the belt passes through the floor. The drawing, can be made to a scale to reduce it to convenient dimensions, maintaining the proportions. The holes may now be marked off on the floor and cut with a certainty of being correct. In making the drawing it is best to do it full size on the floor if room can be had, and allowance must be made for the thickness of thooring.

Woming value of l'tleeys.- Pulleys covered with leather, iron pulleys polished, and mahogany pulleys polished, rank for working yaluo as 33 , 24, and 25 per cent. respectively, wood and iron meovered boing almost ddentical. The smoother a pulley is turned the greater will be the power imparted by it, and the better will be the hold of the belt. A pulley which is slighty higher in the middle of its width exerts the greatest power in retaining the belt from slipping off as well as making It last longer by imparting the greatest tension to the middle, or strongest part of the belt, to the manifest relief of the edges or weakest part. To obtain the best results from belts it is necessary, in lacing or cementing the cnds, that the latter should be cut exactly square across, and the junction should be equally true, otherwise the belt will be strained and torn on the tightest side, besides being rendered liable to run off the pulley at any time.

Belts connecting pulleys perpendicular to each other should be kept tight, and should me made of firm, well stretched leather, in order to work to the best advantage.

To compute the Honse-power of a belt, its velocity and the number of squabe inches in contact with the bmallest Puley being known.-Divide the number of square inches of belt in contact with the puliey by 2 , multply this quotient by the velocity of the belt in feet per minute, and this amount divided by 36,000 and the quotient will we the number of horse-power.

To compute the width of Belts mequred for transmittiva various numbers of horse-power.-Multiply 36,000 by the number of horse-power, divide the product by the mumber of feet the helt is to run per minute, divido the quoticnt by tho number of feet or parts of a foot In length of belt contact with the smaller pulley, divide the last quotient by 6 , and the result will be the desired width of the belt in inches.*

To Prevent Accidents from Sifarting. -These may be rendered impossible by loose slceves formed of tin or zinc fitted to the shafting, and lined with cloth or leather to prevent nolse.

To Grind Burrs into Fice with Water.-Make the face of the stone absolutely true, them bosom each stone slightly and grind them in water at a low speed. Let the speed be high enough, however, to bring the water to the lands. To grind in face the spindle should be slighty loose in the bush and the rmming stone made to oscillate $1-16$ of an inch or inore. This will prevent the burrs from creasing each other, and will leave a perfect face. The bosom of the mill should be two braus at the eye and one brim at the skirt ; just enough to prevent centre riding. A wedge face from eye to skirt, is faulty for the manufacture of pure flour. The bran should lie horizontally throughout its passage through the mill The furrows serve as squasling surfaces. Where there aro furrows, no bosoming is demanded. Leflict's Jews.

To Prevent Buriss IIeatino.-Dress from centre to circumference, lenving no bosom. Draw a line across the centre, each way, dividing a four foot bur into 16 square: ur divisions, and other sizes, more or les

[^0] 3, maintaining foor and cat it is best to do must be made
leather, Iroa for working uncovered begreater will be of the belt. A th exerts the well as making dle, or strourcakest part. To g or cementiug across, and the be strained and run off the pul-
should be kept her, in order to
ocity and the allest P'llley if belt in contact ity of the belt in the quoticut will
a transmitino by the number of the helt is to rum or parts of a $100 t$ the last quotient tin inclies.* may be rendered the shartiug, and
o the face of the nd grind then' in however, to bring hould be slighty te $1-16$ of an inct elh other, and will two brans at the centre riding. A ture of pure flow. through the mill re are furrows, no
to circunfercnee, ha way, dividiu! zes, more or las
owing each squast ound 1 ft . hight int le time nis a horse
in the same proportion, with all straight furrows. Let the draft be $\frac{1}{2}$ tho diameter of the rock. Lay off the lands and furrows \ddagger hach each observlug to dress smooth. Sink the furrow at the eye \ddagger linch deep for corn, and rum out to \mathbf{y}^{3} at the periphery; for wheat \boldsymbol{r}^{3} at the eye, and $\frac{1}{8}$ at the periphery. When thus furnished, crack the lands in straight lines, square with the draft of cross lines, so as to make the lands face in the runner and bed direct.
Stiple Alarm for Mill Hoppers.-Take a piece of apring steel about f in. wide, and bend one end of it so as to form a foot by which to screw it to the bottom of the shoe, the balance of the spring passing up throngh and into the hopper, and bent over at its upper end so ns to form a pendant to which rivet a small bell. As soon as the grain in the hopper gets below the bell, it will commence to ring and thas notify the attendaut. Leffel's Nevos.
Temperature of Oat Meal Kiln. Grinding of Oatmeal.-In response to a request from a correspondent, Mr. Gray, an experienced miller, says, "There is no given temperature in drying onts ; It is the plate you bring to the necessary heat, not the house. Oats ure not all the sane grade, some kinds are thimer in the hull thm others. I always preferred Ω cast iron plate in place of tlle, as you get more heat. I do not thiuk a perforated cylinder will make sweet menl, that is still the great want in the country, the meal is stewed in the drying, and has not a fine taste. The gond old plan to find out when your kiln floor is ready to receive the oaty is just to spit on the plate and if it raises the bead you can at once load your kiln six inches deep with the oats. The cold oats will cool it down a little when the miller must look to his furnace and keep up the same heat he started with-not any hotter. It will soon begin to steam, and in about half an hour skim off the oats with the hand down to the plate, and he will see whether it is hot or cold; when the oats are dry, say two inches on the bottom, that will be perhaps over an hour, thke the wooden shovel and clean off its breadth around three equares of the kiln by throwing them over on the oats. Then than the oats over to the one end (not the sides) neatiy turning them on top from the botlom. This takes some practice. When done your kiln head will be same as at begiming. It will steam again after about an hour ; when the steam is off, turn it over again but reverse the end (turn back). Don't let the furnace get too hot now, keep its temperature down rather. In about an hour more the miller will find his oats dry. He must now open his furnace doors and cool down, let the oats lay on the kiln 20 mimutes even after they are dry. He will find that this will give them a sweet taste. Nerer dry with seeds as it imparts to the meal a tar taste. I have tried a good many kinds of millstones for oat meal, and I find in my long experience that four foot porous burrs driven 1E0 revolutions, with a three toed rynd loose on the spindle and resting in 3 dents in the rumer, are the best. I think the 20 inch vertical burrs will make the oat meal too floury, as oat meal doa't take so much friction, the stones being kept so higgmors so than in making flour." Leffel's News.

[^1]

HARRISON'S IMPROVED STANDARD GRINDING MLLL.
The nbove illustration represents a new improved light standard 50 inch griuding mill as constructed by Edward Harrison, of New Haven, Comm. It weighs 600 lbs . and the manufacturer claims for it a grindiug capacity (with from (to 20 horse-power) of from 6 to 40 bushels per hour, and that with 1200 revolutions per minute, it has n grinding surface equal to \ddagger more than a common 48 inch run with 175 turms per minute. Ho claims that the high speed adds a largo grinding surface to the burry, that the grain is exploded into menl, brm, de., as soon as it touches to burrs, that the vertical position of the stones permits ensy delivery of the meal and cool grinding, and that there is not only no possibility of the runner following up the hed face and grinding itself out of true, but that, on the contrary, the runners nre self-facing (the bed being stationery, the runner rigid, no pivot, bale and driver being used) and grind themselves so true that with but littlo additional labor they will run to within the thonsandth part of an inch without tonching.
The mill in its complete form, combining gri.dder, scourer, and bolter, (the last two are shown in tho next cut) is a decided novelty, nud when contrasted with other mills, presents many startling points of difference. Briefly described, the bolter, or mill-case is a cylinder about 10 ft . loar by 3 it. in diam., made of staves and held together by a band and i:oul heads, into one of which the grinder is fitted, which is merely a 00 inch pair of burrs, set vertically, with the rumer turning on the inside, its spindle passing horizontally throngh the bed stone in a journal about 10 ins. in length. The scourer and bolter is comected to the grinder by ingenious machinery. On the top of the case a ventilator rims the eitire leugth, having an opening of about 20 superficial square feet, which is
mubst
ding nrouii reel-l mild trathe opanil
.onstructed for cooling the bolter quickly, the opening being covered with a fibrous cloth material which perinits the air to escape freely, causing a low and oven temperature, while detaining the fine flour dust. A discharge spont runs the whole leugth of the case. Tho silk bolter occuples nearly the entiro space in the cylinder, and is fully protected from hot

substances passing into it from tho grinder by a wire screen. Tho middings cloth is attached to the fince silk, on the reel, continuously, and aronind it the middlings chamber is formed the full circumference of the reel-head, through rhich passage: comnect to the delivery spout, in the maddle of tho eylinder hearl at the tail of the mill, while streeps are attached to the reel of the boiter for scraping the flour up to the discharge opening.
Horse Power of Streams.-Taling Wratt's estimato that the averine power of a horse is sumcient to raise $33,000 \mathrm{lbs}$. 1 foot in vertical helght per minute (by means of compomid palleys) a waterfall has one horse power for overy $33,000 \mathrm{lbs}$. of water flowing in the stream per minute, for each foot of fall. To compute the power of n stream, therefore, multh-

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation
ply the area of its cross section in feet by the velocity in feet per minute, and we have the number of cubic feet flowing along the stream per minute. Multiply this by 62t, the number of pounds in a cubic foot of water, and this by the vertical fall in feet, and we have the foot-pounds per minute of the fall ; dividing by 33,000 gives us the horse-power.

For example : Ω stream flows through a flume 10 feet wide, and the depth of the water is 4 feet ; the area of the cross section will be 40 feet. This velocity is 150 feet per minute $-40 \times 150=6006=$ the cubic feet of water flowing per minute. $6000 \times 62 \downarrow=375,000=$ the pounds of water flowing per minute. The fall is 10 feet ; $10 \times 375,000=3,750,000=$ the fcot pounds of the waterfall. Divide $3,750,000$ by 33,000 and we have 113 待 as the horse-power of the fall.

RuLE.-Divide the continued product of the width, the depth, tho velocity of the water per minute, the height of the fall, and the weight of a cubic foot of water ($62 \frac{1}{2}$ lbs.) by 33,000 .

Example.-The flune of a mill is 10 feet wide, the water is 3 feet deep, the velocity is 100 feet per minute, and the fall 11 feet. What is the horse-power of the fall ?

OPERATION.- $\left(10 \times 3 \times 100 \times 11 \times 62 \frac{1}{2}\right) \div 33,000=621$ horse-power.
"Almost every man has about him in his daily walk sufficlent appara. tus for a tolerably accurate estimate of the quantity of water flowing in any stream. A walking stick, a jack-knife, and a watch, provided tho wailking-stick is just three feet long, are all the tools necessary for the puriose.
"Take a section of the stream as uniform in breadth and depth as pos. siblo, and measure off upon its bank some definite length, say from one to four hundred feet, according to the rapidity of the water ; set a stake eirise to the water at each end of this sectiou, then throw into the water. of posite the upper stake, a green twig or limb of a tree or other object of such specific gravity as to nearly but not quite sink, and of such size that one portion shall remain at the surface while another portion nearly touches bottom, the object being to get the average speed of the water. The resistance caused by the bed and banks of the stream necessitate some care in this part of the experiment.

"Note accurately the time the object is passing from stake to stale, and repeat the operation several times and at as many points towards thic opposite shore; the sum of the several times divided by the number of points at which the speed was taken, gives the average speed of the water.
"Now measure the depth at several equidistant points across the stream, as a, b, c, d, e, f, (the diagram showing a cross section of the stream). Tile sum of these depths divided by the number of points at which the depth was measured gives the average depth ; this average depth multiplied by the breadth of the stream pives the area of the cross section ; this area, multiplied by the length of the section, gives the cubic contents of the body of water embraced in the section. Thus we hare the quantity and its velocity, which are elements necessary to show the value of a stream for manufacturing purposes, provided it has sufflcient fall anywhere to render it available.
"Allowing 62 pounds for each cubic foot of water, a supply of 1,000
per minute, an per minubic foot of foot-pounds s-power. ide, and the ill be 40 feet. cubic feet of nds of water $=3,750,000=$ and we have
o depth, tho the weight of
ater is 3 feet eet. What is
horse-power. ficient appara. ter flowing in , provided the泣sary for the

1 depth as pos. 1, say from one er ; set a stake into the rater. other object of ich size that one nearly touches ater. The recessitate some
stake to stal:e, ints towards tho the number of ge speed of the ints across thio s section of the ber of points at h ; this average area of the cross h, gives the cuble

Thus wo hare sary to show the it has sufficient
supply of 1,000
cubic feet per minute, and a fall of 10 fect, we hare $1,40 \times 62=62,000$ pounds ; $62,000 \times 10=6 £ 0,000$ pounds ..comentum, which last divided by $33,000=18.7$-horse power, one-fifth of which being diflucied for friction and loss, wonld leave in this case about 15 -horse power." The Millstone.

Water-wheels lose from 10 to 50 per cent. of the power, and the actual porer of the steam engine is less than that indicated by the horse-power, owing to a loss by friction, the amount of which depends on the perfection of the machinery, arrangement, \&c. For horse-power of steam-cngines, cousult page 370.
Performance, \&c., of a Horse - A horse will travel 400 yds. in 43 minntes at a zalk, 400 yds. in 2 mimutes at a trot, and 403 yds in 1 minnte, at a fallop. The usual work of Ω horse is tiken at 22,500 lbs. raised 1 foot per minute, for 8 hours per day. A horse will caryy 250 lbs. 25 miles per day of 8 hours. An average draught-horse will dravs $1,600 \mathrm{lbs} 23$ miles per day on a level road, weight of wagon included. The average welght of a horse is $1,000 \mathrm{lbs}$. ; his strength is equal to that of 5 men . In a hor'se mill moving at 3 feet per second, track 25 feet diameter, he exerts with the machine the power of $4 \frac{1}{3}$ horses. The greatest amount a horse can pull in a horizontal line is 900 lbs. ; but he can only do this momentarily, in continued exertion, probably half of this is the limit. He attalus bis growth in 5 years, will live 25, average; 16 years. A horse will live 25 days on water, without solid food, 17 days without eating or drinking, brt only 5 days on solid food, without drinking.
Table exhibiting the Perfurmance of a Honse at difterent rates of speed on Railroads, Canals, Turnpikes, \&e., Dhawing Force 83 h lbs.

Speed per hour. Milcs.	Duration of day's work -hours.	Useful offect for 1 day in tons, drawn 1 milo.		
		On canaltons.	On a railroadtons.	On a turn-piko-tons.
21/2	$111 / 2$	520	115	114
3	8	243	92	12
$31 / 2$	6	154	82	10
4	$41 / 2$	102	72	9
5	$2{ }^{18}$	62	57	7.3
6	2	30	48	6 -
7	$11 / 2$	19	41	5°
8	$11 / 8$	12.8	36	4.5
9	${ }^{\circ}$	9.	32	4.
10	$8 / 4$	6.5	28.8	3.6

Gain in Fute and Initiar Pressure of Steam Required weife Acting Expansively, Compared witit Non-Expansion or. Full Stroke.

$\begin{aligned} & \text { Point } \\ & \text { of } \begin{array}{l} \text { ofling } \\ \text { off. } \end{array} \end{aligned}$	$\begin{gathered} \text { Gnin } \\ \text { Fuc. } \\ \text { Ful. } \end{gathered}$	Imitial Pressure Required.		$\begin{gathered} \text { Point } \\ \text { of } \\ \text { Cuiting } \\ \text { Off. } \end{gathered}$	$\begin{aligned} & \text { Gnin } \\ & \text { fin } \\ & \text { Fucl. } \end{aligned}$	tmitial Pressuge REQURED.	
		$\begin{aligned} & \text { Cutting } \\ & \text { Ufi. } \end{aligned}$	Finll			$\begin{aligned} & \text { Cutting } \\ & \text { Off. } \end{aligned}$	Full Stroke.
Stroke.	Per cent.	Stroke.	Strokc.	Stroke.	Per cent.	Stroke.	Stroka
$\frac{7}{8}$	11.7	1.01	1.	$\frac{3}{8}$	49.6	1.32	1.
8	22.4	1.03	1.	F	58.2	1.67	1.
8	32.	1.09	1.	\%	67.6	2.6	1.
$\frac{1}{2}$	41.	1.18	1.				

improved compound surfa ${ }^{1}$ Condensing marine engine. Extraordinary Dety of Sieam Machinfry.-Two Locomotives be!onging to the Pennsylvania R. R. Co., are credited with the following performances :-
Engine No. 53 ran two years, ten months, and twenty-fivo days, and made 161,476 miles, withont once being off her wheels, or receiving other repairs than such as are common to round-house work. The cost of running her during this period was $\$ 1.88$ per mile. The other engine. No. 422, ran three years. six months and nineteen days, and made 153,280 miles, at a cost of $\$ 2.44$ per mile withont undergoing the slightest repairs.

To fund the Quantity of Water necessary for a Steam boit. En.-Ascertain the number of lbs. of coal consumed per hour, divide it by $7 \cdot 5$, and the quotient will be the desired quantity of water in cubic ft.

The abore sketch represents an outline of the least-complicated and lorest-priced form of compound-engine, as at present constructed on tho Clyde, in Scotland, and on the Delaware, in the United States. Tho cranks Y, Z, are coupled at an angle of 90°; only two cylinders, Λ unl B, are red ; a uniform distribution of steam pressure is secured by a large allowance of steam pipe, and by the steam reservoir, \mathbf{O}, \mathbf{P}, between the two cy linders. The valves, y, y, are adjusted like those of an ordinary cugine, the essential difference being that the steam exhausted by the first cylinder, A, is used over again in the second and largest one, B, the combination effecting a steam expansion of about six times, the pressure in the boiler usually ranging between 60 and 75 lbs . per square mech.
In the City of Peking, a 5,000 ton vessel, built on the Delaware for the Pacific Mail Company, there are two pairs of compound engines, with
cylinders of 51 and 88 ins. diam. The crank shafts are 18 ins. dian. Boiler pressure is 60 lbs . Steam is expanded 9 times. The boilers are 10 (cylindrical in form, with cylindrical flues), $10 \frac{1}{2} \mathrm{ft}$. long, 13 ft diam.; shells, $13-16 \mathrm{in}$. thick, with 520 ft . of grate surface, $16,500 \mathrm{sq}$. ft . of heating surface, and $1,600 \mathrm{sq}$. ft. of superheating surface, with smoke stacks, $82_{2} \mathrm{ft}$. diam., and 70 ft . high.

The simplest form of superheater used on board steamers consists of a wrought-iron drum filled with tubes. They are placed usually in the up-takes, oi at the base of the funvel of a marine boiler, so disposed that the waste heat and flame from the furnaces will pass through the tubes and around the shell of the drum, the steam being inside. Comnection is made with the boiler and steam pipes of the engine, and fitted with stop valves to govern the admission of steam according th requirements. A safety valve and gauge glass is also fitted, to show whether the superheater is clear of water, as primin: \boldsymbol{z} is linble to fill it up. It has been shown that this contrivance often effects a saring of 20 to 25 per cent. in the fuel consumed.
Table for finding the Consumption of Coal per Hour in Steamicr, either Paddle or Screvo (the same Screw bein! used throughout), at any Rate of Speed, the Consumption for a particular Rate beini known (At a given Amount of Coal, the Enqineer may determine the most prudent Rate of Engine for reaching next coaling Port.)

Speed.	Consumption of Coai.	Speed.	Consumption. of Coal.	Explanation.
$3 \cdot$. 216	9	5.83	
$3 \frac{1}{2}$. 343	91	6.86	The speed for the consump-
4	. 512	10	8.00	tion of an unit of coal is sup-
42	. 729	10.4	9.26	posed here to be 5 , which may bo
5	1.000	11	1065	5 miles or knots, or 5 times any
51	1331	113	12.15	number of miles or linots; then
6	1.728	12	13.82	If 5 of such number of niles re-
61	2.197	$12 \frac{1}{2}$	15.61	quire 1 unit of coal per hour, 9
7	2.744	13	17.58	of such units will, by the table,
73	3.375	132	19.68	require 5.83 units of coal, and 3
8	4.096	14	21.95	of them . 216 units of coal.
83 ${ }^{\frac{1}{2}}$	4.910			

It will be evident that this table is calculated on the principle that the horse poiver varies very nearly as the cube of the speed; the enormous increase of consumption at increased relocities is in fact a little greater than that shown by the Table.
The advautages indicated above to be obtained at low velocities are evidently independent of those obtained at those velocities by using the steam expansively. Engineer's and Contractor's Pocket Book.
To Preserve Boiler Tubes.-A coating of red-lead and boiled linseed oil, applied to iron boiler tubes acts as a powerful preservative.
A lacquer of linseed oil and caoutchouc applied to the walls of a stenm boiler prevents the adhesion of sediment so that the scale admits of easy removal.
To Protect Polisiled Steel on Iron from Rust.- Go over the surface with paraffine, or steep the iron for a few minutes in a solutlon of sulphate of copper and then transfer it into a solution of hyposnlphite of soda acidulated with hydrochloric acid. The result is a bluc-black coat ing not affected by air or water.
y of coal.
nciple that the the cnormous a little greater

- velocities aro
es by usiug the Book.
d boiled linseed ative.
valls of a stenm admits of casy

Go over the sur. a a solution of lyposnlphite of lue-black coat

Breakng and crushing straing of Jron and Steel. A.verage calculations.

Breaking strain of wrought iron $=\mathbf{2 3}$ tous per sq. inch of section.

Memoranda of Temperatunes for Engineers, \&c.-Melting ice is 32°; boiling water at atmospheric pressure or exposed to air 212°; steam at 60 lbs . pressure by stean guage 307°; usual heat of superheated steam 380° to 400°; smoke in the funncl 600°; water in hot well from 100° to 120°. For raising steam, the horizontal surfaces over the fire, have double the value of vertical surfaces for economy ni heat. Boiler plates increase in strength up to 570° of heat, and get eaker with the increase of temperature.

Temperatures at sundry subterrancan depths, in deg. Fahr.
At $68 \mathrm{ft} .47,9$ At 621 ft .50 .7 At 1290 ft . 58.3 At 1662 ft .61 .2
" 299 " 48.8 " 939 " 57.8 " 1414 " 59.4 " 1900 " 61.4
Fresh water begins to freeze at 320 , called the freezing point, but salt mater not till 28.10. The atoms lose the motion called heat, and becomo fixed in crystals.

Consumption of Fuel in Marine Boilers.-This will average abont $15 \frac{1}{3}$ los. of coal per square foot per hour. In 4 furnaces 3 ft . wide by 6 ft . loug with 72 sq . ft. of surface, about 12 tons of coal will be burnt per day.

$$
\begin{aligned}
& \text { feet. lbs. } \\
& 72 \times 15 \frac{1}{2}
\end{aligned}
$$

Thus, $\frac{x}{112}=9.9$ cwts. per hour, say 10 cwts . per hour or 12 tons per 112
day. A much simpler and equally correct rule is, that one foot in wldth of fire bar equals 1 ton of coa. per day; so that in the example above the total width of four furnaces is $3 \mathrm{ft} . x=12 \mathrm{ft}$ wide, or 12 tous per day as before.

A ship having 40 ft . beam and ordinary condensing engines, will require 40 tons of coni per day to drive her at 10 knots. The reason for stating this is, that it is well kaown from ordinary experience of average steamers that the beam squared equals the consumption of fuel for 40,50 , or 60 days, according to whether the engines are ordinary jet, surface coudensing, or compound. Thus, in present example :-
days

4,0)160,0
40 tons for one day for ordinary con- , deusing.

5, 0) 160,0
32 tons for surface condensing:

6,0) 160,0

26 tons 8 cwt. for compound englines.

A pair of surface condensing engines (not compound) having 40 Inch cylinders, doing average work, will require 16 tons of coal per day; it belige a well known practical fact that the diameter of one cylinder, squared and divided by 100 , gives the average consumption of fuel in this class of engine per day. Thus, in present example :-
$42^{2}=40 \times 40=1000$; then, $\quad=16$ tons per day.
Compound engines burn $\$$ less, and ordinary jet $\$$ more than the abova Reed's Engineer's Hand Book.

Ratio of Combustion per hour under vamous Borlers.-Coto nish, $=3 \frac{1}{2} \mathrm{lbs}$. per square foot ; land boilers $=10$ to 20 lbs . (English) 13 to 14 lbs. ; marine boilers (uatural draught), 10 to 18 lbs ; (blast), 50 to 60 lbs ; ; locomotive boilers, 80 to 120 lbs .
to find Horse Power of Engine to raise Water to a givin Heiaht. - Weight of column of water \ll by its velocity, in feet, per minute, product $\div 33,000=$ H. \mathbf{P}.

To find the Velocity required to Discharge a given volemp of Water in any Given Time.-Number of eubic feet $\times 144$; proluct \div by area of pipe, or opening in inches $=$ Velocity.

To Ascertain the Bread'th of the Yohts.-Half the throw of tho valve should be at least equal to the lap on the steam side added to the breadth of the port. If this breadth does not give the required area of port, increase the throw of valve until the areat is attained.

Proper Lift of Poppet Valves. -The best results from poppet or couical valves are obtained by giving them a lift equivalent to one half the semi-diameter of a circle, or $\frac{1}{4}$ the diameter of the ralve. This will afford an opening equivalent to the area of the port and the eccentrics and the lifting toes should be adjusted so as to produce this effect.

To find Dimensions of Chimney for a Land Engine.-Multiply number of lbs. of coal consumed under the boiler per hour by 12 ; divide the product by square root of the height of elimney in feet. Quotient is area of chimney at smallest point in square inches.

Tabie Shoming Diameter and Height of Chimney forany Boilen

Morse-powe. of Lobler.	IIt. of Chimney in Feet.	$\begin{aligned} & \text { Interior Dinueter } \\ & \text { at 'rop } \end{aligned}$	1. 1. of Boiler.	$\begin{aligned} & \text { Alt. of Chimney } \\ & \text { in Fect. } \end{aligned}$	Interior Diameler at Top.
10	60	14 inches.	70	120	30 inches.
12	75	14 "	90	120	31 "
10	90	16 "	120	135	38 "
20	99	17 "	160	150	43 "
30	105	21 "	200	165	47 "
60	120	26 "	250	180	62 "
60	120	27 ،	380	105	57 "

To Clean Gneasy Cotron Waste.-Boil it in a strong solution of common soda in water, and save the resultant soapy liquid to keep your drills and reamers lubricated when drilling iron.

To Clean Grease from Bolits.-Moisten with benzine, roll in sar. dust, and brush afterward.
Calculations regarding Dimensions, Power, \&c., of Stray Boilers.-Good anthorities consider it quite a safe practice to allow ${ }_{12}^{9}$ square ft . heating surface for Cylinder boilers per H_{6}. P.

One half the circumference of the boller multiplied into the length and reduced to square fect will give the heating surface in cylinder boilers; or, the heating surface in the shell of flue and tubular boilers. To find tho heating surface in the tubes or flues, multiply their external circumference by their length and reduce to square fect. The heating surface of the tubes or flues added together and then adding the heating surface in the shell, will give the total heating surface. This divided by 12 or 15 as the caso may be will give the horse power of any particnlar boller in terms of heating surface as given above. This is to be understood as being purely conventional and arbitrary, and not the actual horse power, which can only be determined by an experimental test, maide by it competent expert. nglish) 13 ast), 30 to A Givin t, per mintan volusp - 144 ; pro-
hrow of tho dded to the red area of
n poppet or to one hall d. This will ccentrics and E. - Multiply 12; divide the otient is area

ANY Bomer.
Interior Tiameter
at Top.
30 inches.

31	
38	$"$
43	$"$
47	$"$
62	$"$
57	

pg solution of to keep your
e, roll in sarp-
c., or Stram co to allow r HI. P.
"
tho length and inder boilers ilers. To find terual circumeating surface cating surface led hy 12 or 15 cular boiler in understood as 1 horse power, ide by a com-

Tho following Tables will serre as a guide in tho selection of boilers, and may bo quite serviceable to millwrights and others.

Table I.-H. P. of Cylinder Boiler at 9 feet.
H. P. Diam. Length. Heating Surface

10	$36 ~ i n$.	19 ft.	$00 \mathrm{sq} . \mathrm{ft}$.
12	38	22	108
15	40	26	135
18	44	28	162
20	46	30	180

Table II.-H. P. of 2 Flee Bollers at 12 feet.
E. P. Diam. Boilcr. Dinm. Flues. Length. Heat. Surf.

15	34 in.	10 in.	18 ft.	$176 \mathrm{sq} . \mathrm{ft}$
18	366	12	20	222
20	40	14	20	254
22	44	16	18	260
25	46	17	20	302

Table III.-H. P. of of Flue Bohers at 12 feet.
H. P. Diam. Boiler. Diam. Flues. Leugth. Heat Surf.

20	44 in.	$\left\{\begin{array}{lll}2-10 \mathrm{in} . & 14 \mathrm{ft} . & 245 \mathrm{sq} . \mathrm{ft} . \\ 3-8\end{array}\right.$		
25	46	$\left\{\begin{array}{l}1-13 \\ 2=9 \\ 2=8 \\ 20\end{array}\right.$	50	16

Table IV.-H. P. of Boilers witif 6-incil lap welded Tubes at 12 feet.
H. P. Diam. Length. No of Fhes. Hent Surf.

15	42 in.	12 ft	6	179 ft.
20	42	16	6	239
25	44	18	7	302
25	46	18	9	363
30	46	90	10	434
36	46	20	12	503
42	48	20		

table V.--H. P. of Boilers with 3-inch tubes at 15 feet.
H. P. Diam. Length. No of Tubes. Heat Surf.

15	36	in.	8 ft.	30
19	36	10	30	227
$\mathbf{f t}$.				
22	36	12	30	339
27	40	12	36	409
31	44	12	42	465
36	44	14	42	543
42	48	14	50	$\mathbf{6 3 8}$

an regard to the diameter and length of a boiler, it might bo observed khat cylinder boilers are usually made from 18 to 30 leet in length, and rom 30 to 48 inches in diameter. Flue boilers from 18 to 24 feet in ength, and from 36 to 60 inches in diameter. Tubular from 8 to 18 feet mength, and from 30 inches to 5 feet in diameter.

Boilers having lap-welded tubes increase in extra cost when their lengths exceed 18 feet. These tubes would have to be made to order, which, in case of repairs, might cause considerable loss of time in having to wait for them to be made. It is better to keep the dinmeters of boilers below 4 feet than go over it, using two or more boilers as may be needed to furnish the requisite amount of steam.

In large and important works the subjects of boilers, engines, etc., ought to be referred to a competent mechanical engineer, who will advise as to the kind, size, and number to be employed. The Mill Stone.

To find the contents of cylinder boilers multiply the area of the head in inches by the length in inches and divide the product by 1728 ; the quotient will be the number of cubic feet of water the boiler will contain. Example : Diameter of head, 36 inches; area of head, 1017.87 inches ; length of boiler, 20 feet or 240 inches. Now multiply 1017.87 by 240 and the prodnct will be $244,283.80$; divide this by .1728 and the result will be 141.37 cubic feet, which will be the conteuts of the shell.

In flue boilers, multiply area of the head in inches by the length of the shell in inches; multiply the combined area of the flues in inches by their length in inches, subtract this product from the first and divide the remainder by 1728 ; the quotient will be the number of cubic feet of water the boiler will contain.

To find the Length of Belting when closely Rolled. The sum of the diameters of the roll and the cye in inches, multiplied by the number of turns made by the belt, and this product multiplied by the decimal .1309, will be the length of the belt in feet. Auchinchloss.
To Measure Scantlings, Joists, Plank, Sills, \&c.-Rule.-Multiply the width, the thickness and the length together (the width and thich ness in inches and the length in feet), and divide the product by 12 ; the result will be the square feet. To Measure Boards-Multiply tho length (in feet) by the width (in inches) and divide the product by 12 ; the result will be the number of square fect it contains.
Explosive force of various substances used for fire arms, artillery, blasting, \&c.

	IIeat.	Yolume of Gas.	Estimoted Expooive rorce.
Blasting Powde	509	0.173 liter.	68
Artillery "	608	0.225 "	${ }_{139}^{137}$
Sporting "،	641	$0.216{ }^{\prime \prime}$	139
Powder, Nitrate of Soda for its base.......	764	0.248 "	100
Powder, Chlurate of Potash for its base..	972	0.318 "	309
Gun Cotton	${ }_{685}$	0.801 "	${ }_{428}$
Picric Acto Potash.	687 878	${ }_{0}^{0.7850}$ "	680
Gmin Cotton mixed with Chi. Potash	1420	0.484 "	680
Picric Acid	1424	0.408 "	582
Picrate	1422	0.337 "	478
Nitro-Glycerin...	1320	0.710 "	039

The above instructive table is by the celebrated M. Berthelot, tho further describes nitro-glycerin as "really the ideal of portable force. It burns completely without residue ; in fact, gives an excess of oxygen it developes twice as much heat as powder, three and a half times mon gas, and has seven times the explosive force, weight for weight, and taken volume for volume, it possesses twelve times more energy." Fron the extreme danger of the work, nowe but a competent chemist should attempt to manufacture it. to order, in having of boilers be uceded
rines, etc., on will adill Stone. of the head - 1728 ; the ir will conead, 1017.87 y 1017.87 by and the rehe shell. length of the in inches by nd divide the cubic feet of
ed.-The sum d by the num by the decimal
-Rule. -Muntividth aud thick uct by 12 ; the iply the length by 12 ; the re.
br fire arys,

mee	(estimited
liter.	137
"	139
"	190
"	472
"	536
"	680
"	582
	478 989

Berthelot, mho f portable fore. xcess of oxygen half times mory for weight, and e energy." frow

Sany other explosives derive their energy from nitro-glycerin. Dynamile is nitro-gly cerine compounded with rotten-stone, or silicious, or infusorial earth, tripoll, \&c.; a compound of nitro-glycerin and saw-dust has been sold under the uaine of dualin; a mixture of plaster of Paris and nitro-glycerin has been sold muder the name of "selenitic powder;" and fine powder, blended with nitro-glycerin, has been vended under the name of "lithofracteur," or "rendrock." The practical miner will be interested in the above, as well as in the following :-
table bhowing the quantity of oold to the ton of ore, corresponding to the weigits in grains ontained from 400 grans of mineral.

If 400 graing o! Ore pive Fine Gold,	One ton ofOrefer .will yield,			If 400 Grains of Ore give Fine Gold,	$\begin{aligned} & \text { One ton of } \\ & \text { will yield, } \\ & \text { wre } \end{aligned}$		
Grains.	Oz8.	Dwis.	Grs.	Grains.	Ozs.	Dwts.	Gra.
.001...........	0	$\stackrel{1}{ }$	15	.200.........	16	6	10
.002	0	3	0	. 300.	24	10	0
.003......... .	0	4	21	. $400 . . .$.	32	13	8
.04...........	0	0	12	.500.	40	16	16
. 003.	0	8	4	.600....	49	0	0
M 0	0	9	19	. 700.	57	3	8
207.	0	11	10	.800......... .	65	6	16
208........... .	0	13	1	. 900	73	10	0
.099.......... .	0	14	16	1.000........	81	13	8
.010...........	0	16	8	2.000	163	16	16
D20.	1	12	16	3.000.	245	0	0
1330...........	2	9	0	4.000....	326	13	8
M00.......... .	3	5	8	5.000	408	0	16
恻............	4	1	10	6.000....	490	0	0
@ 0	4	18	0	7.000	$5: 0$	13	8
, mio............	5	14	8	8.000....	683	6	16
\&RO........... .	6	10	16	9.000....	735	0	0
	7	7	0	10.000....	816	13	8
10...........	8	3	8	20.000....	1633	6	16

Mr. Black, of San Francisco, estimates that in mining operations the rerage cost of handling a cubic yard of auriferous gravel with the pan $\$ 20 ;$ with the rocker, $\$ 5$; with the long tom, $\$ 1$; and with the hytaulic process, 20c. See other items for miners on page 451. An exdent compilation on this subject is "The Miner's Hand-Book," by dius silvermith, for sale by D. Van Nostrand, New York.
table showing the Average Velocities of Various Bodies.,

ht " $\ldots, \ldots, \ldots, \ldots, \ldots .192000$ miles per sec.
cricity

288000 " "،
Parker's Philosophy.

Enombous Results of Steam Powne. - The nggregate ateam-power
in ise in the world is at present three and one-half millions horse-power employed in stationary engines, and ten millions horse-power in locomotive engines. This force is maintained without the consumption of animal food, except by the miners who dig the coals, and the force maintained in their muscles is to the force generated by the product of their labor abont 1 to 1,080 . This steam-power is equei to the working force of 25 mililions of horses, and one horse consumes three times as much food as one man. The steam-power, therefore, is equiralent to tho sasing of food for 75 iniilions of haman beings. Further, three power-looms attended by one man, produce 78 pieces of cotton fabric, against 4 pieces produced by one hind-loom, worked by one man in the year 1800. A carpenter's plazing machine does the work of twenty men.

SUGAR MILL.
Sogar Mille.-The sugar canes are crushed in a press consisting of three holiow cast iron rollers, represented in the cut by abc, placed horizontally in a cast iron frame. By means of the screws, i, i, the approximate distance of the roliers is adjusted. One roller is half as large as the others, and is moved by three cogged wheels fitted on to the axis of the roliers. The sugar canes are transferred from the slate gutter, d, d, to the rollers, a, c, which press them a little, and from thence they are carried to the arched plate, n, to the rollers c, b. The pressed sugar canes anl over the gutter f, the expressed juice collecting in $!, g$, and ruming of through h. The middle roller is termed the king roller ; the side cylim ders are individually the side rolier and macasse.

Sugar Mill. For Expressing 20,000 lbs of Cane Juice per day. Non-condensing Engine. Cylinder 15 ins. in diameter by 4 ft . stroke Pressure, 50 lbs. per sq. in., cut off at $\frac{1}{3}$ the stroke of the piston. Rerolu tions. 36 per minute. Boiler. One of 62 ins. diam. by 30 ft . in length with $218-\mathrm{in}$, return flues. Grates. 36 Square ft. Rolls. Two sets of thre cuch, of 24 ins. diam. by 5 ft . in iength ; geared $2 \frac{1}{3}$ to 36 of engine, givin a speed of periphery of 15 ft . per minute. Fly-Wheel. 18 ft . diam weight 5 tons.

This arrangement of a second set of rolls is a late improvement; if object, that of expressing the cane a second time. An incrense of 30 p.
mery whe ,or by afi sent, see p a r, althoug metal, and

For a Cror of 3000 Boxps of Scgar of 500 lbs. Eacif.-Cylinder. 10 jus. in diam. by 4 ft. stroke. Pressure, 60 lbs , per square in. Rcerofutions 48 , driving 1 set of rolls, 24 fus by 4 ft., at a speed of periphery of 36 ft . per minute. Boiler. 52 ins. by 24 ft ., with $2 \mathbf{1 6 - i n}$ return flnes. Grote Surface. 25 square ft. F'ly Wheel. 16 ft diam.; weight. 4 tous. Empinecrs' and Contractors' Pock'et Book.
Cotton Press. Non-condensing Euyine. For 1000 Bales in 12 hours. Corlinder 14 in . in diam. by 4 ft . stroke. Pressure. 40 lbs . rer $\mathrm{Eq} . \mathrm{Fa}$ fuld tirnke. Revolutions. 60 per minute. Boilers. Three, plain eylindical, mithout flues, 30 in . in diam. by 26 ft . in length. Grates. 32 square ft . Presses. Four, geared 6 to one, with 2 screws each of $7 \frac{1}{1}$ in. diam., ly 18 in. pitch. Shaft (Wrought Iron). Journal, 81 in. Fly-uchecl. 16 ft . diameter, weight, 4 tons.
Reles to Ascertain tife Pressure ov Slide Valifes.-Multiply the unbalanced area of the valve in inches by the pressure of stenm in lbs. per fquare inch, and the weight of the valve in lbs., and multiply tho sum by 0.15
To get an Engine into Line and Square time Shaft.-Set up tro lines, one parallel to the axis of the eylinder, or through the eylinder, If possible, and the other perpendicular to the first, in the same plane. These are reference lines to measure from, to bring the shaft and guido into line.
Hing to Macminists.-In turning steel or other hard metal, use :a drip composed of petroleum 2 parts, and turpentine 1 part. This will comme easy cutting and perfect tools when otherwise the work would stop owiug whe breakage of tools from the severe strain.
to Melt Brass Turnings and Filings witil Little Wiste.Compress firmly in a crucible until it is full ; then cover, and lute tho ap with pipe or fire-clay. Brass scraps may be melted witin new brass. putting it in with the zinc after the copper is melted.
To Temper Anvils.- Heat the anvil and inmerse it in a tank of wh water to Ω depth of two or three inches, or play a stream of cold rater from a hose on its face.
flROPER SIZF, SPELD, \&C., OF FMERY WHEELS.

Diam. of Wheel in inches.	Rev. per miuuto.	Number of Emery.	Grade of Cut.
	5600.	8 to 10..	Wood Rasp.
	$3000 .$. 16 to $20 .$.	Rasp File.
	2000. 24 to 30..	Rough Filo.
	1500. 36 to 40..	Bastard File.
	1200. 46 to 60..	Second Cut File.
	1100. 70 to 80..	
	750. $120 . .$.	Dead Smooth File.
	700.		
................	600.		...
...........	550		
	450		
	400.		
	325.		

mery wheels may be trued by means of a diamond tool, a red hot bor by a file applied to the wet periphery of the wheel. For emery rent, see page 424. In using emery paper or cloth for finishing, the ar, although the easlest to destroy, imparts the smoothest polish to metal, and the longer it is used the better it polishes.

Number, Weiget, Size, Length, and Breath of Tin Plates.

prand Mare.	$\begin{array}{\|l\|l} \text { No. } \\ \text { Nheet } \\ \text { inBox. } \end{array}$	Length and ${ }_{\text {Breadth. }}$	Weight per Box.	
		Inches. Taches.	Cwi. qr. lbs.	
1 C	225	14 by 10	$1 \begin{array}{lll}1 & 0 & 0\end{array}$	
$1 \times$	225	14 by 10	$\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1\end{array}$	
1 xx	225	14 by 10	$\begin{array}{lll}1 & 1 & 21 \\ 1 & 2 & 14\end{array}$	Each $1 \times$ adrances
1 xxx	225	14 by 10	$\begin{array}{lll}1 & 2 & 14 \\ 1 & 3\end{array}$	\$1.75 to \$2.co
1 xxxx	225	14 by 10	$\begin{array}{lll}1 & 3 & 7 \\ 2 & 0 & 0\end{array}$	
$1{ }_{1}^{1} \mathbf{x x x x x x}$	225	$\begin{array}{ll}14 & \text { by } \\ 14 & \text { by } \\ 10\end{array}$	$\begin{array}{rrrr}2 & 0 & 0 \\ 2 & 0 & 21\end{array}$	
D C	100	17 by 121	$\begin{array}{lll}0 & 3 & 14\end{array}$	
D x	100	17 by 12	$\begin{array}{lll}1 & 0 & 14 \\ 1 & 1\end{array}$	* \% 우의
D xx	100	17 by 12.	$\begin{array}{lll}1 & 1 & 7\end{array}$	$\bigcirc{ }^{\circ}$
D xxx	100	17 by $12 \frac{1}{2}$	$\begin{array}{lll}1 & 2 & 0\end{array}$	成包
	100	17	$\begin{array}{lll}1 & 2 & 21 \\ 1 & 3 & 14\end{array}$	타앲ㄹ
D xxxxxx	100	17 by $12{ }^{2}$	$\begin{array}{lll}2 & 0 & 7\end{array}$	
S D C	200	15 by 11	$1 \begin{array}{lll}1 & 1 & 27\end{array}$	-
S D \quad I	200	15 by 11	$\begin{array}{lll}1 & 1 & 2 \\ 1 & 20\end{array}$	To ${ }^{\text {at }}$
S D xx	200	15 by 11	$\begin{array}{lll}1 & 3 & 13\end{array}$	
S D xxx	200	15 by 11	$\begin{array}{lll}2 & 0 & 6 \\ 2 & 0\end{array}$	
	200 200	15	$\begin{array}{lll}2 & 0 & 27 \\ 2 & 1 & 20\end{array}$	
S D xxxxxx	200	15 by 11	$\begin{array}{llll}2 & 1 & 2 & 13\end{array}$	
			about	
T T T Taggers,	225	14 by 10	100	
1 C	225	12 by 12)	
1 x	225	12 by 12		
1 xx	225	12 by 12		
1 xxx	225	12 by 12		
1 xxxx	225	12 by 12		About the same welght
1 C	112	14 by 20		above of slmilar brand,
1 x	112	14 by 20		14 to 10.
1 xx	112	14 by 20		
1 xxx	112	14 by 20		
1 xxxx	112	14 by 20)	
Leaded or ${ }^{1 \mathrm{C}}$	112	14 by 20	$\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0\end{array}$	
Ternes $\} 1 \mathrm{x}$	112	14 by 20	$1 \begin{array}{lll}1 & 1\end{array}$	For Roofing.

ae samo weight :, as the plites isimilar brand,

3oofing.
QUANTITY AND M WORK.
tity and Quality. IX, IX in bod? readths high.
s, S D X in bods
DX

DIAGRAM FOR BEVEL COVERS, \&C.

 Varnishes for Pipfs and Iron-Work 6 lbs. ; rosin, 1 l lbs. ; lamp-black, 3 lork.-Coal tar, 30 gals. ; tallow, 20 lbs ; asphalturoughly together, aud apph slaked lime, finely sifted, an iron kettle, very carefully, to pered rosin, 5 lbs. Heat all tor.-Tar oll, an iron kettle, very carefully, to prevent ignition. Heat all together in

To S
Describe the angle MI tops and Bevel Covers For Vessels you desire the breast, erect and from the point F, the altitude height mark the point E one-half th perpendicular line H ', then antude height mark the point G one-half the diameter of the can; then on the line C. line B to cross throug-half of the opening in the can, and on the line \mathbf{H} one foot of the compasses points E and G to interp of breast ; draw the delineate the circle $E N$, T point I and the other the line M; place point G and outline the L; next, span the compasses fre point E, and he compasses six times on the G D K; then span from from point I to d the breast. The allowance circle $\mathrm{E} N \mathrm{~N}$, whin from A to E , and step ines. \quad he allowance for the locks is represented the dimensions Beactiful Bronze, appip resented by the dotted uiline red (fuchsine), and 5 of aniline to all Metals.-Take 10 parts per cent. alcohol, taking care to he puple, and dissolve in 100 parts of asand or water bath. Acare to help the solution by placing the parts of anoic acid are added, and soon as the solution is pfecing the vessel atil the greenish colo and the whole is boiled from is effected, 5 parts of biored, brilliant bronze of the mixture is transformed to ten minutes intation Nickronze. Apply with a brush. tsome tim Nickel. Plating, -Conrborush.
mixture of 3 parts by weirht of colated zinc is boiled parts by weight of sal ammoniac, and

10 of water, the objects immersed and stirred up with a zinc rod. The deposit is silvery bright, and resists mechanical action as well as a coniing of nickel. The process can be recommended for goods which aro meant for a second coating of some other metal, since any other is easily deposited on zinc.

How to Strike out the Frestrum of a Cone.-In the figure F GH D represent the desired frustrum ; continue the lines D E and G If until they meet at the apex C; then from C as a centre, with the radius $\mathbf{C H}$, lay off the arc $\mathbf{H} \mathbf{B}$; also from C , with the radius $\mathbf{C} \mathbf{G}$, describe tho $\operatorname{arc} G A ;$ makc $G A$ twice the length of $E F G$, drawing the live $C A$, and G H A B, is the desired outline of the plate you require.
to find tile area of an ellifse.
Rule.-Multiply the longer diameter by the shorter diamster, and by $\cdot 7854$, and the product will be the area.

Example.-Required the area of an cllipse whose longer diameter is 6 inches and shorter diameter 4 inches?

$$
6+4-7854=188496 \text {, the area }
$$

To find the surface oir a spinene on globe.-Mnliply the diameter by the circumference ; or multiply the equare of the diameter ly 3.1416 ; or multiply four times the square of the radius by $3 \cdot 1416$.

No. of American Machine made Cut Nails in a Pound as verified by actual count.

Size.	Number.	Size.	Number.	Size.		Number
3 penny		${ }_{8}{ }_{8}$ penny		12 1en		
${ }_{5}^{4}$ "	275	$8{ }^{\text {\% }}$	$\ldots 100$	20		$.{ }^{2} 3$
5 "	. 227	10 "	. . 69			
- SliKes. Ship						
No. 4......1-4 in. 13 to 1 lb . ${ }^{\text {No. }}$ (. . . . 5 -16 in. 5 to 1 lb .						
No. 6.	-8-8 in.	5 "	No. $63-38$	in in.		5 "
No. $7 . .$.	-8 in.....	4 "				
			No. 8 3 -8 in........ 3^{3}			
			No. 9.9-16 in. 3 "			

Note on Forangs.-Iron, while heating, if exposed to air, mill oxydize; when at white heat, if in contact with conl, it will carbonize, of become steely. Iron should be heated as rapidly as possible.

To Restore Burnt Inon.-Give a smirt heat, protected from the nir ; if iujured by cold hammerin!, anncal slowly and moderately ; it hard or steely, give one or more smart heats, to extuact the carbon.
rod. Tho as a contwhich aro er is easily

the figure E

D E and G ll th the radius describe the ; the line C A,
moter, and by
diameter is 0
ly the diameter eter by $3 \cdot 1416$;
a Pousd as
 vill carbonize, or :ible.
tected from th moderately ; in the carbon.

Cost of a Pennsylyania Railhoad Passenger Car.-The London Engineering gives in detail the cost. of constructing one first-class Standard Passenger Car, at the Altoona shops of the Pennsylvauia R.K.; the total cost being \$4,423.75: The principal items are as follows :-

		67 Sash Balances.......	4461
Proportion of Fuel and Stores	2861	61 Lights Glasses.............	6583
2180 feet Poplar	8680	2 Stoves	7756
334 feet 1 shi.	12708	25 Sets Seat Fixtu	5050
1100 feet Pins	2090	3 Bronze Lamps.	1350
2350 feet Y cllo	7050	2 Bronze Door Lo	1520
800 feet Oak	1000	Butts and Hinges.	1558
450 leet Hickory	1350	13 Basket Rack	7735
700 feet Michigan	4900	12 Sash Levers.	4200
400 feet Cherry.	1600	61 Bronze Window	2440
439 feet Maple vin	2414	61 Window Fastenel	1647
4 palrs Wheels and Axles.	33285	238 Sheets Tin	4144
2 pairs Passenger Car Trucks	bis3 68:	273 lbs. Gal vanized Iron	2531
13 gallons Varnish	5224	96 yards Scarlet Plush.	22887
45 lbs Glue	1433	44 yards Green Plush	10999
293 lbs . Iron.	8775	61 yards Sheeting	1030
${ }^{5} 92$ lbs. Casting	1690	243 lbs. Hair	7205
Screws.....	5188	12 Springs.	2206
Gas Regulator and Gauge	2525	12 Spiral Elliptic Springs.	2029
2 Two-Light Chandeliers..	5072	1 Head Lining.	8063
2 Gas Tanks...........	8400	2 packets Golil L	1458
1 Air-Brake, complete.	13170	Various small items	26144

84,423 75
Comparative Cost of Freight by Water and Rail.-The Misisisipi Transportation Co. have proved by antual test that a single Towbat can transport at one trip from the Ohio to New Orleang, 29,000 tous of coal londed in barges. They estimate that in this way the boat and its tow, worked by a few men, carries as much freight to its destination as 3,000 cars and 100 locomotives, manned by 600 men, could transport, and they propose to undertalio the shipment of wheat, pork, and ther produce on the same plan.
A standard locomotive of the New York Central Railroad, 32ł tons reight, with cylinders 16 inches diameter, 24 -inch stroke, 60 -inch drivers rith four drivers and four truck wheels, will hanl over the Central Railmad, with its level grades and straight line, 1,000 tons, or say 50 loaded ars. The same locomotive would work as follows :
Mrioot grade................... 460 tons............. :....or say 23 loaded cars.
40:000 grade...................... 200 tons..................... or say $141 / 2$ loaded cars.
(0.foot grailo.....................\#0s tons....................or say 10 loaded cars.

Mfoot grado 150 tons....................or say 8 loaded cars.
mfoot grade..................... 120 tons.....................or say 6 loaded cars.
Paseenger Cars-4 feet $8 \frac{1}{2}$ inches Gauge.-For 60 persons; Body Pit: : length over platform, 54 ft ; width, 9 ft. 6 ins. ; height at sides, 7 10 ins.; at dome, 10 ft .3 ins. ; saloon, $6 \mathrm{ft} . \times 2 \mathrm{ft} .9$ ins.; passage bereen seats, 1 ft . 10 ins.; seats 1 ft .4 ins. wide, 3 ft . 2 ins. long inside, 1 4 ins. from floor; sash lights, 2 ft. $\times 2 \mathrm{ft}$. 7 ins.; doors, 2 ft . $3 \mathrm{in} . \times 6 \mathrm{ft}$. ins; framing -2 side sills, 5$\} \times 9 ; 4$ inside $d ., 4 \times 9$; end do., 6×9; ansom beams, 9×14; pillars, 2×3; end do., 5 ins. rad. ; flooring $: \frac{1}{s}$ a, double, laid diagonal, crossed at angle of $45^{\circ} ; 2$ truss rods, $1 \frac{1}{8}$ ins., on ; dome braced by iron knees, $2 \times \frac{8}{8}$ ins. ; platforms, 2 ft .6 ins. wide; raper beam, 7×8 at centre, $4 \times 3 \frac{1}{2}$ at ends ; weight, empty, $39,000 \mathrm{lbs}$; nd weight per passenger, 650 lbs .; weight. loaded, $46,980 \mathrm{lbs}$. ; load on Fl wheel, light, 3,250 lbs. ; if loaded, $3,915 \mathrm{lbs}$.
Sleeping Coach.-For 64 passengers: Body 61 ft . long, 8 ft .10 ins , No inside, 7 ft .10 ins . high at sides, 9 ft. 7 ins. at dome; carried on
twelve 33 -in. wheels, 16 elliptic springs, 36 -in. centres, 5 leaves, $5-16$ ins., 1 do., $4 \times 3 \frac{1}{2}$, steel-weight, 939 lbs. each-and 8 rubber springs ovez axles, 8×7; dead weight, without passengers, 26 tons, or 812.5 lbs. pet passenger ; if loaded, 945.5 lbs. per passenger ; load on each wheel5.042 lbs. Western Palace Cars, on 16 wheels, loaded, weigh, $78,500 \mathrm{lbs}$, or $4,907 \mathrm{lbs}$. load on each wheel.

Box Cars. - 27 ft .5 ins. long, 8 ft .6 ins . mide, 7 ft .3 ins. high at sides, 8 ft . at roof ; doors, $5 \mathrm{ft} . \times 5 \mathrm{ft}$. 10 ins.; track to top of car, $10 \mathrm{ft} .10 \mathrm{ins}$. ; timbers -2 side sills, $4 \frac{4}{4} \times 8 ; 4$ inside do., $3 \frac{1}{2} \times 8$; cnd do., $5 \times 8 \frac{1}{2}$; transoms, 5×12; pillars for doors, 32×4; end do. $3 \frac{1}{2} \times 4 \frac{1}{2}$; plates, $5 \times 3 \frac{1}{2}$; ridge beam, $2 . \times 3 \frac{1}{2}$; rafters- $1 \frac{3}{4} \times 3 \frac{1}{2}$ at sides, $1 \frac{13}{4} \times 12$ at centrn; intermediates $1 \frac{7}{4} \times$ 2 f ; wcight, $17,800 \mathrm{lbs}$. ; do., loaded, $37,800 \mathrm{lbs}$. ; dead weight for each ton carried, if loaded, 1,780 lbs. ; load on each wheel, if light, 2,29 lbs.; if loaded to capacity, $4,725 \mathrm{lbs}$.

Baggage Cars.- 45 ft . long, 9 ft. 4 ins. wide, 7 ft .4 ins. at sides, 9 ft . at crown of roof; end doors, 2 ft . 2 ins. $\times 6 \mathrm{ft} .4 \mathrm{in}$. ; end side doors, 3 ft . $\times 6 \mathrm{ft}$. 2 ins.; centre doors, 3 ft .10 ins. $\times 6 \mathrm{ft} .2$ ins.; timbers- 6 longithdinal sills, $5 \frac{1}{3} \times 9 \frac{1}{3} ; 4$ truss rods, $1 \frac{1}{3}$ ins., iron ; weight of car, $27,000 \mathrm{lbs}$; eapacity, 12 tons ; total weight, if loaded, $51,000 \mathrm{lbs}$. carried on 8 wheelis $=6,375 \mathrm{lbs}$. on each wheel.

Coal Cars- 8 Wireels.-10-ton, 8 -wheel cars: Body, 20 ft . long, 21 ft .10 in . over all ; 7 ft . wide, 7 ft .8 in . over all $\times 4 \mathrm{ft}$. high ; from top of rail to body, 2 ft .6 f ins. ; rail to centre of buffer, $2 \mathrm{ft} .7 \frac{1}{3}$ ins.; buffers, 10% 12 ins. ; 2 ft .1 in. centre to centre ; total weight, cmpty, 13,440 lbs, loaded, $35,840 \mathrm{lbs}$. ; per wheel $=4,480 \mathrm{lbs}$.

Conf Cars- 4 Wieers. -6 tons, 4 wheels : Body, 11 ft . long ; oret all, $13 \mathrm{ft} . \times 6 \mathrm{ft} .7$ ins. wide ; 7 ft . 5 ins. over all $\times 4 \mathrm{ft}$. 3 ins. high ; frame of oals, $44 \times 8 \frac{1}{2}$; end sills, $83 \times 9 \frac{1}{2}$; body carried on 4 oak springs, each 3 $\times 63$; at ends, $21 \times 63 \times 9 \mathrm{ft}$. long, bolted together \cdot wheels, 5 ft . centre to centre ; journal boxes bolted to the springs ; weight, empty, $6,720 \mathrm{lls}$, loaded, $20,160 \mathrm{lbs}$; on each whecl $=5,040 \mathrm{lbs}$.

English Railway Carriages-4 feet 8t inches Gayge.-Extreme length over buffers, 22 ft ; frame, 17 ft .11 ins. long $\times 6 \mathrm{ft} .8$ ins. wide; body, 18 ft . long $\times 7 \mathrm{ft} .4 \mathrm{ins}. \times 6 \mathrm{ft}$. 2 ins. high ; compartments, each 0 ft long ; sides and ends of under framing, 11×4; transoms, $9 \times 3 \times 11 \times 3$, framing of body, $3 \times 2 \frac{1}{2} \times 2 \frac{1}{3} \times 2 \frac{1}{2}$; flooring, 2 thicknesses of $\frac{3}{4}$ boarding laid diagonally; roof, $\frac{3}{4}$ thick on ribs, $21 \times 1,2$ fect apart; doors, 1 fti ins. $\times 5 \mathrm{ft}$. 5 ins. high ; seats, 1 ft .6 ins. from floor ; wheels, 36 ins . diam 9 ft centre ; journals, 6 ft .4 ins . apart.

Freight Wagons.-Bodies, 7 ft . 6 ins. wide $\times 16 \mathrm{ft}$. long, 20 ft . orervut fers ; open wagons, sides, 2 ft . to 4 ft .6 ine. high ; covered goods mh ons, sides, 6 ft. 9 ins. high.

MECHANICAL MOVEMENTS.

In the construction of inodels, or machinery, the skilful mechanic am inventor will study to avoid clumsiness in the arrangement of parts, asu will naturally take pride in selecting, as far as possible, the simplestas best forms of mechanical movements. As suggestive for this purposen have bronglit together and condensed an extensive series of mechavio movements. Here the mechanic may find at a glance the movenef suited for his purpose, and may seo the separate parts lest adapted any special combination of mechanism.

The following is a brief description of the various movements numbered :

1. Shaft coupling. 2. Claw coupling. 3. 4. Lever couplings. Ong driving shaft, a disk with spurs is mounted, and to the shaft to be drin a lover is hinged. By causing this lever to catch in the spurs of thedi
es, 5 -16 ins., springs ore: 312.5 lbs. per each wheel'h, 78,500 lbs.,
high at sides, 10 ft .10 ins.; 82 ; transoms, , $5 \times 3 \frac{1}{2}$; ridge rmediates $1{ }^{3} \times$ ad weight for 1 , if light, 2,202
s. at sides, 9 it. side doors, 3 t. bers-6 longithcar, 27,000 lbs: ried on 8 wheels
y, 20 ft . long, 21 igh ; from top of ins.; buffers, 10% npty, $13,440 \mathrm{lbs} ;$
11 ft. long ; ores ins. high ; frame aks springs, each 3 els, 5 ft . centre to empty, 6,720 lbs.

Gavge.-Extrent $\times 6 \mathrm{ft} .8$ ins. vide; rtments, each 6 it isoms, $9 \times 3 \times 11 \times 3$ ses of $\frac{3}{4}$ boardinge part ; doors, 1 ft. heels, 36 ins. diam
ong, 20 ft . orer wius overed goods mas
kilful mechanic as ement of parts, apy le, the simplestas for this purposer series of mechanicy ance the morente arts luest adapted
fious morements
r couplings.
he ghaft to be dir
the spurs of thed
the coupling is effected. 5. Knee or rose coupling, of which 26 is a side riew.
G. Cuiversal joint. 7. 8. Disk and spur coupling. 9. Proug aud spur lerer coupling.

10. Fast and loose pulley. 11. Sliding gear, the journal boxes of one die wheels being movable. 12. Friction clutch. By tightening or resing a steel band, encircling a pulley on the shaft, the machinery is own in or out of gear. 13. 14. Shoe and lever brakes. 15. 16. Change motion by sheaves. 17. Spiral flanged shaft. 18. Conuected with the are pawl links, catching into ratchet-teeth in the wheel to which ry motion is to be imparted. When the rod moves in one direction. of the paris acts ; and when the rod moves in the opposite direction
the other pawl acts in the same direction as the first. 19. The recipra cating motion of a rod is converted into rotary motion of the fly-wheel br a weight suspended from a cord, which passes over a small pulley that connects with a treadle, from which the motiou is transmitted to the fly wheel

20. "Flying horse," used in fairs for amusement. By pulling th cords radiating from the crank, the persous occupying the seats or borse on the ends of the arms are enabled to keep the apparatus in notion. ? 22. Bow-string arrangements to connect reciprocating into rotary motion 23. Same purpose by differential screw. 24. The same by double mo and wheels. 25. Coupling for square shafts. 26. Side view of Fig. 27. Sliding-spur pulley counling. 28. Lever with bearing roller tighten pulley bands. 29. Chain wheel.
first. 19. The recipro ion of the fly-wheel by or a small pulley that transmitted to the fro

32

ent. By pulling tur g the seats or lose ratus in motion. 2 g into rotary motion ame by double rad Side view of Fig. 1 bearing roller

Mecilanical movements.

 meks and cog-wheel. 31. Oblique-to reciprocating rotary motion by two Wheel. 33. 34. Claw coupling withothed wheels. 32. Worm motion by two 40. Shaft coupliugs. 37 . Disk coupling with screve. Disk couplinga,

Self-releasing coupling. Disks with on cones. 43. Friction pullers
Hoisting biockt increases beyond a oblique teeth. If the resistance procating intocks. 16. Elbow crank a certain point, the disks sepistance. Ler form of Fig. 29. 50. Same purpose. 49. Reciprocating into a rotary cylinder. 48. Anthet pinions. Wherpose. 51. Same purpose, by dotary motion.
het pillions. When the double parpose, by double rack and tro
pinion is rigid with the shaft : when the rack mores in the opposith direction, the other pinion is rigit, and a continnous rotary motion is imparted to the fly-wheel sliaft. 52. Reciprocating into oscillating. 53 Botary into reciprocating. By the action of the wheel-pins the carriage

is mored in one direction, and by the action of said pins on an elles lever, it is moved in the opposite direction. 54. Stamp rod and lify cam. 55. For giving reciprocating motion to rack. 56 . Same notis to a bar with slot, by means of an eccentric pin, projecting from as volving disk, and catching in tho slot. 57. Walking-beam and fy-why 58. Reciprocating motion to pump or other rod by means of ecceitric ${ }^{\text {ii }}$ and friction rollers. See 81 and 104. 59. Hoisting crane.
in the opposit otary motion is osciliating. 53 ins the carriage

hid pins on an el Stanip rod and liftit k. 56. Same notif projecting from s g-benm and fly-rhy neans of eccentric craue.
60. Friction gears. See 43. 61. Rotary into reepprocating by rising Ind falling pinion acting on endless rack. 62. By the revolving cam, \AA fising and falling or a reciprocating rectilinear motion is imparted to a frum. 63. Reciprocating motion to a frame by means of endless rack ud pinion. 64. Reciprocating rectilinear motion to a toothed rack by a
pinion, the axle of which revolves and slides in a slot toward and from the rack. This rack is secured to a disk, and a rope round said disk es. tends to the body to which a reciprociting motion is to be imparted. on Elliptic gears.
70. Bevel gear. 71. Worm and worm-wheel. 72. Transmitting motion from one axle to another, with three different velocities, by mans of toothed segments of unequal diameters. 73. Continuous revoling into reciprocating, by a cam-disk acting on an oscillating lever. 74. in. termittent devalving motion to a shaft with two pinions, and segment gas: wheel on end of shaft. 75. Oscillating lever, carrying pawls thich engage teeth in the edges of a bar to which rectilinear motion is imparted 76. Oscillating lever, connects by a link with a rod to which a rectio linear motion is imparted. 77. Oscillating lever and pawls, which gar in the ratchet-wheel. 78. Common treadle. 79. Descrlbing on a m° volving cylinder a spiral line of a certain given pitch which depends upon the comparative sizes of tho pinion and bevel-wheels.
80. Marking a spiral line, the graver moved by a screw. 81. (See Fig. 58.) 82. Plunger and rods. 83. Crosshead and rods. 84. Recip rocating rod guided by friction rollers. 85. Revolving into reciproating motion, by means of roller-arms, extending from a revolving shaft, and acting on lugs projecting from a reciprocating frame. 86. Crank motion 87. Reciprocating motion by toothed wheel and spring bar. 88. Tho shaft carries a taper, which catches against a hook hinged to the drum, so as to carry said drum along and raise the weight on the rope. When the tappet has reached its highest position, the hook strikes a pin, the hook disengages from the tappet, and the weight drops. 89. Reciproating motion to a rod by means of a groove in an oblique ring secured to a revolving shaft.
90. Double crank. 91. Cam groove in a drum, to produce recipo cating motion. 92. Belts and pulleys. 93. Pulleys, belts, and intern) gear. 94. As the rod moves up and down, the teeth of the cog-rhee come in contact with a pawl, and an intermittent rotary motion is im parted to said wheel. 95. By turning the horizontal axles with differen velocities, the middlo wheel is caused to revolve with the mean velocitr 96. Oscillating lever and cam groove in a disk. 97. Lazy tongs. 9 Oscillating segment and belt over pulleys. 99. Converting oscillatim into a reciprocating motion by a cam-slot in the end of the oscillatinglere which catches over a pin projecting from one of the sides of a parallelo gram which is comected to the rod to which reciprocating motion is im parted.
100. Oscillating motion of a beam into rotary motion. 101. Motiong a treadle into rotary motion. 102. Donble-acting bean. 103. Sind acting beam. 104. (See Figures 58 and 81.) 105. Device to steady piston by a slotted gnide-piece, operated by an eccentric on the driving shaft. 106 . Rod operated by two toothed segments. 107. Two mo wheels of equal diameter, provided with a crank of the same length, as comnected by links with a cross-bar to which the piston-rod is secura 108. Device for a rectilinear motion of a piston-rod based on the hypod cloidal motion of a pinion in a stationary wheel with internal gear. If diameter of the pinion is exactly equal to one lialf the diameter of the ternal gear, the hypocycloid becomes a sight line. 109. Same purpd as 56.
110. Action similar to 65. 111. Revolving motion by a circular di ing pinion, gearing in an elliptical cog-wheel. 112. Similar to 96 Carpenter's clamp. The jaws turn on their pivot-screws, and clamp board. 114. An irregular vibratory motion is given to the arm carri the wheel A, by the rotation of the pinion B. 115. Intermittent rote
ot toward and from round said disk er. to be imparted.
72. Transmitting velocities, by means ontimuous revoling ating lever. 74, In 0 1s, and segment gar. rrying pawls which r motion is impartel od to which a reted. d pawls, which gar Describing on a pitch which depends wheels.
oy a screw. 81. (See and rods. 84. Recip ng into reciprocating revolving shaft, axd 86. Crank motion spring bar. 88. The chinged to the drum t on the rope. When rok strikes a pin, the rops. 89. Reciproak,blique ring secured to

1 , to produce reciproys, belts, and interm eeth of the cog-whee it rotary motion is im al axles with differen fith the mean velociry. 97. Lazy tongs. 83 Converting oscillation of the oscillating lere he sides of a paralleio rocating motion is in
otion. 101. Motiono beam. 103. Siumb p. Device to steady centric on the drisine ents. 107. Two the same length, 23 piston-rod is secure based on the hypor a interual gear. ilt the diameter of the 109. Same purp
ion by a circular 2. Similar to 96 . screws, and clamp on to the arm carry j. Intermittent Nob
motion of the pinion-shaft, by the continuous rotary motion of the large wheel. The part of the pinion shown next the wheel is cut on the same curre as the plain portlon of the circumference, and, therefore, serves as alock whilst the wheel makes a part of a revolution, and until the pin apon the wheel strikes the gaide-piece upon the pinion, when the piniondaaft commences another revolution. 116. Stop-motion used in watches to limit the number of revolutions in winding up. The convex curved part, a, b, of the wheel 1 B , serving as the stop. 117. Several wheels, by cunecting-rods, driven from one pulley. 118. Intermittent circular motion is imparted to the toothed wheel by vibrating the arm B. When the $\operatorname{arm} B$ is ifted, the pawl is raised from between the teeth of the wheel, and travelling backward over the circumference again, drops between two teeth on lowering the arm, and draws with it the wheel. 119. Reciprocating rectilinear motion is given to the bar by the continnous motion of the cam. The cam is of equal diameter in every direction measured across its centre.
120. Mechanism for revolving the cylinder in Colt's fire- Irms. When the hammer is drawn back the dog, a, attached to the t:mbler, acts on the ratchet, b, on the back of the cylinder, and is held up to the ratchet by aspring, c. 121. Alternate increasing and diminishing motion, by means of eccentric toothed wheel and toothed cylinder. 122. Oscillating or pendulum engine. The cylinder swings between trumions like a pendulam. The piston-rod connects directly with crank. 123. Intermittent sotary motion. The small whech is driven, and the friction rollers on its studs move the larger wheel by working against the faces of oblique groores or projections across the face thereof. 124. Longitudinal and fotary motion of the rod is produced by its arrangement between two potaing rollers, the axles of which are oblique to each other. 125. Fricfion indicator of Roberts. Upon the periphery of the belt-pulley a loaded carriage is placed, its tongue comnected with an indicator. With a given lad the indicating pointer remains in a given position. no matter what relocity is imparted to the palley. When the load is changed the indicatorchanges, thus proving that the friction of wheels is in proportion to poad, not velocity. 126. Circular intermittent rectilinear reciprocating motion. Used on sewing-machines for driving the shattle; also on threeprolution cylinder printing-presses. 127. Continuous circular into intemittent circular motion. The cam is the driver. 128. Sewingmadiue, four-motion feed. The bar B carries the feeding-points or purs, and is pivoted to slide A. B is lifted by a radial projection on cam C. Which at the same time also carries A and B forward. A spring roduces the return stroke, and the bar, B , drops by gravity. 129. Fatent crank motion, to obviate dead centres. Pressure on the treadle mores the slotted slide A forward until the wrist passes the centre, when he spring E forces the slide against the stops until next forward movement.
130. Four-way cock. 131. One stroke of the piston gives a complete perolution to the crank. 132. Rectilinear motion of variable velocity is fren to the vertical bar by rotation of the shaft of the curved arm. 133. hutagraph for copying, enlarging, and reducing plans, etc. C, fixed pint. 13, ivory tracing point. A, pencil trace, the lines to be copied iith, and B, the pencil, will reproduce it double size. Shift the slide to Hish C is attached, also the pencil slide, and size of the copy will bo aried. 134 Ball-and-socket joint for tubing. 135. Numerical registergo derice. The teeth of the worm shaft-rear with a pair of wormheels of equal diameter, one liaving one tooth more than the other. 1 the first wheel has 100 teeth and the second 101, the pointers will ediente respectively 101 and 10,100 revolutions. 136. Montgolfier'a
hydraulic ram. The right hand valve being kept open by a weigh or spring, the current flowing throngh the plipe in the direction of the arrow, escapes thereby. When the pressure of the water current

overcomes the weight of the right valve, the momentum of the mat opens the other valve, and the water passes into the air-chamber. equilibrium taking place, the left valve shuts and the right valve opes By this alternate action of the valves, water is raised into the air-chas ber at every stroke. 137. Rotary engine. Shaft B and hub C ares
pen by a weigh - direction of the he water current
mentum of the mat the air-chamber. the right valve opery sed into the air-ctas B and hub C are
muged eccentric to the case. Sliding radial pistons, a, a, move in and out of hub, C. The pistons slide through rolling packings in the hub C . 138. Quadrant engine. Two single-acting pistons, \mathbf{B}, \mathbf{B}, connect with crank D. Stean is admitted to act on the outer sides of the pistons alternately through valve a, and the exlanust is between the pistons. 139. Circular into rectilinear motion. The scolloped wheel communicates motion to the burizontal oscillating rod, and imparts rectilinear movement to the npright bar. 140. Rotary motion transmitted by rolling contact between tro obliquely arranged slafts. Scientitic American Refcrence Book.

Special note to inventors.-For full and complete information relating to the obtaining of Patents, Inventors, and others interested. are referred to the Scientific American Hand-Book, forwarded free by nall on application to Munn \& Co., 37 Park Row, New York.

Infurmation can also be obtained by addressing Coyne \& Co., office Western Manufacturers Chicago, Ills.

Tur knots represented on the preceeding page of engravings are at follows :

KNOTS, AND HOW TO TIE THEM.

1. Simple overhand knot.
!. Slip-knot seized.
2. Single bow-knot.
3. Square or ruf-knot.
4. Syuare bow-knot.
5. Weaver's knot.
6. German or figure-of-8 knot.
7. Tro hali-hitches, or artificer's
knot.
8. Double artificer's knot.
9. Simplo galley knot.
10. Capstan or prolonged knot.
11. Bowline-knot.
12. Rolling-hiteh.
13. Clove-hitch.
B. Blackwall-hitch.
14. Timber hiteh.
15. Bowline on a big't.

8 Rumning bowline.
9. Catspaw.
D. Doubled rumning-knot.

1. Dublbe linot.
2. Sir-fold knot.
3. Boat-knot.

L Lark's head.
6. Lark's head.

Simple boat-knot.
Loop-knot.
Double Flemish knot. Ruming-knot checked
Crossed running-knot. Lashing knot.
32. Rosette.
33. Chain-knot.
34. Double clain-knot.
35. Double running-knot, "with check-knot.
36. Double twist-knot.
37. Builders' knot.
38. Double Flemish Imot.
39. Fnglish knot.
40. Shortening-knot.
41. Shortening-knot.
42. Shecp-shauk.
43. Dog-siank.
44. Mooring-knot.
45. Mooring-knot.
46. Mooring-knot.
47. Pigtail worked on the end of a rope.
48. Shroud-knot.
49. A bend or knot used by saihord in making fast to a spar or a bucket-handle before casting overboard; it will not run. Also used by horsemen for a loop around the jaw of a colt in breaking: the ruming end, after passing over the head of the animal and throngh the loop, will not jam thercin.
50. A granny's knot.
51. A weaver's knot

The principle of a knot is, that no tro parts which would move in ths me direction if the rope were to slip, should lie alongside of and toucheach other.

Cost of Iron Production.-In Staffordshire, the making of bam marked "best, best, best," corresponds to a consumption of 5 tons ol Coal per ton of Iron made from the forge pigs, which themselves require from 2 to $2 \frac{1}{2}$ tons of Coal for their production. Calculating waste of iron in puddling, \&c., one ton of the best brands of Staffordshire bars repre sent 8 to 9 tons of good coal consumed.

Gartshermif lron Works, Scotland.-Furuaces, 16. Proportion of charges, conot 32 cwts. of calcined ore are used to the ton of iron, 6 civts. of pure limestone, or 10 cwts. of limestone contatining a high per. centage of alumina, which is sometimes preferred, forming a surphus of quickly melted slag. The charges are made up with the coal in quantities of about 30 cwts. cach, and are hoisted to the top of the furnace hya very simple contrivance. Temperature of blast 800°. Weekly prodiction of each furnace about 160 tons.

Coltness Iron Works:-Furnaces, 12. The calcined ironstone contains from 60 to 65 per cent. of iron, and the furnaces are charped with an addition of 12 cwts. of unburnt limestone, and 48 cwts. of coal lor every ton of iron made. The make per furnace varies from 12 to 15 tons at a cast, the furnace being tapped once in every 12 hours. From 8 to 12 tuyeres are in each furnace arranged in groups of 3 in each arch formed by the square foundation. The tuyeres are usually $1 \frac{1}{2}$ in. diam. at the nozzle, temperature of blast is between 600° and 700°. Power is funished by a pair of condensing beam engines, worked with 32 lbs steam pressure and a vacnum of 26 ins. The steam cylinders are 48 ins. diam. and the blowing cylinder 100 ins , pressure of blast in the blast main is 3 ina The Dlowing cylinder in the lower row of furnaces is $120{ }^{2}$ ins.

Govan Iron Woriss, Glasgow.-Furnaces, $6 ;$ lieight 50 ft . The charges are made up in loads of 15 cwts. of ore and limestone for every load of 10 cwts . of conl. Consumption of coal for every ton of iron made is about 50 cwts. Blowing Cylinders 2 ; pressure of blast $2 \frac{3}{4}$ lbs. The make of each furnace is about 12 to 15 tons per cast, tapped every 12 hous The blowing engine is supplied with steam by 7 double-flued Conish boilers fired with coal slack, and placed below the ground level close to the engine house. The charge of gray iron for each refinery is 24 emts, and 6 or 7 charges are made per day with ordinary coke for fuel.

Barrow-in-Furniss Iron Woriss :-Fnrnaces, 11. The charge per ton of iron is 34 cwts . of ove, $6 \frac{1}{2} \mathrm{cwts}$. of limestone, and from 10 to 2 l ewts. of coke. Ore yields 57 per cent. of iron, weekly production 4000 tons. The dimensions of the larger furnaces which form the serond group, are, height 56 ft ., diam. at the boshes, 7 ft ., greatest inner diam. 16 ft .6 ins ., diam. at top, 11 ft .6 ins., they are tapped every 6 hours add give about 20 tons at each cast. The blast pressure varies from 3 to 3 lbs., each furnace has 6 tuyeres, diam. of tuyeres is from $2 \frac{1}{2}$ to 34 ins, temperature of blast 600° to 650°. Forty-two boilers, all fired with pas supply the steam to the different engines; of these, 22 work up to 25 lix and 12 to 35 lbs . pressure. The first set of engines comprise 3 vertim beam engines: diam. of one steam cylinder is 52 ins., of the other two 48 ins., each blowing cylinder placed at one end of the correspondins beam, is 100 ins. in diam. with 9 ft stroke.

Inon Founding. -In dimensions, the McKenzie cupola, so extensirel used in America, is from the drop bottom to the bottom of the charging door, 9 ft . high. The longer diameter outside is 5 ft .4 ins., and the floon er diameter 4 ft . 4 ins. The blast is admitted through an annury tuyere or opening which extends completely round the bottom part. It blast is led into a chamber surrounding the bosles of the cupola, an from this chamber it escapes through the annnlar tuyere. The cupl is fitted with a drop bottom. A cupola of that kind is charged with 14 lbs. of coal, then 4000 lbs . of iron, 400 lbs of coal, 4000 lbs . of Iron aghit
e making of bam option of 5 tons of hemselves require ating waste of iron edshire bars repre-
es, 16. Proportion the ton of iron, 6 atining a ligh per. :ming a surplus of the coal in quarof the furnace bra Weekly production
calcined ironstone ruaces are chared 148 cwts . of coal ion ss from 12 to 15 tons 10urs. From 8 to 1 in each arch formed $1 \frac{1}{2} \mathrm{in}$. diam. at the o. Power is fumish th 32 lbs. steam pres. are 48 ins. diam. and blast main is 3 f ins. $\$ 120 \pm$ ins.
height 50 ft . The limestone for erer very ton of irol، made of blast $2 \frac{3}{4} \mathrm{lbs}$. The apped every 12 hous double-flued Cominh ground level close to h refinery is 24 crts. coke for fuel.
11. The charge pet e, and from 10 to 21 ekly production 400 ich form the secom greatest imer diam. ed every 6 hours and varies from 3 to 3 is from 24 to 3 f ins. 2s, all fired with mas 22 work up to 25 liks. is. comprise 3 vertim
is., of the other of the correspending
upola, so extensivel thom of the chargive throngl and the filuen the bottom part. Ti s of the cupola, in tuyere. The cupo is charged with 14 000 lbs. of iron agu
and the alternate charges of 400 lbs . of coal and 4000 lbs . of iron are repeated for the necessary helght. The blast is supplied, when the furnace is at work, at the extremely high pressure of 21 lbs. per sq. inch; but when the furnace is first started the slight resistance met with by thie blast does not permit a pressure of more than $\frac{1}{2} \mathrm{lb}$. to be obtained. The blast is applied in about 40 minutes after the fire is lighted, and the iron begins to run in about 20 minutes after the blast ir turned on. When the furuace is fairly at work the melting proceeds at the rate of almost 4 tons per hour. One of the McKenzie cupolas at Morris, Tasker \& Co.'s tube works, at Philadelphia, measures 7 by 4 ft ., and is blown with a pillar of blast _ a about 24 ins. of water. The regular day's work is 23 tons of metal rim down in $2 \frac{1}{2}$ hours, the iron beginning to melt in 15 minutes from the time the blast is turned on, and running at the rate of 10 tons per hour. It is charged about $4 \frac{1}{2} \mathrm{ft}$. deep with iron and anthracite coal, and about 1 ton of the latter is burned for every 9 tons of metal melted. In melting small quantities, in say, a No. 3 McKenzie cupola; a good proportion is to put in a bed about COO ths. coal, and charge from 4000 to 5000 lbs. of iron, then 150 to 200 lbs. coal, and charge 1000 to 2000 lbs, on the top of it. In Ireland's cupola, the furnace should be filled with coke to the top of the boshes, and four separate ewts. of ircn, alternated with three ewts. of coke, should then be introduced to fill it up to the charging door. In these furnaces a ton of freely ruming iron has been run down by $1 \frac{1}{4}$ cwt. of coke, but more usually from 2 to $2 \frac{1}{2}$ cwts. are required. The furnace shonld be kept in careful repair and each charge well levelled off. In the Woodward cupola a steam jet is used instead of n fan, and the steam required for the jet to create the dranght is only equal in quantity to the requirements of an engine for driving a fan of sufficient jower to vork the same size of ordinary cupola ; and the consumption of colse in melting is $1 \frac{1}{4} \mathrm{cw}$. per ton of iron.
Blowing ok Blast Fingines.-Iron works at Mt. Savage, Md. For blowing 4 furnaces, 14 feet diam., each making 100 tons of pig iron per week.
Engine (Condensing). Diameter of cylinder, 56 in . ; length of stroke, 10 ft .
Revolutions. 15 per minute. Pressure. 60 lbs . per square in., cut off at + of the stroke.
Builers. Six of 60 in . in diameter, and 24 ft . in length, with one $22-\mathrm{in}$. fue in each, double returned. Grates. 198 square ft.
Blast C'ylinder. 126 in . in dimneter by 10 ft . stroke. Revolutions. 15 per minute.
Pressure of Blast. 4 to 5 lbs. per square in
Aica of Pipes. 2300 square in., or t that of the cylinder.
For Blowing Two Furnaces and Two Finemes, making 240 Tons of Forge Pig per Week.
Engine (Non-condensing). Diameter of cylinder, 20 in ; length of stroke, 8 ft . Revolutions. 28 per minute. Pressure. 50 to 60 lbs . per square in. (full stroke).
Boilers. Six of 36 in . in diameter, and 28 it in length (without flues). G Grates. 100 square ft.
Blast Cylinders. Two of 62 in . in diameter, by 8 ft . stroke. Recolutions. 22 per minute. Pressure of Blast. $2 \frac{1}{2}$ lbs. per square in.
Area of Pipes. 3 ft . or $\frac{1}{8}$ that of the cylinders.
Cie blast furnace has two 3 -in., and one $3 \frac{1}{4}$ in. tuyeres, the othe: hae three of 3 in
One finery has six tuyeres of $1 \frac{1}{2} \mathrm{in}$., and the other, four of $1 \frac{1}{8}$ in.
The ore yields from 40 to 45 per cent. of iron. The temperature of the blast is 600°.

Dowlats Iron Works.-Furnaces 17. Weekly production about 180 tons per furnace, total amnual production of pig iron about 150,000 tons, total annual consumption of coal about $1,000,000$ tons. The furnaces are blown by 6 beam engines. The largest has a 55 in . steam cylinder and 13 ft . stroke of stean piston, while the blowing cylinder is 12 ft diam., and the blast piston has a stroke of 12 ft., the great beam being divided unequally ; weight of working beam 44 tons, of tly wheel 35 tons. Blast is discharged into a main 5 ft . diam. and about 140 yards long. No furnace is more than 18 ft . in diam. at the boshes, and few are as muchas 50 ft . high, square at the base and assuming the circular form about lalt way up. They are tapped 3 times in 24 hours, are fed with raw coal, and consmme 30 ewts. of coal per ton of iron made. Temperature of blast 6120 , pressure of blast 3 to 3 h liss.

The furnaces, mines, forges, Bessemer steel works, \&c., employ in all nearly 100 steam engines, 9000 work people (of which about 5500 are under ground and 3500 above), and 700 horses.

Cohesive Strexgtio of Tie-Bars, Suspension Rods, \&c.-Breaking weight in tons, equal area of section of rod in square inches, multiplied by cohesive force per square inch in tons.

In use, take $\frac{7}{\text { t }}$ of the above as breaking weight.
A mixture of 30 per cent. of wronght iron with cast-iron, carefully fused in a crucible, increases strength of cast-iron one third. Chilling the under side of cast iron materially increases its strength. Chilled bars of cast iron deflect more readily than unchilled. Girders cast with face up are stronger than when cast on side, as 1 to .96 ; also strongest when cast with bottom flange up. Cast-iron and wrought iron beams, having similar resistances, have weights, as 2.44 to 1.
To Test the Quality of Iron.-If fracture gives long silky fibres of leaden-gray hue, fibres cohering and twisting together before breaking, may be considered a tough soft iron. A medium, even grain, mixed with fibres, a good sign. A short blackish fibre indicates badly refined iron. A very fine grain denotes a hard steely iron, apt to be cold-short, hard to work with a file. Course grain, with brilliant crystallized fracture, yellow or brown spots, denote a brittle irom, cold-short, working easily when heated ; welds easily. Cracks on tho edge of bars, sign of hotshort iron. Good iron is easily heated, soft under the hammer, throws out but few sparks.

To find the Weight of Timber Beams, Posts, and Jorsts.-Multlply length in feet by the breadth in inches and the depth in inches, and the product by one of the following factors : For elm, 2.92 ; yellow pine, 2.85 ; white pine, 2.47 ; dry oak, 4.04.

Weioht of Timber Woris, Timber Floorino.-Multiply breadth in feet by length in feet by the thickness in inches and by one of the following factors, according to the material : For elm use, 3.50 lbs ; for yellow pine, 3.42 ; for white pine, 2.97 ; for dry oak, 4.85 .

Nickel Plating without a Batieny.-To a solntion of from 5 to 10 per cent. chloride of zinc, as pure as possible, add eno:gh sulphate of
nction about 180 out 150,000 tons, The furnaces are am cylinder and r is 12 ft . diam. m beiug divided el $3 \overline{5}$ tons. Blast is loug. No furware as much as f form about hall ith raw coal, and ture of blast 612°,
Ece., employ in all :h about 5500 are
s, \&c.-Breaking inches, multiplied
itr. of ash tons Beech 5.5 Oak 5.5 seasoned 6 pitch pine 6 Chestriut 5 Fir ne third. Clilling pigth. Chilled bars ders enst with face ulso strongest when roll beams, having
es long silky filires er before breaking, n grain, nixed with badly refined iron. cold-short, hard to lized fracture, yelort, working easily bars, sign of hotso hammer, throws
AND Joists.-Mul. epth in inches, and 2.92 ; yellow piue,
-Multiply breadh and by one of the elin use, 3.50 lbs i hk, 4.85 . ution of from 5 to eno"gh sulphiate of
nickel to produce a strong green color, and bring to a boil in a porcelain vessel. The piece to be plated, which must be perfectly bright and free from grease, is introduced so that it touches the vessel as little as possible. Boiling is contiuued from thirty to sixty minutes, water being added from time to time to replace that evaporated. During ebullition nickel is precipitated in the form of a white and brilliant coating. The boiling may be continued for hours without increasing the thickness of this coating. As soon as the object appears to be plated it is washed in water containing a little chalk in suspension, and then carefully dried.' The chloride of zinc and sulphate of nickel must be free from metals precipitable by iron. If, during the precipitation, the liquid becomes coloriess, sulphate of nickel should be added. The spent liquid may be used again by exposing it to the air until the iron is precipitated, filtering and adding the zine aud miekel salts as above. Cobalt also may be deposited the same way.
To Remove iron Mould from Marble.-Take butter of antimony 1 oz, oxalic acid 1 oz ; dissolve them in 1 pt . water, add flour, and bring the composition to a proper consistence. Then lay it evenly on the stained part with a brush, and, after it has remained for a few days, wash it off, and repent the process if the stain is not quite removed.
Green Transparent Varnisif foi Metals.-Grind a small quantity of Chinese blue with double the quantity of finely-powdered chromate of potassa (it requires the most elaborate grinding) ; add a silffcient quantity of copal varnish thimed with turpentine. The tone may be altered by more or less of one or the other ingredients. Green bronze liquid : One quart of strong vincgar, $\frac{1}{2}$ oz. of mineral green, $\frac{1}{2}$ oz. raw umber, $\frac{\frac{1}{2}}{2} \mathrm{oz}$. sal-ammoniac, $\frac{1}{2}$ oz. gum arabic, 2 oz . Frencl berries, $\frac{1}{2}$ oz. copperas ; dissolve over a gentle fire, allow to cool, and then filter.
Profits of Manufacturers.-In the State Census of Massachusetts, of 1875 , Col. Wright, of Boston, separates the value of the raw material from the value added by work done. Thus we have muder the head of boots and shoes, not the value of the boots and shoes, but the value addedto the leather by the work done to convert it into boots and shoes. This is stated to amount to $\$ 89,375,792$, for which the employes received $\$ 18,727,124$, or $\$ 455.05$ each on an average, and the employers appropriated siv, 648,668 . Cotton and other industries show similar results.
Proceeds of One Ton of Cotton Seed.-A correspondent of Leffel's Neess reports cotton seed as worth now, delivered at the mills in New Orleans, $\$ 11$ per ton, the mills furuishing the bags it is put up in. From that ton of seed will be gotten :
250 lbs. lint worth 5ets. per 1b., or. $\$ 12.50$
Albout E00 lbs. hull worth..5.50
About from 40 to 45 galls. oil. say 40 galls. at 50 cents................ 20.00
Say 800 lbs. oil cake, worth $11 / 2$ cent per ib........................... 12.00
Or, $\$ 11$ worth of seed works to value of............................... $\$ 47.00$
arbangement, Proportion, Capacity, \&c., of Grain Elefators. -On this subject Pallett rules that the pulleys should be at least 24 inches diameter, and about one inch thicker than the width of the belt, and nearly half an inch higher in the middle than at the sides, to make the strap keep on. These pulleys sllould have a motion of twentyfive revolutions per minute. The buckets sloould be about fifteen inches appat. One hundred and twenty-five buckets will pass per minute, carrying 162 quarts and hoisting 300 bushels per hour. If this is not fast enough, make the strap wider and the buckets larger, increase the velocity of the pulley (not albove 35 revolutions), nor place more buckets than one for every twelve inches, or they will not empty.

ON FARM BUIIJIINGS.

The following plan for a barn appeared in the columus of the Country Gentleman, and is of a size suitable for about 75 arres of land under cultivation on the system of mixed husbindry; but the size may be either expanded or diminished to answer all possible requirements in any given case.
The size is $42 \times 60 \mathrm{ft}$. Fig. 1 shows the common or principal floor, and is so constructed that a loaded wagon can be driven in at one end, unloaded, and then pass out at the other. The contrivance for this purpose, so as not to interfere with the cellar or basement, is shown in the perspective view at the head of this article, an embankment being made at each end, which would be facilitated if the building were placed between two slight knolls or in a moderate hollow, in which case ample drains should be

provided round the whole. In the plan fig. 1, V V represent ventilators or hay shutes; A trap door for throwing down chaff or straw; G granary, and S stairs. The bay contains 950 square feet, and, will hold about 40 tons of compact hay of about 500 cubic ft . to the ton when well settled. In addition, there is room on the platforms over the floor and horse stables to hold about 20 tons more. By marking off a scale of feet on one of the ventilators, the owner may at any time gain an approsimate idea of the quantlity of hay on hand.

Fig. 2 represents the basements. The roots are drawn in on the barn foor and dumped down the trap A, shown in fig. 1. In fig. 2, AAAA represont calf pens, or boxes for cows in calf.

Rules for Famarens.-The prime auxiliaries to good farming are: 1. Sufficient capital to buy the farm and stock it well. 2. The proper selection of a farm commensurate with these requisites. 3. The selection of good land and the rejection of barren, no matter how cheap. 4. To lay it ont in good style, and provide it with good bulldings, fences, and gates. 5. Stock it with the best animals and implements at a reasonable price, and provide good shelter for both. 6. Bring the soil into good heart by draining, killing of weeds, manuring, deep ploughing, and a proper rotation of crops covering every part of it. 7. Diligence and carefuloversight of all operations, correct accomuts in the mitter of wages, buying, selling, weighing, measuring, cost of crops, ammals, net returns of each, accumulation and preservation of manure, \&c. 8. Early rising, remembering that "He that would thrive must rise at five. He that has thriven may lie till seven." 9. Regular and careful feeding of stock with considerate and mercifni treatment of horses, cattle, \&c., at all times.
Tonching the rotation of crops the following courses have proved well adapted to most of the Eastern and Middle States :

1. 1st year, corn and roots, well manured. 2nd year, wheat, sown with clover seed, 15 lbs . per acre. 3rd year, clover, 1 or more years, according to fertility, and amount of manure on hand.
II. 1st year, corn and roots with all the manure. 2nd year, barley and peas. 3rd year, wheat, sown with clover. 4th year, clover one or more years.

The next illustration represents the frame of an improved stable and barn which appeared notlong ago in the col .mns of the Globe and Canada Farmer, concerning which theowner furnisned the following particulars to that jommal: "Barn 56×80 fect, outside posts 20 feet high, the purline posts 33 feet ; has five bents, 20 feet spans, framed according to cut. The size of timber used is from 6 to 8 inches; the sills are $3 \times 12 \mathrm{in}$. plank bedded on the stone wall. The barn proper is 56×60, leaving 20×56 feet for a straw house. The driving floor is 16 feet wide, the bays on each side, loft, all floored over with double inch boards. The donble doors work on rollers. There is a ventilating door in each gable end, working with a small pulley from the floor : also one on the roof, all very usefil in the time of threshing to allow dust to escape. On each side of the driving floor is a ladder reaching to the top of the barn. The granary is 20 fect square. The bins are six feet deep on each side, leaving 8×20 feet to keep the mill in for clearing up. The barn is well lighted. If stone is scarce, the wall need be no higher than to clear the ground, as shown in the cut. No. 1 cut pine shingles are best for roof. This stable is in three parts. 1st. 25 feet
is taken from one end and divided in three parts; the centro is a feed room 20×25 feet; stables 18 feet deep, with five stalls in each part. 2 d . There is a yard 30 x 56 for young stock. There is atrap door at the side of the drive floor to drop down straw. If water can be had a well is preferable in this yard. There is a large door on each side to drive in and take out the mautire. 3d. The cow stable is directly under the straw house, 25×56 feet, divided into three parts: the centre is the feed room, 25 $\mathbf{x} 26$ feet, with trap door qbove to let down the chaff. The stables are 15

feet deep, with six stalls on each side. Thero will be suffeient light to all the stables, feed room and yard; outer doors for stables and inner doors leading into the centre yards. Height of stables, 81 and 9 fect. The advantages over old style of building are as follows:-Lighter and shorter timber. There are two rows of central posts run to the top of building, forming the purline work, and the whole building being framed into these posts makes a much stronger frame; is handier for storing ; for forks working; for threshing ; is better ventilated ; all straw inside all stock inside; manure all under cover, and when a farmer has one of these barns ho has all the outbuildings ho requires."

Weight or Hax.-Hay, well settled in mows or stacks, fifteen cubic yards make a ton. Rule for long or square stacks: Multiply the length in yards by the width in yards, and then by half the height in yards, and divide by fifteen. Rule for circular stacks: Mnltiply the square of the circumference in yards by four times the height in yards, and divide by 100 ; the quotient by fifteen.
centre is a feed in each part. 2 d . door at the side had a well is pree to drive in and under the straw the feed room, 25 he stables are 15
ifflelent light to ables and inner s, $8 \frac{1}{2}$ and 9 feet. :-Lighter and in to the top of ig being framed er for storing ; 11 straw inside ner has one of
s, fifteen cubic tiply the length it in yards, and square of the and divide by

SUNDRY ITHEMS OF INTEREST TO FARMERG.

A bushel of wheat, 60 lbs., should yield, of flour, about 48 lbs., shorts, 8 lbs., bran 4 lbs. Wheat four is of the best quality from grain that has been cut before it comes to full maturity, being whiter and softer, and such flour carries a better figure in the market. Coarse or thiek-husked grain will yield more bran and less flour than the kind noted above.
Proceeds of Grists. - On this subject a correspondent of the Country Gentleman remarks: "The product and waste in grinding depend much upon the quality and cleamess of the wheat. I have had winter wheat turn out 40 pounds of flour and 123 pounds of bran, middlings, etc., to the bushel. Tho 'waste' in grinding clean wheat should be not more than a pound to a pound and a quarter. Spring wheat will not make as much flour. The following from a 'grist' of the last crop of spring wheat is a good average of a dozen more that I have noted.
Weight of wheat,
".
"
" flour,
.

Here is $24 \frac{3}{5}$ bushels, and the yield of flour is 38.45 pounds per bushel, and the offal amonnts to 14.54 pounds per bushel, while the waste is only 1.05 pounds per bushel. It is proper here to state that I senta 'grist' out of the same bin, to a new mill a few weeks before, and the return was only 36 pounds in flour and the ' waste' or wheat stuck to the inill, besinles the toll, $5 \frac{1}{2}$ pounds to the bushel. I did not repeat my experiment at that mill.
Λ miller, writing to the Mill Stone, claims that he can, on custom work, make from 38 to 42 lbs . of flour to the bushel of wheat, beisides his seventh for toll, and on merchant work he can make 1 barrel of fancy flour out of $4 \frac{1}{2}$ bushels of wheat. This he cites as good work, and right here it may be remarked that many farmers raise an outcry against the miller, becuuse ho fails to give first class flour and ample returns from badly damaged or improperly cleaned grain. In a canticle descanting on the hard times, composed by a rural poet of the writer's aequaintance, the versifier sought to immortalize his name by a burlesque on the fair fame of cvery tradesman in the town. The stanza reflecting on the honest miller was as follows :

And there's............ the miller, he grinds for his toll, And he ought to do right for the sake of his soul.

> But still, there, he goes, with the dish in his fist,

He gives you the toll and he keeps the grist.
Millers, as a general rule, are fair-dealing men. From time Immemorial they have been called "honest," and it is no more than fair that they should be honestly dealt with. If you wish first class returns bring first class grain to the mill.
Estimating the produce of an acre in onts at 50 bushels, they will contain 450 pounds of flesh-forming food, and $6 \overline{7} 2$ pounds of fat-forming food; while three tons of hay off the same acre will carry 480 pounds of flesh-formers and 2790 pounds of fat-formers. Hay is a standard food for cattle.
Measuring Hay in Bulk.-To find the number of cubie feet in a mow, multiply the length, width and depth together. Five hundred cubic feet of ordinary clover and timothy hay, packed under ordinary circumstances, will make a ton. Generally, so many things have to be taken into consideration, in calculating the weight of hay in bulk, it
makes it difficult to ascertain it precisely. For instance, fine new-1mown hay, like red-top or herds grass, would probably not requice quite 500 cubic feet for the ton; timothy alone, requires about 550 ; clover 650 ; coarse meadow hay 700 or more. After being stacked thirty days, the bulk would be decreased from five to ten per cent. Again, hay will vary somewhat in measurement according to the time it is cut.
The government standard for a ton is $7 \frac{1}{2}$ feet ; this gives 422 cubic feet. To find the number of cubic feet in a stack, multiply the area of the base by one third the perpendicular height.
It is estimated that 25 cubic y ds. of common meadow hay in the windfuw compose a ton, and 10 cubic yds. of baled, or pressed hay, the same weight.

A truss of nevo hay is 60 lbs ., of old, 56 lbs , a load of hay, 36 trusses ; a bale, 300 lbs . A truss of straw is 40 lbs .

Table exiliditing capacities of citain mivs, \&c., 10 fr. higit.

	$\left\|\begin{array}{c} \text { Bin } \\ 6 \mathrm{fl} . \\ \text { Long. } \end{array}\right\|$	$\left\|\begin{array}{c} \mathrm{Bin} \\ \mathrm{f} \mathrm{f} . \\ \text { Long. } \end{array}\right\|$	$\left.\begin{array}{\|c\|} \operatorname{Bin} \\ 8 \text { f. } \\ \text { Long. } \end{array} \right\rvert\,$	$\left\|\begin{array}{c} \text { Bin } \\ 0 \\ \text { Ling. } \\ \text { ing } \end{array}\right\|$	$\underset{10 \mathrm{ft}}{\mathrm{in}}$ Long.		$\left.\begin{array}{\|c\|} 13 i n \\ 121 . \\ \text { Long. } \end{array} \right\rvert\,$	Lisint.	$\begin{array}{\|} 14 \mathrm{ft} \\ \text { Long. } \end{array}$	15 ft . Long.	${ }_{1611}$ Long.	Bin 20 ft. Long.	$\begin{gathered} \mathrm{Bin} \\ \text { nin } \\ \text { Long. } \end{gathered}$
	Bu.	Bu.	Lu	Bu.									
3	145	169	192	21.	241	265	289	313	338	362	386	482	530
4	183	225	257	289	321	354	386	418	450	482	514	643	${ }^{2} 8$
5	241	282	321	362	402	442	482	522	563	603	643	804	884
6	290	338	386	434	482	530	579	627	675	723	771	964	1060
8	338	394	450	501	563	619	675	731	788	844	900	1125	1238
8	386	450	514	579	6.13	707	771	836	900	964	1029	1286	1414
9	434	507	579	651	723	796	868	940	1013	1085	1157	1446	1502
10	482	563	643	720	804	884	964	1045	1125	1205	1286	1607	176
11	531	619	707	598	884	972	1061	1149	1238	1326	1414	1768	1944
12	579	67	77	80	96	1061	1157	1254	1350	1446	1543	1929	$\underline{122}$

Measuring Corn in the Crin.-Many rules are given by which the number of bushels of corn in a crib may be ascertained, but all of them must be more or less unreliable, from the fact that they assume that tiro bushels of ears are equal to one of shelled corn-some corn will not make it, while some will more than do it. We give several such rules, any one of which will be, probably, sufficiently accurate.

1. Measure the length, breadth and height of the crib, inside the rail ; multiply them together and divide by two, the result is the number of bushels of shelled corn.
2. Level the corn so itis of equal depth throughout, multiply the length, breadth and depth together, and this product by four, and cut off oue figure to the right of the product. The others will represent the number of bushels of shelled com.
3. Multiply length by height and then by width, add two ciphers to the result and divide by 124 . This gives the number of bushels of ears. Another rule is to proceed as above to obtain the cubic feet, and then assume that 1 1-5 cubic feet make one bushel of ears.
4. Multiply length by breadth and the product by the height, all in inches, divide this by 2,748 , and the quotient will be the number of bushels of ears. From two-thirds to one-half of this will be the number of bushels of shelled corn, depending upon the kind and quality. The first of these rules is the one generally used as an approximate estimate.

To Mrasure Grain in the Granary.-Divide the cubic feet by 50 and multiply by 45, and the result will be struck measure.
Loss from Shrinkage. \rightarrow It is said that corn loses onc-fifth and wheat one-fourteenth by drying. From this estimate it seems that it would be more profitable to the farmer to sell unslielled corn in the fall at 75 cents per bushel, than to keep it until Spring and sell it at $\$ 1$, and
fine new-momn quile quite 500 50 ; clover 650 ; thirty days, the in, hay will vary
es 422 cubic feet. arca of the base
hay in the windd hay, the same
ȟy, 36 trusses ;
10 ft. higil.

Bin Long.	\|ring $\begin{gathered}\text { Bin } \\ 20 \\ \text { Long. }\end{gathered}$	
Bu.	Bu.	B
386	482	530
514	643	708
643	804	884
771	964	10.0
900	1125	1238
1029	1286	1414
1157	1446	1592
1286	1607	17 ce
1414	1768	1944
1543	1929	8122

en by which the but all of them assume that tro rin will not make fh rules, any one
, inside the rail ; t is the number
tiply the length, and cut off one sent the number
ro eiphers to the bushels of cars. feet, and then
o height, all in mber of bushels nber of bushels The first of stimate. cubic fect by 50
onc-fifth and it seems that corn in the fall ell it at $\$ 1$, and
that wheat at $\$ 1.25$ in December, is equal to $\$ 1.50$ the succeeding June. In cases of potatoes, taklug those that rot and are otherwise lost, together with the shrinkage, there is little doubt that between October and June the loss to the owner that holds them is not less than 33 per cent.
The English Quarter, at which wheat is quoted in the Eug ish reportz, is 560 pounds or one-fourth of the ton gross weight of 2240 pounds. The English legal bushel is 70 pounds, and zonsequently 8 of those bushels is a quarter--equal to 91 of our statute bushel of 60 pounds.
TABLE EXHIBITING CONTENTS OF CORN-CRIBE, CONTAINING CORN IN THE EAR, COMPUTED ON A BASIS OF 3,810 CUBIC INS. PER BUSH. HEIGHT OF CLRIB, 10 FT.

Lgth	10	11	12	13	14	15	16	18	20	22	24	26	28	30
${ }^{\text {A }}$	135	149	162	175	189	202	216	243	270	297	324	351	378	405
[${ }^{31 / 2}$	153	173	189	205	221	236	258	284	315	347	378	410	441	473
${ }^{4}$	180	198	216	234	252	270	288	324	360	396	432	468	504	540
\% $41 / 2$	203	22	243	26	283	${ }^{304}$	324	365	405	446	486	527	567	608
	225	218	270	292	315	337	360	405	450	495	5	585	${ }^{630}$	675
${ }_{6}^{51 / 2}$	248	272	297	322	377	371	396	446	495	515	594	644	69	743
${ }_{6}^{6}$	270	297	324	351	378	405	432	480	540	694	648	702	756	810
$61 / 2$	293	322	351	380	410	439	468	${ }_{527}$	58	644	702	761	819	878
7	315	347	378	409	441	472	501	567	630	693	756	819	882	945
$71 / 2$	338	371	405	439	473	506	510	608	675	743	810	878	945	1013
	360	396	432	468	504	540	576	648	720	792	864	936	1008	1080
$81 / 2$	383	421	459	497	536	574	612	689	765	8 ± 2	918	995	1071	1148
1	405	446	486	526	567	0	${ }^{618}$	729	810	891	972	1053	1134	1215
10	450	495	540	585	539	675	720	810	900	990	1080	1170	1260	1350
11	495	515	594	643	693	742	792	891	990	1089	1188	1287	1386	1485
12	610	591	618	702	756	810	861	972	1080	1188	1296	1404	1512	1620

Example.-Under 28 and opposite 8 is 1,008 , representing the number of bnsheis of corn in the ear contilined in a crib 28 ft . long, 8 ft . wide, and 10 ft . high. This space would contain 1,800 bushels of shelled corn.

Rule wien the Crib is Flahed at the Sides.-Multiply half the sum of the bottom breadths in feet by the perpendicular height in feet, and the same again by the length in feet, multiply the last product by 63 for heaped bushels of ears, and by 42 for the number of bushels in shelled corn. This rule is based on the generally accepted estimate that 3 heaped half bushels of ears, or 4 even full, form 1 of shelled coru.

Anotier Rule with Equal Sided Cribs.-Multiply the length in fect by width in feet, and this last by the height in fect, multiply the resulting product by 63 and the proceeds will show the heaped bushels of ears. To get the number of bushels in shelled corn multiply by - 42.
Memoranda.-A barrel of corn is 5 bushels shelled. By this latter measure crops are estimated, and corn bought and sold throughout most of the Sonthern and Western States. At New Orleans a barrel of corn is a flour barrel full of ears. In some parts of the west it is common to count 100 ears to the bushel.

Another Way to Measure Corn in tie Cmib.-Multiply the length, breadth, and height together in feet, to obtain the eubic feet; multiply this product by 4 and strike off the right figure, and the result will be shelled bushels, nearly.

To Find the Contents of a Bariel on Cask.-Multiply the square of the menn diameter (in inches) by the length of the barrel (also in inches), divide this product by 29.5 and point off one figure to the right; the result will be the answer in wine gallons.

It may be necessary to add that to find the mean diameter, we add together the greatest and least diameters und divide by 2.
to Find the Number of Bushels of Apples, Potatoes, \&c., in A Box or bin.-Multiply the length, breadth and depth together (all in feet), and this product by 8, pointing off one figure in the product for decimal.
Storage of Roots in Cellars, \&c.-It will require about 15 cubic feet of space to hold 10 bushels of roots. At this 1 ate the following table will serve to estimate the dimensions of a root house or cellar required for the storage of various quantitles of roots.
1,000 Bushels of roots will require 1,500 cub. ft., or

1,500	"	"	"	2,250	$"$
2,000	"	"	"	3,000	$"$
3,000	"	"	"	4,500	"
4,000	"	"	"	6,000	"
7,000	"	"	"	10,500	$"$
10,000	"	"	"	15,000	"

Capacity of Wacon-Beds.-Rule 1.-If the opposite sides are parallel, multiply the length inside in inches by the breadth inside in inches, and that again by the depth inside in inches, and divide the product by $2,150.42$ (the number of cubic inches in a bushel), and the quotient will be the capacity in bushels.

Example. - What is the capacity of a wagon-bed 10 ft . long, 4 ft . wide, and 15 inches deep.
Wonk. -120 inches, length, $\times 48$ inches, width, $\times 15$ inches, depth, $=86,400 \div 2,150.42=40$ bushels. Ans.

Rule 2.-Should the head and tail boards, or cither of thens, be set in berelling, add the top and bottom lengths together and divide ly 2 for the mean length, and proceed by the foregoing rule. Should the sides be sloping add the top and bottom widths, and divide by 2 for the mean width, and proceed by the foregoing rule.

Should the contents be required in cubic feet, divide the product by 1,728 (the number of cubic inches in a cubic foot), instead of $2,154.42$, and the quotient will be the contents in cubic fcet.
Gross and Net Weight and Price of Hogs.-A short and simplo method for finding the net weight or price of hogs, when the gross weight or price is given, and vice vcrsa.

Note.-It is generally assumed that the gross weight of hogs, diminished by one-fifth or 20 per cent. of itself gives the net weight, and the net weight increased by one-fourth or 25 per cent. of itself equals tle ganss weight.

To find the net weight, or gross price : Multiply the given number by 8 (tenths).

Example.-A hog weighing 395 lbs . gross, will weigh 292 lbs . $\left\{\begin{array}{r}365 \\ 8\end{array}\right.$ net, and pork at $\$ 3.65$ net, is equal to $\$ 2.92$ gross.

To find the gross weight, or net price : Divide the given number by 8 (tenths).

Example.-A log weighing 348 lbs . net, weighs 435 lbs gross; $\left\{{ }^{.8) 348.0}\right.$ and pork at $\$ 3.48$ gross, is equal to $\$ 4.35$ net.

Atoes, \&C., in together (all in in the product
about 15 cubic following table : cellar required
8.4×5 high, $\mathrm{x} 9.4 \times 8$ high. 12.6×9 high,) 14.0×8 high. 16.8×9 high, 18.9×8 high. 25.0×9 light, $\mathrm{x} 28.0 \times 8$ ligh. 3:3.4 x 9 high, $\times 37.6 \times 8$ high. 58.4×9 high,) x (6.7.7 x 8 high . 83.4×9 high,) 93.9×8 high. osite sides are readth inside in and divide the oushel), and the
long, 4 ft . wide,
5 inches, depth,
: them, be set in vide by 2 for the hould the sides 2 for the mean
the product by of $2,154.42$, and hort and simple when the gross
of hogs, diminweight, and the of itself equals
iven number by
$202 \mathrm{lbs} .\left\{\begin{array}{r}365 \\ \frac{.8}{292.0}\end{array}\right.$
n number by ' 8
ross; $\left\{\begin{array}{r}.8) 348.0 \\ 435\end{array}\right.$

To Find the Number of Shinales Required in a Roof.-Rule. -Multiply the number of square feet by 8 , if the shingles are exposed $4 x$ ins., or by $71-5$ if exposed 5 ins . To find the number of square feet, multiply the leugth of the roof by twice the length of the rafters.

To tind the length of the rafters at one fourth pitch, multiply the width of the building by .56 (hundredths); at one-third pitch, multiply it by 6 (teuths); at tivo-fifths pitch, by 64 (hundredths.) This gives the length of the rafters from the apex to the end of the wall, and whatever projects must be taken into consideration.

Note. $\mathrm{By} \frac{1}{4}$ or $\frac{1}{2}$ pitch is meant that the apex or comb of the roof is to be $\frac{1}{4}$ or the wldth of the building higher than the walls or base of the rafters.

Example.-How many shingles are requlred to cover a building 42 feet long and 30 feet wide; tho roof to have \& pitch, and to project 1 foot on each end, and 1 foot on each side for the eares-the shingles to lio $4 \frac{1}{2}$ iuches to the weather.

$$
\left\{\begin{array}{l}
\text { For } \frac{1}{3} \text { pitch, } 30 \times .0=18 \\
2 \text { tith } 18 \text { foot projection }=19 \\
42 \text { and } \frac{19=38}{2=44} \\
\frac{1672 \text { sq. feet. }}{8}
\end{array}\right.
$$

Ans. 13,376

Capacities of Cisterns.

For a circular cistern, take the diam. in feet, square that (see table on pago 612), and multiply by 785398 ; that gives the areat in feet; multiply this by 1.728 and divide by 231 , and you will have the number of gallons capacity of one foot in depth of the cistern ; from this calculate the depth.
If for a Square Cistern, multiply length by breadth, and proceed to multiply the resnlt by 1,728 and to divide by 231, as before. Calculated in this way we find that each foot in depth of a

Circular Cistern.

	fect in	diam.	holds	4.66	blls.
6	-6	${ }_{6}$	'6	6.71	6
7	،	"	${ }^{6}$	9.13	6
8	"	1	"	11.93	"
9	"	6	"	15.10	6
10	"	6	"	18.65	*

Square Cistern.
in calculating the capacity of cisterns, \&c., $31 \frac{1}{2}$ gals. are estimated to 1 barrel, and 63 gais. to 1 hogshead.
To Compute the Weight of Live Cattle. For cattle of a girth of from 5 to 7 feet, allow 23 lbs . to the superficial foot. For a girth of from 7 to 9 ft , allow 31 lbs. to the superficial foot. For small cattle and calves of a girth of from 3 to 6 ft . allow $16 \mathrm{lls}$. . to the cubic foot. For pigs, sheep, and animals measuring less than 3 ft . girth, allow 11 lbs . to the superficial foot.
Rule.-Measure the girth in iuches back of the shoulder, and tho length in inches from the square of the buttock to a point even with tho point of the shouldes blade. Multiply the girth by the length, and divide the product by 144 for the superficial feet, and then multiply the superficial feet by the number of lbs. allowed as above for cattle of rarions girths, and the product will be the number of pounds of beef, veal, or pork in the four quarters of the animal. To find the number of stone, divide the number of lbs. by 14.
Example.-What is the estimated weight of beef in a steer, whose girth is 6 ft .4 ins., and length 5 ft .3 ins.
Work. -76 ins. girth, $\times 63$ ins. leugth, $=4788 \div 144=334$ square feet, $\times 23=7644^{9} \mathrm{lbs}$., or $54 \frac{9}{g}$ stone. Ans.

When the animal is but half fattened, a deduction of 14 lbs . in overy 280, or 1 stone in every 20 must be mado; and If very fat, 1 stone for every 20 must be added. See other rules on page 858 .

These rules are a very close approximation to the truth, subject to very slight variations owing to the condition, breed, \&e., of various animals. The following Table is compiled from two English authorities on the subject :

In reference to the very Important item of Sheep IIusbandry, the fol lowing valuable Table preseuts the results of nu: erous experiments by De Raumer:
TADLE SIIOWING THE EFFECTS PRODUGED BY AN EQUAL QUANTITY OF THR FOLLOWING SUBSTANCES AS FOOD FOR \&ifeep.

Lus.	Designation.
1000	potatoes raw with salt.
،	" " withoutsalt
"	mangel-wurtzel, raw....
"	wheat.
${ }^{6}$	oats.
6	barley
6	peas
"	rye, with salt
6	(1)without sal
"	corn meal, wet
	buckwheat.

Increased weight of
living animal in
Lbs.
$461 / 2$
44
$381 / 2$
155
146
136
134
133
90
129
120

Produced Wool Lba.	Produced Tallow L.bs.
C $1 / 3$	121/3
${ }_{6} 1 / 2$	1112
$51 / 4$	$61 / 2$
14	691/8
10	421/2
$111 / 2$	60
141/2	41
14	35
12	43
$15^{1 / 2}$	171/2
10	33

The following Table, from Delisser's Horseman's Guide, exhibits the percentage of different nutritive elements in the various kinds of food supplied to horses in this and other countries :

Description of Food.	Wood Fibre.	Sugar and Starch.	Fibrine and Albumen.	Fatty Mat ter.	$\underset{\text { Saline Mint }}{\text { ters. }}$	Water.
Black Butter Corn.	none.	63.5	15.5	10.5	9.2	11.2
Oats.	30.0	43.0	11.4	0.6	2.5	12.5
Indian Corn.	8.0	53.0	14.0	6.0	5.0	14.0
Linseed.	19.0	35.0	20.9	8.0	6.0	12.0
Beans.	145	40.0	21.0	2.5	3.0	14.0
Peas.	9.0	48.0	28.0	2	3.0	14.0
Barley.	14.0	52.0	13.5	2.5	3.0	15.0
Old Hay.	30.0	40.0	7.8	2.0	7.0	14.0
Clover.	25.0	40.0	1)	3.0	9.0	14.0
Barley Straw.	46.0	3 ± 0	1.5	none.	6.5	12.0
Oat Straw.	80.0	31.0	1.0	a trace.	5.5	12.5
Wheat Straw.	55.0	27.0	0.5	none.	5.5	12.0
Bran.	54.0	2.0	20.0	4.0	7.0	13.0
Carrots.	3.0	10.0	1.5	none.	1.5	84.0

1 pt. of Black Butter-Corn as imported from tho Indies, and sold in many of the feed stores, is consldered equivalent to 12 qts. of oats for nourishing qualities when fed to a horse. Hard working horses can be
bs. in ovary 1 stone for lject to very pus animals. cities on the

Cary's Table slone lo.

2100
2400
2700
34 07
3811
4300
4507
4800
$64 \quad 07$
$70 \quad 03$
$99{ }^{1}$
107
ndry, the fol periments by

QUANTITE OF
Produced
Tallow
1.bs. 1.bs. kinds of food

Hine Mut- ters.	Water.
9.2	11.2
2.5	12.5
5.0	14.0
6.0	12.0
3.0	14.0
3.0	14.0
3.0	15.0
7.0	14.0
9.0	14.0
6.5	1.0
5.5	12.5
5.5	12.0
7.0	13.0
1.5	84.0

es, and sold in qts. of oats for horses can be
kept in prime order by feeding them, 1st, At Night after work, 1 peek oats, and to pt. black butter corn, with 8 to 10 lbs. good hay. 2d, In the Morning, $\frac{1}{}$ peck oats, 1 pt . Indian meal, with say, 2 lbs. hay. 3d, Duriug the day, \ddagger peck of oats with a little hay. 4th, On Saturday, Night a good warm bran mash. 5th, On Sunday, an extria allowance of hay.
Thess rules followed out, will ensure to a horse a weekly allowanco of, Fibrine and Albunen, 22 lbs .; Fat, 54 lbs . ; starch and sugar, 85 lbs, so that the relative proportion of nitrogenous to carbonaccous food is as 1 to 4 ; while for a fatteniug animal it is as 1 to 5 . Horses should be watered before feeding.
TAULE, SIIOWING THE RESULTS OF EXPERIMENTS IN THE FEEDING OF GOOD HAY AND OTIEI SUBSTANCES, AS FOOD FOL STOCK.

10 lbs of hay are equai to 8 to 10 lbs. clover hay.
45 to 50 " green clover.
40 to 50 " wheat straw.
20 to 40 " barleystraw.
20 to 40 " oat straw.
10 to 15 " peastraw.
20 to 25 " potatoes.
25 to 30 " carrots (red).
40 to 45 " " (white).

10 lbs. of hay aro equal to 30 to 35 lbs. mangold wurtzel.

Note.-In calculations of this kind, due allowance must be made for variatious caused by tho coudition, age, digestion, breed, \&c., of the animal, and the varicty or mixture of the food dispensed. The samo remarks are eminently true of the following.
Table, showing the difference between good hay and the SUBSTANCES NOTED BELOW, AS FOOD FOR STOCK, BEING THE MEAN CF EXPERIMENT AND THEORY.

100 the of hay aro equal to

 84 lbs. rye.| 46 | * | wheat. |
| :---: | :---: | :---: |
| 59 | " | oats. |
| 45 | ${ }^{1}$ | peas and beans mixed. |
| 64 | ${ }^{\prime}$ | buckwheat. |
| 57 | " | Indian eorn. |
| 68 | " | acorns. |
| 105 | ${ }^{6}$ | wheat bran. |
| 109 | '6 | rye " |
| 167 | ${ }^{\prime}$ | wheat, pea, and oat chafl. |
| 179 | " | rye and bailey, mixed. |

The following Table shows the amount of hay or its equivalent per day, required by each 100 lbs . of live weight of various auimals :

Winter Treatment of Hens.-Hens will produce an abundance of eggs during winter if they are provided with a warm comfortable roost during the night, and a sheltered sumny exposure during the day. Give them plenty of dry ashes, gravel, and sand to roll in ; a box of slacked or old lime to nibble at, with an allowance of finely chopped meat every other day, and plenty of corn and oats, boiled soft, and spiced with cayenne pepper. Add the table crumbs, potato parings, \&c., with plenty of lukewarm water, and they will render ample returns. No living thing kept on a farm pays better than heus if they are only well used.

Nutritive value of various crops，as to starch，glam，gluteng albumen，Cabein，oil，saline matter，sé．

designation．	Bushels．	1bs．		昜		Oil．	
Wheat．	25	1500	225	825	180	45	30
Barley．	35	1800	270	1080	230	50	50
Oats．．．	50	2100	420	1050	300	100	75
Peas．	25	1600	130	900	380	34	48
Beans．	25	1600	160	G－10	420	40	50
Indian Corn	30	1800	100	1260	220	130	30
Potatoes．．．．	12 tons	27000	1080	4800	540	45	240
Turnips．．	30 ＂	67000	1340	6000	1000	200	450
Wheat Straw	11／3 ${ }^{6}$	3000	1500	900	40	80	150
Meadow Hay	$11 / 2$＂	3400	1020	1360	240	120	220
Clover Hay．．	2 1	4500	1120	1800	420	200	400
Cabbage．．．．．．．．	20 ＂	45000	430	2300	1300	130	600

In the following table，by Sprengel，the grain，leaves，peas，straw，and hay，are estimated after they have been dried in the air，the roots after they have been taken from the field．The potato loses in drying 69 per cent．of Water ；the turnip，91；the carrot，87；the turnip leaf， 86 ；the carrotleaf，parsnip，and parsnip leaf，each 87，and the cabbage 93.
Tanle ghowing the quantity and kinds of inorganio matter REMOYED FROM TIIE SOIL IN 1000 LBS．EACH OF THE FOLLOWING CROYS．

		告	号		品	品						
Wheat	2.2	2.40	0.96	0.90	0.26		0.50		0.10			7
＂Straw．	0.20	0.29	2.40	0.32	0.00	28.70	0.37		0.30			35.18
arley－Grain．	2.78	2.90	1.06	． 80	0.25	1.82	． 59	2.10	0.19			23.49
Straw	1.80	0.48	5.54	0.76	1.46	38.56	1.18	1.60	0.70	0.1	0.2	52
Oats－Grain	1.50	1.32	0.86	0.67	0.14	19.76	0.35	0.70	0.10	0.40		25.80
＂Straw	8.70	0.02	1.52	0.22	0.06	45.88	0.79	0.12	0.05	0.02	0.02	57.40
Rye－Grain	5.32		1.22	0.44	0.21	1.64	0.23	0.46	0.09	0.42	0.34	10.40
＂Straw	0.3 ？	0.11	1.78	0.12	0.25	22.97	1.70		0.17			27.93
Field Bear	4.15	8.16	1.65	1.58	0.34	1.26	0.89	2.92	0.41			21.26
Bean $\}$ Straw	16.56	0.50	6.24	2.69	0.10	2.20	0.34	2.26	0.80	0.07		31.21
Field Pea．．	8.10	7.39	0.53	1.36	0.20	4.10	， 0.53	1.80	0.38	0.10		24.64
Pea $\}$ Straw ．．	2.35		27.30	3.42	0.60		3.87	2.40	0.04	0.20	0.0	49.1
Pota＇s $\{$ Roots ．．	4.028	2.334			． 050	． 084	． 510	． 401	－160	． 032		8.41
Pota＇s \｛ Tops．．．	8.19	． 09	12.97	1.70	． 04	4.94	4 ． 42	1.97	． 50	． 02		30.84
． Roots．．	2.386	1.048	． 752	． 254	． 026	． 388	8.801	． 267	． 239	． 032		$6.80{ }^{\text {c }}$
\｛ Leaves．	3.23	2.2	6.20	． 59	． 03	1.28	2.58	． 88	． 87	． 17		18.09
Carrots．	3.533	． 222	． 657	． 384	． 039	． 137	－ 275	． 514	． 070	． 033	． 060	9.619
Parsnips	2.079	702		． 270	．024	． 162	． 192	． 100	． 178	． 05		¢． 180
Rye Grass．	8.81	3.94	7.34	0.90	0.31	27.72	3.53	0.25	0.06			52.86
Red Clover．	10.05	5.2	27.80	3.33	0.14	3.61	14．47	6.57	3.62			74.78
White Clo	31.05	5.79	33.	3.05	1.00	14.73	3.53	5.05	2.11	0.63		91.32
Iucerne	13.40	6.15	48.31	3.48	0.30	3.30	－4．04	13.07	3.18	30		95.5
Sainfoin	20.57			88	9，66	5.00	3． 11	9.16	1.57			69.54

il.	
45	30
${ }^{50}$	
34	48
40	50
130 45	30
200	450
80	150
120	220
200	40
130	A

Johnston. , straw, and o roots after rying 69 per caf, 86 ; the ;e 93.
il MATTER FOLLOWING

As a means of anabling the farmer to form an approximate estimate of the amount removed from the soil by his crops, we append the following valuable tables by Prof. Johnston :-
Table showing the anount of organic substances removed fron TIE SOIL IN 1000 LBS. EACH OF TIIE FOLLOWING CHOYS WHEN PERFECTLY DRI.

	Carbon. Lbs.	Hyclrogen. Lbs.	Oxygen. l.bs.	Nitrogen. Lbs.	
May. about.......	458	50	387	15	¢0
Ired Clover Hay..	474	50	378	21	77
Potatoes....	440	58	447	15	40
Wheat............	461	58	$43!$	23	23
Wheat Straw	484	53	$3891 / 2$	$33^{1 / 2}$	70
Oats	507	64	367	22	40
Oat Straw	601	54	390	4	61

TABLE SHOWING INORGANIC MATTER REMOVED FROM THE SOIL IN 1000 LBS. EACH OF THE FOLLCWING ChOPS IN THEII ORDINARY STATE of DRYNESS.

Wheatabout	20 lbs .	Beans about	30 lbs .
Wheat straw	50	Peas................ . . "	30
Barley "	30 "	Peastraw. "	50 "
Barley straw "	50 "	Meadow Hay.......... "	50 to 100
Oats..	40 "	Clover Hay "	90 Ibs.
Oat stra	60 "	Rye Grass Hay........ "	KF^{6}
Rye.	20 "	Potatoes.............. "	8 to 15
Rye straw	40 "	Tarnips............... "	5 to 8
Indian Corn		Carrots "	15 to 20
Indian Corn Stalk.... "	50		

Grand Idea for Farmers ; Best Fodder at $\$ 1.00$ per Ton-Mr. Frucis Morris of Howard Co., Ind., thus recounts a very unusual experience in preparing and using corn fodder. The system, if carried out to its nltimate results, would render almost any farm a fair equivalent to a gold mine, so far as profit is concerned.
"About the 1st of last August, I planted five acres of ordinary wheat land in Indian corn, and I allowed it to grow nntil the 1st of October, when it was in tassel. I then had it ent down with a reaper and passed through the ordinary process of chopping, using for that purpose an ordinary feed-cutter. The fodder thus produced was mixed with straw in proportion of four-fifths corn fodder to one fifth straw. It was then put in trenches, trampled down, and covered with earth. The fodder remaned in this state until last Christmas day, when the trenches were opencd and the fodder taken out and 'fed to the cattle. The fodder was found to bein as perfect a state of preservation as when it was first put in, and the cattle seemed to relisin it from the first, and now prefer it to any other kind of food. The cost of producing this fodder was only $\$ 1$ a ton, which is only one-twentieth as much as the cost of timothy hay, which is not equal to it in any respect. If the land is planted early in the spring, 20 or 30 tons can be raised to the acre, but in France the land is highly mamured and the corn is sowed only two feet apart, which often makes the yield as high as 80 tons to the acre. The same land can afterwards be planted in barley, and loses none of its strength by the planting of the corn, as it is a principle in agriculture that the strength of the land is only lost in the formation of the grain. By the use of this fodder every farm of 100 acres, planted with 10 acres of this fodder, wonld be able to fatten 100 head of cattle during the winter, which would yield a profit, of 50 per cent., besides the immense advantage of having such an amount ot stable manure, which in itself, if utilized, would pay for the fodder thus used."
The advantages of thís method, Mr. Morris states, are best shown by a
comparison between the cost of production of this fodder and the cost of timothy hay.
Phosphate, 10 acres, at $\$ 16 \ldots . . .$. $\$ 160$
Team and plow for 30 days.. 60
Man to tend the team 15
Cutting... 15
Hauling aind preserving.. 250
Total cost................................. $\$ 500$
"A fair estimate of the crop of these ten acres would be 500 tons. Five hundred tons of timothy liay would cost $\$ 10,900$, and as this 500 tons of chopped fodder will answer the same purpose as the timothy hay, it is casily seen that every community can thus raise its own meat at about half the cost to import it."

Of all the vegetable products used as food, it is to be noted that in their dry state, carbon forms almost $\frac{1}{3}$ the weight, oxygen a little over $\frac{1}{3}$ hydrogen a little more than 5 per cent, nitrogen from $1 \frac{1}{2}$ to 4 per cent, and earthy matter from 1 to 20 per cent.

A SIMPLE STUMP PULLER.
The above cut represents a simple stump machine illustrated in the columns of the American Agriculturist. It is worked by a lever, moved preferably by a stout yoke of oxen. The end of the lever is supplied with a strong clovis, sufficiently long to pass around so as to be used on either side. The fulcrum of the lever consists of a chain which is to be fastened to the largest stump near (a); on each side of this is a clevis, with a short chain and hook attached. To work the machine, fix a chain to the stump to be pulled, hook on to one of the short chains of the machine (b), draw up the oxen until that chain is tight ; hook on the other chain (c), turn the team, and draw up as far as they can go ; hook the chain (b), turn and draw again, and so repeat until the stump is drawn out. Then fasten on to another, and repeat the process until all the stumps are ont within reach of the one the machine is anchored to. The machine will then have to be moved to another anchoring place, and so on until the field is cleared. The last stump left must be grubbed out. It will be necessary to remember that the power of this lever is

ustrated in the a lever, moved er is supplied s to be used on which is to be this is a clevis, ine, fix a chain - chains of the t; hook on the can go ; hook il the stump is rocess until all ss anchored to. ring place, and ist be grubbed of this lever is
very great; and stump pulling requires stout implements and chains. A breakage may not only cause delay, but a blow from a suapping chain may very easily be fatal; it is therefore absolutely necessary for safety that the chains be made of the best iron, with the best workmanship, and strong enough to hold against all the resistance they may meet. The lever should be strengthened with iron plates in those parts where the holes are bored for the elevis bolts.
Dynamite vs. Stumps and Rocks.-Late experiments by John O'Donnell, of Jamacia, L. I., before an invited party of farmers, prove conclusively that stumps and rocks can be sent flying by means of dynamite at a very low cost. The stronger and fresher the stump is the further it fies. Five stumps were attacked. The first was of oak, partly decayed. The men employed punched a hole with a crowbar between two projecting roots, but not being experts, did not insert the instrument fully under the stump. Consequently, only two-thirds of it was blown out. The partial decay of the wood was another hindrance. It did not offer the necessary resistance. A partially rotted chestnut stump was blown to fragments. The crowbar was badly inserted under an apple-tree stump, and thet, like the oak, was shattered to the extent of two-thirds. With a sound and sturdy oak stump, however, the dynamite was fully triumphaut. The stump was blown out utterly.
A charge was place under a rock weighing about two tons. It was thrown from its bed and shattered to pieces. A rock half its size mas thrown twenty feet, but not broken. A hole about a foot deep was then drilled into a well-embedded rock, and charged with four ounces of dynamite. It was much broken, and the pieces not dislodged were easily pried out with the crowbar.
About two inches of a cartridge an inch in diameter had hitherto been used upon the stumps, but the closing experiment was made with an entire cartridge eighteen inches long upon a fresh oak stump twenty inches in diameter. Many of the fragments wero thrown 125 feet.
The dynamite is put up in packages of oiled muslin, shaped like a candle, and i:njervious to water. One end is opened, and a hole is made in the powder with a stick for the insertion of the percussion cap, which is an inch long, and luaded for half its length with fulminate of mercury. A fuse is inserted in the cap, which is squeezed with nippers that it may fit tightly. The little interstices must be filled with soap, to render the cap waterproof. Aftel the cap is in position in the powder, the top of the cartridge must be tied tight around the fuse, so that no water may enter. On the cartridge being piaced against the stump, water must be poured into the hole and the ground around thoroughly soaked and pressed that it may offer a strong resistance. A little semi-circular dam should then be heaped around, within which more water should be poured, by way of adding to the resistance. The fuse, which should project outside of the dam, is then lighted. It reaches the cap in less than two minutes, which affords ample time for the operators to reach a safe distance. The explosion makes little noise, and after viewing a dance in the air of a myriad of fragments, spectators find a large hole, with a few loose roots arouind and the ground ready for the plongh.
Cockroach Destroyer.-To destroy cockroaches, mix finely powdered borax and fine sugar, half-and-half, and spread around where the roaches are most troublesome. For a few days it may seem that the remedy is doing no good, but soon the roaches will begin to die. and in a short time youl will be rid of them. This is said to be an infallible remedy. Cayenne pepper will keep the pantry and storeroom free from cockroaches and auts.

QUANTITIES OF SEED REQUIRED TO THE ACRE, \&C.
Table showing the quantity of garden seed for a given space. Designation.

Space and quantity of seeds.

Eng. Dwarf Beans
French " "
Bcans, Pole,larto
Beets...............
Broccoli and Kiale
Cabbage..
\qquad
Cauliflower......
Carrot.
Celery.
Cress
Fgg Plant.........
Leek.
Lettuce.
Nisturtium
Onion..............
Okra...............
Parsnip..
Poppers............
Peas
Pumpkin.........
Radish.
Salsify
Spinage...........
Squash.............
Tomato..........
Turnip...........

1 oz . produces 1000 plants and requires a bed 12 ft . sq.
1000, plant a bed 4 feet wide, 225 long.
1 quart plants, from 100 to 225 of row.
"، " " from 100 to 150 feet 0 : row.
" " " 100 hills.
" " " 300 hills, or 250 feet of row.
10 lbs. to the acre ; 1 oz . plants 150 feet of row.
1 oz . plants 2500 plants, and requires 40 sq . ft . of ground.
Early sorts same as broccoli, and require 60 sq . ft. ground.
The same as cabbage.
1 oz . to 150 of row.
1 oz . gives 7000 plants, and requires 8 sq . feet of ground. 1 oz . for 150 hills.
1 oz . sows a bed 16 feet square.
1 oz . gives 2000 plants.
1 oz. gives 3000 plants, and requires 80 feet of ground.
1 oz . gives 2000 plants and requires 60 feet of ground. 1 oz . " 7000 " and requires seed bed of 120 feet. 1 oz. for 120 hills.
1 oz. sows 25 feet of row.
1 oz . " 200 " "
$1 \mathrm{oz} . " 200$ " " "
$\begin{array}{lllll}1 & \text { oz. } & \text { " } 200 & \text { " } & \text { " } \\ 1 & \text { 1 } & 250 & \text { ، } & \text { az. }\end{array}$

1 quart sows 120 feet of row.
1 oz to 50 hills.
1 oz . to 100 feet.
1 oz . to 150 feet of row.
1 oz . to 200 feet of row.
1 oz . to 75 hills.
1 oz . gives 2500 plants, requiring seed bed of 80 feet.
1 oz , to 2000 feet.
Table showing 1 oz , to 50 hills.
Designation.

Wheat	$11 / 4$ to 2 bush.	Broom Corn......... 1 to $11 / 2$ bush.
Barley	. $11 / 2$ to $21 / 2$	Potatues 5 to 10
Oats	2 to 4	Timothy 12 to 24 quarts.
Rye	1 to 2	Mustard......... 8 to 20
Buckwheat	$3 / 4$ to $11 / 3$	Herd Grass.......... 12 to 16
Millet	1 to $11 / 2$	Flat Turnip......... 2 to 3 lbs.
Corn1......	$1 / 4$ to 1	Red Clover.......... 10 to 16
Beans	1 to 2	White Clover........ 3 to 4 "
Peas..	$21 / 2$ to $31 / 2$	Blue Grass.......... 10 to 15 "
Hemp.	1 to 11/2	Orchard Grass...... 20 to 30 "
Flax.	$1 / 2$ to 2	Carrots 4 to 5 "
Rice..	. 2 to 21/2 "	Parnsnips 6 to 8 6

TABLE showing the quan'rity per acre when planted in hows cb DRILLS.
Broom Corn............ 1 to $11 / 2$ bush. Onions. 4 to 5 lbs,
Beans........ $\cdot1_{1 / 2}$ to $2{ }^{4}$ " Carrots......................... 2 to $21 / 2$ "

To Estimate the Quantity of Peat.-Peat, as ordinarily in the bed, will weigh 2,100 to $2,400 \mathrm{lbs}$. per cubic vard, if drained in the bed 1,340 to. 1,490 ; when air-dried, 320 to 380 lbs., when it will shrink to or 1-6 its original bulk.

Vitality of Sreds.-Beans will retain vitality for 2 years, beet 7, cabbage 4, carrot 2, sweet corn 2, cucumber 10, lettuce 3, melon 10, onion 1 , peas 2 , parsuip 1, radish 3 , squash 10 , tomato 7 , turnip 4.

RE, \&c. given space. $\overline{\mathrm{ed}} 12 \mathrm{ft} . \mathrm{sq}$.
row.
ft. of ground. io sq. ft. ground.
feet of ground.
t of ground. t of ground. red of 120 feet.
d of 80 feet.
To the acre. Quantity of seed.
.. 1 to $11 / 2$ bush, - 5 to 10
. 12 to 24 quarts. $\because 8$ to 20 . 12 to 16 " 2 to 3 lbs .3 to 4 " .10 to 15 . 20 to 30 " . 4 to 5 " . 6 to 8 "
TED in hows CB
...... 4 to 5 lbs.
…… 2 to $21 / 2 "$
….... 4 to 5 …... 4 to 6
narily in the bed, ned in the bed, will shrink to

2 years, beet 7, , mélon 10, onion p 4.

TABLE SHOTING OERMINATION OF WHEAT SOWED AT VARIOUS DEPTHS. Appeared abnve $\begin{gathered}\text { No. of plants } \\ \text { ground in }\end{gathered}$ that came up.

In sowing wheat the rule is to give it a thimer covering in a close heary soil, than in oue that is light, gravelly, and sandy.
table, showing the period of reprodection and gestation of DOMESTIC ANIMALS.

DESIGNATION.				feriod of cestation and t...		
				Shorteat period, days.	Mean period, days.	Longest period, dys.
Mare...........	4 years.	10 to 12		522	347	419
Stallion,	5 "	$12 \mathrm{t}: 13$	20 to 30			
Corr,	$3 \quad 4$	10 to 14		240	283	321
Bull,...........	$3 \quad$ '	8 to 10	30 to 45			
Ewe,...........	2 "			146	154	161
Ram,	2 "	7	50 to 50			
Sow,	1 "	6		109	115	143
Boar,	$1 \times$	6	6 to 10			
She Goat,	2 "	6		150	156	163
He Goat,	2 "	5	20 to 40			
She Ass,	4 "	10 to 12		365	380	391
He Ass.........	$5 \quad 1$	12 to 15				
She Ruffalo,...	${ }^{6}$	8		281	308	335
Bitch,	2 "	8 to 9		C5	60	63
Dog,	$\begin{array}{ll}2 & \prime \\ 1 & \prime\end{array}$	8 5 to to		48	50	56
Ile Cat,		9 to 10	5 to 6		0	6
Doe Rabbit, . . .	6 months	5 to 0		20	28	35
Buck Rabbit, ..	6 "	5 to 6				
Cock,		5 to (12 to 15			
Ilan,		3 to 5				
Turkey,				24	26	30
Duck,...........				28	30	32
Goose, Pigcon,.......				27 16	30	33
Pigcon,....... Pea Hen,				16 20	18 28	20
Pea Hen,..... Guinea İn,..				23 20	18 33	30 25
Guinea IIen, ... Sran,				20 40	33 42	25 45

Growtif and life of antmals.

Man	grows	for	8	year	${ }_{4}$	lires	90	or		ycars.
The Camel							40			
The Iforse	"	"	5	"	"	"	25			"
The $0 x$	"	"	4	"	"	"	15	to	20	"
The Lion	"	"	4	"	"	"	20			"
The Dog	"	"	2	"	"	"	12	to	14	"،
The cat	"	"	11/2	"	"	"	9	or	10	"
The Hare	"	"	1		"		8			"
The Guine		"		mont			6	or	7	

To Rid a house of Rats.-Wet a few pounds of unslacked lime with strong lye made from potash ; let it be quite soft ; spread it around the holes so that the rats camot avoid treading in it; let it remain a week or so, and if it gets dry scrape it off and moisten again. The mixture burns their feet, and they will not be likely to make a second visit. Do not let it come in contact with oil cloth or paint.

ON LAND MEASUREMENT．

To aid farmers in arriving at accurate results in the measurement of an acre，we append the following talle．A field of any of these dimen－ sions contains one acre：

			9681	ong		rd	de	483	
20	＂		242		40			¢21	
80	1	＂	601／2		70	＂	1	69	1
30	＇	／	161	${ }^{1}$	55	＂	16	88	＂
50	＂	＂	97	＂	47	＇6	＂	103	＂
16	1	＂	303	＂	59	＇6	6	82	4

	IN			
One acre，	208.71 feet ；	12.65 rods ；	64	paces．
1／2 acre，	147.58 feet；	8.94 rods ；	45	paces．
1／3 acre，	120.50 feet ：	7.30 rods ；	37	paces．
$1 / 4$ acre，	104.36 feet；	6.32 ruds ；	32	paces．
2／8 acre，	73.79 feet ：	4.47 rods ；	$221 / 2$	paces

TABLE FOR FARMERS，SURVEYORS，\＆C．，GIVING EXACT PROPORTIONS of an ache in square feet in a lot legs than an acke．

					告或		为苞
436	（i）	11326	． 26	$\underline{2} 2216$	． 61	33106	－76
871		11761	． 27	22651	． 52	33541	． 77
1307		12197	． 28	23087	． 53	33977	． 78
1742		12632	． 29	23522	． 54	34412	． 79
2178	． 05	13068	． 30	23058	． 55	34848	． 80
2614	． 06	13504	． 31	24394	． 56	35384	． 81
3049	． 07	13939	． 32	24829	． 57	$3: 819$	． 82
3185	． 08	\cdots	． 33	25265	． 58	36255	． 83
3920	． 09	Y＋4， 0	． 31	25700	． 59	36690	． 84
4356	． 10	15246	． 33	26136	． 60	37026	． 85
4792	． 11	15682	． 36	26572	． 61	37462	． 86
5227	． 12	16117	． 37	27007	． 62	37897	． 87
5663	． 13	16558	． 38	27.143	． 63	38333	． 88
6098	． 14	16988	． 39	27878	． 64	38768	． 89
6534	． 15	17484	． 40	28314	． 65	39204	． 90
6970	． 16	17860	． 41	28750	． 66	32940	． 91
7403	． 17	18295	． 42	20185	． 67	40075	． 92
7841	． 18	18731	． 43	29621	． 68	40511	． 93
8276	． 19	19166	． 44	30056	． 69	40946	． 94
8712	． 20	19602	． 45	30492	． 70	41381	． 95
9148	． 21	20038	． 46	30928	． 71	41818	． 96
9583	． 22	20473	． 47	31363	． 72	42253	． 97
10019	． 23	20909	． 48	31799	． 73	42689	． 88
10134	． 24	21344	． 49	32234	． 74	43124	． 98
10894	． 25	21780	． 50	32670	． 75	43560	1.00

Smanil Lots．－In laying off small lots the following admeasurements will ke；foumd to be both accurate and useful ：－

To Sind ties Number of Acres in a Body of Land．－Rule．－Mul－ tiply the length by the width（in rods），and divide the product by 100： the risult will be the answer in acres and hundredths．

When the opposite sides of a piece of land are of nnequal length，add them together and take one－half for the mean length or width．Multiply this by the depth，and divide by $31 \frac{1}{2}$ ．This will give the result required
easurement of of these dimen-
by 483 long.

121	$"$
69	
88	$"$
103	$" 1$
82	$"$

64 paces.
45 paces.
$\begin{array}{ll}37 & \text { paces. } \\ 32\end{array}$
221/2 paces.
PROPORTIONS OR AN ACRE.

33106	.76
33341	
${ }_{34} 33712$.78
${ }_{34848}$. 80
35384	. 21
3:819	${ }^{83}$
36255	${ }^{.83}$
36690	. 85
37026 37462	.85
${ }_{37807}$. 87
38333	.88
38768	. 89
39204 32640	. 91
40075	. 92
40511	. 9.9
40946 41381	. 95
41818	. 96
42253	. 97
42689	. 88
43124 43560	1.00

ig admeasurements

of an acre.

"
""
"
acre.
AND.-Rule.- Mu the product by 160 :
nequal length, add or width. Multiply the result required

S'RVEMOR'S LONG MEASORE FOR MEASURING DISTANCES, BOUNDARIEE, AREAS, RAILWAYB, \&C:

Surveyor's long measure, scale of units, $7.92,25,4,80$,
table of miscellaneous linear measure.

3 inches
4 inches
9 inches
3 feet
3.28 feet

6 feet
880 fathoms
3 geograp
3 geographical miles 1 league.
$60 \quad$ " " $\} 1$ degree. $\left\{\begin{array}{l}\text { Of latitude: }\end{array}\right.$
$69 \frac{1}{4}$ statute " $\} \mathbf{1}$ degree. $\left\{\begin{array}{l}\text { of longiade on the equator. }\end{array}\right.$
Scryeyor's square measure, for measuring the contents of FARMS, FJELDS, \&C.

lf poles... 1 square chain, sq. ch.
10 square chains.. 1 acre, A.
40 acres... 1 square mile, sq. mi.
36 square miles (6 miles square)........................... 1 township, ${ }^{T} p$ p.
EQUIVALENTS.

$$
\begin{aligned}
& 10,000 \\
& \text { 1,000 }
\end{aligned}
$$

Surresor's square measure, scale of units, 625, 16, 10, 640, 36.
An Acre is the unit of land measure, and is 10 square chains (10,000 bks), or a piece of land 3 chains 164 links (or about 692 yds.), on each the four sides, or, if of a different shape, as much land as is embraced that compass.
A Roon is a quarter of an acre, or 40 perches, and contains 25,000 hare links ; if square, it sloould measure 1 chain and 58 links, or about
${ }^{3}$ yds. on each side.
A Peicir (sometimes called a pole or rod) is the 160 th of an acre, and ntains $30 \pm$ square yds., or 625 square links, and embraces $5 \frac{1}{2} \mathrm{yds}$., or running links of the cliain, on each of the four sides.
Giexter's Chain, the unit of measure used by surveyors, is a metallic in $22 y d s$. in length, and is divided into 100 links of 7 for inches each. asurements are calculated in chains and hundredths. - As a substiefor the chain, some engineers use a steel neasuring tape 100 feet g, with each foot divided into tenths. It takes 10,000 links to make faire chain, as 100 times 100 is 10,000 . An acre embraces 10 square
chains, or 100,000 square links. The outside mensuremeuts of land is estimated by running chains and links, the contents by square claios and links (being a regular system of decinals), the latter being a mintifi. ple of the former. In land measurement, the chain is drawn straight ore: hills and hollows. Correctness in the measurement is ensured by the use of a compass (sustained by a tripod) resembling a quadrant.
Farmers and others not possessed of a Gunter's chain or netallix measuring tape, may effect cor:et mensurements by the use of a notheded pole 162 feet long, containing 25 divisions, formed by 24 notches, each of them a trifte over $7 \frac{7}{8}$ inches apart. The 25 spaces will represent 25 lindes, and the pole \ddagger of a chain ; be careful to get the spaces correctly laid of and accurately numbered on the pole with pen and ink.
In the United States Government Land measurement a tomiship consists of 36 sections, each 1 mile square, a section contains bin $^{\circ}$ acres, a quarter section, $\frac{1}{2}$ mile square- 160 acres, an eighth section, , a mile long, north and south, and \ddagger mile wide-80 acres, and a sixteenith section, \ddagger mile square- 40 acres. In the surveys of the P'ublic Lauds of the United States they are laid out in ranges of townships which run long: tudinally, and are numbered on the maps in toman claracters, it capital letters, according to their proximity to the northern border il a state. The ranges of townships run from west to east, the extrene northern line of townships in any State would be all number 1 , the ueat number 1: and so on down. In a township the sections are all mumberd 1 to 36 , begiming at the north-east corner, as shown in the diagram.

In drawing out deeds the area or contents of the land is described in acres, roods, and perchee, the extent of each boundary is expressed by chains an links; if the land is of extra value, the odd yands and links are noted in describing the contents. b laying off arms, less tham haif a perch is x reckoned, while a half perch or more is counted full 1 . $w h$. The description of landed propertys detailed in deeds should be definite and explicits to contents and boundaries. Illustration-Thedis gram exlibits a piece of land, embracing, say
acres fronting on the west of Stanley road,
Land of Jom Reid.

Land of A. Rodgers.
the land of John Reid is on the south side ; that of Alex. Rodgers on to north side ; that of Daniel Wilson on the west side ; and the Stanler ral on the east side. In the Deed the lot should be described as follom " Beginning at a post, stake, or tree, on the west side of the Stand road at the north-east corner of land owned by John Reid, runnia westerly, parallel with the land of said Reid, twenty-five chains, to has belonging to Daniel Wilson, thence northerly, parallel with the lam of said Wilson, sixteen chains and sixty links, to land of Alex. Rodgea then easterly, parallel with the land of said Rodgers, twenty-five chis to the Stanley road, then southerly, along said road, slxteen chains as sixty links to the place of beginning, -containing twenty acres of hat be the same more or less."
ements of land is by square chaing tter being a multirawn straight ore ensured by the use drant.
chain or metallix he use of a notched 24 notches, each of 1 represent 25 liuls, es correctly laid of k.
asurement a toruection contains fif n eighth section, $\mathfrak{t a}$ es, and a sixtecith Public Lands of the ps which run long. man characters, of northern borler of to east, the extreme I number 1, the net ons are all numbered in the diagram.
ea or contents of the ods, and perche, the ressed by chainsand valne, the odd yars oing the contents. fis half a perch is m or more is comted of landed propertys lefinite and explicits Illustration-The dir. hd, cmbracing, say ${ }^{2}$

Alex. Rodgers on th ; and the Stanley ro described as follom tt side of the Stanit John Reid, runnis ty-five chains, to la arallel with the las and of Alex. Rodige rs, twenty-five chay nd, slxteen chains ${ }^{2}$ twenty acres of lay

An English acre is a.square of about 70 yds . each way ; a Scotch of $76 \frac{1}{2} \mathrm{yds}$.; and an Irish of $88 \frac{1}{2 d s}$. Every mile of mere hedge and ditch is about an acre. Roads and fences, 1 rod wide, occupy 1 acre for every mile of length.
Note.-An English acre comprises 4,840 square yds. ; the Scotch, 6,150 ; the Irish, 7,840 ; the French (hectare), 11,950; the Dutch, 9,722 ; the Prussian (morgen), 3,053 ; the Dautzic, 6,650 ; thiat of Amsterdam, 9,722 ; that of the United States is English measure.
for tadle of surface measurements, see page 128.
EQUIVALENTS.

Table of avoirdupois pounds in a mushel, as phescrided by STATUTE IN TILE SEVERAL STATES NAMED.
The letler m signifies sold by measure.

In Pennsylvania 80 lbs. coarse, 70 lbs ground, or 62 lbs . fine salt make 1 bushel, and in Illinois, 50 lbs . common, or 55 lbs . fine salt make 1 bushei. In Temessee 100 ears of corn are a bushel. Λ heaping bushel contains 2815 cubic inches.
In Maine 64 lbs. of ruta baga turnips or beets make 1 bushei.
A cask of lime is 240 lbs . Lime in slacking absorbs $2 \downarrow$ times its rolume, and $2 f$ times its weight in water.
The United States Standard bushel contains 2150.42 cubic inches. Λ cubic font contains 1728 cubic inches, so that a bushel is to a cubic foot, as, say 2150 to 1728 , or about the proportion of 4 to 5 ; hence to convert cubic feet to bushels, muitiply by $\frac{4}{5}$.
To Find the contentis of a bin in cubic feet.-Abate the contents one-fifth, and the result will be the contents in bushe!s.

ON FENCES．
As the maintenance of fences is a most important consideration on every farm，we present the foliowing
TABLE SHOWING THE NUBIBER OF RAILS，RIDERS，AND STAKES REQUIRED FOR EVERY TEN RODS OF ZIG－ZAG FENCE．

Length of rail．	Deflec： tion from right line．	$\begin{gathered} \text { Length } \\ \text { of } \\ \text { pancl. } \end{gathered}$	Num． ber of panels．	No．of rails for each10 rods				
Fect．	Fect．	Fcet．	Feet．	E rails high．	6 rails high．	7 ralls high．		
12	6	8	205／8	103	123	144	42	21
14	7	10	161／2	83	99	116	34	17
161／2	8	12	133／4	69	84	95	28	14

For longer distances than 10 rods，the proper number of rails，\＆e， may be computed by multiplying．For instance ：If for 50 rods of fence，multiply the above number by 5 ；if for 100 ，multiply by 10 ，\＆c． The like rule will apply to the next
Table，bhowing the number of rails and posts required for each ten rods of post and ibail straight fence．

			눙足易䔍品	Number of rails for each 10 rods．			
				Krails high．	6 rails high．	7 rails high．	8 rails high．
10	8	205\％	21	103	123	144	165
12	10	$16 \frac{1}{2}$	17	83	99	116	133
14	12	133／4	14	69	84	95	109
161／2	141／2	111／3	12	57	69	81	93

Aprroximate comparative cost of zig－zag and straicht rail fences．

Zig－zag rail fence－

Twelve rails，at $\$ 25$ per thousand
Ground covered by fence，with total worm from stake to stake，
in alternate panels of six feet，at $\$ 50$ per acre．．．．．．．．．．．．．．．．is 78
Two stakes，at two cents aplece．
$\$ 1.12$ per 12 ft ．

Straight rall fonco－

Eigist rails，at \＄25 per thousand．． 20 cents．
Ground covered by fence，two fect wide．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 26 ＂
Two stakes．． 4 4

\＄0 52 per 12 ft．
A board fence， 4 ft .6 ins ．high，with cedar posts 6 ft ．apart， 4 boards， respectively， 6 inches， 6 inches， 9 inches．and 12 inches broad．with \＆ coping board and vertical board covering the joints against the posts， may be constructed，when lumber costs not over $\$ 16$ per 1000 ，at a cost of not more than $\$ 1$ for every 12 ft ．in length，without counting labor．

The cheapest，and everything considered，the most efficient fence a farm－ or can construct，is one made of wire；such fences vary in cost according to the number of wires used，the number of posts，size of wire，\＆c．The
onsideration on

ATES REQUIRED

42	21
34	17
28	14

oer of rails, \&c, for 50 rods of itiply by $10, \& c$.

REQUIRED FOR fence.
each 10 rods.

rails ligh.	8 rails ligh.
144	165
116	133
95	190
81	93

STIRAICHT RALL
\qquad 30 cents. stake, $\begin{aligned} & 78 \\ & 4 \text { " }\end{aligned}$
$\$ 1.12$ per 12 ft .

$\begin{gathered} 20 \text { cer } \\ 26 \\ 4 \\ 2 \end{gathered}$	

\$0 52 per 12 ft .
t. apart, 4 boards, es broad, with a agaiust the posts, per 1000, at a cost it counting labor. ient fence a farm. in cost according of wire, \&cc. The
following table exhiblts the length of wire of each number that a given weight will make, from which may be computed the cost of a wire Ience.

63 lbs. of No. 6 rums 223 yards, and costs $\$ 345$ or 8.4 cents per rod.
"
8 " 222.4
365 or 6 .
66

Cos: of naterials of a voire fence, posts eight feet apart, with a bottom board twelve inches wide, and a scintling three by four on top:
14 posts, at 5 cents. $7 \frac{1}{5}$ cents.
1.2 feet of inch board, at $\$ 16.00$ per thousand fect. 19 "

Scantling, 12 feet, at $\$ 16.00$ per thousand fect.... 19 "
5 wires $=60 \mathrm{ft}$. of No. 6, at 8. neuts per rod....... 30 "
75.2 cents per 12 ft .

In riew of the increasing scarcity of timber in many parts of the country, it would be well for farmers to exercise greater care for the preservation of their standing trees, and as occasion offers, plant out more. Nature never falls to respond generously to all such investments. For interesting facts regarding the growth of forest trees, consult pp. 84 and 118. This subject reminds the writer of the advice given by a Scotch laird to his son and heir on his death bed. The laird's ruling passion during a long life had been to set out trees, and when the closing scene arrived, the son was called to his father's bed-side, and while standing there auticipating salutiry counsel befitting the solemnitles of the occasion, the dying laird e:- laimed "Now Jock, mind what I'm gaun to tell ye, when l'm gane be aye stickin' in a tree, for it'll grow when you'r sleepin'!"
Tue cifemidal imgredibnts of priant food, in pounds avoirdupois, contained in one ton of the following mantres.

Manures.	Chlorine.	Sulphi:ric Acd.	Phosphoric Acid.	Soda.	Mag. neaia.	Potash	\|monia.
Farm Yard M	lb. $\begin{array}{ll}\text { oz. } \\ & 19\end{array}$	$\begin{array}{lll} 1 \mathrm{ba} . & \mathrm{oz} \\ 1 & 4 \end{array}$	lbs. oz.	$\begin{array}{cc} \text { lbs. } & 0 \mathrm{oz} \\ 1 & 10 \end{array}$	Ibs. oz. 183	Ibs.oz.	$\text { ibs. } 02 \mathrm{z}$
Slght Soil ..	30	23	1200	410	27	07	47151
Fresh Bones			5800				145
Dry Blood							444
Guano.	620	938	$283 \quad 9$	3615		668	22191
Soot.	$2291 / 2$	$19431 / 4$	$5123 / 4$	$2113 / 4$	8 111/4	$711 / 4$	00
Salt, Common	13440			8330			
		1317 3 3					
Ifx. Urine p. 100 gals. Xitrate of Soda.......	16	38		83		2	$\begin{array}{ll}18 & 31 / 4 \\ 364 & 0\end{array}$
Sulp. of Arnica...	,	1357 0					470

A dragoon-horse kept in a box-stall with 1 hour's exercise each day for a week, was fed as follows :-

$$
\begin{aligned}
& \text { Oats each day } 10 \mathrm{lbs} .=70 \mathrm{lbs} \text {. per week }
\end{aligned}
$$

He drank within the week 27 gals. of water ; during the time of his exercise the loss of manure is supposed to be 4 lbs. daily, or 28 lbs . per week, yet althogh the

Total forage consumed amounted to 210 lbs .,
The manure and litter produced was $327 \frac{1}{2} 1 \mathrm{bs}$.
Thus if lost manure be added, yielding with the addition of the moisture imparted to the litter by urine, an increase of two-thirds beyond the weight of the food consumed. Experiments prove that a cow of average size voids about 60 lbs . of manure, or about $1 \frac{1}{3}$ cubic feet per day, or more than 3 cords, weighing over 10 tons, per year. Oomposted with peat or swamp
muck, three parts to one of manure, it would form 12 cords of excellent compost. It is further estimated that the liquid manure is equally valuable with the solid, and if this also is utilized by the feat absorbents, either under the stable or in it, 24 cords of an excellent fertilizer is secured. This, applied to 2 acres of worn-out meadow, producing say, 1 ton of hay or less per acre, would increaso the crop to 3 tons to the acre the first year, besides greatly increasing the crops for 5 years longer. In every case never fail to save your liquid manuie, for it is well worth every effort that can be made.
Table bhowing the comparative increase of conn by vamots IFFIBTILIZEILS.

*Only the increase over the experiments 7 and 8 with stable manure alone,
Table exhibiting the number of loads of manure and tif number of heaps in fach load required to an acke, the heaps at given distances apibt.

	number of heaps in a load									
	1	2	13	4	15	6	7	8	9	10
3	538	269	179	134	108	891/2	5	67	60	201
31/2	395	168	132	99	79	66	$561 / 2$	491/2	4.4	3919
4	${ }_{203}^{203}$	151	101	$751 / 2$	${ }_{601}^{601 / 2}$	501/2	431/4	$3{ }^{373} 4$	$331 / 2$	${ }^{304}$
${ }_{5}^{41 / 2}$	239 194	120 97	791/2	60 $481 / 2$	4733/4,	393/4	${ }_{27}^{341}$	241/4	$2{ }^{261 / 2}$	
$51 / 2$	160	80	$531 / 2$	40	32	26^{3}	2284	20	153/4	16
6	131	67	$443 /$	- $331 / 2$	27	221/2	191/4	$163 / 4$	15.	$\stackrel{13}{13}$
$61 / 2$	${ }^{116}$	571/2	381/4	283,		${ }_{161}^{19}$	$1{ }_{14}^{1 / 4}$	${ }_{1214}$	${ }_{12} 123 / 4$	${ }_{10}{ }^{11}$
$71 / 2$	${ }_{86} 8$	$43 / 2$	$283 / 4$	$214 / 2$	171/4	1412	$121 /$	${ }_{103}$	191	81/
8	761/2	$371 / 2$	251/4	19	1534	$121 / 2$	$10^{3} 4$	$9{ }^{9}$	$81{ }^{1}$	5
$81 / 2$	${ }_{60}^{67}$	$331 / 2$	${ }_{20}^{221 / 4}$	161/2	131/2	111/4	$91 / 2$	81/2	$71 / 2$	${ }^{6}{ }_{6}{ }^{4}$
${ }_{91 / 2}^{9}$	${ }_{\text {cke }}^{60}$	300	${ }_{18}^{20}$	151/2	1	${ }^{10} 9$	$8{ }^{8} / 2$	73/4	${ }_{6}^{62 / 3}$	${ }^{6}$
$10^{1 / 2}$	481/2	241/4	$181 / 6$	$12{ }^{1 / 2}$	193/4	8	74	63	$51 / 2$	$4:$

Explanation.-The left hand column gives the distance in yariu between the heaps each way in each row ; at the top of the columus ar
ords of excellent equally valuable bsorbents, either itizer is secured. ing say, 1 ton of) the acre the first longer. In every worth every effort
onn bx vamots

stable manure alone, manume and the to AN AChe, ${ }^{\text {tu8 }}$

18	9	
67	6	
$491 / 2$	44 314	,
373/4	361/2	
${ }_{241 / 4}$	21/2	194,
20	$13^{3 / 4}$,
$16^{8 / 4}$	15	,
14.4	${ }_{11}^{123 / 4}$	
${ }_{10}{ }^{3} 4$	$91 / 2$	
91/2	$8{ }^{8}$	
$81 / 2$	$71 / 2$	
$\begin{gathered} 73 \\ 63 \\ 64 \end{gathered}$	${ }_{6}{ }^{6}$	
	$51 / 2$	

θ distance in yaru p of the columus?

Indicated the number of heaps in each load, and the number of leads roquired per acre will be found at the point where the two lines meet.
Memoranda. - 1 cuble ft . of half rotten stable manure will weigh 56 lbs. if coarse or dry, 48 lbs. A load of manure is about 36 cubic ft., and If of the first quality will weigh $2,016 \mathrm{lbs}$. ; if of the second, 1728 libs . 8 loads of the first kind spread over an acre will give 108 lbs . to caeh square roll, and about 3 子 lbs . to each square yard.
To apply guano, mix it thoronghly for a few days with 5 times its bulk of vegetable mould or loan, and some charcoal or gypsmm, after breaking the lumps and sifting in alternate layers. Avoid the use of ashes or lime, as they tend to expel the ammonia, and keep muder cover, dry, until nsed. It may then be scattered broadeast upon meadows or grain,
 lano to the acre, the latter quantity to the more barren soils.
.ue following Table shows the composition of Bone dust. In 100 parts, there are of
lime.
.55.5
Carbonate of lime. 3.55
['hosphate of Magnesia.........2. Filuoride of calcinm. 3.
soda, and Common salt.2.5 \mid Gelatine (the substance of horn) 33.25 Analysis of a manure heap in the condition usuatly applied to a field.

Fresh.
Dried at 9120 .

Carhon.
Hydrogen. .5. 27
Oxygen. 95.52
Nitrogen. 1.515
Ashes (inorganic matter).io.05
The urine voided from a cow during one year contains 900 lbs . solid matter, and compared with Peruvian guano at $\$ 50$ per ton is worth $\$ 20$. It will manure if neres of land, and is more valuable than its dung, in the ratio, by bulk, of 7 to 6 , and in intrinsic value as 2 to 1 . -Dena.
I] line of the Cow contains of water............................. 92.2 per cent.

The remainder is composed cit salts and rich food for vegetables.Sprengel.

Analisis of molivian gliano by prof. johnston.
Thater.. 6.91
Organic Matter, containing Ammonia... . . 5;.52
Common Salt and Sulphate of Soda... 6.31
Carbonate of lime.. 3.87
Phosphate of Lime and Magnesia... 25.68
Silicious Matter or Sand.. 1.71
Analysis of peruvian guano my prof. jounston.
Water... . . 13.09
Grganic Matter, containing Ammouia..
Common Salt and Sulphate of Soda... 4.63
Carbonate of Lime.. 4.18
Phosphate of Lime and Magnesia... 23.54
Silicious Matter or Sand.. 1.39
Prof. Joinnston's Tests for Goon Guano.-The drier the better, there is less water to pay for and transport. The lighter the color the better, it is the less completely dissolved. If it has not a strong ammoniacal smell it ought to give off such a smell when a spoonful of it is mixed with a spoonful of lime in a wine-glass. When put into a tumbler of rater and stirred well, and the water and fine matter poured off, it ought
to leare but little sand or stones. When heated to redness orer a fire op a bright flame, untll the animal matter is burnt away, the ash should nearly all dissolve in dilute muriatic acid.
aNalysis of Fish guano.
Water expelled by 212^{\bullet} heat..... 8.06|Sulphate of Magnesia............. 0.71

Oil 2.40 " $"$ Soda 2.42
Organic Matter 50.72 Chloride of Sodium.................... 1.12
Super-Phosphate of Lime......... 9.85 Sulphate of Ammonia.................2
Sulphate of Lime, Hydrated..... 19.62 Dr. Apjohn.
Table, showing the effect phoduced upon the quantity of the crop by equal quan tities of different manures applied to the same soil, sown with an equal quantity of seed.

Return in Bushels for each Bushel of Seed.

Analysis of fresh farm-yard manure, composed of horse, cow, and pig excreta, about 14 days old, by Dr. Angustus Voelcker, Professor of Chemistry in the Royal Agricultural College, Cirencester, England. AccordIng to this analysis one ton ($2,000 \mathrm{lbs}$.) farm-yard manure contains-
Soluble silica (silicic acid).
24 lbs.
Ammonia (actural or potential)
Phospliate of limo.
Magnesta
Potash
Soda
Common salt
Sulphuric acid ${ }^{153_{4}}{ }^{13}$ "

Water.
Woody nibre, \&c
Of course no two samples of farm-yard manure are exactly of the same composition. Thaj analyzed dy Dr. Voelcker was selected with much care, as representing a fair average.

Note.-In estimating the value of barn-yard manure the value of the differont excreta will always range in value according to the kind of food provided for the stock. See last column of Table on page 716.
Table hhowing the comparative value of animal manures, with FAHM-YALD MANURE A'S THE STANDARD.

		farm-y solid ex			equal to Cow
73	${ }^{\prime}$	${ }^{\prime}$	${ }^{1}$	4	Horse
91	${ }^{6}$	liquid	"	18	Cow.
16	${ }^{\prime}$	"	"	"	Horse.
08	${ }^{\prime}$	Mixed	"	"	Cow.
04	${ }^{\prime}$	${ }^{\prime \prime}$	"	"	Horse.
36	"	"	"	10	Sheep.
64	${ }^{6}$	${ }^{6}$	*	"	Pig.

over a fire or e ash should
0.71
2.05
1.12

Dr. Apjohn.
ANTITY OF TRE ES APPLIED TO SEED.

Burhel of Seed.

Hye.	Oats.
14	$191 / 2$
$131 / 2$	$14 / 2$
13	14
11	11
9	11
9	16
6	13
4	5

rse, cow, and pis rofessor of Chenrngland. Accordre contain:s-

are exactly of the was sclected with
evalue of the differ. klati of food pro ©
ar manures, with nd.

Dry Flesh. Pigeon Dmig. Liquild Bloot. Dry Blood. Feathers. Cow Hair. Hair Shavings.
Dry Woollen raga
Johnston.

Table showing the relative value of decomposed vegetable manures, from the inorganic matter they contain.

Table sifowing the relative values of decomposed vegetables AS MANURES, FROM THE NITROGEN THEY CONTAIN.
100 lbs . of farm-yard manure is equal to

130 lbs .	Wheat Stra	anure.	80 lbs .	Fresh Seaweed	Manure
1100	Oat ${ }^{\text {a }}$			Dried	
${ }_{85}^{180}$				Bran of W	
45 "	Pea	"	${ }_{8}$	Rave cako	"
50 "	Wheat Chaff	"	$250 \times$	Pine Sawlust	
¢0 "	Green Grass	"	180 "	Oak ${ }^{\text {c }}$	"
${ }_{6}$ "	Potato '1'ops	"		Coal Soot	

Doussingault.

Moysture adsorbed by variocs manures.
100 parts horse-manure, dried at a temperature of 100° Fahr., absorbed by exposure to tho air at a temperature of 62 ${ }^{\circ}$ Fahr.:
Muisture 145 parts.
lowe parts cow-manure, under same circumstances.................... 130 "
plg-dung, " "ش "
sheep-dung, " " "
plgeon-dung, " " ${ }^{0}$................... 50
rich alluviaisoll, " "...................... 14 " fresh tamers' bark, putriffed,
"
.................. 115 "
................... 145 "
refuse marine salt, " "................... 491/2"
burint clay,
"
…............... 26 ". 29 coal ashes,
$"$
................. ${ }^{14}$

lithe,

sediment from salt-pans,
crushed rock-salt, "
"
................... 11 "
gypsum, "" chalk,

6
........ 4

Everything on a farm should be utilized, even the outflow of the bitchen slops slould be discharged on a bed of swamp muck. Good wood aelies weigh abont 60 lbs. to the bnshel ; of this 64 lbs . are soluble in warm water. They are worth to the farmer from 60 to 70 c . per bushel as a fertilizer, if leached, they are worth perhaps a quarter of that sum.
Miey are excellent for all crops, altogether unequalled for fruit trees, and In a most unfavorable season 250 bushels of potatoes have been ralsed from 1 aere dressed with them.
The products of the water closet, both liquid and solld, should be deolorized and composted by mixture with dried peat, ashes, or dry earth fla loany nature. The privy vault or box should be easily accessible tall times, and ought to be kept well supplied with a mixture of thece
absorbents. No better fertilizer than this exists under the sun ; about 10 bushels of the comnost will be a good dressing for an acre. In China no other fertilizer is used, and about $400,000,000$ of people exist on the crops nourished by it. The dry earth closet introduced into Eugland by the Rev. Mr. Moule, and the Wakefield closet in the United States, are most powerful auxiliaries of the agriculturist, and deserve the highest commendation.
Table showing anount of seed potatoes required, when cut or uncut, and when set at different distances apart, in dhlis TWENTY-EIGHT INCHES FROM CROWN TO CROWN.

'Cable showing tie quantity of land, in acres and tenthg, PLOUGIILD BY A TEAM AND PGOUGH MOVING AT THE RATE OF TWO miles per hour, per day of 10 routrs.

Whath of furrow in inches.	Acres and tenths.	Width of furrow in inches.	Acres and tenths.	Width of furrow in fect.	Acres and tenths.	Width of furrow in teet.	Acres ind tenths.
5	1.0	12	2.4	2	4.8	51/2	13.2
6	1.2	14	2.8	21/2	6.0	6	14.4
7	1.4	16	3.2	3	7.2	61/2	15.6
8	1.6	18	3.6	$31 / 2$	8.4	7	16.8
9	1.8	20	4.0	4	9.6	$71 / 2$	18.0
10	2.0	22	4.4	41/2	10.8	8	19.2
11	2.2			5	12.0		

Arguments in Fayor of Soiling Cattle.-By soiling ts understood the feeding of cattle in yards or in stables, with grass or other green fodder ent in the fields, and hauled to them. The Hon. Josiah Quincy, a high authority, states the following as the main advanfages of the system: 1st. The saving of land. End. The saving of fencing. 3rd. The economizing of food. 4th. The better condition and greater comfort of the cattle. 5th. The greater product of milk. Gith. The attaimment of manure. See page 47.

In referenco to the 3 rd item, the economy of food, he says: "There cre six ways by which beasts destroy the article destined for their food1. By eating ; 2. By walking ; 3. By dunging ; 4. By stalling ; 5. By hying down; 6. By breathing on it. Of these slx, the first only is useful. All the others aro wasteful." He asserts that a mileh cow may be liept br this method during the ordinary pasturing season on the product of $\}$ acre of land, while at least 2 acres of the same land would be necessary on the pasturage system, and some place the proportion in favor of soil. ing as higlu as 1 to 7. By this system interior fences may be abolished in every case, weedy head-lands got rid of, and the plough performs its liealthy work from one side of tho farm to the other, without let of hindrunce.
e sun ; about 10 e. In China 10 ist on the crops England by the States, are most ghestcommend-
o, When cut on PART, IN DRILLS

CES AND TENTES, IE RATE OF TWO
iling is understood or other green fod-- Josiah Quincy, ${ }^{3}$ idvantages of the of fencing. 3rd. nd greater comfor The attaimment of
he says: "There ed for their foodtaling ; 5. By lying ouly is nseful. AII jow may be kept br on the product of? would be necessury on in favor of soil. may be abolished plough performs its her, withoat let ot

The system recommended by Mr. Quincy is as follows :-
"1. As early in April as the state of the land will permit, which is nsually between the 5 th and the 10 th , on properly prepared land, sow oats at the rate of 4 bushels to the acre.
"2. About the 20th of the same month, sow oats or barley, at the same rate per acre, in like quantity and proportions.
"3. Early in May, sow, in like manner, either of the above grains.
"4. Betreen the 10th and 15th of May, sow Indian com (the flit Southern being the best) in drills, 3 bushels to the acre, in like quantity and proportions.
${ }^{i}{ }_{5}$. About the 5th of June repeat the sowing of corn.
" 7 . After the last mentioned sowing barley should be sown in the above-mentioned quantity and proportions, in succession, on the 1bth and 25 th of June, and on the 1st of, or early in July ; barley being the best qualified to resist the frosts."
Mr. Quincy relied on the mowing of his best grass land to carry his stock through the month of June, or from the earliest pasturing season to the 1st of July, when he anticipated fodder from his first sowing of oats, and after the first severe frost he relied on the tops of 12 acres of root crops for the supply of 15 cows.
The plau adopted by Geo. E. Waring, Jr., another eminent agriculturist, for 12 Cows, is as follows :-
" i. Early in the autumn sow 3 acres of winter rye to be cut from May 15 th to Jme 15th.
" 2 . Early in April, 3 acres oats, to he cut from Jtme 15th to July 1ft.
"3. Lato in April, 2 acres oats or barley, to be cut from July 1st to July 15 th.
"4. Early in May, 2 acres oats or barley, to be cut from July 15th to dingust 10th.
"5. Middle of May, 2 arres corn, to be ent from August 10th to September 1st.
" 6 . Middle of June, the 3 acres from which rye has been cut to be som with corn, to be cut from September 1st to September $20 t h$.
" 7 . Early in July, the first three acres sown with oats to be re-sown with barley, to be cut from September coth until the harvest of roots and cabbages furnish a stock of green refuse, which will suffice until winter feeding commences.
" 8 . In September, 3 acres of the 4 comprising Nos. 4 and 5, shotald be soma with rye for the following spring's use, and the rotation should follow in regular order. The latter end of the season should be helped out with root crops. The reason alleged by Mr. Waring for this apportinning 12 acres for 12 cows, is the bad condition of the land, but he is satisfied, that if all the manure made in the soiling season wero to be applied to the ground year after year, that they might be made in time to support, during the whole of the usual pasturing season, 30 mileh cows, or 5 cows to each acre. He urges that in the Northern States the carliest abuidant food will be secured by the use of winter rye, and that the best and most abuudant food for the late summer and earlier autumn will le secured by the use of Indian corn.

To Construcer an ICe-House.-This indispensable appendage to the farm-house and dairy may be constructed at a small cost. One writer remarks: "Last January I drew 1 large load of sawdust and spread it on the gromind on the north side of my horse-barn, then drew the ice (satwed insquare cakes) and built up a square pile some $8 \times 10 \mathrm{ft}$. and 7 or 8 ft . high, filling up the spaces between the cakes witi pounded ice. I then set up scantling and built a board honse around it 2 feet larger each way than the ico ; then flled in sawdust around and 2 to 3 ft . on top, and covered with boards and slabs. We have used freely through the seasou,
sold to pic-nic parties, given away to sick neighbors, and have plenty of ice yet."

Another writer reports his method as follows: "I set posts in the ground, so as to mako a house 12 ft . square (three posts on cach side), then board or plank it up 8 ft . high, on the inside. The surface earth is now dug out 6 ins. deep, and sawdust filled in 1 ft . deep, making it 6 ins. above the level of the carth. The ice is carefully packed, 9 ft square and 6 ft . high, leaving a space of 18 ins . between ice and boards, closely packed with sawdust, and the same thickness of sawdust placed on top. I have an old fashioned board roof over this ice-house. The space aboro the sawdust is left open, so that the air can circulate through and the sun shine in. The result is that we have used ice daily and have a plenty yet. As to the cost, four men with one team, cut, hauled and packed thio ice, and filled in the sawdust in less than 2 days, notwithstanding we had to haul the ice over $\frac{1}{2}$ mile."

Average composition, per cent. and per ton, of variods kinds of agricultural phoduce, de., by john b. lawes, of rothampgTEAD, england.

	PER CEN'I.					LBS. PER (LONG) TON.					
				$\begin{aligned} & \text { 号 } \\ & \stackrel{0}{0} \end{aligned}$					宮		
Linseed cake.	88.0	7.00	4.92	1.65	4.75	1971	150.8	110.2	37.0	106.4	19,\%
Cotton seed cake	89.0	8.00	7.00	1.12	6.50	1994	179.2	156.8	70.0	145.6	27.48
Rape cake.	89.0	7.00	5.75	1.76	5.00	1994	179.2	128.8	39.4	112.0	21.01
Linseed.	90.0	8.00	3.38	1.37	3.80	2016	89.6	75.7	30.7	85.1	15.65
Beans	84.0	4.00	2.20	1.27	4.00	1882	67.2	49.3	28.4	89.6	15,5
Peas.	84.5	3.00	1.81	0.96	3.40	1893	63.8	41.2	21.5	76.2	13.28
Tares..	84.0	2.40	1.63	0.66	4.20	1892	44.8	36.5	14.8	94.1	16.7
Lentils	88.0	2.00	1.89	0.96	4.30	1.971	67.2	42.3	21.5	96.3	16.51
Maltdust	94.0	3.00	8.23	2.12	4.20	:106	190.4	117.1	47.5	941	18.21
Locust beans.	85.0	8.50			1.25	1904	39.2			28.0	4.81
Indian mr	88.0	1.75	1.13	0.35	1.80	1971	29.1	25.3	7.8	40.3	6.65
Wheat	85.0	1.30	1.87	0.50	1.80	1904	38.1	42.0	11.2	40.3	7.68
Barley	81.0	2.20	1.35	0.55	1.65	1882	49.3	30.2	12.3	37.0	6.39
Malt.	95.0	2.60	1.60	0.65	1.70	2128	58.2	¢ 25.8	14.6	38.1	6.65
Oats.	86.0	2.85	1.17	0.50	2.00	1926	63.8	26.2	11.2	44.8	77.0
Fine pollard	86.0	5.60	6.44	1.46	2.60	1926	125.4	144.2	32.7	68.2	13.53
Coarso pollar	80.0	6.20	7.52	1.49	2.68	1026	138.9	168.4	33.4	57.8	14.36
Wheat bran	86.0	6.60	7.95	1.45	2.05	1926	147.8	178.1	32.5	57.1	14.59
Clovor hay.	84.0	7.50	1.25	1.30	2.50	1882	168.0	28.0	29.1	56.0	9.64
Meadow hay	84.0	6.00	0.88	1.50	1.50	1882	134.4	19.7	33.6	33.6	6.43
Rean straw	82.5	5.55	0.90	1.11	0.90	1848	124.3	20.2	24.9	20.2	3.87
Pca straw	S2.0	5.95	0.85	0.89		1837	133.3	19.0	19.9	20.2	3.it
Wheat str	84.0	5.00	0.85	0.65	0.60	1882	112.0	12.3	14.6	13.4	2.88
Barley stra	85.0	4.50	0.37	0.63	0.50	1904	100.8	8.3	14.1	11.2	2.25
Oat straw	83.0	5.50	0.48	0.93	0.60	1859	123.2	10.7	20.8	13.4	2.07
Manzel wurtzel.	12.5	1.00	0.09	0.25	0.25	280	22.4	2.0	5.6	5.6	1.01
Swedish turnips	11.0	0.68	0.13	0.18	0.22	246	13.4	2.9	4.0	4.6	0.91
Common turnips.	8.0	0.68	0.11	0.29	0.18	179	15.2	2.5	6.1	4.0	0.86
Potatoes.	24.0	1.00	0.32	0.43	0.35	637	22.4	7.2	9.C	7.8	9
Carrots.	13.5	0.70	0.13	7. 23	0.20	302	15.7	2.9	5.1	4.6	1
Parsnips .	15.0	1.00	0.42	1.36	0.22	336	22.4	0.4	8.1	4.9	1.11

- Middinga, Cantelle.
† 8hipituff.
set posts in the sts on each side), surface carth is , making it 6 ins. , 9 ft. square and d boards, closely ist placed on top. The space aboro through and the and have a plenty ed and packed the hstanding we had

Arious kinds of cs , of rothasp

Tabel bhowing nutritive equivalents of various foods.

FOOD.	$\left\lvert\, \begin{gathered} \text { Amount of } \\ \text { flesh-form- } \\ \text { ing matter } \\ \text { in } \\ 100 \mathrm{lbs} . \end{gathered}\right.$	Amount of fat-forming matter in 100 lbs.	Total nutr tive matter in 100 lbs.	Nutritivo equivalents of 100 los best English hay.
Irish potatoes.	1.4	18.9	20.3	245.3
Carrots....................	0.6	6.6	7.2	691.6
Parsuips.................	1.2	7.0	8.2	607.3
Jerusalem artichoke.....	1.0	18.8	19.8	251.5
Sugar beet	0.9	13.6	14.5	336.5
Turnips (Swede).........	1.0	5.2	6.2	803.2
Common white turnip...	0.9	3.3	4.2	1185.7
Mangel wurtzel	1.0	12.6	13.6	367.6
Green peastraw..........	0.9	7.9	8.8	565.9
Spurrey (green...........	2.7	2.3	5.0	960.0
Green buck wheat stalks..	0.2	4.7	4.9	1016.6
Common vetch (greeni)...	1.9	2.6	4.5	1106.6
French vetch (green).....	0.7	4.7	5.4	922.2
Green stalks white luphn.	1.8	2.3	4.1	1212.1
Green stalks white bean.	1.0	2.7	3.7	1345.9
Green oats (fodder)......	1.0	8.5	9.5	524.2
Timothy grass (green)....	4.0	9.7	13.7	363.4
Red top " "	3.3	8.7	12.0	415.0
Superior English hay	13.5	26.3	49.8	100.0
Red clover (green)........	2.0	3.6	6.6	907.1
White clover (green).....	1.5	2.7	4.2	1188.7
Lucerne (green)..........	1.9	3.6	5.5	908.4
Red clover (hay)..... ...	22.5	18.7	41.2	120.8
White clover (hay)........	18.7	40.0	58.7	84.6
Lucerne (hay)	12.7	38.0	50.7	98.2
Wheat flour..............	14.7	66.4	81.1	61.4
Indian corn.	11.0	66.7	77.7	64.2
Rye meal..	14.3	55.8	70.1	71.0
Barley meal............. .	13.0	82.0	65.0	76.0
Oatmeal.......	18.0	61.1	69.1	72.0
Buck wheat meal.	9.0	52.1	61.1	81.5
Peas..	23.1	41.9	65.0	76.0
Kidney beans	23.9	39.3	63.2	78.7
White field beans.	24.0	39.7	63.7	78.2
Lentils.........	25.7	88.9	64.6	77.0
English linseed cake.....	22.1	51.0	73.1	68.0
American linseed cake. .	22.2	48.6	70.8	70.3

Bee Flowers.-The following select list of bee-flowers, plants, trees, \&c., is commended to the attention of bee keepers on the high authority of Mr. King, Editor of the Bee Keepers' Mayazznc, New York, as one of the most accurate and reliable ever pablished. Those plants marked with an asterisk are prime favorites of the bces, and yield large quantities of honcy.
Bee keepers would almost double the product of their hives by taklng advantage of the grand modern discovery of artificial comb foundations. These foundations are made of wax, or other suitable materials, by means of a machine, are sold at a very reasonable price by the pound, and, when placed in hives, are the means of saving the bees a vast amount of time and work in the construction of comb, overy pound of which, estimated in honest bee labor represents at least 20 Ibs. of honey. Another notable discovery is the use of salicylic acid for curing foul brood and other useful purposes. The mixture is compounded as follows: Mix together 128 grs. salleylic acid, 128 grs. of soda borax, and 16 ozs . of distilled water. To use, uncap the brond in all the frames that
show any diseased cells, and thoroughly spray the bees, brood, comb, and all, with an atomizer filled with the solution.

Spring.
Erica Carnen*
Winter aconite*
Rosemary*
Laurustinus
Hazel*
Snowdrop.
Crocus*
Willow*
Osier*
Primrose
Hepatica
Violet

Alsike clover*
Silverleaf buckwheat* Syringa
Helianthemum
Anmai poppy*
Sea-kale
French willow*
Sweet-briar
Bean
Yellow lupin
Michaelmas daisy
Winter savory
Purple houselcels
Ivy
Honeysuckile

Almond
Wallflower* (single)
Borage*
Onion
Gooseberry
Apricot
Peach
Apple*
Gooseberry*
Currant*
Laurel*
Linden or basswood
Summer.
White clover*
Catnip
Mignionctte*
Blackberry
Chesnut
Mallow
Lime*
Hyssop
Teazle*
Nasturtiun Autum.n.
French buckwheat* sowed at midsummer
Spanish broom*
Hollyhock*

Turnip*
Cabbuge, \&c.*
Strawberry
Tulip*
Hawthorn.
Gorse or furze
Columbine
Laburnum
Barberry*
Ribes Sauguineum:
Dutch clover*
Sycamore maple*
Lucerne clover*
Spanish needle
Yellow vetch
Sainbois
Broom
Wheat
Viper's bugloss*
Raspberry*
Symphora
Racemosa
Heath*
Sunflower
Lemon thyme*
St. John's wort
Melilotus leucantha*

Cucumber Pickles.-Select nice, firm cucumbers; pour on them, for three successive mornings, boiling water enough to cover; add a handful of coarse salt. The night before pickling throw on cold water and drain ; put into jars with ground spices in a hag, sugar and salt enough to taste, alum size of an English walnut to each jar ; jour vinegar hot in each jar, and cover tight while hot.

TG find the size of a Bin to hold a certain number of Besilels. Augment the number of bushels $\frac{3}{}$, and the result will exhibit the number of cubic fect the bin will comprise. Then, when two dimensions of the bin are known, divide the last result by their product, and the quotient will be the other size.

Per Centage of Oil in Seeds, Grain, \&c.
Oil per cent.

O	Oil per cent. $\text { . } 5 \text { to } 8 \text { say } 6$
Indian	\% ${ }^{6} 0 \times 7$
Wheat Bran	3" 5
Potatoes, tur bage.	
Wheat Straw	2 " $3 \frac{1}{2}$ " 3
Oat Strav.	
Meadow Ha	2"5 "3
Clover Hay..	3"5"5

es, brood, comb,

guineum:
ver*
maple*
lover*
eedle
tch

dgloss*

?
yme* wort leucantla**
pour on them, for ver ; add a handcold watcr and - and salt enough pur vinegar hot in
ber of Butiels. hibit the number imensions of the and the quotiens
\&c.
Oil per cent.
 ….... " 5 " 4 did cab-
$\cdots \cdots2$ " $_{3 \frac{1}{2}}{ }^{\frac{11}{3}}$
$\cdots \cdots{ }^{\prime \prime}$ " $_{5}$ " ${ }_{34}^{4}$
\ldots

table showing tie amount of butter and cheese obtainable from MILK.
100 lbs. milk contains about 3 lbs. pure butter. 103" " " " 7.8 lbs. cheese.
100 " " averages " 3.5 lbs common butter.
100 " " "" " 11.7 lbs . common checse.
100 " skin milk yields " 13.5 lbs. skim milk cheose.
TABLE SHOWING TILE INGIREDIENTS CONTAINED IN FARIOCS KINDS OF MLK. IN 100 PAlRTS THERE AIRE OF-

	Woman.	Cow.	Ass,	Goat.	Ewe
Water,	87.9	87.0	91.7	86.7	85.6
Milk Sugar,	6.5	4.8	6.1	5.3	5.0
Butter,	3.6	3.1	0.1	3.3	4.2
Casein,	1.6	4.5	1.8	4.1	4.5

The quantity and quality of cows' milk varies according to tho food supplied, breeds, \&c.
In every 1000 parts of milk there are of-

Water,	840 parts.	Chloride of potassium,	9 parts.
Milk-Sugar,	45 "	Phosphate of magnesia,	4 "
Butter, or oil,	40	Free soda,	3
Casein,	40 "	Common salt,	3 ،
Phosphate of lime	, 17		

The time required for the full amount of cream to rise to the surface of new milk at different temperatures may be seen from the following table :-

1 gal, of milk weighs 10 lbs .4 ozs ; being heavier than water in the proportion of 103 to $1 \mathbf{1 0}$. The best temperature at which to churn cream ig from 55° to 60° Fahr. ; for milk 65° Fahr. Milk will produce scarcely any cream even in the space of a month if it is kept at 33° to 38° Fahr. Milk turus sour by the fermentation of tho sugar, and its transformation into lactic aedd, thus causing the milk to curdle ; vinegar or rennet will produce the same effect. Good cream will produce about $\frac{1}{4}$ of its weight of butter; cheese made from good milk contains nearly 33 per cent. of water; that from skim-mills about 60 per cent.

The perfection of milk keeping is attained when a stream of pure spring water flows througl the room where it is kept, where fresh air circulates freely through slatted windows or doors uncontaminated by the odor of decayling vegetables or animal matter, and when the temperature ranges from 55° to 65° Filhr. During winter great profit would result from bringing the temperature of the milk to about 120° Falur. previous to setting, and during all seasons the greatest amonut of cream will be collected when the milk in tho pans is not over 2 lnches in deptli. During warm wenther the milk, after being drawn from the cow, should, as soon as possible, be cooled down to 62°. This may be done by setting the pail in cold water, or by putting a little pulverized ice in the pail previous to straining. A small piece of crystallized soda about the size of a marble, dissolved in a little water and added to a pail of freshly drawn milk, will increase the amount of cream, improve tho butter, and correct acidity. Milk vessels, strainers, churns, \&c., should be kept serupnlously clean and free from taint of overy kind by frequent scaldings with boiling water. During very hot weather the milk room may be cooled by hanging wet linen sheets near the doors and windows, with the lower parts of the shects inmersed in cold water, and during cold weather the temperature may be raised by means of a fire in a stove, on whicha vessel of water may be placed to prevent too much dryness of air.

In skimming the mills, deposit the cream in clean stone crocks, or tin pails, and after sprinkling a handful of fine salt over the surface, set away in a cool place, to remain until churned. In filling the churn leave ont whatever milk may bo found at the bottom of the cream crock as its sour taste will be sure to promote acidity in the butter. Churning should occupy from $\frac{1}{2}$ to $\frac{4}{4}$ of an hour ; rapid churning should be avoided, asit affects the quality and lessens the quantity of the butter ; if it should be hard and granular, refusing to come together well, throw in at little warm water, churning all the while, and the butter will be gathered and ready to take up.

As the question of correct temperature is all important in the mamfacture of butter and cheese, frequent use should be made of a good thermometer. Great loss is certain to result if this useful instroment is dispensed with.

In churning, use care to keep the cream well washed down, so that the whole will granulate with regularity; and when the butter has formed in small lumps, pour off the buttermilk, leaving the butter in the chum; pour in a pailful of pure cold water and well wash the butter in it, gathering it into a solid compact mass and working it to squeeze out the buttermilk. Next, remove it to the butter dish and again well wash, at a temperature not higher than 55° or 58°, until the milk is utterly removed from the butter and the water quite clear, then salt, with the best Asliton salt, at the rate of $\frac{1}{3}$ lb. to 10 lbs. butter : work the salt well in and use every effort to rid the butter of water and milky brine, for depend upon it, the product will not be first class unless this is done.

In packing butter use neat firkins, tubs, or pails made of white oak; purify each by filling with a strong solution of bicarbonate of soda boiling hot, allowing the water to stand for 24 hours. Avoid packing butter in vessels containing undissolved salt at the bottom; unless covered with a cloth the butter will bo damaged by coming in contact with it. Take great precantions to remove all rancid or suspicions butter from firkins that are to be refilled. All butter made during the early part of the summe: shonld be shipped and sold without loss of time, as it will only keep sweet for a short period. Butter made during warm weather should be packed in firkins and kept in a dry cool place. To preserve it from the air, cover the butter to the depth of half an inch (or deep enongh to erclude the a'r. with strong brine containing in solution 2 tiblespoonfuls of
stream of pure where fresh nir contaminated by then the tempera. profit would re. it 120° Falur. preunt of cream will inches in deptli. the cow, should, e done by setting ce in the pail pre. bout the size of a of freshly druma utter, and correct kept scrupulousiy aldings with boilmay be cooled by s, with the lower cold weather the stove, on which a ness of air.
tone crocks, or tin or the surface, set ag the churn leare cream crock as its Churning should d be avoided, as it er ; if it slould be ow in a little warm cathered and ready
rtant in the manne made of a good seful instrument is

A down, so that the tter has formed in tter in the churn; butter in it, gathereze out the buttera well wash, at a is utterly removed th the best Asition t well in and nse or depend upon it,
de of white oak; nate of soda boilpacking butter in ss covered with a ith it. Take great from firkins that rt of the summe: it will only keep eather slonold be serve it from the eep enough to extablespoonfuls of

White sugar and a piece of saltpetre double the size of a pea. In the fall the butter may be repacked in pails and tubs, to market as fresh butter.

If butter is too soit while being worked and salted, allow it to stiffen for 3 or 4 hours in a cool place, then begin again and finish the work. In packing never mix even the smallest amount of poor butter with good ; it is certain to taint and ruin the whole package. The rancidity of butter may be prevented by thoroughly washing and salting before the cheesy particies and milky matter is acidified by exposure to the air, and by using due cautlon to exclude air from the package by a covering of water well saturated with salt.

The oil of butter is a substance of peculiar richness, unlike any other known oil, and the fat of butter, when compacted by expressing the oil, is identical with the solid fat of the human body. Chemical analysis and numerous experiments prove that the butter in cow's milk comes direct from the fat of the animal. The fatty globules are carried into the circhlation, deprived of stearine by respiratory combnstion, and the oil is then gent to the ndders, where, under the inflnence of mammary pepsin it is changed into the components of butter. It is on this principle that the oleomargarine, now being vended in such immense quantities in the United States and Europe, is manufactured from cow's fat or beef suct.

First class butter is free from every trace of a rancid taste or smell. When cut with a knife it should neither soil the blade, exude any dew or milky brine, should be neither sticky nor greasy, but should, in summer, possess a rich yellow color, with a granular, waxy composition; in winter the color should be of whitish cast or of a pale yellow tint. A plentiful clover pasture surpasses all other food for producing the best quality of milk and butter.
ox Cheese Manufacture.-The following practical directions are by an experienced manufacturer:
"When two milkings are united, strain the evening's milk and cool by means of pieces of ice dropped into the pails before straining. In the morming take off all the cream, mix it with twice the quantity of new milk. Add warm water enough to raise it to the temperature of 98°. Rub amatto through a silk cloth sufficient to make the curd the color of rich cream. Into this put rennet sufficient to curd in 35 minutes. Stir the whole into the milk previously raised to the temperature of 85°. The milk should be warmed by means of a pail of hot water set into it, but never by putting it over the fire, for the least burning of the milk will apoil the cheese. While the curd is setting, cover with a cloth to prevent the surface from cooling. The method of cutting, scalding, and pressing depends upon the varieties of cheese to be manufactured. About $\frac{1}{}$ of a pound of the best Ashton salt is sufficient for 20 lbs. of curd. Care shonld be taken that the whey be entirely expressed."
Calves may be raised in first class order at a cost of not more than onetenth of tho value of the butter made from the milk saved, by the use of oil meal, the cheapest molasses, and skim milk. The right quantity for a young calf, is a tablespoonful of oil meal (oil cake) and the same of molasses, divided into 3 parts, for 2 days' feed, added to the skim milk. At the end of the first week each may be increased, and at 10 days a spoonful of molasses and the same of oil meal may be given at each feed. At the commencement of the third week a spoonful of oat or barley meal may be added to each feed, but this should be cooked. The oll meal should be scalded and allowed to form a thick mucilage before being mixed with the skim milk, the molasses may be added direct, and the whole given milk warm. Calves raised on this food have weighed 125 lbs, at 4 weeks old. Hay tea is sometimes used to bring up a calf; this is the soluble constltuents of the hay, obtained by cooking.

At the noted agricultural college of Hohenhelm, Germany, probably the best conducted institutlon of the kind in the world, they raise calves entirely by hand, and the daily allowance of food is as follows :

In the ninth week the milk is first mixed with water, and a little fine oatmeal is stirred in. The meal is afterwards mixed with the dry fodder

After three months the milk is withheld, and then the young animals receive daily, till two and one-half years old, from twenty to twenty-two pounds of hay or its equivalent. But the calves never after receive, even in summer, any dry food till they are nine months old. The average feedling is so divided that the younger portion receives less, the older more, till two and one-half years, when they begin to receive the regular rations of the older cattle, including the grain fodder as indicated above. The growth with this treatment is such that these animals (not Shorthorns) attain the following weights at various ages:-

fattening Power of Foons, Production of Pork, Beef, \&eCarefully conducted experiments prove that 1 bushel of corn, weighing 56 lbs ., will produce $10 \frac{1}{2} \mathrm{lbs}$. of pork. Throwing off $\frac{1}{3}$ to come at the net weight, gives $82-5 \mathrm{lbs}$. of pork as the proceeds of 1 bush. corn, or 1 lb . of pork as the product of 6 l lbs . of corn. 1 lb . of pork is made by $34 . \mathrm{J}$ lbs. of cooked corn meal. Experiments made by C. M. Clay, of Kentucky, showed that one bushel of dry corn made 5 lbs .10 ozs . of pork; of boiled coms, 14 lbs. 7 ozs., and boiled meal, 16 to 18 lbs. The following Table shows the relation which the price of corn bears to that of pork on the assumption that it requires 63 lbs . of corn to produce 1 lb . of pork.

TABLE SHOWING THE PRICE OF PORK PER POUND AT DIFFEIEN? PRICES PER BUSHEL FOR CORN.

Corn per bush. Cents.	Pork per pound. Cents.	Corn per bush. Cents.	Pork per pound.
121/2. 1.50	38.	4.52
15. 1.78	40.4.76
17 2.00	42.	...5.00
20 2.38	45.	. . 5.35
22 2.62	50.	. 5.95
252.96	55.6.54
303.57	60.7.14
33	. . . $3 \cdot 92$	65.	. 7.74
35	. 4.00	70.8.57

ny, probaliy iws:

FINEITAY.
lbs.
0
. 0
. 0
. 0
1
3
6
.10
.10
ad Ω little fino the dry fodder young animals y to twenty-tro receive, even in le average feede regular rations ted above. The (not Shorthorns)

BuLis. 353 lbs ,
$472{ }^{11}$ $750^{" 1}$. $.1300^{\prime \prime}$ $1.5^{\text {" }}$ pri, Beef, \&C.of corn, weighing
to come at the push. corn, or 1 b . k is made by $34-5$ Clay, of Kentucky, of pork; of boiled
he following Table hat of pork ou the lb. of pork.
d at diffelent

Pork per pound. Cents.
. 4.52
.4 .76
.. 5.00
.5 .35
. .5 .95
. .6 .54
.7 .14
. .7 .74
......... 8.57

By reversing the preceding Table we obtain the price of corn at different prices per 1 lb . for pork. The utility of the Table is apparent. For instance, if corn is selling at 50 c . per bushel and pork for only fic. per 1b., it would be most profitable to sell the com ; but should corn be selling at 40 c . per bushel and pork for 6 c . per 1b., it would be the most protitable to sell the latter. The Table must be regarded as an approximation merely, as the results will vary according to the sample of grain, breed, constitntion, age, digestion, condition, habits, health, \&c., of the animal.
In fattening pigs, peas to begin with are the most valuable food to fill up the flesh on the bones; this well accomplished, corn is the most efficient in the formation of fat. A mixture of peas and corn, or peas and barley, will give better results than either of these grains fed separately. Peas contain in 1,000 parts-

Gluten and albumen are flesh-forming, starch, gum, and sugar, are fatforming elements. From numerons experiments, Mr. Harris, in his work on the pig, deduces the following : that
Λ moderately fat heifer or steer will dress 591 per cent. meat.

The preponderance in favor of the pig is immense. It is remarked by an eminent cattle feeder, Mr. Glyde, "that an ox requires two per cent of his live weight per day : if he works, 21 per cent : a mileh cow 3 per cent; a fattening ox, 5 per cent at first, and $4 \frac{1}{2}$ per cent when half fat, and 4 per cent when fat ; grown sheep, $3 \frac{1}{2}$ per cent to keep them in their store condition." An ox, to replace the daily loss of muscular fibre. requires from 20 to 24 ozs. of dry gluten or vegetable albumen daily. This would be supplied by-

0 lbs	$r 1$
115 "	wheat straw or 12 lbs . peas.
75 "	carrots or 12 lbs . barley.
	potatoes or 101
20	meadow h

The Society of Shakers, at Lebanon, N. Y., noted for pork raising, eay: "For fattening animals, swine particularly, we consider three of cooked, equal to four of raw meal,"
"Unless food be thoroughly deprived of its vegetative powers before it enters the stomach, the whole nourishment which it is capable of affording cannot be derived from it. The most effectual mode of destroying the living principle is by the application of heat, by steaming or boiling.' -Louden's Encyelopedia of Arpiculture.
"As to the steaming of food for cattle, there is abundint experience to recommend it. The process of cooking renders soluble that which would otherwise be imperfectly digested. It removes, in some cases, what would otherwise be unwholesome, and it renders savory what would otherwise be distasteful."-Morton's C'yclopedia of Agriculture.
If 30 lbs . of hav is required per day to keep 1 cow in passable order during a Canadian winter, numerons experiments establish the fact that 22 lbs. of stecumed hay will answer the same purpose equally well. This, with 20 head of cattle, will effect a saving of 160 lbs . per day, or $\$ 150$ during 5 winter months, with hay at $\$ 10$ per ton.
Augustus Whitman, in the Country Gentleman, writes: "While 28 llbs. per day of good hay are required to keep dry cows (weighisg from $1,150 \mathrm{lbs}$. to $1,450 \mathrm{lbs}$.) in an even condition of flesh, upon 20 lhs . of steamed food a handsome gain is made. The trial that furnished the
data for the statement was made a year since, when six dry cors, in condition as nearly alike as could be found, were divided into three pairs, and each pair fed differently from the others for 3 weeks; note was then made of the result, and the trial continued another 3 weelss, giving to each pair what another pair had previously been allowed. The refult was, that upon 28 lbs . per day of good dry hay, two cows weighing 1,184 lbs. and 1,456 lbs. respectively, inst about heli their own ; while another pair weighing 1,362 lbs. and $1,120 \mathrm{lbs}$. respectively, upon 20 lbs. per dar of steame feed, gained 54 llss. and 36 lls. Reversing the feed for the second three weeks, the last nimed barely held their own, while the first gained 40 lbs . and 30 lbs . respectively.
"I should say that the cattle on long hay had all they would eat at tho three regular feeds, and the quantity consumed was found to be at the close of the trial equal to 28 lbs. per day, as above stated. You will rery properly ask, what is the mixture made of ?
"My steam box (in three divisions) holds enough to fill 200 feed boxes of abont one bushel each, and requires to pack it well 900 lbs . of dry fodder. This is matdo up of 300 lbs good hay and 600 lbs . of corn stover, dried fodder, corn or oat or barley straw. This is cut tolerably fine and well mixed, and when packed in layers for steaming is thoroughly wet and seasoned with 180 quarts wheat shorts, 60 quarts cotton seed meal, and 60 quarts corn meal.
"The rule for feeding now observed, and that has been used for the past winter, is somewhat changed from previons years, and is a boxful of steamed feed morning and noon, and 5 lbs, dry hay at night. The two boxes of feed contain 3 lbs. good hay, 6 lbs. straw (or its equivalent). 1 lb. shorts, and $1 \frac{3}{4} \mathrm{lbs}$ meal (half each cotton seed and corn), and upon this good gain is made, as tho monthly record shows."

A cheap and serviceable steamer may be improvised by making a boa of well jointed 2 in . pine, abont 7 or 8 feet long by 2 f ft . wide, witha bottom of No 16 sheet iron, nailed securely on to the lower edge of the sides and ends, and turned up a little ontside of them, say, f an inch. Place a false bottom perforated with numerous holes, about 3 ins abore the fast bottom, and arrange a tight fitting cover for the topp. Set the box on brick work over a suitable fircplace, so that the wooden cdes of the box wili be saro from the fire, and give a proper draught by a suitable chimney erected at the opposito end from fireplace.

The space between the lower and false botiom being partly filled with water, the cut hay or other provender is packed tightly in above the false bottom, the cover is shat tight, the firo is lighted, and the steam enters the perforations in the false bottom and cooks the contents of the box.

IIon. G. Geddes, of Syracuse, N.Y., gays:-"That there is no branch of farming that was less understood and promised more cudvantayes, than the preparation of food. He had thoroughly proved years ago that cookinf; independent of grinding, at least doubled the value of yoor."
GFo. A. Moone, of Erie Co., said he had fed 200 sheep on cooked food, and he had fully satisfied himself that the value of food was tripled ar cooking.
Professor Mares says (Transactions American Institute, 1864, p. 373): " The experiment, often tried, has proved that eighteen or nineteen pow 1 s of cooked corn is equal to fifty pounds of riw corn for hog feel Mason, of New Jersey, found that pork fed with raw grain cost per poind, and that from cooked $4 \frac{7}{g}$ cents. Cooked corn stall; soft and almost as nutritious as green stalks. Cattle can be fatt 1 at about half the expense upon cooked food as upon uncooked."
Experiments mado by Mr. Owen Merchant, of Warsaw, N.Y., proced that a yoke of poor oxen, valued at about $\$ \$ 0$, were fatted on cooked
ry cors, in connto three pairs, ; note was then weeks, giving to ed. The result 3 weighing 1.184 1 ; while another a 20 lbs. per day the feed for the n , while the first
would eat at the ound to be at the d. You will very
all 200 feed boxes 1000 lbs . of dry bs. of corn stover, tolerably fine and is thoronghly wet cotton seed imeal,
been used for the rs, and is a boxful at night. The two or its equivalent), ! d corn), and upou
d by making a box $2{ }_{2} \mathrm{ft}$. wide, witha e lower edge of the em, say, $\frac{1}{3}$ an inch. aliont 3 ins. abore pr the top. Set the he wooden edges of raught by a suitable
g partly filled with y in above the false id the steam enters tents of the box. there is no brand re cudvantayes, than ved years ago that E value of roob." cep on cooked food, od was trmpled ai
titute, 1864, p. 373): or ninetecn poll is
for hog feerl grain cost
corn stall
can be fatt at as ooked.' rrsaw, N.Y., proced - fatted on cooked
potatoes and bran in five weeks and threo days, and made cxtra beef, which was sold in the market for first ouality.
James Buckingham gave in the Prairie Farmer an experiment with raw and cooked meal, and found that a hog fed on 1 b bushels raw meal gained 19 pounds, and another fed on one bushel cooked meal gained 22 pounds.
S. H. Clay, of Kentucky, found by experiment that a bushel of raw corn makes 5. pounds of pork, while a bushel of cooked meal makes $17 \frac{1}{2}$ pounds.
Mr. A. Averr, of Syracuse, N.Y., says, after two years' trial :-"I think I have saved $\$ 10$ per head on keeping (say $\$ 600$ on the stock feed), besides having the milch cows in hetter condition than ever before." He says again, in April, 1869, "Thls you see gives me a clear profit of Q 037.25 on $4 \frac{1}{2}$ months' fced.

Messrs. Drewey and Stewart, ot Owosso, Mich., asays:-We have fed 64 head of cattle, 7 horses, and 340 sheep, fattened 22 head of cattle and 70 sheep. We think we have saved one-third the expense in wintering this stuck.

By Professor Yoelcker's amalysis, 1 ton of wheat straw contains:25 lbs of oil,

26 lbs. alhmmen,
350 " digestible, 85 " mucilage.
Experiments by E. W. Stewair, of New York, proved a bushel of wheat straw with two quarts middlings or meat was equal to the same weight of cut hay, and was worth 25 per cent. more than ment hay. It was also found that the animals would cat 25 per cent. more hay ment than cit. The same experiment was then made with corn meal, and $1 \frac{1}{2}$ pints was fomen to make a bushel of straw equal to hay.
Mr. Skinner, of New York, says he "fed 44 head of milch cows on stemed straw and shippings, and 26 head on hay not steamed. The straw was cut and steamed with the shippings. Each cow reccived 10 hhs. of straw and 8 lbs . of shipnings, and the expense, including labor and fuel, was 29 cents per head, daily. The $2 f$ cows on hay cost 35 cents per head, daily, showing a halance of 6 cents per day each in favor of the straw and shippings. Those fed on the straw were full and plump, were gaining flesh, and doing letter than those fed on hay."
In Alesath, Hungary, similar trials were made about the year 1839 on a very large scale, resulting in a decided success. The trials were made 208 draught oxen, 108 days-dnily profit of steaming $\$ 1300$
2,000 old wethers, 120 " " " 1250 i4 stud horses 180 " " " 142
The profit on 180 days' winter feeding on the above animals being $\$ 4,850$, an anount quite worth saving. Cooking largely increases the bulk of the grain, a great advantage in preparing it for feeding cattle.

4 measures of corn have been increased to	13		
4	$" 1$	barley	b
4	$"$	bran	"
4	10		
4		14	

Timmas J. Edae writes to the Practical Farmer:-"I found that 5 bushels of whole corm made $47 \frac{1}{4}$ lbs. of pork. Five bushels (less miller's tn") ("in ground and made into thick slop with cold water, made 54f lbs of pork. The same amomit of meal well boiled and fed cold, made 83 l lbs. of pork. The corn cost $\$ 1.30$ per bushel; the pork made from the whole corn harely paid for the corn, while the same amonnt of ground corn conke, paid the whole cost of the cooking and a little more than $\$ 1$ per bushel over." In this instance the pork sold at $\$ 14$ per cwt. In a pocond experiment 10 bushels of corn on the cob, fed in the usual way, on the ground, made $29 \frac{1}{2} \mathrm{lbs}$. of pork, while the same amount of shelled, grund by horse-power and well boiled, made 64 lbs. of pork.
J. D. Isett reports in the Practical Farmer, that " he formerly fed his team horses 70 lbs . of chop for each horse per week, besides the hisy they would eat, and that by cooking his chop he fomnd that his horses did better, and looked better, kept in better spirits, and in every wa: were better, fed on 50 lbs . per week than on the large amount uncooked, making a saving, as he claims, on 8 weeks, of $\$ 57.60$.

Note.-In steaming hay, chaff, straw, \&e., the fodder should first he cut and then moistened by a large sprinkling pot or hose, adding waterat the rate of at least 3 gals. to 5 bushels of feed while it is being stirred up with a fork; then, if bran, meal, or other more concentrated food is to be fed with it. 1 : ehould be sifted on evenly, and mixed. Sift in a little salt at the same time. Food thus prepared and fed to horses affected with the heaves will ofteneffee a thorough cure. The steaming proeess has also a wouderful transforming power in renderlng mildewed, musty, smutty, and rusted straw, hay, corn, fodder, \&e., into ilrst-elass, nourishing fodder. Every offensive odor and repulsive taint is completely dissipated by the steaming process.
In the Practicul Farmer for Dec., 1868, "Agricola" writes, "I hate demonstrated to my own satisfaction, with the nse of the $P=$ inile Steamer * and careful weighing, that while 5 bushels of boiled mush will make 84 lbs . of pork, 3 bushels of meal and 5 bushels of potatoes will make 72 lbs. of park."

PIRINDLE'S AGRICULTURAL BOILER.
In doing business on a large scale, it is much the best ray to use an Agricultural Boiler, like that of Prindle s, represented in the eot, which illustrates the method ' y which the steam is tramsmitted to the barrel ut box containing the fodder to be cooked. The uses of such a contrivame are manifold. It may be used to great advantage as a small still for diso

* Note-Farmers will be pleased to lea:n that this unequalled Agrienliaral Steamer and l'armer's Boiler, is the invention of Daniel IR. Phindle, himp self a practical farmer, of Ear Bethany, N.Y. It was victorious at the World's Exhibition at Phlladelphia in 18ić. Full information, circulars, se., Gbtrined free, by addressing the Invento: as above, or the manufucturers Barhows, Savery \& Co., Philadelphia, Pa.
he formerly fed besides the hay I that his horsen and in every way mount uncouked.
hould first he cut ig water at the rate d up with a fork: be fed with it, $1:$ at the same time. :es will oftencfient crul transforming I straw, hay, "min" nsive olor and pecess.
, writes, "I have o of the P:inilo if boiled mush will potatoes will mako
tilling esseutial oils, refining coal oil, boiling clothes, warming bath tubs, heating small rooms, scalding hogs, \&c. These boilers, made by Savery \& Co., Philadelphia, are provided with safety valves, fiexible pipes, \&e., and may be procured in the United States from Robert C. Reeves, dealer in Agricultural implements, \&c., 185 and 187 Water Street, New York. Another Boiler, somewhat similar, is sold by William Rennie, Torouto, Ont.

Numer of Fiet in Lenati of tile foldowing Dimensionsof timben meqcimed to make 1000 Feet of Boabd and Cedic Measube: besplectively.

Size.	No. of ft. in lengith to make to 010 f. cuble m.	Size.	No. of ft. in tength in mate to met fet lourd bour	size.		Tomensume lumath HYTHE BOARD RULE. Place the rule acrose the board to be meas
\% \times	5,66)	$x 6$	1,0)0	6×10	201	nreal with the off side of
5×6	4,300	2×3	857.2	C $\times 11$	181.10	the board, and note the
\% x	4,114.3	2×8	750	(\% $\times 18$	166.8	width in mehes; then
	3,600	$\begin{array}{lll}2 & x & 9\end{array}$	6606.8	7 x 7	24.11	measure the length of
5 x	3,200	2 $\times 10$	coo	7×8	214.3	board and turnthe rule
5×16	2.880	x 11	515.6	7×9	190.6	to same length, examin-
5×11	2,818.2	${ }_{2} \times 12$	500	7×10	171.5	Ing the section or col-
5×12	2,400	2. $\times 5$	960	7×11	15.10	unin of that length, and
$6 \times$	4,000	2) $\times 10$	800	7×12	112.10	hie contents will be
$6 x$	3,128.7	[2.) x	685.9	$8 \times$	187.6	found indented on the
$6 x$	3,009	2.15	600	8×9	166.8	rule just over the nigh
6×9	2,666,8	24×9	583.4	8×10	150	edge of the beard.
C $\times 10$	2,400	24×10	480	8×11	136.4	Rule to meascre
6×11	2,181.8	3×5	800	8×12	125	Logs or Rousd Tim-
6×12	2,000	3×6	6660.8	3×1	114.2	her.-Mnltiply tho
\% ${ }^{1}$	2,938.9	${ }^{x} 7$	571.5	9×10	133.4	lenght takeulin ft., by
\% x	$2,571.4$	3 \times 3 8	500	$\begin{array}{ll}9 \times 11 \\ 9 & 11\end{array}$	121.3	the square of one quar-
$\pm 7^{7}{ }^{9}$	2,285.8	3×1	44.4	9×12	111.2	ter of the mean girth,
\% $\times 10$	$2,1057.3$	$1{ }_{3} \times 10$	400	10×10	120	measured in heches, and
(1)	1,870.1	$\begin{array}{llll}3 & \times & 11 \\ 3 & 8 & 1\end{array}$	363.7 333.4	$\begin{array}{llll}10 & \times & 11 \\ 10 & x & 12\end{array}$	109.1 109	this product divided by
\% $\times 12$	1,714.3	(1)	${ }_{600}$	10×11	99.2	lif will give tie requir-
$8 \times$	2,100	$\times 6$	500	11×12	90.9	III measuring lapering
8×10	1,800	x	488.7	12×12	83.4	timber take the girth
8×11	1,636.4	$\times 8$	375	12×14	71.5	about one-third the dis-
8×12	1,500	x 9	333.4	12×16	62.5	tance from the large to
$9 \times$	1,37.9	$\times 10$	300	12×18	0.6	the small end.
10×10	1,600	$\times 11$	272.8	12×20		ludie fori axy Size.
9×11	1,455.5	4×12	250	16×18	41.8	-Multply the number
9×12	1,333.4	$\times 6$	400	20×20	30	of ft. In the face of the
10 $\times 10$	1,40	x	312.10	20 $\times 24$	${ }_{20}^{25}$	timber to be mensured,
10×14	1,200	\times	300	22 $\times 24$	22.8	ly the thickners in
11×11	1,190	$\times 9$	266.8	18×24	-2.10	imbes, and the result
11×12	1,091	x 10	540	18×20	33.4	will be the contents
12 $\times 10$	1,000	$\times 11$	218.2	14×16	63.7	of board measure.
11×16	642.10	x 12	200	15×18	4.5	
16×18	500	6×6	333.4	16×20	83.6	
1s \times 20	-	6×7	285.8	13×14	C6. 11	
20×2	327.3		250	30×40	10	
228 $\times 1$. 8	x	222.2	36 x 36		

The foregoing table will be fou 1 extremely useful to every timber merchant, mill owner, lumberman, aud farmer. For other tables relating to Thimber measurement, the reader is referred to the series commencing with page 617.

GEOLOGICAL FACTS; AGE, ORIGIN AND ULTIMATE DURATION OF THE EARTH.

Geology is a noble science of but recent origin; it treats of the structure and mineral construc. tion of the earth's crust, the varied strata which compose it, the fossils they contain, and the tremendous forces employed in their formatiou. The diagram displays the order in which the differ. ent strata are super-imposed on each other; they extend to an estimated depth of 82,600 feet or upwards of 15 miles, from the surface down to the granite. The granite, styled by geologists, the mimitive, crystalline, or igmeous rocks, owing to their evident origin from the action of fire, forms the foundation of the stratified rocks, and at one period the surface of the globe was entirely composed of these rocks in an incandescent condition like molten iron. Gradually cooling during the lapse of ages, a crust was formed, water was condensed from the atmosiphere, and the formation of the stratified or aqueons rocks began. As an instrumentality in creation, water seems to have been endowed with absolute power, for its irresistible potency appears to be ommipresent in the formation of everything terrestrial. Each stratified layer bears manifest proof of laving at one time composed the surface of the earth on which we dwell, and a duration of time, estimatel by Prof. Agassiz to be not less than $15,000,000$ of years have been required to produce the different strata that have been formed since first the dry land appeared. The substances of which the stratified rocks consist have all been deposited by the action of water ; each imbeds in its rocky ,rison enormous quantities of the fossil remains of organized forms of animal and vegetable life, which at one time, although at periods inconceisbly remote, flourished in the sunshine, on the blowing surface of the earth.

The following table shows the relative position in which these various strata exist with respect to each other, computing from the granite upwards together with the estimated thickness of each, but it must not be imagined that they can all be found in any one particular part of the earth. Some will always be found missing, the existence and absence of such deposits being caused by the alternate submersions and dessications whicli have existed at different times on every part of the earth's surface. All land and stratified rocks have been formed by tidal and sub-marine action, and whatever the strata may be in any given place, the order of their succession is alocuys the same. The Primary comprises the Azoic and Cumbrian or bottom rocks, the Silurlan, the Devonian o: Old Red Sandstone, the Carboniferous or Coa System. and the Permiun. The Secondary, which succeeds, comprisa

AND ULTIMATE RTH.

nee of but recent origin: and mineral construc. the varied strata which they contain, and the yed in their formation, rder in which the differ. ed on each other ; ther th of 82,600 feet or up. he surface down to the lled by geologists, the meous rocks, owing to the action of fire, forms itified rocks, and at one globe was entirely com. incandescent condition ally cooling during the formed, water was collere, and the formation s rocks began. As au , water seems to have ute power, for its irrebe ommipresent in the errestrial. Eaela stratiproof of liaring at one of the earth on which of time, estimates by ess than 15,000,000 of o produce the different ed since first the dry stances of which the e all been deposited by 1 imbeds in its rooky of the fossil remains nal and vegetable life, hat periods inconceis. the sunshine, on the th.
vs the relative position ta exist with resject to the granite npwards thickness of each, but t they can all be found of the earth. Some ng, the existence and being caused by the essications which haro on every part of the and stratified rockis und sub-marine action, be in any given place. n is clecuys the same. Azoic and Cam'sinan tan, the Devonian of jarboniferous or Coal il succeeds, comprises

GEOLOGICAL FACTS.
the Trias and Oolite, and the cretzceous Tritiary consists of the Eocene, Miocene, Plio Chalk formation. The or superficial deposits.

Prmary	(Azoic (lifeless) ad ${ }^{\text {a }}$	
	$\{$ Deronian, or Old led pper	30,000
Secondary	Permian	
	$\left\{\begin{array}{l}\text { Trias and Oolite }\end{array}\right.$	
	Frectaceous, or or Chalk	2,500
Tertiary	Miocene, ar middle terty	1,100
	Pliocene, or mpper tertiary	
	Diluvium, or superficial de	2,000

1st. The primitive or igneous rocks (granite) contain 86,600 mains, they bear evidence of having existed at one thain no organic re
by reason of manyplaces, formense heat. These rocks protrude the in a molten stateas many suppose, neath. 21. The Cambrian, Azoic mores operating from becrystinline, but manifestly stratified ind or transition rocks are partly
disintegrated materinic sein shells. The "Azoi ", underlying granite wing great part of the ganic life. Azoic "rocks denote those devoid of allt deposits of

3d. The Silurian formation rest all traces of orof Zoophytes, Mollusks, and Crustacen the Cambrian, contains remains fixed on the of a very low order. The Zop them submarine invertebottom of the water, a slender stalk, rising from is a sort of starfish suckers stretching forth on all widh long tentacles or fingers, aring to the a stomach of a simpth on all sides to seize their or fingers, armed with pulpy, boneless creatures organism with one orifice prey and convey it to musele, snail orslug ares with or withont shells orife. The mollushis are the trilobites, now quite the Crustaceans the most he the modern oyster, sion and variety; the nearest, but at this time exighly developed were to be found in the lobster er existing resemblanco to the great profnregetable creation no trice, crab, shrimp, or crayce to the trilobites is the custs of some specimens are to be fom ! cray fish families. Of the formation no vertebrated ans of Fucoids or sea-weeds formation beyond dass helong all those animimals horo been manerheds. In the silhrian with connecting skeleton als furnished with a rertie discovererl. To this Thman race. No dry 4th. The Devonian land, or land regetation evist, Mammals and the filurian, contains the fossil Old Led Sandstone formation during this epoch. ishes. All these fishessil remains of nearly ormation. resting on tho tone composed of enamelled cartilaginons, clad in strieties of vertebrate xisting races of the deep. Owlates, instead of the strong integuments of He water composing the. Owing to the intense internal which cover the ondition, hence the the seas diring this period wernal heat of the globe, st the globe cooled need of this defensive exterior in a tepid or warm inter cold set in (as down and the alternations of on the fimy tribes. it the fossil trees) these fishced by the appparance of summer heat and The dawu of the these fishes disappeared and ance of ammal season rings de dawu of the Old Red Saudstove epred and others came into existence. epoch was heralded by tremendous.
and wide sprend rolennic explosions causing the upheaval of the mulenlsing granite, lifting with it the super-imposed Cambrian and Silurian strata, thereby forming momntains and dry land above the surface of the waters. Land vegetation soon followed. Vertebrate fishes were created, their armored condition attesting a very high temperature on the earth during the whole period. This formation contains 67 species of Zoophytes, 48 of crustaceat, 88 of conchifera, 82 of mollusca, \&c., but no quadrupeds.

5th. The carboniferous system, resting on that of the Old Red Sandstone, contains deposits of Shale, Sandstone and Limestone, interspersed with Ironstone and coal. The internal heat of the earth was still of a high temperature during this epoch, vast volmmes of carbonic acid gas were emitted from the ground, hot, hazy, damp vapors filled the atmosphere. the conditions of shade, heat and lumidity, extending even into the frigid zones, generated a growth of Ferns, Calamites, Lepidodendra, Sigillaria and Stigmarial of prodigious extent and the most astonishing dimensions. These different growths, compared with which the most lnxuriant tropieal vegetation of modern times are but as a howling wilderness or a barren desert, existed at widely different periods; each underwent a complete submersion mider water, sand and gravel, and it is to the great masses of vegetable matter which composed these primeval forests that the coal measures owe their origin. The transmutation of the vegetable into the mineral substance of coal has oceupied incaleulable ages, but on close inspection the vecyetable structure is plainly visible, and no doubt can exist of its organic origin.

The fossil vemains imbedded in the limestone sections which alternate with coal seams mainly resemble those of the preceding ages. lieptiles of the Batrachian or frog species, and terrestrial animals in the forms of insects of a low order, chiefly of the Scorpion, Cockroach, Cricket and Beetle tribes, now first appear. The festering heat was unsuitable to higher organisms, no smbean conld penetrate the dense mists, silence held nuiversal sway, while a profuse, flowerless and almost fruitless vegetation, mparalleled in immensity by anything ever known in the history of this planet, tenanted the sombre and death-like solitudes. These forests grew with amazing rapidity until the soft and pulpy masses fell beneath their own weight and succeeding forests sprang from their pros. trate trunks. A terrible revulsion of nature takes place; these precious materials are destined for the future use of man. Water, the main-spring of all terrestrial activity, the irresistible agent of creative power, cones nuon the scene with overwhelming force, these forests are submerged, and covered with stratia of sand and gravel, long since transmuted into sections of rock. Thus the boson of the earth was made the store-houst of those vast treasures of coal and iron which daily minister to the wants of man.

Gth. The I'ermian system is superimposed on the Carboniferons formation. Violent subterrmean convilsions appear to have dislocated the cnal beds about the commencement of this epoeh, and on the broken masses the Perminn system of sedimentary rocks were cleposited. The ancient order of fishes oceur in this formation for the last time, the Trilobite disappears frum existence, and undonbted traces of an air-breathing oviparous reptile el the Saurian (lizard) family appear. Fossil footsteps of four-footed ani. mals, apparently those of tortoises, exist, and for the first time we die cover the annual season rings in the fossil woods, thus attesting that the unclouded sunbeam had free access to vegetation. This tormation com. prises, 1 st. The red conglomerate. 2 d . The magnesian limestone. 3 d The variegated sandstone. 4th. Muschelkalk; mind 5th. Uppermost Variegated marl. The petrifactions of the vegetables, zoophytes, crly tacea, fishes and fresh water-shells are numerous. With the l'crum
f the mindelysiluriau strata, of the waters. created, their - carth during Zoophytes, 48 quadrupeds. Red Sandstone, terspersed with 1 of a hight temacid gas were the atmosplere. en into the frigid tendra, sigillaria hing dinnensious: uxuriant tropical ruess or a barren
weut 1e great mansscs ot ests that the coal vegetable into the es, hat on close in-
ms which alternate ceding ages. herial amimals in the oryion, Cockruach, ing heat was minkuitthe the dense mists, ss and almost fruit
yeve Yever known in the
ike solitudes. di pulpy n. These ang from tha pate; these precious iter, the main-kiring cative power, cones nice trane submerged nade the stord into ninister to the walt

Farbonifercus formar ve dislocated the cral he broken masses the Thite ancient order ot obite disappears thit o of four-he first time we dive nes attesting that the estion tormation com nind stl. Timermos bles, zoophyter erivy With the l'ermim
system closes the Primary or Palmozoic class of rocks which form the earth's crnst, and the primeval forms of organized animal life disappear.
ith. The Secondary Period.-The Tries and Oolite system rests on the permian formation. The Trias is a deposit of shelly limestone and varicgated samdstones. The Oolite, which rests on it is also a series of calcareons or limestone heds principally composed of conglomerate, or collections of small rombd grains or spheroids resembling is eluster of minute ergs, or the roo of a fish. This epoch has been styled "The Age of Reptiles," from the cnormous number of fossil remains visible in this formation. One species of frog seems to have equalled a lidge hog in size. The Iethyosaurus, an amphibious animal, often exceeded 30 feet in length, with a head and teeth resembling those of a crocodile, and eyes as largo as a man's head, with a huge vorecious stomath, and four fins like the paddles of a whale. The hatif digested remains of tishes and other rep)tiles found in its stomach attest its carnivorous halsits, terrible ferocity, and tremendous strength. The Plesioscurrus "united to the head of a lizard the teeth of a crocodile, a neek of vast length resembling the body of a serpent, a trmak and tail having the proportions of an ordinary quadraped, the ribs of a chaneleon, and the paddles of a whale." The structure wonld permit it to plange downwards at the fishes below it or seize birds on the wing above it. The Meyilosenurus was an enormons reptile, measuring from 40 to 50 feet in length, resembling the crocodile of the present day. The Ignanodon was still larger, attaining a length of from 60 to 70 feet. The Saurim monsters, the P'erotuctyles, resembled a gigantic bat or vampire, with strange dragon-like wings, extending in some cases, 27 feet, by means of which it could soar alloft, but per Cuvier, it must be elassed in the Saurime or Lizard tribe, inasmuch as the beaks are armed with teeth." Most of them had the nose elongated like the snout of a crocodile, and armed with conical teeth. From their wings projected fingers terminated by long hooks, forming a powerful paw, and their eyes were of vast size, enabling them to fly by night. In thie lower Oolite, fossil remains of small animals of the Marsupial fanily have been lound. Of this class are the Kangaroo and Opossum species, forming the comecting link between the reptile and mammal tribes. The footprints of birds of vast size have been found in quarries of laminated thagstones, the foot of the largost measured 18 inches in length, distance between the footsteps was from 4 to 6 feet, indicating legs about 7 feet long. Remains of reptiles in immense numbers are everywhere abundat ; buttertlies, dragon-flies, ants, \&c., existed in swarms, trees of Cypress, l'illm and Pine species flourished with the ferns, conifers and calamites of the conl period, and flowering shrubs and fruit-bearing plants grew in profusion. The extensive coal beds existing throughout the Oolite system afford' evidence of a rank vegetation.
8th. The Chalk or Cretaceous system, formed by deposits in deep seas, constitutes the last bed of the Secondany period. It is largely composed of organic remains, calcareons shells of animals so minute that a cubic iach would embrace ten millions of them. The fossils embrace birds, Reptiles, Fishes, Mollusks, Zoophytes, Crustaceans and marine substances from the sponge to the alligator. The existing classes of fishes are found for the first time in this formation, and the ancient races disappear.
9th. Tie Temthary System, resting on the chalk formation, has been divided into threo eras, viz: The Eoceno or Lower Terticrol, The Miocene, or Midelle Tertiary, and the Pliocene, or Cpper Tertiary. Sometimes a fourth era is added named the Pleistocene, embracing the superficial deposits. The Eocene, or lowest layer marks the origin of the recent or now existing races of quadruped Mammals. The Palatherium, How extinct, is described as partaking of the various character of the Hinoseros, the Horse, and the Tinpir: the Ancplotherium, evidently a
marine animal, resembled an Ass in form, and embraced several speciea 'The Adapis resembled an enormons Hedgehog, and the Cheiropotamus a Peccary. The Miocene or middle deposit contains the remains of the extinet Dinotherium Giganteum, an enormous herbivorous animal, which must have been 18 ft . in length, furnished with a trunk like an elephant, and tusks like those of a walrus. In ascending to the Plioceno or upper deposit, we find the organic remains of the Mammoth, Mastodon, Megelonyx, and Megatherium, all of immense dimensions and quite superioras regards size and strength to tho Elephant, the Rhinoceros, the Hippopotamus, and the Sloth, which represent them at the present day. Besides these, bears, tigers, hyenas, and other flesh eating animals, some of them extinct, abounded in vast numbers, and the Whale, Seal, and Morso species now appear for the first time. For a distance of 10 or 12 miles around Charleston, S.C., there exists in the post pliocene beds of the tertiary formation, about 8 or 10 feet below the surface, and in the beds of rivers, such enormons quantities of the bones of animals that 800 to 1,000 tons can be excavated from a single acre. Over 300,000 tons were shipped from that locality in 1876.

According to Lyell, there are now 50,000 species of fossils recognized, but they are believed to be of very distant epochs. The fossil species distinct from living species, are mammalia, 120 , birds, 25 , amphibia, 50 , fishes, 400, and mollusca 3,100, in all 4795, besides vegetables; the number is constantly being increased by new discoveries, miners are conversant with an immense number of fossilized vegetaljes, none of them resembling the plants of present growth. If coals are cut into thin slices their vegetable structure can be detected with the microscope, and numerous cells perceived that are filled with a yellow bituminous liquid that causes the flame seen in common fires, and whose gaseous products form illuminating gas. The trunk of a tree, measuring 60 fect, was lately found in a quarry in Lothian. It penetrated through 10 or 12 strata of white sandstone, but its baek had become pure coal, and forests of standing trees have been diseovered in Yorkshire and in Ireland, in stone.

In the English coal measures, 300 species have been detected, comprising ferns, palms, calamites, reeds, cacte, lepidodendrons, \&e., at least 50,000 years old : the last named, which now grow no higher than 3 ft ., were in the lowest coal mensures, great trees, whose fragments are 45 feet. In the magnesinn limestone, over the coal, only 8 species of fuel, or marine plants, have been found. A fossil forest has been discovered under the banks of the Tiber, petrified with calesinter, mixed with volcanic dust. Below the coal beds a large tree has been found 3 ft . in diam., and 36 ft . long, and in many eases the entire trunks of fossilized trees form roofs over the coal strata. As submersions destroyed the primeral forests, so we have the resulting stiata; but myriads of ages have failed to render all of them perfect coal, hence the different varieties of that product.
The coral reefs furnish evidence of an antiquity of the globe far exceed. ing any received estimate. The formations are of very slow growth, not exceeding 6 inches in a century, and are composed of the remains of dead jolypes united with gluten, forming rocks of great density and cohesion. The great coral reef of New Holland is 350 miles, continnonsly, and then in parts 1,000 miles, and from 20 to 50 in depth. East of New South Wales is a reef 500 miles long, and more than 200 fathoms perpendicular, yet these momtain masses of limestone in the ocean are formed by polypes, insignificant in size, but infinite in numbers, composed of simple gelatinous bodies, or small stomachs in shells of carbonate of lime, which cohere together with great tenacity after death. Within half a mile of many coral reofs there are no soundings to the depth of several hundred
eral speciea ropotamus a minins of the nimal, which an elephant, ene or upper todon, Meyalite superioras he Hippopotaday. Besides some of them al, and Morse 10 or 12 miles 10 beds of the nd in the beds als that 800 to ,000 tons were
ils recognized, e fossil species , amphibia, 50, les ; the number are conversant dem resembling s their vegetable terons cells jerthat causes the orm illuminating ound in a quarry te sandstone, but trees have been
etected, compris. ns, \&c., at least higher than 3 ft., ragments are 45 8 species of fuci, been discovered , mixed with volmind 3 ft . in diam., of fossilized trees yed the primeval ages have failed varieties of that
glove far exceedslow growth, not eremains of dead ity and coliesion. nously, and then is of New South e formed by pposed of simple te of lime, whici in halt a mile of several hundred
fathoms. The Ammonites, Ω fossil shell in a splral form, curved lite a man's hom, existed in various slupes during the secondary and transition periods, but became extinct, perhaps, 100,000 years ugo. The nummulite, a fossil Cephalapod, resembling a coin, were so numerous as to form immense mountains of limestone, and yet so ancient that they are abmolant in the stones of the pyramids and sphinx, yet even then as embedded fossils. 1234 species of fossil shells have been deseribed in France and England, mostly extinct species : other thousands have been found in other comntries, mostly extinet.
The Geological Society of London has a slab 2 ft square in which is enhedded 250 fishes. Fossil sea turtles have shells 8 ft . long. There are beds of sea shells 2,000 ft. high on Momt Etna, and strata of grey clay, filled with shells, much higher. Shells and organic remains abound in Clili, from 9 to $1,400 \mathrm{ft}$ above the sea level. Workmen near Enreka, Sevada, while blasting in the solid rock, 40 ft . below the surface, found imbedded in a piece of it a petrified wasp's nest, the texture of which, though turned to stone, was plainly visible. On breaking it open, some cells, larsa, and two perfectly formed wasps were found, also petrified. The roek is of a granite sandstone of sedimentary formation. The Atlantosaurus, an enormons monster from Colorado, is per Prof. Marsh, the largest land animal as yet discovered. It was some 50 or 60 ft in length, and, when erect, at least 30 ft . high. It doubtless browsed upon the foliage of the mountain forests, portions of which are preserved with its remains.
The islands of the Icy Sea, per Pallas, are full of elephants and rhinoceros' bones, and the islands opposite the Lena are almost composed of them and fossil wood. A mammoth, a carnivorous animal, much larger than an clephant, was found in Siberia in the ice, perfect in its eyes, flesh, hair, skin, \&c., with long mane and tail of stont black bristles : many others, together with elephants, have been found in Siberia, and Hudson's liay, apositive proof that the temperature of the Tropics existed at one time in these regions. The bones of the Mustodon of North America, as arranged in Peale's Mnseum, form a skeleton 18 ft . long, 11 ft . 5 ins. high, with usks, 10 ft .7 ins. The Iguamadon, an enormons herbivorons reptile, discosered by Mantell, is 70 ft . long, the body is 4 ft .9 ins . in diam., with a horn of bone, and n tail 523 ft . The bones of the Mammoth are quite numerons in the Luited States ; the molar tooth weighs 8 lbs , and the joint of the bone of the leg is a foot in diam.
The Era of Superficial Deposits.-This may be called the modern age of geology, but what human being will presume to say when it began? The formations of gravel, sand, clay, peat, marl, coral recfs, \&e., have been formed since this epoch commenced, and vast changes cansed by submersions and convulsions have taken place all over the globe. These silent but irrexistible forces, the tools of ereative power, are incessantly at work rendering the world in fit habitation for man, and as we approach this momentons period of the world's history we also discover for the first time, evidences of the existence of those plants and cereals which fumish his daily bread. Agassiz has recorded his opinion, that the order of the Rosacere to which belong the apple, pear, the plum, and the various Iruits of that description, as well as the raspberries, strawberries, brambleberries, and roses in all their varieties, were introduced, contemporaneously with, or only a short time before, the first appearance of the human race. The gradual trinsformation of varieties sume the ferns of the coal period, is indeed immense.
During the glacial period, in which the climate of Greenland extended es tar south as New York, the world was covered with immense moving masses of ice, which in their progress from north to south moved rocki
hundreds of miles and remodelled the topography of varions comintres. The effects of these glacial movements were the pulverization of the various rocks, thens forming sand from sandstone, calcareons soil from limestone, and clay from granite and gneiss, transforming barren rock into fertile soil.

The alluvial deposits contain remains which indicate n vast antiquity. The skeleton of a whale was dug un in the vicinity of Niagarn a few years ago, a sure indication that that region formed at one time the bed of an oceun. All the land about the Clyde rests upon beds of shelly, bones of stigs, elephants, \&e., and at Yealm Bridge, and Ketley, near Plymonth, there aro caves containing bones of rhinoceroses, elephants, hyenas, bears, foxes, wolves, dogs, horses, oxen, sheep, \&e. Agassiz deseribes 300 new species of fossil fish found in England, of which on exists in London clay. A bed of oyster shells 9 miles long and 18 feet thick exists in the interior of Norfolk; a pair of starg' horns have been foundon the shores of the Mersey, near Liverpool, at 30 fect, and pieces of timber at 40 feet. l'alms and cocoa nuts have been found imbedded in the London clay, clearly indicating the existence at one time of a tropiaal climate in what is now tho temperate zone. An old Roman port of Romney marsh is now several miles out at sea, and proofs are abuadat that Great Britain was at one time mited to the continent.
No clonbt exists that the Falls of Nagara were at one time precipitated into an ocean over Queenston Heiglits, and Sir Charles Lycil computes that a period of at least 30,009 to 3,000 years have elapised while the falls have been cutting their way through seven miles of rock to their pre sent position ; the retrograde movement is still going on, slowly but surely, every day.
Λ volcano now extinct, near Mount I'Orr in the interior of France, emitted a flow of hava at a companatively recent period, which filled up the chamel of a river in its conse. The water rose, passing oves the impediment in its course, and has up to this time cut a chamed 50 feet deep through the lava bed. From the remains of ant of Roman hridge known to have been constructed about 2000 years ago, it appears that the erosion of the water into the hava has been considerably less than six inches during that period, whilh would indiate that it has required over 200,000 years to cut the chamel to its preseat depth of 50 feet.
Myriads of ages have elapsed while the rushing waters have been entting out those tremendons ravines in the hard roek, known as the Canyons of Mexico, Texas, Colorado, and the Rocky Mountains The great Canyon of the Colorado river is 298 miles loug and the sides rise perpendicularly above the water to a height of 5000 of 6000 feet.

On Oak Orchard creek and the Geneseo river, between Rochester ast Lake Ontario, are enormons chasms, worn by the water, 7 miles lone On the Genesee, sonth of Rochester, a cut exists from Mount Morisw Portage, sometimes 400 feet deep. In the Rocky Momntains, near tir source of the Missonri river, there is a gorge 6 miles long and 1200 僧 deep. In the Mississippi, at St. Anthony's Falls, the river has eroded? passage throngh limestone rock 7 miles long, to which distance tith cataract has receded. In the passage of the Comnecticut river at Brathe boro and Bellows lalls, it ean be proved that the river was onee at hess 700 feet above its present level.

From these and thousuads of other proofs which might be cited, thein ference is unavoidable that vast periods have elapsed since the berinning of the present geographicul distribution of sea and land, but step hy def duriug the slow but majestic march of Time, we can always see thateref
folts comtries. rization of the cons soil from ing barren rock
a vast antiquity. Niagara a fer one time the bed n heds of shells, and Ketler, near roses, elephants, 2p, \&ec. Agassiz land, of which ? ; and 18 feet thick ave been folundon d pieces of timber imbedded in the time of a tropical d homan port of roofs are abundan ent.
e time precipitated les lyell computes elapsed while the of rock to their pros n, slowly but suret?,
interior of Frame, $1^{\text {eriod, which filked }}$ rose, passing ure time cut a chamel remains of an oh nit 2000 years ayo, is bay has been con: phich would indiate hamed to its presert
Gaters have lien Trd rock, known as P Rocky Monutinis bas miles long and a height of 5000 a
tween Ruchester and water, 7 miles lon? rom Mount Morris ${ }^{4}$ Mountains, year th les long and 1200 k 草 te river has eroudels which distance be cticut river at Brattes iver was once atheo
might be cited, thein ed since the berinn and, but step by a always see thaterem

Instrumentality employed by creativo power has been in the continual effort to bring order out of chnos and fit the carth as a habitation ior man.

FIAT LUX.

GREAT LIGHT ON A DAIRK SUBJECT.

Age, Origin, and Ultimate Deration of the Earth.-More than 140 years have elapsed since. Emanuel Swedenborg penned the startling anuomecment, the first of the iind ever made, that our earth, together with her sisterhood of planets, derived their origin from matters and substances evolved from the atmospheres and solar energy of the sun of our system. In his Principia, written in 1734, and again in his Worship and Love of God, in 1745, he remarks that the sun is the centre of a vortex; that it rotates uponits axis; that the solar matter concentrated itself into a belt, zone, or ring, at the equator, or rather eeliptic; that by the attennation of the ring it became disrupted ; that upon the disruption, part of tho matter collected into globes, and part of the matter subsided into the sun forming solar spots ; that the globes of solar matter were projected into space ; that consequently they described a spiral orbit: that in proportion as the igneons matter thus projected receded from the sun it gradually experienced refrigeration and consequent condensation ; that hence followed the formation of the elements of ether, air, aqueons vapor, \&c., nutil the planets finally reached their present orbit ; that during this period the earth experienced a succession of geological changes which originated all the varieties in the mineral kingdom, and haid as it wero the basis of the vegetable, and afterwards of the animal, kingdom.
These were alarming propositions to proponnd at a time when it was almost universally accepted us a literal truth that the world was created out of nothing in the space oi six natural days about 6000 years ago, yet since Swedenborg's time scientists havo abundantly demonstrated the truth of what he tanght, and this so clearly that at this day no enlightened mind will dispute the facts.
Swedenborg asserted that the whole starry heavens was one vast siphere, and its suns or stars, including their systems, to be parts of a sphere connected with each other. He writes, "Possibly there may be innmmerable other spheres, and innumerable other heavens, similar to those wo behold, so many indeed and so mighty, that our own may bo respectively only a point." The Essay in his immortal Principia, expressly called "The Theory of the Siderial Heavens," giving full details of the kystem, was published in 1733 , long before the advent of monster telescopes, twenty-two years before Kant, twenty-four years before lambert, t:renty-six years liefore Boscoviteh, thirty-four years before Mitchell, pnd forty-four years before Herschel gave the result of their confirmatory discoveries to the world.
The grandest and latest discovery of modem astronom弓 is the motion of the so-called fixed stars, yet long before this discovery was announced

Swedenborg asserted that the whole universe was in motion, and that the paths which the countless suns with their systems were traversing was the Milky-Way, and that the point at which they entered was at the sonth, and that at which they emerged was at the north. The truth of this theory has been demonstrated and aceepted within the last thirty yrats by Humboldt, Herschel, and other eminent observers. The knowledier of these movements enable astronomers to predict, with absolute cestanty, the different changes the varions constellations will mulergo during thi lapse of ages to come, and detine the reasons mad catises of sudh changes.

The fact is well attested that our smin is only one of a million which trarerse the Milky Wis. In the crowded part of the Milky Wis. Sir W. Her. schel, the prince of astronomers, had fields of view in which, during a quarter of an hour, he saw 116,000 stars pass througle the ticld of view of a telescope of only 15^{\prime} aperture ; and at another time, in 41 minutes, he saw 258,000 stars pass through the field. It consists mostly of stars of the 10th or $12 t h$ magnitude, but too numerous to be seen liy the naked eye, which can only discriminate stars of the 6th or $\overline{7}$ th magnitude; powerful telescopes reach even to a lith magnitude. He calculated the length of the visual ra!! of the telescope he used. It reached stars 497 tines the distance of Sirius ; now Sirius cannot be nearer than $100,000 \times 190$, 000,000 miles, therefore 1 Dr . Herchel's telescope, at least, reached to 100, . $000+190,000,000+497$ miles $=9941$ billions niles. He saw stars 42,000 times more distant that Sirius ; and a cluster 11 trillions of miles distant. He says there are nebule from which light is 48,000 years travelling! Light travels 192,000 miles in a second, or of trillions of miles per amum, then in 48,000 years this would be $30,000,000,000$ of millions of millions of miles distant ; if the eluster ceased to exist we should not know it for 48,000 years! Such distances can indeed be written, but can never be conceived by the mind of man.

It is a trifiling matter to reduce these figures to writing, but quite another thing to realize their full significance.

To assist our concention of what constitutes a "billton," we will take as a mit a sccond of time, of which 60 tlit away in a minnte, or $\mathbf{8 6}, 000$ in a day. Not the one-sixteenth part of that number have come and goue since the commencement of the Christian era to the beginning of 1878 , for it takes exactly 31,687 years, 17 days, 22 hours, 45 minutes, and 5 seconds to constitute a billion of seconds of time.

The immensity and grandeur of the Heavens penetr:tes every enlightened mind with indeseribable emotions of awe and reverence for the Almighty energies of that Adorable Intelligence who created and sustains the whole.

Tonching the stability of the solar system, it was feared by many, eminent for their attainments and acquirements in every branch of human learning, that owing to the mighty changes and apparent derangements which were occurring in the planetary orhits, that impending ruin and destruction wonld nltimately render the earth minhabitable for man. At a time when the belief was prevalent that certain destruction awaited the whole universe, Swedenhorg announced to the world his theory that: "As the solar system is carried along through the Milky-Way, and aiterwards compelled to diverge therefrom, the planctary orbits will change their form and eccentricity to a certain amount, and then return to their origimal condition, when they will again change and again return, and so on to eternity." This beautiful-and harmonions theory, so well calculated to terminiate every groundless fear, has since been proved and demonstrated by La Grange, and this doctrine of a cyclar return of the solar system is now known among the learned as La Grange's theory
of the stability of the solar system; nevertheless this doctrine was expounded in Swedenborg's Principice forty-four years before La Grauge put his forth, seventy-one years before Mayer, and ninety-one years before Bessel.
Irregularities in planctary motions correct themselves, because every motion, included in the motion of the Sun, is itself subordinate, and therefore must ultimately conform. The plancts being acted ujon by the common force of the sun, they often interfere on the same side with the sun's force on that side, and this begets irregularity or disturbance. oddly called their own attractions.
Lai Grange proved that the mass of each planet into the square-root of the line of apsides, and into the square of the ecentricity, givesums that are invariable. It will be seen from the preceding aticle that the work of creation has been progressing during incalculable myriads of age , and we may rest satisfied that it forms no part of the Divine economy to destroy what it has been millions of year's in building up. The agencies employed in the creation of tho miverse are identical with those which now exisit for its preservation. Hamony and perfection are everywhere real entities; derangement and disorder are apparent only. That the sun's apparent path throngh the ecliptic is really cansed by the motion of the earth in its orbit around the sun, may be seen from the globes in the figne, representing the earth in twelve different positions, cortesponding

the twelve months. In the various gloles, N is the north pole, DCL the equator, S the place of the Sm, and CS and all lines from C poreliel to this the direction of the plane of the ectintic. The inclination of the earth's axis to the plane of its orbit is 23028^{\prime}, and this, with its ammal revolution around the Sun, canses the change of seasons known as Siriug. Summer, Autumu and Winter. Besides the dimrnal and ammal movenents of the earth, thero is also an on ward morement of the whole solar systen through space, in an orbit of its own, at the rate of 154,000 ,000 miles per :mmum.
Swedenbory asserts that there is an intermal or upiritual sense concealed within the letter, or natural sense of the Word, comparable to the foul or spipit of man, which fills the human body just as the hand fills a flove. This sense he unfolds by menns of the science of correspondences, the linowledge of which he claims was revealed to him. For instance, Wherever the end of the World is foretoll or predicted in the Word, he sars that by this we are not to understand the end of the natural world, bit the church or dispensation existing in the world, the latter being
used in a symbolic sense to represent the former. If after this statement any one persists in adhering to a literal interpretation, let him take a good concordance and examine under the words "ever" and "forever": he will find to his amazement that there are just as many proofs to sustan the theory of the everlasting duration of the earth as there are to prove its destruction ! In this case what can a man gain by refusing his assent to the truth as mufolded by Swedenborg?
In his work descriptive of the Last Judgment, which Swedenhorg avers has already taken place, not in this, butin the spiritual world, during the year 1757, the following passage occurs:
"That the procreations of the human race will continue to eternitr, is plain from many considerations, and of which the following are tho principal:-I. That the human race is the basis on which heaven is fonnded. II. That the human race is the seminary of heaven. III. That the extension of heaven, which is for angels, is so immense that it cannot bo filled to Eternity. IV. That they are but few respectively, of whom heaven at present is formed. V. That the perfection of heaven increases according to plurality. Vi. And that every Iivine work has respect to Infinity and Eternity. The angelic heaven is the end for which all things in the minerse were created, for it is the cud on account of which mankind exists, and mankind is the end regarded in the creation of the visible heaven, and the earths included in it; wherefore that Divine work, mamely, the angelic heaven, primarily has respect to Infinity and Eternity, and therefore to its maltiplication, without end, for the Dirine Himself lawells within it. Hence also it is clear, that the human race will never cease, for were it to cease, the Divine work would be limited to a certain number, and thus its respectiveness to Infinity would perish. The Lord did not create the universe for His own sake, but for the sake of those with whom He will be in Heaven; for spiritual love is such, that it wishes to give its own to another; and as far as it can do this it is in its being, in its peace, and in its blessedness: spiritual love derives this from the Divine Love of the Lord, which is infinitely such ; from hence it follows that the Divine Love, and hence the Divine Providence, has for its end a heaven, which may consist of men made angels, to whom He can give all the blessed and happy things which are of love and wisdom, and give them from Himself in them." L. J. 6.

It will console and comfort many honest but simple-minded thinkers who believe otherwise, to be told that although these startling facts seem to jar with terrific force against their cherished articles of faith, and even to oppose revealed truth, it is nevertheless most true, that they do not, even in the slightest degree, enter into conflict with revelation. There is a science of spiritual truth and there is a science of natural truth; there is the Book of Revelation and there is the Book of Nature; the same Omnipotent Hand has written both, each must be understood in a sense peculiar to itself, and when so understood, there can be no contradiction between them. Wherever contrariety or discordance appears, the error, if any exists, is in man himself and in his natural proneness to receive appearances as truths. During a depth of time not to be penetrated, mankind inferred, from the apparent motion of the suln planets. and stars, that they revolved around the earth once in 94 hours, hut now every schnol-boy knows that this idea is a fallacy, mind an outrage on natural truth. the real truth being that in every passing hour we are moved by the earth's rotation on its axis 1,037 miles, and in its orbit 66,092 miles, the diumal motion cansing the apmonent motion of the heavenly borlies around the earth. Many reader infer, from a perusal of the first chapter of Genesis, that it is simply a narrative of the creation of the world on which we dwell, yet
this statement let him take a ad "forever"; roofs to sustain re are to prove tsing his assent edenborg avers orld, during the
nue to eternitr, Hlowing ure the aven is founded.
That the ex. hat it camot be ively, of whom teaven increases ik has respect to which all things it of which mantion of the visiblo nat Divine work, to Infinity and d, for the Divino o human race will ld be limited to a ty would perish. , but for the sake ilove is such, that do this it is in its derives this from from hence it folidence, has for its , to whom He can 3 and wisdom, and
e-minded thinkers ese startling facts articles of faith, s most truc, that nflict with revela. science of matural Book of Nature: ist be understood iere can be no conscordance appeass natural proneness of time not to be notion of the sull carth once in 9 t is a fallacy, and an oin every passing axis 1,037 miles, rising the appurent

Many reader enecis, that it is hich we dwell, yet
still it must be enid, that althongl this belief is all but universal among the great masses of society, it is nevertheless as gross an outrage on gyiritual truth as the first noted fallacy is on matural truth. The sublime narration recorded in Genesis does not treat of natural creation, for being Divinely composed it is to be understood in a sense entirely different from mierely human writings. This style is such that it describes spiritnal things by means of pure correspondences, similitudes, types, and symblolic imagery drawn from earthly things. The subject treated of is indeel concerning a new creation, but one more momentous by far than even the creation of a world. Many modern theologians are afrnid to enter on an interpretation of this chapter on necount of its alleged conflict with the known facts of science, but the theology that could be endnngered ly such an investigation is worthy of no man's acceptance. Underftomid naturally, what reflecting mind conld conceivo of the existence of light, evening and morning, day nud night, and grass, before tho creation of the Sunt in such case what could exist but universnl darkness and Aretic desolation! In the first chapter, v. 21, "every living thing that moreth" is described as being crented and "brought forth abundantly after their kind," by the waters: ia chap. ii. y. 19, "every beast of the field and fowl of the cir" "is described as lieing " mate ont of the ground." Luderstood literally, or in the sense of the letter, theso statements are contradictory to every rational idea, but when interpreted according to the law of correspondences they are divinely true evenas to their minutest details.
At this day, amidst the crash of creeds framed by self-derired intelltgence, when many are amomeng from the pulpit the impending ruin of our planet, when brazen infidelity prochaims from the platform to applading audiences that there is no hereafter, and scoffs at sacred thinge, it must gratify every lover of truth to learn that there exists in Swedenborg's theological writings a system of doctrine and seriptural interpretation absolntely impregmable against every assanlt of the enemy. From the ronderful story of Genesis to the sublime visions of tho Apocalypse, the searcher ifter truth will find the veil of mystery lifted from a thonsand questions which have for ages puzzled the wisest commentators. The spstem of interpretation is unerring in its logic, inflexible in its allegiance to trath, and astonishing in its minnteness of detail. In an articlo in a recent mumber of the Galaxy, in relation to the contest hetween science and religion, the writer says: "The modern school of Free Thunght has found its one serions opponent, and its only ono, in Emanuel Swedenborg, whose writings, first issued more than a century since, have had an effect on the whole tone of thonght and metaphysics, such as few people suspect, and hardly any realize.
"It must be remembered that Swedenborg published his first (theologieal) hook in 1749, and that his theological activity covered the very Feriod wherein the French and English sehool of scientific inquiry, skepticism, and free thonght, was begiming to be most active.
"In the midst of this perod of intellectual bustle and activity, tho Scer of the North, secluded in his lonely study among the Swedish furests, with nothing before him but a Ilebrew bible and Greek Testament, was calmly writing those wonderful books which he asserts to be the result of direct revelations from the Deity.
"The only system that remains able to-day freely to admit the most uncompromising results of scientific inquiry withont fear or question, nnd at the same time to hold to the absolute truth of Holy Writ in every jot and tittle, nppears to be that proclaimed by Swedenborg.
"The system of theology it propounds is purely and uncompromisingly monotheistic. An Arab could not quarrel with it on that score. It is,
at the same time, so purely Christian that the most zealons evangelical of the extremest type can find no fault with it, making as it does the Saviour aud Redeemer its grand central figure.
"Finally, it is able to coucede to the boldest of materialists, the most acute of historical critics, the most ardent evolutionist, the most dogmatic of palieentologists, the most aiostruse of metaphysicians, ererythlng which they can possibly claim to linws proved, every truth, however contrary to current theological opinion, which they can establish, while at the same time it holds to the absoiute tiuth of every word of Holy Seripture.
"Nothlng seems to shake its faith in the slightest ; it shuns no ingriry and needs no explanation of any fact, everything being plain, tho bible its only standard."

In the Cyclopedia of Biography, ly Parke Godwin, we read: "Swe. denborg was no impostor, but a learned and pious man, and his books richly repay the most careful study."

The Nonconformist (English) ussures us that: "Ho (Swedenborg) in received by all thinkers courteously, and by very many cordially. The storm of violent denunciation or angry ridccile which was launched against him by theologians a generation ago, is scarcely remembered now, and is not likely to be revived. All are agreed that he was a genuine and sincem man, who believed his own words, and did not wilfully deceive or invent."

Hon. Theophilus Parsons, late Professor in tho Cambridge Law School, mays: "I regard him (Swedenborg) as a man of remarkable ability, and great and varied culture ; taught, as no other man ever was taught, truths which no other man ever learned ; and thus instructed that he might introduce amoag men a new system of truth or doctrine, excelling in character and exceeding in value any system of truth before kuown."

Speakiug of Swzedenborg and his writings, Henry James, the author of "Substance and Shadow," says: "Such siucere books, it seems to me, were never before written."

Bishop Hurd (author of Lectures on Prophecies) says: "It has been asid by some, and received implicitly without further examination by others, that Swedenborg, after receiving his extraordinary commission, was inad, and became totally deprived of his natural senses ; but this in sinuation is such a pa!pable contradiction of truth, and such an insult to common sense-beliy ovarruled by every page of his writings as well μ by every act of his ife after that period-that we should have thought it altogether unworchy of notice were we not aware that it operates power. fnlly with many, even at this day, to prejudice them against a chameter which otherwise they would revere, and against writings from which they would otherwise receive the most welcome instruction."

The venerable Thomas Carlyle, having looked upon the great seer all his life as a visionary lunatic, now rays that he stands rebuked. Ho looks upon Swedenborg as one of the loftiest minds in the realm of nind, one of the spiritual snus that will shine brighter as the years goon : and that more truths are compassed in his writings than that of any other mal. His great prescience with regard to modern scientific discoveries, sinc made known, is astonishing.

George Dawson, M. A. Frites : "Emanuel Swedenborg had the prirl. lege which belongs to all men who devote their lives to thought, that 4 the world grows older, they get more reverenced, hetter known, and better loved. If I were going to be shut up in prison three years, Sirt deuborg's books would be my choice, and ut the end of three yean it would be six more before I shouid find them uniuteresting, strange, a dry."

1s evangelical as it does the lists, the most most dogmatic ns, everything , however conbliah, while at of Holy Scrip-
it shuns no int veing plain, tho
e read : "Swe, and his books
(Swedenborg) in cordially. The launched against nered now, and is genuine and sinilfully deceive or
ridge Law School, kable ability, and ever was taught, instructed that he doctrine, excelling th before known. mes, the author of cs, it scems to me,
pys: "It has been er examination by linary commission, senses ; but this in. d such anl insult to writings as well μ Wh have thought is t it operates power: against a character igs, from which they 1."
h the great seer all rebuked. He iootas realm of nind, ono ars go on ; and thas ic discoveries, ininct
borg had the pritito thought, that a better known, and is three years, sint d of three yean eresting, strange, ${ }^{a}$

Dr Portoous writes : "The incomparable depth, splendor, and vastness of Swedenborg's genius are shown in this, that he alone has ever dared to tread the threefold realm of uatural, mental, and spiritual philosophy. Few men have approached the hem of his garment in respect to moral purity, his teaching and example are calculated to make men meek, gentle, and charitable, and his followers catholic, intelligent and pions. Examine all the philosophical sustems extant and take all the religious literature of the last century, aisd place them int one scale, and take the voluminous works of Swedenborg, and place them in the other seale, and the philosopiny and libraries of the worid will kick the beam." R. M. Patterson, late Professor in the university of Penusylvania, snys respecting Swedenborg's Principia : "It is an extraordinary production of one of the most extraordinary men that has ever lived, many of the exper. iments and observations presented in this work are believed to be of much more modern date, and are unjuslly ascribed to much more recent authors."
"There is in Swedenborg's writings a marrellous insight, a vision of the higher trutis of philosophy und religion, to which few men have attained.' "-N. Y. Independent.
"The majority think and speak of Emannel Swedenborg as a mystic and dreamer, when in fact, he was a practical man, an inventor, and public benefaciur. The metrical system, now under discussion, was first suggested by him, and the D"teh are indebted to him for important improvemerits in their docks ant. dykes."-Literary World.
"Swedenborg's writings teem with the grandest and profoundest truths." -. Vorth American.
Count Yon Hopken, for forty years an intimate iriend of Swedenborg's, and for many years Primo Minister of Sweden, advised the king "that no religion could be better, as the prevailing and established one, than that deduced by Swedenborg from the Sacred Scriptures, and this on the two following nccounts : 1st. This religion in preference to, and in a higher degree than any other, must produce the most honest and industrious subjects; for this religion places properly the worship of God in uses. 2d. It causes the least fear of death, as this religion regards death merely as a transition from one state into auother, from a worse to a better situation ; nay, upon his principles, I look upon death as being of bardy any greacer moment than drinking a glass of wator."
T. S. Arthur, the world renowned author, writes: "Only in the revelations made for the New Church, in which the plenary inspiration and imer and Divine Sense of the Word, and the true doctrine of the Lord and his Providenco, are fully explained and made known for the sal vation of mankind, can be seen his rational light, the truths on which Christian unity and harmony can be establishec "nd by which the growth of naturalism, skepticism, and irreverent in, can be arrested and dostroyed."
The Rev. Prof. Von Garres (Roman Catholic) writes :-"Swedenborg was not a man to be carried away by mbridled imagination, still less did he ever manifest, during his whia life, the slightest symptoms of mental aberration. Tironghout the entire course of his leamed researches and activity, we everywhere discover the pious and religious man, who, in all his sayings and doings, was intent upon good."
Edwin Paxton Hood, in the preface to his Life of Siwedenboig, writes: "That he conceives he ims derived much benefit from the study of the works of Swedenborg, and has much reason to be grateful to that illustrious, venerable and much misunderstood, and comparatively unknown man."
Design and Work (English) says of the Apocalypse Reveated: "A tareful perusal of many of its 900 and odd pages has led us to cease won
doring at the favor with whieh thls modern edition has been received, and to recommend others to follow our example. Many a sermon hare we listened to on the Revelations. Several works, dealing with the gorgeons panorama unfolded befor 3 the internal vision of the Seer of latmos, how we travelled through, wondering at the inventive faculty ns displayed by commentator and preacher, but too often feeling that a stone had been given us instead of bread. Whoever takes earnestly to the consideration of the pages of the 'Swedish Seer,' will find that there is more in his text-book than ho has given it eredit for ; that it containg truths illimitable; that in their expounding no meretricious alds are required ; that it appeals, not to the eye or the ear, but to the deepest depths of the human heart and mind. Whosoever will read it patiently and carefully must rise, up from its perusal it wiser, a more charitable, altogether a better man."

The Chicago Adeance writes: "We confess to having read for years some portion of his works with intellectual and spiritual profit, and we imagine at least that we can trace his influence in the conceptions and reasoning of many modern anthors of distinction, who do not always give Swedenberg the credit hedeserves."

The writer of this book has no pecmiary interest whatever in the sale of Swedenborg's writings, but conceives it to be his duty to present theso testimonials in vindication of a most deserving and worthy man, whose writings have been greatly misrepresented and misunderstood. A hundred years hance such a vindication will be unnecessary. It is a veritable trut's that Swedenborg has rendered greater services to mankind than eny other man ever did or ever can render, and this factis becoming better known every day. When he began to write and promulgate his system of doctriues, a noted Lutheran lishop and doctor gos up a complaint against him. The doctor, whose name was Ekebom, had the honesty to say of himself, that he was very careful not to examino Swedenborg's works. Swedenborg, however, was a man of good character and comections, and led such a blameless, quict, calm, and peaceful hife, that it was found impossible to arouse popular sentiment against him.

Since Swedenborg's day, two men, who have all the animosity, but lack the honesty, of Dr. Ekebom, viz: Dr. Pike, of Derby, Eng., and Enoch Pond, of Bangor, Me., Theological Seminary, have rendered themselves notorious by the pablication of pamphlets containing the most horrible libels on Swedenborg and his writings. These detestable pubications, which have been answered and refuted time and again, present a combination of reckless assertion, downright lies malignity, and ignorance, which is perfectly amazing. Lach publication may be ${ }^{\text {r }}$ cribed In the expressive language of Edwin Paxton Hood, as " 3 fcualaiu of mud," and both combined are highly flavored with the peculiar sanctity which pervades the devotional exercises of Holy Willie.

We have still another notable detrac: a in Mr. William White, ntio many years ago wrote a Life of Swedenborg, in which he rendered full justice to the subject of the memoir. Of late years lie resuried his task by dippling his pen in inte (or rather in venom), and dashing off a vat anount of trash in the shape of baseless absurdities regarding Swedeuby and his followers, which lie styled a "Life of Swedenborg." In order w understand the animus which pervades this work, it is necessary to kuov that Mr. White was at one time agent for the London Swedenborg Societr, and while thus occupied he engaged in the sale of the so-çalled spifitist putb lications. The sale of these books is held by the Swedenborg Society be utterly incompatible with the objects which it has in view, but Me White resisted the efforts of the Society's Committee to remove hit
een receired, sermon have with the goro Seer of l'ative faculty as feeling thiat a es carnestly to find that there fat it contains ous aids are reto the deepest ead it patiently e charitable, al.
read for years profit, and we conceptions and , not always give
whatever in the duty to present and worthy man, 1 misunderstood. ceessary. It is a r services to manler, and this factis top and doctor gos was Ekebon, had ful not to exanine an of good character , and peaceful life, ent agninst him. the animosity, but Derby, Eng., and ave rendered themontaining the most detestable pubi
and again, present malignity, anil igno a muy be a cribed as a fc.atain on lie.
Villiam White, on 10 ielt he rendered full he resurued his task d dashing off 1 nat garding Swedealorg nborg." In ordert is necessary toknot
Swede -ocalled spig sust put wedenborg Societv fins in view, but Ne fittee to remove hil
from office, and compelled them to bring a suit in Chancery to effect their purpose. The fimal judgment was decisive against him, and it was while smarting under this reverse that his two-volume Life of Swedenborg was written. The work in question is composed throughout in a vindictive spirit, and the malevolent production owes its origin to a malicious feeling of the worst kind, nevertheless it is most true that slander has greater swiftness than trith, and the groundless assertions of a defamer are frequently accorded greater credence than the veritablo assertions of a truthrul man.
In an elaborate articlo which appeared some time ago in the columns of the Eaylish Mechanic, the editor of that journal presented a list of Swedenborg's inventions, which, including a notice of his mechanical and philosophical works, occupied uearly two quarto pages. The following is a partial list of the latter:-1. An Introduction to Algebra. 2. Attempts to find the Longitudes of places by Lunar Observations. 3. A proposal for a Decin System of Money and Measures. 4. A Treatise on the Motion ith Laith and the Planets. 5. Proofs, derived from Appenrances Sweden, of the Depths of the Sea, and the Greater foree of the Tides in the Ancient World. 6. On Docks, Sluices, and Salt Works. 7. Some Specimens of Work on the Principles of Natural Philosophy, comprising Sew Attempts to explain the Phenomena of Chemistry and Physies by Geometry. 8. N Observations and Discoveries respecting Iron and Fire, and particularly respecting the Elemental Nature of Fire ; together with n New Construction of Stoves. 9. A New Method of Finding the longitude of Places on Land or Sea by Lumar Observations. 10. A New Mechanical Plan of Constructing Docks and Dykes. 11. A Mode of Discovering the Povers of Vessels by the Application of Mechanical Principles. I\%. Micellaneons Observations connected with the Playsical Sciences-Parth 1-3. 13. Part 4. Principally on Minerals, Iron, and Stalactites in Baman's Cavern. 14. On the Depreciation and Rise of the Swedish Currency. These were some of his vorks published be(tren 1722-1733.
These were sucereded by, 1. The Prixicipia: or, the Pirst Principles of Matural Thinge, in 3 folio Vols. with Mlates. 2. The Economy of the Animal Kingdom considered Anatomically, Physically, and Ihilosophifally, 2 Vols., with Plates. 3. The Animal Kingdom, Parts i., ii., iii., 2 Vois, 4. The Animal K'ingdom, Parts 8. , vi. 5. Ontlines of a Pliiosoph-大rai Argument on the Infinite and the Final Canse of Creation. 6. Some Ppecimens of a Work on the Principles of Chemistry, with other Treafise, 8 ro, 21 Plates, comprising 159 figures. 7. Miscellaneous ObservaDons Comecte 1 with the Physical Sciences. 8vo, 9 Plates, comprising 6Figures. 8. Posthumous tracts on various subjects.
in 1i8s, the Conmissloners appointed by the King of France, for tho mamation of :'s subject of anmal magnetism, afllmed that there did otexist any theory of the magnet ; and tho Count de Buffon, in his ork on Natural History, affirmed that nothing had been written on the rmation of die planets. Both these errors were refuted in a most liniarly and elegant letter addressed to the Commissiosers by the Maris de Thomé, in which he directed public notice to Swedenborg's elab)ante ami profound works on these subjects, conchuding his letter as folTr, "This, gentlemen, is what I thought it my duty to make puhlic for benefit of sonfety, from a regard for truth, and in gratitude to him, whem! I an indebted for the major part of the little I know ; thongh fore I met with his writings, I hat soughi for knowledge amongst nost all the writers, meient and modern, who enjoyed any reputation possessing it. I have the honor to be, \&c.,
"Paris, Aug. 4, 1785.
Marquis de Thomp."

Ralph Waldo Emerson writes:-" Swedenborg's writings would be a sufficient library for a lonely and athletic student. Not every man cun read them, but they will richly reward him who can. The grandeur of the topics makes the grandeur of the stylo. One of the missourians and mastodons of literature, he is not to be measured by whole collec no nf ordinary scholars. Ho anticipated in astronomy the discovery of the seventh phanet ; anticipated the views of modern astronomy in regard to the generation of earths by the sun ; in magnetism some important experiments and conclusions of later students; in chemistry, the atomic theory, in anatomy the discoveries of Schlienting, Monro, and Wilson, and first demonstrated ti.e office of the lungs."

Tho celebrated Berzilius writes:-"I have looked through the Animal Kinglom, and am surprised at the great knowledge displayed by Swedenborg in a subject that a professed metallurgist would not have been supposed to make an object of study, and in which, as in all he undertosk, he veas in adeance of hus atye."
To sum up, it may be stated that his mechanical and philosophical works would be equivalent to about 25 volumes of 500 pages each. This generation is most deeply findebted to the incomparabie genins of this extraordinary man for very important improvements in the construction of docks, blast furnaces, stoves. the smelting of metals, and a host of inveltions which aro usually credited to others.

Ths reader may infer, from a perisal of the foregoing list of book, that the labor involved in their production might well entitle the writer to rank as a first class literary giant in any ago or nation, but wonderful to eny, the most extraordinary performances of this most remarkable man are still to be recounted.

In the year 1743, Swedenborg was 64 years of age, and here we find him relinquishing hia philosophical pursults, and devoting himself exclusively to theology and to the unfolding of the new doctrines which lie now declares were first revealed to him. His Worsiti; and Love of God, published in 1745, seems to mark the commencement of this new era in his Life. The following is a list of his theological works arranged according to the orier in which the original books were written and pulr lished by the Anthor.

1. 1749-56. Arcana Colestia, The Heavenly Avcana which are contaned in the LIoly Scriptures, or Word of the Lord; unfolded: beyinning; vith the Book of Genesis; toyether with the Wonderful thinys seen in the World of Sipirits and in the Heaven of Angels. English Ed. 12 vols. 8 vo. $£^{2} 88$ 8., any vol. zeparate, 4c. Americain Ed. 10 vols. $\$ 1.50$ per vol 2. 1748. Concerning Heaven and its Wonders; and concerning Hell. being a Relation of things heard and seen. English Ed. 3s. American do. \$1.25. 3. 1758. Auaccount of the Last Judgment and the Destruction of Babylon; showing that all the Predictions in the Apocalypse are at this day fulfilled, being a relation of things heard and seen, 8 vo. Eng. Ed. 8el. American do. 75c. 4. 1758. On the White Horse mentioned in the Apocalypse, chap. xix., with References to the Areana Colestia on the subject of the Word, and its Spiritual or Internal Sense. With ait Appendis. Fuglish Ed. 4d. American do. 10c. 5. 1758. On the Earths in our Sclar System, and on the Earths in the Starry Heavens; with an account of their imhabitants, and also of the Spirits ind Angels there, from what has been seen and heard. Eng. Ed. 8 vo., 8d. American Ed. 60c. 6. 17ik. On the New.Jerusalem and its Heavenly Doctrine, as revealed from Hearen to which are prefixed some Observations concerning the New Hearen and
 Angelic Wisdom concerning the Divine Love and the Dirine Wisdom Eng. Ed. Demy 8 vo., 2s. American do. \$1. 8. 1763. The Four ledd
s would be a every man can randeur of tho issourians and aole collen's of scovery of the oy in regard to important extry, the atomic 0 , and Wilson,
agh the Animal yed by Swedenhave been st:pll he undertosk,
losophical works h. This generaof this extraor. coustruction of I a host of invelr
ing list of broks, title the writer to out wonderful to remarkable man
and here we find oting himself exoctrines which he and Love of God, of this new era in rks arranged acwritten and pub-
hich are contained $l:$ begimuinț reth hings seen in the ish Ed. 12 vols. 8 ols. \$1.50 per rol concemin! llell, d. 3s. American md the Destruction calypse are at this $\boldsymbol{n}, 8$ vo. Eug. Fd. mentioned in : tex Witlia on the sib. Earths in oun bith an account of cre, from rhat has Ealed. 60 c .6 .17 w . caled from Hearem New Hearen and ener. Divine Wisdom 3. The Four lead
ing Doctrines of the New C'hurch, signified in Rev. xxi. by the New Jerusilem; being these respecting the Lord. His Divine and IIuman Natures, and the Divine Trinity; the Sacred Scripture; Faith; and Life. Eng. Ed. 8 vo. 2s. American do. $\$ 1$. 9. 1764. Anyelic Wisdom concerning the Ditine Providence. Eug. Ed. 8 vo. 3s. American do. \$1.50. 10. 1765. The Apocalypse Revealed; m tehich are diselosed the Arcana therein foretold; and which have hitherto remaineel concealed. 2 vols. Eng. Ed. 8s. American do. \$3. 11. 17iti8. C'onjugal Love and its Chaste Delights; also Adulterous Love aral its Insane Pleasurcs Eng. Ed. $4 s$. American do. \$1.25. 12. 176!. A Brief Exposition of the Doctrines of the New Church meant by th: New Jerusalem in the Apocalypse. Fing. Ed. 10d. American do. 40c. 13. The Intercourse beturen ithe sonl anid the Botly, which is supposed to take place either by Physical Influt, or by Spiritual Influx, or by Pre-established Harmony. Eng. Ed. 4d. American do. 10c. 14. 1771. The T'rue Christien Relignon; or, the limrersel Theology of the New Church, foretold by the Loved in Dan. vii, 13, 14, emed if the Apoculypse xxi, 1, 2 . Eing. Ell is. Amerienn do. \$?.50.

These prices include postage to destination. The books may be obthined by addressing the Publishing Socjety's Manager, E. H. Swinnfy, So. 20 Cooper Union, New York, or the Lindon Society's Agent, Jamps Spieas, 36 Bloomsbury St., London, W'. C., Fing.

Swedenborg's "True Christian Jicligion" and the "Apocaiypse Rerealed," may be obtained alsolntely free by any I'rotestant clergyman or student who may enclose the postage for same to the celebrated publishing house of J. IB. Lippincott \& Co., of Philadelphla. The requisite inuds ior this purpose are supplied by a retired Philadelphia menchant d princely means and large-hearted liberality, who takes an ardent interest in the work, and has made ample provision for its perms aent conthmance even after his hands have $l^{\prime} d$ it down. No clergyman or student need hesitate to enclose the postago and semd for these beoks, for they will be sent without fail. The New Church Tract and Publication Society, T. S. Arthur (the well-known anthor), Iresident, Gcorge Bumhaun (of the Baldwin Locomotivo works), 'Treasurer, offer Swedenborg's "Haven and Hell," throngh J. B. Lippincott \& Co., to clergymen on the same terms. In ordering these liooks in this why, enelose "Oc. for postage on the first nanied, $18 c$. for the second, and $13{ }^{2}$. for the last noted work, and forward all orders to J. B. Lijppincott \& Co., $\quad 15$ and 17 Market St., Philadelphia.

Up to Jan. 1, 1878, this well-known firm have received sind filled requests from clergymen for 14,000 copies of the "True Christian Retitum," 8,000 copies of the "Apocalypse Revealed." and $: 2,000$ coples of "Hearen and Hell." Requests arestill coming in, hooks sere stia" going out, and handreds of lettcr: have been received nttesting the lively eratitude of tho recipients to the donors of these books for their inpsimbble fifts. In addition to the unuanal traffe of supplying ens!ly books frec of charge, J. B. Liprincott \& Co. publish elegant editions of muny of Swedenhorg's theological writhgs, which they supply to purchasers in tho usual way of busiuess. Lists and prices furuished by addressing or applying as above.

IMPORTANT RULES, TABLES, \&c., FOR PRINTERS.
A Thousand Ems, Measuming Type on Matter. -Thls is done by multiplying the number of solid ems contained in the length of any quantity of type, by the number contained in the width of the measure. The gange for measurement is an cm of the type in which the matter calculated is set. A thonsamd ems is the space that so many letter m's wonld occupy. It takes over 2,000 average letters to occupy the space of $1,000 \mathrm{ems}$. In Britain the matter is measured by ens. To determine tho number of ens in a line, lay as many of the letter mint wise in the stick ns will make the measure. The following Table shows the number of ems contained in a pound of each of the following sizes of type.

lb.	of	Pica contains	130	ems.	16.	Minion	contains	356	mm.
"	"،	S. Plica	170	"	"	Nompareil	"	620	"
"	"	Bourgeols"	270	"	"	Agate	"	690 800	"
"	"	Brevier "	290	"					

Table showing number of eme in 100 square inches of the s' res of type from Piea to Agate inclusive.
Plen.
Plen.......... \qquad .3,600/ Nonparell \qquad .14,400 Minion $.10,04$
Long Prinecr 5,62, Small Plea \qquad 4,!00. Agate
Brevier
8,836 Bourgeois 6,889
The above list is based on the supposition that lines of the length of f ems pien, 7 ems small piea, 7.5 ems long primer, 8.3 ems bourgeois, 9.4 ems brevirs, 10.2 ems minion, 12 cms nompareil, mand 14 agate, are equal to an inch. This is not strictly true, but the variation is so littio that it will not make a difference of 1,000 ems in 100 ordinary sized pages.
In one square finch there are-

The above is an approximation merely, as different type founders slightly vary the wize of their type.
Metal for Backing Electhotvpi Plates - Lead 01 parts, till f $_{\text {, }}$ antimony 1.

To make Whiting ink Inemastable even ny Acids.-To good gall link add n etrong solution of Prussian bthe in distilled water. The ink writes greenish blue but afterwards turns black, and camot be erased withont destroying the prpe

ARRANGEMENT OF TYPE IN AMERICAN UPPER CASE.

-	\dagger	\ddagger	§	11	I	-	It	9	(1)		-	,	\bigcirc
$1 / 4$	$1 / 2$	$3 / 4$	1/8	3/8	\%/8	3's	S	£		3	-	\sim	-
$1 / 3$	3/3	1/6	A	(E	∞	\cdots	-	-		3	\&	A:	(L
A	B	C	D	E	F	G	1	11	c	D	5.	F	0
11	1	K	I.	M	N	0	11	1	K	1.	3	N	0
P	Q	16	S	T	V	w	${ }^{10}$	Q	15	S	T	V	W
x	Y	Z	J	U])	x	Σ	2	J	t	M	it

ARIRANGEMENT OF TYDE IN AMERICAN IOWEIR CASF.

\&	1		\mathbf{k}	0	1	2	3	4	5	6	7	8
j $\%$	b	c	d		1		8		f	\boldsymbol{g}	$\frac{\mathrm{ff}}{\mathbf{n}}$	0
-	1	m	11	h	o		y	p	w	,	en ${ }_{\text {ends }}$	em
$\frac{x}{7}$	v	u	t	$\begin{gathered} 3 \mathrm{em} \\ \text { spaces. } \end{gathered}$	π				\cdots	:		3em.

Weight of leads required for any work. These calculations apply to any measure, and are based on the nse of six-to-pica leads. The first Table is for solin marten which requires to be leaded.

 1,000 " Brevier " 13 "/ " 1,000
Example. - It is estimated that the matter to be set will make 20,000 ems Small Picat solid. Required, the weight of leads necessary to lead this matter. 1,000 ems of sold Small lica require $16 \frac{1}{2}$ ounces of leads. $16 . \times 2=330 \mathrm{ozs}=20 \mathrm{lbs}, 10 \mathrm{ozs}$.
The second Table gives the weight of the leads contained in 1,000 ems of leculed matter.
1,007 cms Pearl contains $81 / 2$ ozs. lea.ls. 1,000 ems Boargeods contains 11 ozs. Ids

1,0010 " Brevier " 100^{\prime} "، " 1,005 Pica
Examphe.-A page of leaded Long Primer contains 2,000 ems. Reguired, the welght of leads necessary to lead thirty-two payes. 1,000 ems of !eaded Long Primer contain 12! ${ }^{\circ}$ cunces of leads. $1: 2 \times 2 \times 2=25 \mathrm{ozs}$. per pacce. $25 \times 32=800 \mathrm{ozs}=50 \mathrm{lhs}$.
Or, a column of Nonpareil contains 8,000 eus.s. Required the welght of leads necessary to lead six columns. $1,000 \mathrm{ems}$ of leaded Nonpareil contain it ounces of leads. $7 \frac{1}{2} \% 8=60$ ozs, per column. $60 \times 6=360 \mathrm{ozs}$. $=22 \mathrm{lbs} .8 \mathrm{ozs}$.
An allownee must of course be made for additional leads used for blanking out and in standing matter.

Tlie following table gives the weight of leads in 1000 oms of leaded matter ：－

LFADED MATTER－

om						
1000	＂	Agate	＂		＂	
1000	${ }^{\prime}$	Nohparell．	1	．．71／2	＂	＂
1000	4	Minlon	${ }^{1}$		＂	＂
1000	＂	Brevier	＂	．．．．．．．．．．．．．．．101／2	1	＂
1000	＂	Bourgeois	＂	11	${ }^{\prime \prime}$	＊
1000）	＂	Long Prinier	＂	121／2	＂	＂
1000	＂	Smail Pla．	＊	14	＂	＂
1000	1	Hica．	＂	$16^{1 / 2}$	＂	＂

Tablf hiowing the Quantity of Papha Requined fon any Job from 50 to 10,000 Copims．－No allownince for waste or surplus copies．For any momber not neted in Table，say 36 to the shect，uso double the quantity giren in column headed 18.

을 g	${ }^{2}{ }^{2}$	13	4 $\text { to } 4 \text { hat }$ to nht	${ }_{0}^{6}$	$8{ }^{8}$		12	115	$\left\|\begin{array}{c} 16 \\ 10 \end{array}\right\|$	$\mid 18 \text { \| }$	120			
宅家导	${ }_{6}^{5}$	它	¢	S $\frac{3}{4}$	E	¢	研	旲咅	${ }_{6}$	\％	E	E．		
100 200	$\begin{aligned} & 2 \\ & 20 \\ & 42 \\ & 48 \end{aligned}$	$\begin{aligned} & 1-10 \\ & 10 \\ & 2-10 \end{aligned}$	$4 \begin{gathered} 1-13 \\ 1-1 \\ 20 \end{gathered}$		0－									
200	3_{3}^{2-}										${ }^{\text {O－118 }}$			
30														
400														
800				3－12										
（10）				1－4										
OO														
800														
${ }^{1000}$														
1000	$\begin{aligned} & 202-2 \\ & 2001 \\ & 200 \end{aligned}$										2－1：			
1250				${ }^{8} 8-17$	$\begin{gathered} 6=10 \\ i=90 \end{gathered}$	${ }_{\substack{n-19 \\ 6-23}}$					2－8：			
1300	31													
（2000									8－5					
3 mmon														
＋（0）0														
3000				－										
10000		，												

Names and Sizes of Books as Classifed by Peblashfis．－Tho number of folds and pages in a single sheet when manufactured．

Best Printris＇Ink．－Boil 3 gallons best clear old linseed oil down to \boldsymbol{n} thick vamish；add whie liot 12 lbs of powdered rosin， $3 f \mathrm{lbs}$ dry brown soap shavings， 5 ozs．indigo ； 5 ozs．Prussian blne，and 10 lbs．best lampblack ；stir ail well together，let it stand a week and grine．
For other inks，roller compositions，\＆e．，see 1：ges $5-5-6$ and 579 ．For paper tables see page 577.
－Note．－This book is a 16 mo．．there belng 32 pages to the risect．The terms folio，quarto，odf（u＇o，etc．，denoto the number of leaves in which a theet of paper is folded．

The marks A，B，C；1，2，3；1A，2A； $\mathbf{1}^{*}, 2^{*}$ ，ete．，occasionally fomud as the bottom of pagen，are what printers term signafure markis，thus， 3^{e} ，being printed for the direction of binders in folding the aheets．

ms of leaded

ozs．Icads．

hen for Any iste or surplus the sheet，uso

20
0 the
$\frac{5}{a}$

言总 를 $0-81113-3$ $1-$ il 11 － $0=1$ $0-1 i$（2 y $n \rightarrow 1$ $0-13)^{0} 1110-9$ $\begin{array}{llll}0-13 & 0-13 & 0-19 \\ 0 & 0 & 0 & 0\end{array}$ $\begin{array}{ccc}0-66 & 1--15 & 0-19 \\ 1-1 & 0-21 & 0-19\end{array}$ 1－6． 1 －1 $0-19$ に11：のにな 101，

 4－：${ }^{3-10}{ }^{2}-13$

 $20-1015-913-1$

Bhisilfis．－Tho

 actured．Contain．

iseed oil down（w） osin， 3 thes．dry ，and 10 lbs．bent a grind． 5－6 and 505．Fot
the rheet．The s th which a flieet
lonally found ais kin，this， 3° ，beling

One pound of leadn or slugn covers four square inches．Hence，when the space to be filled by leads or slugs is known，it is only uecessary to divide the number of square inches by fonr，and the result will give the required weight in pounds．－Proof Sheet．
How to Estimate，－－＇To ascertain the quantity of plain type required for a newspaper or magazine，or any other work，find the number of square inches and divide the sane by four，the quotlent will be the ap－ proximate welght of matter；but as it is impossible to set the cases clear， it is necessary to add 25 per cent．to large fonts，to allow for dead letter．
 ublic will be uoful in orlecring lower case m＇s a blll，anil proportion all other sorts rool type．Wood typa ahould ly them；so that a bill of pica，Including accente if for targo Pooter iettere．Af and ltalic，woighs 800 lbs ．For overy lb ．of Italic ＂3A．＂tiont in generally sut． decient，white for amanlier letlers there are 10 lbs ．of Roman．From the annexed ii is alivay ：advianble to order ai enat demped letters eapecially there thould al ways he a largo font．

ters contalned in 800 lbs．pica．

NAMEG AND EIZEB OF TYPE.

Great Primer.-In conversa.

 tion, study purity of language: avoid vulgar dialects like the fol. lowing samples:Englisi. - English Rustic. Measter Goddin used to zay as how children costed a sight o' money to breng um oop, and 'twas all very well whilst um was leetle, and zucked the mother, but when um begind to zuck the vather, 'twas nation akkerd!
Pres.-Rector. "These pigs of yours are in excellent condition." Jarvis. "E'as, sur, they be. Ah! sur, if we was all on us only as fit to die as them are sur, it would be good for we."

Small Pica.-Scotch Elder. "O! Sandy, if yo wad only tak' soond advice, an' drink watter instead o' whiskey, it wad be better for your puir wife an' bonnie bairns; d'ye no ken whaur a' the drunkards gang tae?" Confirmed Sot. "Yes, Maister Tamson: richt weel I ken that, they aye gang whaur they get the best whiskey."

Long Primer.-Cockney Hair-Dresser. "They say, sir, that the cholera is in the Hair, sir!" Gent. (very uncasy) "Indeed! ahem! then I hope you are very careful about the brushes you use." Hair-Dresser: "Oh, I see you don't hunderstand me, sir; I don't mean the 'air of the 'ed, but the hair hof the hatmosphere! "-Punch.

Cockney Servant Girl. "Well man-Heverythink considered, l'm afraid you won't suit me. I'vo always been brought up genteel ; and I couldn't go nowheres where there aint no footman kep'." Servant Man, Thompson (who is very refined), "Ho yes, mum, I don't find no fault with
you, mum, nor yet with master-but the truth his mum, the hother servants is so orrid vulgar and hignorant, and speaks so hungrammatical, that I reely cannot live in the same 'ouse with 'em, and I should like to go this day month, if so be has it won't illconwenience you! "-Punch.

Boungeors.-Mrs. Brown (an Aberdeen widow on the north side of forty). "Hoo's a' wi' ye this mornin', Mester Miller ; come in an' sit doon, I was just thinkin' o' ye; some lang-tongued hizzies were sayin' that it was a perfee' shame that a man like you, wi' grey hair, an' a long fite beard should mak' a feel o' yersel' getting married fan ye should be thinkin' o' deein'. Its a peer world to live in if a man canna tak' a wife fanever he likes. Na, na, I ken plenty, some o' them no far aff, that wad be prood to get ye. Eh, sirs, the life o' a peer, lone woman, or a lone man is a weary, sair dree o' dool an' sorrow ; dinna ye think sae, Mester Miller?" Miller; (ia widower on the look out for another wife.) 'In my long pilgrimage through this vale o' tears, my experience has been, that a man is muckle the better o' a woman, and a woman is muckle the better o' a man!"

Buevien.-Wilkins. "Well T'mmmas, did you'eur as how Measter Smith hurted hisself on the leg just above the hancle." Tummas, " 0 did um, that be very bad for he, and I be very zarry to 'ear it. Las' week my son Jan war a drivin' a mail, an' the 'ammer, lie flew out'n 'is 'and an' struck I very 'ard on the nose, the blood comed, an' it it 'al struck much 'arder it would 'are killed I on the spot sure."
Blarney. Yankee (just arrived). "Guess your legal fare is just Sixpence." Dublin Carman: "Shure, me Lord, we tuke some chapeJacks at that-but its meself wouldn't dishgrace a gintleman a your Lordship's quality by dlirivin' 'm at a mane pace through the public shtreets, so I tuk it upon myself to give gour lordship a shillin's worth both of slityle and whip cord."
Mivion.-Vermont Tombstone Agent to Smith, in the backuoods:"Good moruing', Mister; I was told over tew that you had lost your wife, and I have jest cum ten miles over meowntains, woods, an' swamps to get an order for a tewmstun' for her. Was awful sorry to liear of your great loss, but I can sell you the cheapest an' best tewmstun' in the hull creation." Smith. "Wial, stranger, I reckon I can stand my loss if she can stand her'n; but you see as how the critter isn't ready for a tombstone yet, she's only seooted with another man."
Noxpareil.-English Rustics. Sam: I zay, Jack, be you a polttelaner? Juck.-" E'as I be." Sam.-"Wall I zay, Jack, what be a poltucianer? Jack:-." Zounds, Sam ! doant'ee knaw nothink abont un?" Sam.-Naw i doan't." Jack.-Wall, I doan't knaw as I can tell'ee, Sam, fur I doan't exackerly kinnw mysef! !"
Prasl.- Einglish Showmon. Walk in to the show my hearties, wnik in and see the great Uhrican liona, rhince?ma and helephnts as wan esught in the desert about 15 nilea from etther sea or land. srd the grent 'ippopotamus and calterwalinmas ns lives in the horent. Them Aa don't go in es'it win. nod them as stay's out there lharn't in here, and can't see the great Hitudian tiger, leopard, the hanncondan frmm Brazill, the grizzly bear, the buffalo that awinga his vist prepoitemits ofer the Rocky Mountinga and Western prarera, and the great dens of performing hauimsila from hall hover the world!
Do yees raily think. Squire, that thera ts anny chanece of war wid this conntry an' Roosha? spuive. Well things did look a little queer latrly, but why do you ack? Well, me roison for axin is, d'ge moind now. Watio these daya rill have to be anther sellin' ine pig, and li there's

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

${ }^{2}$ a) Trover wrobriaty of opinions exist as to

 the individually whomithe art: of printing was 29 first discovered; yet all, authorities concur in admitting Peter Solhoeffer to be the person's Caw,4 φ the art of of cutting the letters from the Gut-
\therefore./ tembergs/ he is also supposed to have been the first whoengraved on copperpplates. The ${ }^{7} /-/$ following testimony is preserved in the family; ${ }^{8}$ i/ - Dy Jo. Fred. Faustus; of Ascheffenburg: ${ }^{\text {"V }} \square>$ 'Peter: Schoeffer, of Gernslicim, perceiving Ir V his master Faust design, and being himself \mathscr{S}. Cap 70. desirous ardently to improve the art, found out (by the good providence of God) the method of catting (inneidendi) the characters ${ }^{13}$ seel. in a matrix t, that the letters might easily be
1// singly cast instead of beng cut. 'He mri- ${ }^{22}$ ec;
${ }^{14} \perp$ vately cut' matrices for the, whole alphabet: $\wedge{ }^{15}$ Faust was sa pleased with the contrivany, /that he promised peter to give him his only ${ }^{17}$ raf. 16 /daughter Christina in marriage o promises $\dot{\text { Ital}}$. /which he soontafter performed.
${ }^{20}$ as) But there were many difficulties at first ${ }^{18}$ no f with these letters; Ais there had been before 'Som. ${ }^{20}+$ with wooden ones, the metal being too soft ${ }^{3}$. Vial. to support the'foyce of the intpression: bute C / this defect. was soon i remedied, by mixing a^{2} Bubstango with the metal which sufficiently ot. ${ }^{2}$ hardened it'/
land when he showed. Sis master. the Leiluns case from these matrices,
mist as to minting was concur in the person'8 ag learned m the Guthave been later. The ${ }^{7} /-/$ the family; ${ }^{8}{ }_{z} /$ heffenburg: $<{ }^{\circ}$ perceiving ing himself
 art, found
God) the
characters ${ }^{13}$ stet. ht easily be
$\epsilon^{\prime} \cdot \mathrm{He}$ prim ${ }^{12} e c^{\prime}$! © alphabet: ${ }^{15}$ contrivanys imam his only ${ }^{17}$ ref.
g promise ${ }^{3}$ Fill.
hes at fist been before ${ }^{3}$ GLom. ing too soft ${ }^{3}$ Jill. cession: bute $\mathrm{C} /$ by mixing sufficiently $\sigma_{0}{ }^{1}$
raster the ices,

The designated errors being corrected, the foregoing matter will read as follows:

Though a variety of opinions exist as to the individual by whom printing was first discovered; yet all authorities. concur in admitting PETER SCHOEFFER to be the person who invented cast metal types, having learned the art of cutting the letters from the Guttembergs: he is also supposed to have been the first who engraved on copper-plates. The following testimony is preserved in the family, by Jo. Fred. Faustus, of Ascheffenburg:
'Peter Schoeffer, of Gernsheim, perceiving his master Faust's design, and being himself ardently desirous to improve the art, found out, (by the good providence of God) the method of cutting (incidendi) the characters in a matrix, that the letters might easily be singly cast, instead of being cut. Ho privately cut matrices for the whole alphabet: and when he showed his master the letters cast frown these matrices, Faust was so pleased with the contrivance, that he promised Peter to give him his only daughter Christine in marriage, a promise which he soon after performed. But there were as many difficulties at first with these letters, as there had been before with wooden ones, the metal being too soft to support the force of the impression; but this defect was soon remedied, by mixing the metal with a substance which sufficiently haredene it.'

EXPLANATIONS OF THE CORRECTIONS.

The following rules, from Mackellar's American Printer (a most reliable work), will be found of inestimable value to typographical men and all who write for the press:

A wrong letter in a word is noted by drawing a short perpendicular line through it, and making another short line in the inargin, before which the right letter is placed. (See No. 1.) In this manner whole words are corrected, by drawing a line across the wrong word and matlog the right one in the margin opposite.
A turned letter is noted by drawing a line through it, and writing the mark No. 2 in the margin.

If letters or words require to be altered from one character to another, a parallel line or lines must be made underneath the word or letter, viz. for capitals, three lines; small capitals, two lines ; and Italic, one 31*
line; and, in the margin opposite the line where the alteration occurs, Caps, Small Caps, or Ital. must be written. (Sce No. 3.)

When letters or words are set double, or are required to be taken oat, a line is drawn through the superfluous word or letter, and the mark No. 4 placed opposite in the margin.

Where the punctuation requires to be altered, the correct point, marked in the margin, should be encircled. (See No. 5.)

When a space is omitted between two words or letters which should be separated, a caret must be made whero the separation ought to be, and the sign No. 6 placed opposite in the margin.

No. 7 describes the mamer in which the hyphen and ellipsis line are marked.

When a letter has been omitted, a caret is put at the place of omis. sion, and the letter marked as No. 8.

Where letters that should be joined are separated, or where a line is too widely spaced, the mark No. 9 must be placed under them, and the correction denoted by the marks in the margin.

Where a new paragraph is required, a quadrangle is drawn in the margin, and a caret placed at the begiming of the sentence. (See No. 10.)

No. 11 shows the way in which the apostrophe, inverted commas, the star and other references, and superior letters and figures, are marked.

Where two words are transposed, a line is drawn over one word and below the other, and the mark-No. 12 placed in the margin; but wiere ecveral words require to be transposed, their right order is signified by a figure placed over each word, and the mark No. 12 in the margin.

Where words have been struck out that have afterward been approved of, dots should be marked under them, and Stet written in the margin. (See No. 13.)

Where a space sticks up between two words, a horizontal line is drawn under it, and the mark No. 14 placed opposite, in the margin.

Where several words have been left out, they are transcribed at the bottom of the page, and a line drawn from the place of omission to the written words (seo No. 15) ; but it the omitted matter be too extensive to be copied at the foot of the page, Ont, see copy, is written in the margin, and the missing lines are enclosed between brackets, and the word Out is inserted in the margin of the copy.

Where letters stand crooked, they are noted by a line (see N . 10; but, where a page hangs, lines are drawn across the entire part affected.

When a smaller or larger letter, of a different fount, is imp operiy in. troduced into the page, it is noted by the mark No. 17, whicin signifies wrong fount.

If a paragraph be improperly made, a line is drawn from the broken. off matter to the next paragraph, and No IT written in the margin. (See No. 18.)

Where a word has been left out or is to be added, a caret must bo made in the place where it should come in, and the word written in the margin. (Sce No. 19.)

Where a faulty letter appears, it is marked by making a cross under it, and placing a similar one in the margin (see No. 20); though some prefer to draw a perpendicular line through it, as in the case of a wrong letter.
Paper Varnish.-All varnished gums composing the same, and dis solved in turpentine, have a greasy nature. Paper mnst be first sized, o: if dissolved by any other spirit, 8 oz . of gum sandarach, 2 oz . of Venice turpentine, 32 oz. of alcohol. Dissolve by gentle heat. Or a harder yarnish, reddish cast, 5 oz . of shellac, and 1 oz , of turpeatine, 32 oz . of alco hol, or Canadit balsam dissolved in turps.
alteration occurs, 3.) red to be talien oat, , and the mark No.
correct point, mark-
ters which should be ion ouglit to be, and and ellipsis line are at the place of omis-
d, or where a line is under them, and the
rangle is drawn in the entence. (See No. 10.) inverted commas, the figures, are marked. wn over one word aud he margin; but whiere order is signified by a 2 in the margin. terward been approred written in the margiu
horizontal line is dram the margin. are transcribed at the ace of onission to the atter be too extensive to s written in the maryin, kets, and the word Out

- by a line (see No. 10; the eutire part affected. Yount, is imp operiy in. No. 17, whici siguifies drawn from the broker en in the margin. (See added, a caret must to the word written in the
ked by making a cross gin (see No. 20); though h it, as in the case of 1
posing the same, and dis per must be first sized, o: andarach, 2 oz . of Veniex e heat. Or a harder rar turpentine, 32 oz. of alco

Ayerage Daily Perfonmance of Pnesses.- The estimates of the following Tables are for miscellaneous work, done in the usual manner, with iittle making ready and under the favorable conditions of a busy season. It is supposed that the presses are at work full 10 hours; that feeders and pressmen are expert and diligent : that paper, rollers, stean power, ink, etc., are in perfect order, and that there are no detentions or accidents.

Mako Reaty Time.	Stylo of Press.-No. of Forms.	Time of Press Work.	Rate per Hour.	$\begin{aligned} & \text { Paily } \\ & \text { Perform- } \\ & \text { ance. } \end{aligned}$
Hours.		Hours.		Impr.
	Carl Press.			
1	1 form of 7,500 impressions.	9	833	7,500
4	$\begin{array}{llll} \\ 4 & 1 & 1,000 & \\ \end{array}$	6	660	4.000
6	8 " 250 "	4	500	2,000
	Small Machine Press.			
1	1 form of 6,000 impressions.	9	666	6,000
5	5 " 500 "	5	500	2,500
8	8 " 100 "	2	400	800
	. Hand Press.			
1	1 form of 1,500 impressions.	9	150	1,500
4	" 2 \%0 ${ }^{\text {a }}$	6	166.	1,000
	Medium Cylinder.			
1	1 form of 7,500 impressions.	0	833	7,500
5	5 " 750	5	750	3,750
7	8 " 250 "	3	CSC	2,000
	Double Medium Cylinder.			
257	1 form of 5,000 impressions.		C6G	8,000
	3 " 1,000 "	5	C00	3,000
	6 " 250 "	3	500	1,500
	Mammoth Cylinder.			
357	1 form of 4,000 impressions.	7	570	4,000
	2 6 1,250 " 4 6 1050	5	500	2,500
	$4 \quad 6 \quad 250 \quad 16$	3	333	1,000
	-DeVinne's Price List.			

THE BULLOCK SELF-FEEDING PERFECTING PRESS.
The press represented by the ent is one of the most wonderful inventions of modern times in the department of printing machinery. Tho space occupied by the Bullock Perfecting Press is about 12 feet long $5 \frac{1}{2}$ ft. high. As indicated by the name, it is a self-feeder, drawing its supplies from a large cylindrical roll, or web of paper, placed either on the press itself, or near it, drawn in by tensinn, passing in, first, between an Impression and a type cylinder, where it is printed on its first side ; and, then, secondly, passing immediately to a secoud set of type and impres-
sion cylinders, where it is printed on the other side. Passing onwards the paper is severed by a knife into sheets of the desired size, and delirered in perfect condition (with the most astonishing rapidity) by means of a fly, upon the recciving board, with no other aid than that furnished by the machine itself.

Weiler's printing press.

GORDON'S IMPROVED FRANKLIN PRESS.
Concentrated Ink Pastes to Write with Water. - 1. Black Ink. Take 4 parts of bichromate of potash, pulverized, and mixed with 25 parts of acetic acid, 50 parts of liquid extract of logwood, $\frac{1}{\$}$ part of pieric

Passing onvards ired size, and delirrapidity) by means than that furnished
acid, 10 parts of pulrerized sal sorrel, 10 parts of mucilage, and $\frac{1}{}$ part of citrate of iron, and mix well. The liquid ce:tract of logwood is prepared by mixing 3 parts of an extract of common commercial qzality with two parts of water. 2. Red Ink. Take 1 part of red aniline mixed with 10 parts of acetic acid, 5 parts of citric acid, and 25 parts of mucilage, all weil mixed. For use, mix 1. part of the paste with 16 parts of water. 3. Blue Ink. Take 2 parts of aniline blue mixed with 10 parts of acetic acid, 5 parts of citric acid, and 40 parts of mucilage, all well mixed. For use, mix 1 part of the paste with 8 parts of water. 4. Violet Ink. Uso the same ingredients in the same proportions, as blue, with tho difference, that violet aniline is used instead of blue aniline. 5. Green Ink. Take 1 part of anilino bluo, 3 parts of picric acid mixed with 10 parts of acctic acid, 3 parts of citric acid, and 80 parts of mucilage. For use, 1 part of this pasto is mixed with 8 parts of water. 6. Copyıng/Ink. Take 6 parts of pulverized bichromate of potash, mixed with 10 parts of acetic acid, and 240 parts of liquid extract of logwood, and ald a pulverized mixture of 35 parts of alum, 20 parts of sal sorrel, and 0 parts of mucilage. Mix well. For use, 1 part of this paste is mixed with 4 parts of hot water.

Theso inks are described as leaving no sediment, as drying quirker on :aper than the ordinary inks, and as being non-corrosive.
Colored Inks for Rubder and other Stamps.-Red. Dissolve $\frac{1}{4} \mathrm{oz}$ of carmine in 2 ozs . strong water of ammonia, and add 1 dr . of glycerine and $\frac{3}{4}$ oz. dextrin. Blue. Rub 1 oz. Prussian blue with enough water to make a perfectly smooth paste ; then add 1 oz . dextrin, incorporate it well and finally add sufficient water to bring it to the proper consistence. Vinlet. Alcohol 15 ozs., glycerine 15 ozs., anilino violet 2 to 4 drs.; mix, dissolve, pour the solution on the cushion and dab on with a brush.
The following estimates relating to the consumption of ink, \&c., are selected from De Vinne's Price Jist, a work of incomparable utility to printers, published by Francis Hart \& Co., New York.

Black Inks.-On common news and rough book work, the value of black ink at 40 cents, used and wasted in printing a wet-down sheet of size 24×38 inches, or thereabouts, is a little less than 17 cents per 1000 impressions, or about 4 cents ${ }^{*}$ a token of 250 impressions. If the sheet is over-colored, it will cost C cents; if it is under-colored, or if printed on damp calendered paper (an unusual quality of this class of work), it will not cost 3 cents per token.

For ordinary book work, using ink at 60 cents,. on smooth paper of size 24×38 inches, the average cost of ink used and wasted will be about 6 cents per token; on dry and rough paper, it will reach 10 or 13 cents.

Fine book or pamphlet Presswork on damp sheets of calendered paper, of size 24×38. using ink at $\$ 1.00$, should have its average value rated at 10 cents per token for an ordinary edition. Upon a short edition, for which ink is specially put in the fountain, and of which much is wasted, the cost will be from 15 to 25 cents per token. If the paper is at soft and spongy Book, cost for either quantity will be still higher.
illustrated Catalogues, printed on medium shects, 19×24 inches, on dry ealendered paper, with cuts of large size and blackness, will uso

[^2]of wood-cut ink at $\$ 2.50$ per pound, on an edition of 1000 , at the rate of 60 cents to $\$ 1.00$ per token. If the edition is of 5000 impressions, the value of ink used will range from 40 cents to 70 cents per tolien. If cuts aro very large or black, they may consumo ink, on an edition of 1000 coples, at the rate of $\$ 1.50$ per token. It ink at $\$ 3.00$ or $\$ 5.00$ is used, in place of ink at $\$ 2.50$, the price will herease, but not in true proportionthe more expensive color is fincr, and has more extending capacity. These are prices for cuts of machinery. The amount of color on this work is largely under the control of the pressman. He can use it frecly or sparingly, at will, but with a corresponding effect of strength or weakness in the work.

Воок Illustrations.-Tho ordinary illustrations of books and newspapers, when not too frecuent, or too black, do not sonsibly increase the consumption of ink. It is not usual to make account of the value of ordinary ink on this class of work. But when the cuts are numerons and are black, and fine inks are used, the valne of color used camnot be overlooked. On a large edition of work of this class, the average value of ink at 42.00 , on a sheet 24×38 inches, will be 50 cents per token. Upon an edition f 1000 , the cost of the same ink would be more than $\$ 1.00$ per token. A Donblo Royal sheet 20×43 inches, on an edition of 20,000 , with ink at $\$ 3.00$, with many cutz, has been worked at a cost of 53 cents per token for ink; but this is a rare result, the economy being due as much to the skill of the pressman as to the length of the edition. If the edition had been 1000, the value of the black ink used and wasted would have been at the rate of $\$ 1.50$ per token.

Posters. - An ordinary poster, 12×10 inches, will consume of black ink at 25 cents per pound, at the rate of 30 and 40 cents per 1000 impressions, tho quantity insed dopending upon the size of the type and the quality of the paper. Under the same conditions, a poster 19×24 inches, will consume black ink of same quality at the rate of 75 cents and \$1.02 per 1000 impressions; a poster 24×38 inches, from $\$ 1.25$ to 32,00 per 1000 impressions. The value of the color used increases with the size of the shect, and for this work, in greater proportion. The larger form hats larger typo, and the larger press wastes more culor.

Tint Blocks.-A solid tint Block cut on pine, for a sheet 24×3 inches, with a few white lines, will use of 25 cent inls, at the rate of 53.00 per 1000 impressions. If finer inks are used, the advance in price will be nearly in strict proportion. For a shect 24×38, of smooth, thick paper, dry, printed on a metal tint-plate, with ink at $\$ 1.00$ per pound, the cost of ink will be $\$ 10.00$ per 1000 impressions. For this class of work, a pound of fine ink will do more work than a pound of cheap ink. On comm n flat work, a good black ink will permit a liberal reduction of body with varnish.

Blue Inks.-Many qualities of this color are used. The leadiut varieties are best known to printers as light, dark, ultramarine and bronze blues. The liglit has a limited use for flat surfaces and tints; the ultramarine, for flat surfices, tints, posters, and to somo extent, in its finer qualities, on fino type; the dark and bronze blues are most used for fine and light work, for which they are well adapted, having strong body, and in extending property being nearly equal to fine black ink.

Ultramarine is the favoring color for bright showy work. It is very bulky for its weight, and works well upon all flat surfaces. It is notia finely-ground color. The best colors only are used for type, but they do not work with the freedom and smoothness of dark or bronze blues. The prices range from 50 to $\$ 3.00$ per pound.

Flat Surfaces.-A flat-faced label, 9×14 inches, will consume of pure ultramarino blue at $\$ 1.00$ per pound at the rate of $\$ 3.00$ per 1000

000 , at the rate of impressions, the cer token. If cuts on edition of 1000 or $\$ 5.00$ is used, in a true proportionxtending capacity. int of color on this le cam use it frecly if strength or weal-
of books and newsonsibly increase the at of the value of cuts are numerons olor used camot be 3 , the average value 50 cents per tokels. would be more than hes, on an edition of worked at a cost of , the economy being ength of the edition. ul used and wasted
rill consume of black ents per 1000 impresof the type and the poster 10×24 inches, of 75 cents and 81.09 $\$ 1.25$ to $\mathrm{B}_{3}^{2}, 00 \mathrm{per} 1000$ with the size of the The larger form hats
for a sheet 24×38 k , at the rate of 83.00 vance in price will be smooth, thick paper, per pound, the cost of lass of work, a pound ap ink. On comman eduction of body with
used. The leadiug ork, ultramarine and urfaces and tints; the co some extent, in its lues are most used for d, having strong body, c black ink.
owy work. It is very t surfaces. It is nota for type, but they do lark or bronze blues
nelhes, will consume of fate of $\$ 3.00$ per 1000
inpressions. A flat tint block, 18×22 incnes, on fair paper, will use of this color, when somewhat reduced with varnish, at the rate of $\$ 0.00$ per 1000 impressions. A flat tint block of pine wood, made for paper 24×38 inches, will use of ultramarine at 75 cents, largely reduced with varnish, at the rate of $\$ 15.00$ per 1000 impressions.

Postrins. - For a poster, 12×19 inches, on ordinary News, the value used of ultramarine ink at $\$ 1.00$ will be at the rate of $\$ 2.00$ per $1000 \mathrm{im}-$ pressions; for a poster, 19×24 inches, on ultramarine blue at 75 cents, $\$ 3.05$ per 1000 impressions; for a poster, 24×38 inches, on ultramarine blue at 75 cents, at the rate of $\$ 0.00$ to $\$ 8.00$ per 1000 impressions. Ink at 50 cents per pound would diminish the value of the color used, but not in ratio with the reduced price. The cheaper color is thinner, not so well gronad, and is consumed nore freely. If it is used on any but the largest type, it will not prove of marked economy.

Dark blue and bronze blue are little used for posters or flat tints. If used in bulk, without reducing, they will be much more expensive than ultramarine. When used on this kind of work, they are usually thimed with white ink, varnish, turpentine, benzine, ete., and sometimes with magnesia. When used on light, open and fine work, the value of dark or bronze blues, may be rated as about double that of the same quality as black ink.

Red Inks.-Under this heading may be classified many qualities of scullet and crimson color. The leading qualities are vermilion, lako and carminc.

Vermilion red, a pure scarlet, is the basis of the better qualities of the cheap reds in greatest use. Commoner qualities, such as are sold at 75 cents and $\$ 1.00$ per pound, are largely mixed with cheaper colors. In its pure state, vermilion is the densest, and, in extending property; the wealiest of all colors. A pound of vermilion red at $\$ 3.00$ per pound is about half the bulk of fine black at $\$ 1.00$ per pound. Where the black will yield color for 1000 impressions, the vernilion red will be used up, with about 350 impressions. The value of the red color, extending capacity considered, is about ten times as great as that of fine black.

Lake red, a deep crimson, is inferior to black in extension, but will give treble the service of ordinary vermilion. It is too expensive) for most bold work, or for flat surfaces, nor does it produce as good an effect as pure vermilion. It is largely used for fine work, for which it is well titted.

Carmine, an intense and glowing crimson, is but little inferior to the finest black in extending properties. It is one of the most expensive colors, and can be used to profit and with effect only on light and open work. For flat and solid work, the effect prodnced is but little superior to that of the finer lakes, and is seldom worth the extra cost.

Posters.-The value of red ink at $\$ 1.00$ per pound, that will bo used and wasted in printing 1000 posters, 12×19 inches, may be rated at $\$ 3.00$; on 1000 posters, 19×24 inches, the valne of color may be estimated at $\$ 5.00$ and $\$ 6.00$ per 1000 ; on a poster. 24×38 inches, at $\$ 0.00$ and $\$ 12.00$ per 1000 . The color is weak, and the use of light or boldfaced type will make serious differences in the consumption of color. On double-medium posters, the value of the color may be averaged at $\$ 1.00$ per 100 impressions.
lilat Surfaces.-A flat label $\mathbf{9} \% 14$ inches, with ordinary amount and size of lettering cut for white, such as is used for soap boxes, etc., will consume of pure red ink at $\$ 1.00$ per pound, at the rate of $\$ 4.50$ and $\$ 3.00$ per 1000 impresslons. If the phate is lat, without lettering, at the rate of $\$ 6.00$ per 1000 impressions. A flat tint poater for paper 19×24 inelles, with letters cut in whit? as above, will use of red ink at $\$ 1.00$ per
pound, that has been somewhat thinned with varnish, at the rate of $\$ 9.00$ and $\$ 10.00$ per 1000 impressions. If pure color is used, it will consume color to the amount of $\$ 14.00$ or $\$ 15.00$. A flat tint poster for paper $24 \times$ 38 inches, cut on pine, with lettering as above, will consume of red ink at $\$ 1.00$ per pound, thinued with varnish, at the rate of $\$ 18,00$ and $\$ 25.00$ per 1000 impressions. If dry paper is used, ns is necessary for registered work it could not be rated at less than $\$ 20.00$; for damp paper, carefully managed, it may be less than $\$ 18.00$, but this is unusual.

Coloming of Paper. - Gray is usually obtained by mixing mineral or vegetable black with the bleached pulp, but the tones produced by these primitive means are generally dull. Vegetable black made from the chestnut tree gives the best result. Chestnut black can be made from the bark of the young sprotits of this tree, generally cultivated to make hoops for casks : after taking off the bark it is dried, ground, and made into a decoction for coloring paper, and which can be made cither gray or black. Logwood also may be used. Iron Gray is made with chestnut or logwood. For two cirt. of paper, 4 lbs . of ext. of chestnut, 4 lbs. sulphate of iron, dissolved in 9 gals. of boiling water, then stirred and mixed with the pulp, adding a small quantity of red luke and ultramariue. The size is mixed with 8 per cent. of sulphate of aluminum, this may be much varied. With small quanities of ext. of logwood and sulphate of iron a light gray is oltained; by adding yellow and Prussian blue, a greenish slate color; by adding white, suppressing the blue, and lseeping the lake, a chamois tone; by adding to this last formula a little umber, bistre. Logwood is used with all colors when it is wished to darken the shades. With fine pulp il is best to replace the ext. of logwood by the product obtained from the tree noted at the beginning of this notice.

Solvents for Runber.-These are bisulphide of carbon, coal naptha, rectified oil of turpentine, chloroform, and ether, which must be free from alcohol.

INFORMATION CONCERNING PATENTS.

United States Patents and Fees. - No patent will be granted if the whole or any part of what is claimed has been patented or described in any printed publicatiou in this or a foreign country, or been invented or discovered in this country.

Prior Invention abroad will not prevent issue of a patent, unless the invention has been there patented or described in some printed publication.

To prevent a subsequent inventor from obtaining a patent, an invention must have been reduced to a practical form, either by construction of a model or machine, or drawing, by which a mechanic could make the same.
Merely conceiving an idea of an invention is not a discovery, and patentable.
Foreign Patents.-The taking out of a patent in a foreign country does not prejudice a patent previously granted here; nor does it prevent outaining a patent here subsequently. When a patent is granted here it will extend only seventeen years from date of foreign patent.
Every foreign inventor must have in use, or for sale in the Únited States, a copy of their patentable article, within eighteen months from date of patent.

Duration of Patent is seventeen years. Extensions are prohibited on all pateuts granted since 1861 . Applications for extensiou must be filed, and requisite fee paid, ninety days before expiration of the patent.

Granting of Patents.-Pateuts, on payment of same official fee, are granted to all persons, including women and minors, unless inliabitants
nt the rate of $\$ 0.00$ ed, it will cousume ster for paper $24 \times$ isume of red inkat $\$ 18,00$ and $\$ 25.00$ ssary for registered np paper, carefully al. by mixing mincral tones produced by black made from black can be made lerally cultivated to dried, ground, and can be made either Gray is made with of ext. of chestunt. ; water, then stirred red hake and ultraohate of aluminum, ext. of logwood and yclow and Prussian essing the blue, and last formula a little hen it is wished to lace the ext. of logat the beginning of
of carbon, coal mapher, which must bo

ENTS.

nt will be granted if tented or described y, or been incented
batent, unless the inprinted publication. f a patent, an invener by construction of anic could make the
iscovery, and patent-
oreign country does oes it present obtaingranted here it will ntent.
sale in the United hiteen mouths from
as are prohibited on nsion must be filed, of the patent. ame offlcial fee, are , unless inhabitants
of countries which discriminate against the inhabitants of the Uinited States.
Application for a patent must be made in the name of the inventor, who can alone sign the papers ; an attorncy for inventor can not do so.
Heirs of an Inventor can obtalu a patent, papers to be signed by executor or administrator of inventor.
Joint Inventors are entitled to a joht patent.
An Inventor can assign his entire right, before a patent is obtained, so as to cuable the assiguce to take out a patent in his own name; but the assignment must be first recorded, and specification sworn to by the inventor.
Ocths may be taken, in this country, before any one authorized by law to administer oaths ; in a foreign country before any minister plentpotentiary, charge d'affairs, consul, commercial agent or notary public of the conutry in which oath is taken, being in all cases properly attested by official seal of such notary.
Stamps.-A stamp of value of fifty cents is required for each power of attomey, each sheet of in assignment to be stamped five cents, each certificate of magistrate five cents.
Dravinys to be in duplicate, one on stiff paper, one on tracing cloth, to be 20 inches top to bottom, 15 inches wide ; tracing to have 1 inch margin on right hand side, for binding.
Models to be of hard wood, or metal, not more than 12 inches in any dimension ; name of the inventor to be engraved or painted conspicuously on it.

For an Improvement, only model of part to be patented is required, to show nature and operation of invention.
Designs, no models required ; either drawiugs or photographs, both in duplicate, with neyative of photograph.
Neve Articles of mannfacture, sample of article : medicines, or medical compounds, sample of same, and minute statement of exact proportions and ingredients.
Caveats.-The filing of a caveat prevents, during its existenco, the issue of a patent, without the knowledge of the caveator, to any person for a similar device. The caveator is entitled to receive official notice during one year, for any petition for similar or interfering invention filed during that time. The caveator, when so notified, must complete his own application within three months from date of notice.

- A caveat runs one year : can be cxtended by paying $\$ 10$ a year.

Careats can only be filed by citizens of the United Stites, or aliens who have resided here one year and declared their intention of becoming citizens.

UNITED States Patent fees.
On filing each caveat... $\$ 1000$
On filing each original application for a patent, except for a design. 1500
On issuing each original patent... 2000
On every appeal from Examiners-in-Chief.................. 20.00
On application for a reissuc... 30 . 00
On application for extension... 00.00
Granting an extension $500_{0} 0$
Filing each disclaimer.. 1000
Certified copies of patents and other papers, 10 cents per 100 words.
Recording every assignment, agreement, power of attorney, and
other papers, of 300 words or under.................................... 100
If over 300 and under 1,000 words... 2 on
If over 1,000 words...... .. . 300
Drawings, cost of making same
Patents for designs-for three and one-half years..................... 1000
" " for seven years.. 1500
" 10 for fourteen years.. 3000

In ad/lition to the above, Messrs. Munn \& Co., Patent Solicitors, N.Y., charge for written report of special examination at Patent oflice, if invention has becu patented in this country, $\$ 5$; for general information of infringements, reissues, claims, assignments, joint owitership, contracts, licences, name in which patent is recorded, abstracts of deeds of transfer, sketch of a drawing of patent, license made out, transfer of do., recording do., $\$ 5$ for each case ; for procuring a patent, $\$ 25$ to $\$ 35$, or more ; for procuring a cavcat, $\$ 10$ to $\$ 15$; for copies of patents or assignments, o. drawings of any existing patents, $\$ 5$ to $\$ 10$; cop. of any claim, $\$ 1$.

Foreign Patents.-Great Britain.-Duration, fourtech ycars, to first inventor or importer, cost, $\$ 350$, of which $\$ 100$ due at time of makiug appllcation, balance in four months; three years from date of patent, it further sum of $£ 50$ must be paid ; end of seven years, $£ 100$ additional. For designs to protect shape of article, three years, $\$ 100$.

France.-Term of patent, fifteen years, amual fee, \$20.
Belyium.-Term of patent, twenty years ; small amual fees.

EXPENSE OF FOREIGN PATENTS, INCLUSIVE OF ALL FEES.

250	Netherlands........ $\$ 130$
Bavaria.......... 150	Portugal. 250
Belgium... 150	Prussia............................ . . 200
Cuba . 450	Russia. 55.
France 150	Saxony . 250
Great Britain 350	Spain . 400
India. 400	Swedon and Norway...... 600
Itaiy......... 250	

Austria... 150
Belgium. 150
Cuba 450
France 150
Great Britain . 350
India. 400
Italy.

Netherlands........ $\$ 130$
Portugal. 250
Prussia..... 200
Russia. 550
.
Swedon and Norway................. . . 600

FACTS RELATING TO HUMAN LiFE.

The following table exhibits the recent mortality statistics, showing the average duration of life among persons of various classes in the State of Massachusetts :

Year	Years.	Ye
Men unemployed...... 68		
Judges................. 65	Merchants 51	Painters
Farmers............,.. 64	Calico Printers........ 51	Shoemaker
Bank Oflicers........ . 64	Physicians. 51	Mechanics
Coopers................ 58	Butchers 50	Editors.
Public Officers......... 57	Carpenters	Musicians
Clergymen............. 56	Mascns.	nte
Shipwrights............ 55	Traders.	Machinist
Hatters.		Teachers.
Lawyers 54	Jewcllers.	Clerks
l Rope Makers 54	Manufacturers.........	Opera
The average death rat	te in Europe is 1 out of	cvery 42 inhab
2.38 per cent. The princ	pal European countric	exhibit the foll
annual bills of mortality		
England............ 1 d	to	
Denmark		
Belgium 1	" 43/France.	
Norway and Sweden 1		

The death rate in the United States varies much from the above, from the highest, Arkansas, where the ammual mortality is one death to every 49 inhabitants, a trifle over 2 per cent of the population, to the lowest, Oregon, where the death rate is less than half of one per cent., or one
;olicitors, N.Y., oflce, if inveninformation of rship, contracts, eeds of transfer, of do., recording 35 , or more : for assignmeits, o. y claim, $\$ 1$. en years, to first time of making date of patent, it £100 additional.

FE.

atistics, showing the ntistics,
asses in the State of

from the above, from is one death to every ation, to the lowest, one per cent., or one
to every 203 inhabitants. The average yearly mortality in proportion to population is exlibited in the following table :-
New England States.
1 In 68 racinc States
.1 in 115
Mhule States. 1 " 88 Atlantic States. 1 is 80
Southern states
1 " 70 Gnle States. 80
63

Nortll-Western States.
1 '120

According to the Carlisle table of mortality, largely used as an anthority in lifo hasurance calculations in America and Europe, of 10, 000 childred: born-

Leaving only one living at the age of 104 years.
The tables of the British Government ammuities are constructed on the prisiple that women live longer than men. Thus, a male of 15 can purchase an ammuity of $£ 15$ per ammum for $£ 4115 \mathrm{~s}$. 10d., but a female of the same age must pay $£ 43 \mathrm{~s} 11 \mathrm{~s} .4 \mathrm{~d}$. And, at 50 , a man would pay £2\% 2 lis. 1d. ; but a woman $£ 312$ 14s. 10d.
Long life, as a general rule, awaits the man who is gifted with prodence, in good constitution, and the mental potency to banish corsoding nuxicty. These are inestimable gifts. Dr. Heberden, an illustrious London physician of the last century, whose practise lay chiefly anong the wealthy classes, asscrted that nine out of ten of his patient; died of a broken heart. Comaro, the noted dictist, who by prudent care of himself, lised to 104 , wrote, "I am likewiso greatly indebted for the excl. lent health I cnjoy to that calm and temperate state in which I have bech careful to kecp my passions. The influence of the passions on the nerves and health of our bodies is so great that none can be ignorant of it. -He, therefore, who eriously wishes to enjoy good health, must learn to kecp hils passions in subjection to reason. Otherwise, all tempernnce wili go for little." The man endowed by nature with the best prospect for long life is thus described by the famous Hufeland, in his work on longevity, published during the last century : "He has a wellproportioned stature, withont, however, being too tall. He is rather of the middle size, and somewhat thickset. His complexion is not too florid; at any rate, too much ruddiness in youth is seldom a sign of longevity. Hair approaches rather to the fair than to the black. His skin is strong, but not rougli. His head is not too big. He has large veins at the extremities, and his shoulders are rather round than flat. His neck is not too long. His belly does not project, and his hands are large, but not too deeply cleft. His foot is rather thick than long, and his legs are firm and round. He has also a broad chest and strong voice, and the faculty of retaining his breath a long time withont difficulty. In general there is complete harmony in all his parts. His senses are good, but not too delicate. His pulse is slow and regular. His appetite is good, and his digestion easy. He has not too much thirst, which is always a sign of rapid self-consumption. His passions never become too violent or destructive. If he gives way to anger he experiences a glow of warmth, without an overflowing of the gall. He likes employment, particularly calm meditation and agreeable speculations; is an optimist, a friend to nature and domestic felicity-has no thirst after either honors or riches, and banishes all thought of to-morrow."
Mr. John Q. Adams was in excellent health, when, in his ninetieth year, he was visited by Charles Mackay, who thus explains the cause :
"Men und women," he says, " scarcely over allow the fresh air of heaven to tonch any part of their bodies, except their hands and face, and even to these the ladies are systematically mijust by wearing gloves aud veils. The serface of tho beisutiful human form requires to be for a certain period of every day exposed to the action of the atmosphere. I take my air bath regularly cvery morning, and walk in my bed-room in puris naturalibus, witl all the rindows open, for half an hour. I also take a water bath daily. I read and write for eight hours a day. I sleep eight hours, and devote another cight to exercise, conversation, and meals. I feel within myself a reserve of bodily strength, which, I think, will carry meto a hundred years, unless I die by accident, or am shot or hanged.'
Between 1840 and 1871 the annual mortality on the Cheviot Hills, in Scotland, was at an ar arage of 15 per 1,000. In the hamlet of Harbotle, with 120 inhabitants there has been no death of a child for 20 years. A farmer and his threo shepherds, who have occupied their present situation nearly 30 years, have among them 47 children, and not a single death has occurred in these families. In Alwinton, a parish on the southern slopes of the hills, the birth-rate in 1871, when it contained a population of 1,205 , was 32.4 per cent., and the death-rate only 7.5. An abundance of good food, good water, good houses, and regular but not severs work, have brought about this orderly state of existence.
Of a man who died near London at the advanced age of 110 years, it is reported that he had never been ill, and that he had mantained through life a cheerful happy temperament. He was uniformly kind and obliging to everybody; he quarrelled with no one; lie ate and drank merely that he might not suffer from hunger and thirst, and never beyond what necessity required. From his earliest yonth he never allowed himself to be unemployed. These were the only means he ever used.
Of a woman who died near Stockholm at the advanced age of 115 years, it is on record that she passed her long life free from ilness, almays contented and happy, a devoted lover of cleanliness, had a daily labiit of washing her face, hands, and feet in cold water, and as often as opportunity afforded, bathed in the same ; she never ate or drank any delicacies or sweet-meats; seldom tea or coffee, and never wine.

Another noted instance of long life was that of a man who died near St Petersburg, and had enjoyed good health until he was 120 years old. He was an early riser, and never slept more than seven hours at a time; he was never idle; he worked and employed himself chiefly in the open air, and particularly in his garden. Whether he walked or sat in his chair he always maintained an erect position, never tolerating a stooping, leaning, or distorted attitude.
Unquestionably, a properly selected regetable diet is the best fitted for the maintenance of health. A great percentage of the diseases which afflict humanity are generated by the use of pork, veal, and other meats in immoderate quantities, and prepared in preposterous forms with lard, rich sances, seasoning, \&c. Of ail animal food in common use pork is decidedly the worst. Its use as food frequently engenders au extremely painful disease, by may pronounced incurable, caused by a filthy parisite which exists naturally in the muscles of swine. See Trichina, page 149. A farmer writing from Freeport to the Chicago Inter-Ocean denounces pork in tho most trenchant style. He says "Pork grease will ruin a wagon axle, much more the human stomach, and the farmer who uses pork alone as a meat diet and pork grease as shortening, ruins not only his own constitution but that of his family as well. This is the experience of a farmer who has iried the use of pork for over fifteen years, with as many years of sickness in his family, and two years on
efresh air of hen. nds and face, and wearing gloves aud :quires to be for a de atmosphere. I in my bed-room in If an hour. I also tours a day. I sleep conversation, and gth, which, I thiult, ident, or am shot or

- Cheviot Hills, in amlet of Harbotlle, id for 20 years. A their present situaa, and not a single parish on the souticontained a popuonly 7.5. An abuugular but not severo me.
age of 110 years, it is 1 maintained through mly kind :and obliging nd drank nerely that ver beyond what neallowed himself to be used. adranced age of 115 ee from illuess, almays tess, had a daily habit and as often as opate or drank any del. ever wine.
man who died neas lhe was 120 years old. even hours ata time; elf cliiefly in the open walked or sat in his - tolerating a stooping,
it is the best fitted for It the diseases which veal, and other meats rous forms with lard, onumon use pork is de. yenders an extremely used by a filthy parrSee Trichina, page go Inter-Ocean desis "Pork grease will h, and the farmer who shortening, ruins not as well. This is the pork for over fifteen y, and two years on
beat diet and perfect health." "Vegetable aliment, as nether distending the vessels, nor loading the system, never interrupts the stronger action of the mind ; while the lieat, fulness and weight of unimal food is adverse to its efforts.' ${ }^{\text {- C'ullen. }}$
Tho following table shows the number of grains of warmth and strength evolved per lb., from various articles of food. The carbon and nitrogen take:a into the system form fat and flesh, the fat being consumed makes the body stout, while the flesh represents strength or the muscies which yield it.

Grains of Strength yiedded by one
pound of 7000 grains.

	orains.
Parsnips........ 12
Turnips.	... 12
Whey.	13
Grechs.	14
Potatoes.	24
Skimmed Milk	34
New Milk	.. 35
Buttermilk	35
Barley....	70
Rice......	.. 70
Bacon..	78
Rye Bread.	89
Baker's Bread	90
Pearl Barley.	91
Fresh Pork...	.. 108
Seeonds Flour	120
Corn Meal.	. 125
Fresh Fish	129
Cocoa.....	130
Oatmeal....	. 140
Mutton	
Fresh Beef	172
Becf Liver.	
Split Peas	250
Cheddar Chee	310
Skim. Mllk Chee 360

Grains of Warmth yielded by one pound of 7030 grains.

	crains.
Whey.	.. 150
Turnips	238
Beer and Porter	315
Buttermilk	335
Skimmed Milk	351
New Milk	378
Carrots	390
Parsnips.	425
Potatoes	770
Fresh Fish.	980
Beef Liver	1,220
Red Merrings	1,455
Baker's Bread	1,990
Fresh Beef.	2,300
Molasses.	2,300
Skim. Mak Chee	2,350
Cheddar Cheeso.	2,550
Seconds Flour.	2,700
Rye Bread.	2,700
Rice.......	2,750
Barley Meal.	2,780
Indian Meal.	2,800
Sugar	2,900
Fresh Pork.	3,100
Bacon	4,200
Butter	4,700
Lard.	4,800
Drippings.	5,500

In cookery 4 lbs . of beef lose 1 lb . by boiling, 1 lb .5 ozs. by roasting, and 1 lb .3 ozs . by baking; 4 lbs . of mutton lose 14 ozs . by boiling, 1 lb . $60 z s$. by roasting, and 1 lb .4 ozs . by baking. As to the drinking customs of society, statistics prove that every year in the Uuited Kingdom, 70,000 , and in the United States, about 75,000 deaths result directily and indirectly from the use of spirituous liquors. The benefits derived from their use are in a great measure merely imaginary, and their persistent use can only have one result, riz., premature death. An intemperato person of twenty years has a probability of life extending 15.6 ; one of 30 to 116 years, while temperate persons would lave a like probability of living 42 and 35 respectively. Conment is useless, if yon wish healtí and long life, abstain. Liebig, the ce!ebrated chemist, recommends the persistent use of a purely vegetable diet as a cure for this abominable vice, especially in its earlier stages, and Charles Napier, the noted EngUsh scientist, has reported, as the result of experiments, 27 cases, in which the exclusive use of vegetables as food, had created repugnance for alcoholic stimulants. Another remedy highly commended is to steep equal parts of the herbe valerian and wormwood together, and drink the liquid three times a day when the desire is felt. Still another remedy is thacture of cinchona (Peruvian bari) taken in 1 drachm (teaspountul)
doses every two hours. The dose may be increased to six teaspoonfuls and taken in that proportion 4 to 10 times per day. It will not destroy appetite for food, but in a few days the anti-periodic properties of the cinchoua begin to tell, and the patient not only loses all taste for the tincture, but also all desire for everything in the shape of alcohol.
the latest census of all the countries of the world.
Belim and Wagner estimato the total number of all men $1,423,910,000$. They are distributed over the five parts of the world as follows, Number of inliabitants per square mile. A

Africa	. . . 199,921,600. 13	
America	. . . 85,519,800.... 6	
Asia..	. . .824,548,300........ 49	Average all over the
Austral	. 4,748,600........... $11 / 2$	earth, 28.
Europ	. 309,178,500 82	

Reliable figures are exhibited for Europe, save Turkey. They show :

Andorra.	12.000	Mo
Au	00,000	Netherlands, 1875........ 3, 8 , 809,527
Belgium, 187	5,336,634	Norway, 1875.............. 1,802,882
Desimark,	1,903,000	Portugal, 1874............ 4,298,831
France, 1873	36,102,921	Roumania, 1873.......... 5,073,000
Germany, 1875	42,723,242	Russia, (Europe) 1870.... 71,730,980
Great Britain, 18	33,450,000	Servia, 1875................ 1,377,068
Greece, 1870....	1,457,349	Spaln, 1870............ 16,051,047
Italy, 1875.	.27,432,174	Sweden, 1875.............. 4,383,291
Luxemburgh,	205,158	Switzerland, 1870......... 2,660,147
Monaco, 1873.	5,741	Turkey (Europe). 3,500,000

Another estimate of the population and area of the Globe is as follows :-

Jivisions.	Area.	Population.	Pop. to Sq, M.
Europe ...	3,800,000	296,713,500	80
Asla.....	15,000,000	699.863,000	46
Africa..	10,800,000	67,414,000	5
America.	14,700,000	88,061,148	C
Oceanica.	1,500,000	25,924,000	5
T	48,800,000	1,177,975,688	21

It is estimated that this aggregate of humanity speak 3,064 languages, and profess to beliere in 1,000 rarions forms of religion.

Of this vast multitude, $33,333,333$ are estimated to pass into eternity every year, 91,954 every day, 3,730 every hour, 60 every minute, and 1 every second. The number of births is larger than the number of deaths.

Still another estimate of the carth's population, classified according to race and religion, is as follows :

AREA OF OCEANS AND SEAS-APPROXIMATE FSTIMATES.

Oceans.	Sq. miles.	Seas	Sq. miles.
Paelfic about.	.78,000,000	Mediterranean1,000,004
Atlantic ${ }^{\text {a }}$. $25,000,000$	Black Sea... 170,000
Indian "	.14,000,000	Baltic.....	.. 175,000
Southern Oces	ut.25,000,000	North Sea.	.. 160,000
Northern abo	. . . 5,000,000	Sea	-

six teaspoonfuls will not destroy perties of the cinste for the tincucohol.
He world.
1,423,019,000. They
tts per square mile.
rerage all over the earth, 28.

They show:
190,000
$3,809,527$
1,802,882
4,298,831
8,073,000
1870.....71,730,980 1,377,068
16,551,647
4,383,291
2,669,147
2.............. $3,500,000$
lobe is as follows :-

Pop. to Sq. M.
80
46
5
6
5

24
eak 3,064 lauguages, fion.
to pass into eternity every minnte, and 1 tho number of deaths. lassified nccording to

676,000,000
.320,000,000
.140,000,000
14,000,000
Greek and East Church. $60,000,000$.
te ESTIMATES.
Sq. miles.
$.1,000,000$
170,000
175,000
100,000

In the British expedition under Capt. Nares, with the two steamers Alert and Discovery, to the Polar Sea, it was determined that the depth of that sea, at one point, was about 70 fathoms, that the ice was from 80 to 120 , and in many places 200, feet thick, and probably a century old ; that a powerfultide sets in from the Pacific under this ice and extends down the long channel as far as the northern part of Smith's Sound. A sledge party advanced over the ice to lat. $83^{\circ} 20^{\prime} 26^{\prime \prime}$ N., the most northerly point as yet ever trod by man. No traces of human life exists north of lat. $81^{\circ} 52^{\prime}$, where the Esquimaux appear to have crossed the water, here only 15 miles wide, into Greenland, from the large islands which fringe the North American continent on the north. On the Alert, mercury was frozen 47 days in all, and, in still weather, the minimum temp. was more than 70° below zero and the auroras were neither brilliant nor of frequent occurreuce during the long Arctic winter, with its unparalleled intensity and daration of darkness produced by the absence of sunlight for 142 days. Birds do not mpigrate beyond Cape Joseph Heury, on the American coast of the Polar Sca, in lat. $82^{\circ} 52^{\prime}$ north, and the northern limits of the haunts of wild animals is about 820 . Dwarf oaks, sorrel, poppies, saxifrage, and between 20 and 30 species of flowering plants were found growing in the vicinity of lat. 82° north, together with fossil corals, a workable seam of good coal, and evidences of the former existfuce of an evergreen forest in lat. $82^{\circ} 44^{\prime}$.
setween the Tropics the temperature of the Occan is from 77° to 84°, it diminishes to 455° at 1,000 fathoms depth. In the Arctic Sca the temperature rises from 8° to 10° at 700 fathoms, and 6° at 200 fathoms. bivers report an entire absence of motion in the Ocean at a depth of 30 ft., and the Solar rays penetrate 200 or 300 ft . Sea water is salt and bitter at the surface, but salt only at profound depths. The component parts, with slight variations, are water, muriatic acid, sulphuric acid, mineral alkali, lime, and magnesia. The deepest soundings on record is 9 miles. Young estimates the 2tlantic at 3 miles, and the Pacifie at 4 deep. Copper glohes are compressed at 800 fathoms. Parry sounded in lat. $57^{\circ} \mathrm{N}$. long. $24^{\circ} \mathrm{W}$. but found no bottom at 1,020 fathoms.

Estimated lengtif of seas, \&C.

Seas.	Miles	Seas.	Miles.	Seas.	Miles.
Medlter	...2,000	Black	. 930	Aral	2.50
Carribe	.. 1,800	Caspian	. 640	Hudso	1,200
China.	.1,700	Baltic.	. 600	Baffin's	- 600
Red...	.1,400	Othotsk	. 600	Chesap	250
Japan.	1,000	White .	. 450	-	

estimated size of Noted lakes.

Lakes.	Jength Miles.	Width Miles.	Lakes.	Length Miles.	Wilth Miles.
Superior	380	120	Maracaybo	150	60
Baikal..	300	35	Ladoga...	125	75
Michigan	330	60	Great jear	150	40
Great Slave	300	45	Nicaragua	120	40
Huron.	250	90	Champiain	123	12
Wimipeg	240	40	L. of the Wood	70	25
Erie.	270	50	Geneva.	50	10
Ontario	180	40	Constance.	45	10
Arthabaska..	200	20	Cayuga......	30	. 4

Many of the above lakes are very deep, and it is owing to this causo that they nevor freeze.

LENGTI OF NOTED RIVERS ON THE GLOFIS.

Rivers. 1 Locality. I Miles. Rivers. | Locality. I Miles

Am	. Brazil	3200	St. LawrenceCanada	
La Plata	S. America.	.. 2215	St. John......N. Brunswick.	45
Aronoco		. 1500	Murray Australia	3000
Mississip	Am	3200	Mackenzio ... Brit. Ter.	2500
Missouri		4500	Obl...........Siberia.	2800
Arkansas.		. 2500	Danube Austria \& Turkey	1790
Red River.	"	. 2500	Don Russia	1000
Columbia.	"	. 1090	Jneiper....	1000
Ohio	"	.. 1000	Euplirates... from Ararat.	2020
Colorado.	"	.. 1000	Khine....... Gerinany	800
Susquehann		400	Wolga........from the Waldais	2100
James..	"	500	Lena.........Siberia.	2590
Potomac	"	400	Maykiang. . . Siam...	170)
Hudsoll	t	.- 325	Hoang-Ho . . China.	3000
Nile.	.Egypt and	ia 2690	Yang-tse-kia	250
Niger.	Africa....	2300	Ganges India	1650
Jumia	Hindostan	680	Brahmapootra "	1600
Gogra.....		. 500	Indus....... "	1770

The Ganges, in India, derives its origin from a Himalayan glacier, it has a fall of 4 inches to the mile, and rises from April till August 32 ft. creating a flood 100 miles wide. The Delta of the Ganges is 200 miles long, consisting of woods called Sunderbunds. It pours down from 80 to 400 000 cubic ft . in a second. The force of the tides, which rise from 13 to 16 ft. high, with the floods, frequently form and destroy islands 25 miles in dian. The Nile has advanced 16 ft . per ammum since the time of Herodotus, and raises the soil of Egypt 4 ins. in a century. The prodigious quantities of mud brought down by large rivers enlirges continents it their estuaries, and form deltas of alluvial land which eventually form plains of immense fertility. The Mississippi, the Amazon, the Nile, the Danube, the Po, the Ganges, and the Niger are striking examples of the truth of this statement. The Yollow River, in Chinh, is said to carry down $2,000,000$ cubic ft. of alluvium every day. The Euphrates covers the Babylonian plains to a depth of 12 ft . between March and June.

THE HIGHEST MOUNTAINS ON THE GLOHF.

The mountains subtract no more from the globular form of the earth than the roughness on the cont of an orange. The highest elevations are
onr
Locality. | Miles
1adn 1960
Brunswick.
450
stralia......... 3000
it. Ter.......... 2500
eria........... 2800
stria \& Turkey 179
ssia 1000
... 10 mA
m Ararat. 2020
rmany........
m the Waldais 2100
beria............ ${ }^{2590}$
m 1701
di11a............. 3000
dia.............. 1650
" 1600 1770
imalayan glacicr, it ril till August 32 it. ;es is 200 miles long, own from 80 to 400 ch rise from 13 to 16 y islands 25 miles in since the time of entury. The prodi3 enlarges continents ich eventually form mazon, the Nile, the ing examples of the ina, is said to carry Euphrates covers the and June.
Lome.

lar form of the earth highest elevations aro
rithin the tropics, the next in the temperate zones, the next in the frigid, and the limit of perpetual snow varies with the heat of the surface; see page 119. The Andes chain extends 4600 miles from the Gulf of Darien to the Straits of Magellan. The same chain is continued northward, through Mexico, the United States, and the British Possessions by the Bocky Mountains and other immense elevations which form the backbone of the continent. These enormons mountain masses exert a genial action on the climate, form the source of rivers, and determine the water shed of streams. The mountains of America afford incontestable proof that the New World, geologically considered, is really the oldest formation of the present distribution of land on the globe. Irresistiblo subterranean forces are still active on the Andes; from Cotopaxi southmard, over 40 volcanoes are continually at work, causing havoc, and belching out lava, sulphur, \&e. In many cases volcanic action impela momntainous waves from the sea, carrying vessels several leagues inland over cities, towns, \&c. In 1746 an official account reported all the inhabitunts of Callao, 4000, destroyed, 19 vessels sunk, and 4, including a frigate, were carried far inland over the city. Wafer saw 3 vessels which had been carried 5 or 6 leagues overland. A similar irruption took place on this coast only a few months atgo, attended by fearful suffering and awful loss of life and property. The Andes contain no granite at a higher elevation than 8 to $10,000 \mathrm{ft}$., the tops being crowned with whinstone, and the crevices and fissures, many of them descending below the sea level, are even more astonishing than their heights.
In Asia, the Himalayian ranges extend about 1400 miles, the mountain ridges being from 50 to 60 miles wide, extending from N. W. to S. E. They form the source of all the rivers of the Eastem seas, and have furnished the materials which compose the soil. There are 5 passes over them, some as high as $15,000 \mathrm{ft}$.; at $15,500 \mathrm{ft}$., beds of fossil shells exist. The European and Asiatic mountains are topped with granite. Regarding the Alps, and the varions snow levels over the globe, see pp. 118-19.
In Scotland, the Grampian range includes Cairngorm, 4005 It.; Macdul, 4,327 ; Shehallion, 3,550; Benmore, 3,870 ; Ben Lawers. 4,030; Cairntoul, 4,22"; Ben Avon, 3,967; Ben Nevis, the highest, $4,400 \mathrm{ft}$., has a precipice of $1,500 \mathrm{ft}$., and is always capped with ice and snow; north of the Caledonian canal is another range of great altitude, all vast masses of barren granite. In all there are about 45 elevations north of the Tweed, exceod$\operatorname{lng} 2,000 \mathrm{ft}$.

IIEIGHT OF NOTED MONUMENTS; TOWERS, \&C.
Feet.

Feet
Pyramid of Cheops, Egypt. 543 Notre Danic Cathedral, Munich.... 348
Antwerp Cathedral, Belgium...... 476 Dome of the Invalides, Paris. 347
Strasburg Cathedral, France....... 474 Magdeburg Cathedral. 337
Tower of Utrecht, Holland 464 St. Mark's Church, Venice......... 328
Steeple of St. Stephen's, Vienna... 460 Assinelli Tower, Bologna............ 314
Pyramid of Cephenes, Egypt...... 456, Trinity Church, New Iork......... 283
St. Martin's Church, Bavaria...... 456 Colunm at Delhi, India............. 262
St. Peter's, Rome.................... 448 Porcelain 'Tower, Chira............. 242
Salisbury Spire, England........... 410 Canterbury Towor, England...... 2:35
St. Paul's, London, England....... 404 Notre Dane Cathedral, Paris..... 232
St. Peter's, at Hambro'............. 395 Bunker Hill, Monnment. 220
Cathedral at Florence, Ttaly........ 384 Leanling Tower, Pisa, Italy 202
Cremona Calhedral, Italy........... 372 Monument, London.................... 202
Seville Cathedral, Spain............. 360 Monnment, Pl. Vendome, Paris. . 15.3
Pyranid of Sakkarah, Egypt....... 356,Trajan's Pillar, Rome................ 151
Nearly 70 rom towers, with cromlechs, exist in different parts of mland, from 30 to 135 ft . high.

For other interesting items on this subject, see page 13.

Population, arowth, ec., of the dnited btates and territories,

AND TERRITORIES

POPCLATION, AREA, \&C. OF THE PRINCIPAL COUNTRIES OF THE WORLD.

Countrics.	Populati'n.	Aren in sq. miles.	Capitals.	Population.
China.	446,500,000	3,741,846	Pekin.	1,648,800
British Empir	226,817,108	4,677,432	Londonn..	3,251,800
Russia........	81,925,400	$8,003,788$	St. Petersburg.	667,000
United States and Alaska.	38,923,600	2,603,884	Washlngton...	109,199
Franco	36,469,800	204,091	Paris.........	1,825,500
Austria and Mungary.....	35,904,400	210,318	Vienna	1,833,900
Japan	34,785,300	149,399	Ycddo	1,554,900
Great Britain and Ireland.	31,817,100	121,315	Londo	3,251,800
German Emplre...........	29,906,092	160,207	ISerlh	825,400
1taly.......................	27,439,921	118,847	lRome	244,484
Spain	16,642,000	105,755	Madrid........	332,000
Brazil	10,000,000	3,253,029	Jio Janeiro...	420,000
Afghanistan	6,000,000	2:6,000	Cabool	60,000
'1urkey	16,463,000	672,624	Constantinople	1,075.000
Arabia......................	8,500,000	1,200,000	Mecca.........	6i0,000
Mexico	9,173,000	$761,52 \mathrm{C}$	Mexico.........	210,300
Turkestan.	4,800,000	411,000	I3okhara.......	160,000
Sweden and Nor	5,921,300	292,871	Stockholm	136,900
Aram	6,000,000	150,000	luc.	60,000
Pers	5,000,000	635,964	Teherai	120,000
Belgium	¢,021,300	11,373	Brusscl	314,100
Birmah	7,000,000	205,000	Monch	5,000
Bar	4,861,400	- 29,292	Munich	169,500
Siam..	5,500,000	189,000	Bankok	150,000
Portuga	3,905,200	34,131	Lisbon	224,063
Holland	3,688,300	12,680	Magıo.	90,100
New Gren	3,000,000	357,157	Bogota........	45,100
Chili	2,000,000	132,616	Santlago......	115,400
Laos.	2,000,000	130,000	Changinai.....	25,000
Switze	2,620,100	15,992	Berne.	36,000
Pcru.	2,500,000	471,838	Lima.	160,100
Bolivia...	2,000,000	497,321	Chuqulsaca....	25,000
Argentino Repa	1,812,000	871,548	Buenos Ayres.	177,800
Wurtemburg.	1,818,000	7,533	Stuttgart......	91,600
Denmark	1,784,000	14,753	Copenhagen...	162,042
Venc	1,000.000	368,238	Caraccas.......	47,000
Baden	1,161,300	5,912	Carlsrulie	36,600
Greece	1,457,900	19,353	Athens........	43,000
Guaten	1,180,300	40,879	Guateinala....	40,000
Ecuado	1,300,000	218,928	Qaito..........	70,000
Paragua	1,000,000	63,787	Asumcion......	48,000
IIesso.	823,133	2,969	Darmstad	30,000
Liberia	718,000	9,576	Monrovia......	3,000
San Salv	600,000	7,335	San Salvador..	15,000
Mayti	572,000	10,205	Port nu Prince.	20,000
Beloochistal	500,000	162,000	Kelat..........	15,000
Nicaragua	350,000	58,171	Managua	10,000
Malaya, e	500,000	60,000	Singapore.....	57,000
Uzighay.	300,000	66,722	Monte Video..	44,500
Honduras	350,000	47,092	Camayagna...	12.000
San I)oming	136,000	17,827	San Jomingo..	20,000
Costa Rico	165,000	21,505	San Jose......	2,000
Hawall	62,950	7,633	Honolulu.	7,633

In the foregoing table the figures relating to population, give, in the majority of cases, the census of 1870-71.
in Europe the five Great Powers are the Empire and Monarchy of Gr

Britain and Ireland, the Empire of Germany, the Empire of Russia, the Em pire of Austria, and the Republic of France.
The second-rate Powers are the Kingdoms of Italy, Spain, Norway and Swo den, and tho Empire of 'Iurkey in Europe. Regarding the latterit may be said that great changes are impending, owing to the adverse issue of the war with Russia, and tho present threateling attitude of the Russian armies and the British fleet near Constantinople.

The third-rate Powers are the Kingdoms of Belgium, Portugal, Bavaria, Denmark, Saxony, Greece, Holland, or Netherlands, the Lepublic of Switzerland and the Duchies or lesser States.

AREA, POPULATION, \&C., OF BRITISII AMERICA.

Name.	Arealn Eng. sq. miles.	Population.	Capital.	$\begin{aligned} & \text { Popula- } \\ & \text { tion. } \end{aligned}$
Hudson Bay Ter.	1,800,000	175,000 10,000	York Factory,	
Brit. Columbia, \&c.	344,500	50,000	New Westminst'r	-,000
Vancouver Island,	13,250	18,000	Victoria,	3,000
Newfoundland,	57,000	124,288	St. Johne,	25,000
Prince Ediv. Island,	2,173	80,857	Clarlottetown,	6,706
Nova Scotia \& Cape B.,	19,650	330,857	Halifax	26,000
New Brunswick,	27,710	252,047	Fred'n	T,000
Quebec,	210,000	1,111,56t	Quebec $\}$ Ottawa	52,140
Ontario,	125,000	1,396,091	Toronto ${ }^{\text {a }}$ 15,000	44,821
	2,599,283			

CAPACITY OF NOTED CHURCHES.

Will Contain
No. persons.
Will Contain
No. Persons.
St. Peter's, Rome 54,000 St. John's, Lateran. 22,900
Milan Catledral. 37,000 Notre Dame, Paris 21,000
St, Paul's, Rome. 32,000 Cathedral, Pisa. 13,000
St. Paul's, London 25,600 St. Stephen's, Vienna 12.400
St. Petronio, Bologıa. 24, 2400 St. Dominic's, Bologna. 12,000
Florence Catheural. 24, 200 St. Peter's, Bologna................ . 11,400
Antwerp Cathedral 24,000 Cathedral, Vienna. 11,000
St. Sophia's, Constantinople.... 23,000 St. Mark's, Venice................ . . 7,500
CAPACITY OF THEATRES, OPERA HOUSES, HALLS, \&C.

Will Contain
 No. Persons,
 Will Contain No. Persons.

Gilmore's Garden, New York.... 8,443|St. Charles, Th., N. Orleans...... 2,178
Stadt Theatre, " $\quad . . .3,000$ Grand Opera House, New York 1,883
Acudemy of Music, " $\quad . . .2 .526$ Booth's Theatre, \quad 1,807
Academy of Music, Philadelphia. 2,865 Opera House, Detroit. 1,790
Carlo Felice, Genoa................ 2,560 McVicar Theatre, Chicago........ 1,786
Opera House, Munich. 2,307 Grand Opera House, ".... . . 1, 788
Alexander, St. Petersburg........ 2,332 Ford's Opera House, Baltimore.. 1,720
San Carlos, Naples.................. 2,240 Nat. Theatre, Washington...... 1, 06
Adelphi Theatre, Chicago......... 2,238 De Bar's Opera House, St. Louls 1,696
Music Hall, Boston................ 2,585 Cal. Theatre, San Fran........... 1,651
Academy of Paris.................. 2,092 Euclid Av., Op. H., Clevoland.... 1, 1 fïn
Imperial, St. Petersburg. 2,160 Opera House, Berlin............... 1,636
La Scala, Milan.................... 2,113 Opera House, Albany 1,404
Covent Garden, London.......... 2,684 Hooley's Theatre, Chicago........ 1,373
Boston Theatre, Boston........... 2,972 Coulter Op. H., Aurora, III....... 1,004
Grand Opera Hall, New Orleans, 2,052 Opera House, Montreal. '98s
of Russia, the Em
, Norway and Swe atterit may be said sue of the war with ian armies and the
Portugal, Bavaria, Republic of Switzer-

AMERICA.

pital. ${ }^{1 / 2}$	$\begin{gathered} \text { Popula- } \\ \text { tion. } \end{gathered}$
actory,	
arry,	-,000
la,	3,000
	25,000
ttetown,	6,706
	26,000
1 Ottawa	- $\begin{array}{r}7,000 \\ 52,140\end{array}$
$\left.\begin{array}{c} \text { c } \\ \text { to } \end{array}\right\}^{\text {Ottawa }} 15,000$	$1 \begin{aligned} & 54,48 \\ & 44,821\end{aligned}$

Will Contain No. Persons.

	Will Contain
	No. Persons.
	22,900
	21,000
	13,000
	12.400
Bolog	100
.	11,000
12.	7500

HALLS, \&C.
Will Contain No. Persons.
1., N. Orleans...... 2,178

House, New York $\begin{aligned} & 1,883 \\ & 1,807\end{aligned}$
Det 1,990
Detroit.............. 1 1, 186
tre, Chicago....... $1,1,186$

Washington...... 1,70
ra House, St. Louls 1,696
San Fran........... 1,651
San Fran............ 1, 6 , 60
Berlin.............. 1,630
Albany.............. 1,373
atre, Chicago........ 1,004
MAntreal.

Measurement of time, table.

60 seconds. 60 minutes.
24 hours
7 days.
28 daym.
28, 29, 30 , or 31 day
12 calendar month
365 days.
366 days.
3651/4 days
365 d, 5h., $48 \mathrm{~m} ., 49 \mathrm{~s}$
365 d., 6 h., $9 \mathrm{~m} ., 12 \mathrm{~s}$
$365 \mathrm{~d}, \underline{6.13 \mathrm{~m} .,} 49.3$ B.
10 years.
10 decades, or 100

EQUIVALENTS.

$\underset{1}{\mathrm{Yr}}$		$\begin{gathered} \text { Da. } \\ 3651 / 4 \\ 1 \end{gathered}$				Min.		$\begin{gathered} \text { Sec. } \\ 315: 3760 C \end{gathered}$
	$=$		-	$\underset{8766}{ }{ }^{\text {Hr }}$	\pm		$=$	
			$=$	24	\pm	1440	$=$	86400
				1	$=$	60	$=$	3600
						1	$=$	C0

Scalo of units: $-60,60,24,3651 / 4$.
The tropical (or solar year) and the sidereal years are the same, and the tropic is only an anticipated solar mark before the sldereal year is completed. The anomalistic year is an advance of the orbit as part of he solar system in space, and its excess over the sidereal year $1 s$ the stellar measure of the amnual advance of the whole system; the mean relocities are uniform, and the times as the spaces.
The diumal revolution of the earth causes the difference in time, etc., illustrated in the following

LONGITUDE AND TIME TABLE.
For every hour of time there is a difference of 15° in longitude.

minute	$"$	$"$	$"$	$15 \prime$	$"$
second	$"$	$"$	$15 \prime \prime$		
degree of longitude	$"$	$"$	4m. in time.		
minute	$"$	$"$	$"$	4 scc.	
second	$"$	$"$	$"$	is sec.	

$360^{\circ}=1$ revolution of the earth, or ${ }_{\text {" }}^{1}$ day.

Add difference of time for places east, and subtract it for places WEST of any given locality. The greatest circumference of the carth's surface is 24,930 miles. 1° of that circumference is $1-360$ th of that number, or 694 miles. Hence a geographical or nautical mile is equal to 1^{\prime} of the earth's greatest circumference, or a trifle more, the 1st mile and

49 rods. The following table exhibits the divisions of the circle, as used by geographers, astronomers, surveyors, navigators, \&c. :-

Note.-A full circle is 300°, $\frac{1}{2}$ circle is 180°, $\frac{1}{4}$ circle is 90 , $\frac{1}{b}$ circle is 60°. The distance around a circle is called its circumference. The distance across its diameter, and any section of its circumference is called an arc.

STOTR PDUE:.
F The above figure displays the varions imaginary lines, consisting of the great and less circles, axis, and poles of the earth. The next figure exhibits the geographical division into zones, tropics, and circles.

Leap year, called Bissextile, comes every 4th year and coutains 360 days, by the addition of one day to Febrnary. Three leap years are omitted in 400 years, but 109 leap years in 450 years would be exact. In common business affairs, 30 days compose a month, and 52 weeks a year. The Lunar Cycle, or Golden Number, is a term of 19 years, after which the changes of the moon return on the same days of the month. The Solar Cycle is a period of 28 years, when the days of the week again return to the same days of the month. Owing to an error in the Julian calendar it was decreed by the British Government that the day following the 2nd of September, 1752, should be called the 14th day of September, or that 11 days should be stricken from the calendar; hence, time, previous to this decree, is called Old Style (O. S.), and since, Nevo Style (N. S). In Russia, time is still reckoned by the Old Style, hence their dates are 12 days behind ours. The legal or civil day besins and ends at

OF THE CIRCLE, tors, \&c. :marked 。 " sig.
" quad.
" r.a.
" cir.

II
1286000
108000
3600
60
e is $90, \frac{1}{8}$ circle is erence. The disnference is called

lines, consisting of
The next figure and circles.
and contains 360 ree leap years are ould be exact. la ad 52 weeks a year. years, after which the month. The of the week again error in the Julian at the day followth day of Septemndar; hence, time, d since, Nevo Style Style, hence their begins and ends at

12 p.m. The astronomical day begins aud ends at 12 m . As to Epochs, the Cluristian Era was first invented and introduced at Rome by Dlonysius, a monk, in 527, adopted in France, in 750; in Spain, in 1340; and in Portugal, in 1410. It was first used in books in 748. The birth of Christ, was, however, four years earlier, that is in 1878, really 1882 since lis birth; the chronology was not inquired into until the reign of Justinian. The 46 rears of tho Julian calendar was the first of our era. The Hegira, or Flight, took place July 16,622, and is the Mohammedan era. Their year is 12 hunar months, or 354 days, 8 hours, 48 minutes; and eleven days being lost a year must be allowed every 33 , to reconcile their dates with ours. Greek Olymplads of 4 years began 776 B . C., and were continued until the 5th century. The era of the Selucidx 311 B. C., of Alexander 323 B. C., of the siege of Troy $1209 \mathrm{~B} . \mathrm{C}$. , of the founding of Rome $\mathbf{7 5 4} \mathrm{B}$. C., of the battle of Actium 31 B . C., of the Cosars 38 B. C., of Tyre $1: 5 \mathrm{~B}$. C., of Abraham 2016, of Moses 1582, of Antioch 49, were also used by rarious early writers. The early Cliristians dated fron: the accession of Diocletian in A. D. 284.

The Vulgate fixes the Epoch of Adam at 4004 B. C., which is adopted by the Romish Church. The Samaritan Pentateuch makes it 4700; the Talmud, 5344; Hales, 5411; the Greek Church, 5508; the Septuagint, 5872; Pezron, 5872; Alphonso, King of Castile, 6934; the early Fathers, 5502 and 5592; 200 other authorities estimate it from 6984 to 3268 B . C. The controversy is a hopeless one, owing to the prevalent ignorance regarding the true meaning of the first 12 chapters of Genesis, which are grossly misunderstood, owing to the prevalent opinion that they form a mero literal historical narrative concerning uatural events, when the truth is really far otherwise. Rollin, the historian, traces up the history of sereral ancient peoples to within 100 years of the alleged time of the flood, and is much perplexed to account for the existence of mighty nations possessing well organized armies, embracing thousands of fighting men, at that early period.
In India, the priests claim a duration of about 2,000 millions of years since the beginning, and allege that Brahma was 17 millions of years creating. They mention also those deluges and periodical subinersions required by the claims of geology. Sir Wim. Jones computes the first book of Vedas to be written aboit 2,800 B.C. In the year 1,000 A. C. the Arabs used the pendulum as a measure of time. A second calculated by the movement of a 39 -inch pendulum is one with that motlon, and the movement itself is a simple deflection of the combined motions of the earth in its orbit from east to west, and on its axis from west to east.

DESCRIPTION OF THE TELEGRAPH AND IIINTS TO LEARNERS.

The cut represents a series of Grove's Battery, such as are generally used in telegraphs. When a plate of platina and one of zinc are placed in an acid solution a current tends to flow from the platina to the zine, through any conductor which may be so disposed as to connect the two. In the tigure the galvanicseries is represented, consisting of twelve pairs; the zinc of each of which is comnected with the platina of the next. It may be considered that a current is produced by each of theso pairs, which has, however, to flow in tho same direction, and fall in with all tho others. Hence their intenslty is multiplied twelve times. It is by this means that the resistance to tho passage of the current through very long conductors is overcome. Each pair of the battery consists of a pint glass tumbler, a cylinder of zine, a small porous cylindrical earthernware cel! within the zinc, and a platinum strip suspended within the cell from an arm belonging to the zinc of the next pair. A solution of diluted sulphuric acid is used with the zinc outside the porous cell, and the cell itself is filled with nitric acid. The two acids are used on account of an increase of power depending on a chemical reaction. The zunc cylinder is amalgamated with mercury to prevent its being acted upon by the actd when the battery is not in use. A solution of sulphate of soda is sometimes added to the sulphuric acid to assist in accomplishing the same object. Two screw cups rise from the hattery, one of which is the positive pole, or extremity of the scries, the other the negative ; to these the wires are attached which convey the current.

The signal key is showed in the cut. When the hand depresses the key it comes in contact with the knob and metallic strip below, making connection between the screw cups, and completing the battery circuit.

While the key is depressed a continuous current passes, but if it be depressed, and allowed to spring immediately up. oaly an instantancous wave or impulse is communicated.

The annexed cut shows the registering apparatus of Morse's Telegraph. Two screw cups are seen on the board for the insertion of the wires from the distant battery. Next the screw cup is seen a U shaped electromagnet, with coils of wire upon it, the ends of which, nassing down throngh the board, are connected with the screw cups : over the poles
of the magnet is a little armature, or bar of soft iron, attached to the slort arm of a lever, whose loug arm carries a point or style nearly in contact with the grooved roller above. The action which tikes place on depressing the signal key at the distant station is, a wave of electricity is trausmitted through the wire of the telegraph, arrives at the electromagnet, and circulates through the coils of wire surrounding it. The U shaped ploce of soft iron immediately becomes a magnet, and attracts the little armature down to it, the long arm of the lever is thrown up, and marks the strip of paper, passing between it and the roller. When the distant operator lets the slgual key fly back and the current ceases, the iron of the electro-magnet loses all its magnetism, and the armature, with the lever, is carried back by the action of a little spring, belug a dot impressed on a piece of paper. Should the distant operator hold down the key a continuous current will pass, and a line be marked in place of a dot (-) on the paper which moves under the roller.

When a long circuit is used, the resistanco to conduction, measured by the amount of electricity which passes, is great, and would not give sufficient force to work the Morse instruments. To overcomo this, Professor Morse uses one instrument called a Relay, which is similar fin most respects to the main instrument, but of a more delicate electrical orgenization; it has no work to do-simply to act as a contact maker, enabling a weak or exhausted current to bring into action and substitute for itself a fresh and powerful one from the local battery which is placed in tho office with the printing instrument, and which supplies the electricity which moves tho instrument.

The greatest recorded velocity of a signal through a suspended copper wire is $\mathbf{1 , 7 5 2 , 8 0 0}$ miles per second, by Mr. Hipp. The lowest velocity through a buried copper wire, 750 miles per second, by Faraday.

Morse's Alphabet, Numerals and Pauses. is sometimes f tho same object. is the positive pole, these the wires are
hand depresses tha strip below, making he battery circuit. passes, but if it be y an instantancous

HINTS TO LEARNERS.
Compiled from Modern Practice of the Electric Telegraph, by Frank L. Pope. *
The characters of the American Morse Alphabet are formed of three elementary siguals-
The dot, whose duration is the unit of leugth in this alphabet ;
The short dash, which is equal to three dots ; and
The long dash, which is equal to six dots.
The above are separated by variable intervals or spaecs, four in nume ber:

[^3]1st-The ordinary space between the elements of a letter, equal to one dot.
2d-The space employed in the spaced letters, equal to two dots.
3d-The space between the letters of a word, equal to three dots.
4th-The space between two words, equal to six dots.
The dot signifies a point or a current of infinitely short duration, and involves time, which varies according to circumstances, the length of tho dot increasing with the length of the circuit.

In long submarine lines the dot has to be made longer than the dash itself on short open air lines, and the same thing oceurs in working through repeaters.

In commencing to learn telegraphing, the beginner should acquire the nabit of making short, firm dashes, instead of light. quick dots.
In the valuable Manual of Prof. Sinith, published by L. C. Tillotson \& Co., New York, six elementary principles are laid down as the basis for practicing the alphabet, viz:

3d Principle.-Lone dots:

$$
\mathrm{E}
$$

4tit Principle.-Long dashes:

$$
\mathrm{T}
$$

5ri-lminciple.-A dot followed by a dash:

$$
\Lambda
$$

6tif Principle. -1 dash followed by a dot:
N

$$
--
$$

To send messages, place the first two fingers upon the top of the button of the key, with tho thumb partly beneath it, the wrist being entirely free from the table; tho motion being made by the hand and wrist, the thumb and fingers being employed merely to grasp the key. The motion upand down mast be fiee and firm. Tapring on the key mast be strenuonsly avoided.

The dommorel movement of the key produces dots and dashes; the upward movement, spaces.
The beginner should first practice the 1st principle, making dots at regular intervals, of definite and miform dimensions.

2d Principle-Mako dashes, first at the rate of one per second, and slowly increase to three, the space between the dashes to be as short as possible.

3d Principle. - Letter E, formed by a quick, but firm, downward morement of the key.

4th-The usial tendency is to make T too long and L too short. The same character is used for Land the cipher, or 0 ; occurring by itself, or among letters, it is translated as L; when found among figures it becomes 0 .

Sth-The Letter A may be timed by the pronunciation of the word again. strongly accenting the secund syllable.

Bth-The dash followod by a dot; usually the student separates the prace
letter, equal to one
to tivo dots. to three dots.
short duration, and s, the length of the
nger than the dash occurs in working
should acquire the , uick dots.
y L. C. Tillotson \& own as the basis for
the top of the button tt being entirely fret and wrist, the thiumb
The motion up and must be strenuously
ots and dashes; the rie, making dots at s.e per second, and hes to be as short as
m , downward move-
d L too short. The curring by itself, or among figures it be-
ciation of the word It separates the prac
tice. The lever of the Morse instrument makes a sound at each movement, the downward motion producing the heavier one, or that representing dots and dashes ; i e., the heavy stroke indicates the commencement of a dot or dash, and the lighter one its cessation. A dot makes as much noise as a dash, the only difference being in the length of time between the two sounds.

Tecinical Terms Used in the Telegraph Service.

Linc.-The wire or wires connecting one station with another.
Circuit.-The wires, instruments, ete., through which the circuit passes from one pole of ... battery to the other.
Metallic Circuit.-A circuit in which a return wire is used in place of the earth.
Local Circuit.-One which includes only the apparatus in an office, and is closed by a relay.
Local. - The battery of a locai circuit.
Loop.-A wire going out and returning to the same point, as to a branch office, and forming part of a main circuit.
Binding Screvs or Terminals.-Screws attached to instruments holding the comecting wires.
To Cross Connect Wires.-To interchange them at an intermediate station.
To Put Wires Straight.-To restore the usual arrangement of wires and instruments.
To Ground a Wire, or Put on Ground.-To make a comection between A.: 1::e wire and the earth.

To Oper a Wire.-To disconnect it so that $n o$ current can pass.
Reversed Batteries -Two batteries in the same circuit, with like poles torards each other.
To Reverse a sattery.-To place its opposite pole to the line ; or, in other words, interchange the ground and line wires att tlre poles of the battery.
Escape.-The leakage of current from the line to the ground, caused by dofective :isulation cud contact with partial conductors.
Cross.-A metallic comnection between two wires, arising from their coming in contact with each other, or from other eauses.

PHOTOGRAPHIC PORTRAITURE MADE EASY

By C. J. P. Mandey.
Author of "Puzzle Writing," \&c., \&c.

Instructions.

Pictures produced by the agency of light are called photographs, whether taken on glass or paper These are divided into two classes-negatives and positives ; negatives being pictures with the lights and shades of the object reversed, while positives represent the lights and shades as in mature.
lictures taken on glass are called positives, which are completo in them. velves. The negative process is that pursued when the intention is to produce a paper proof. Paper portraits are not obtalned like positives by one operation in the camera, but a negative is taken from which the copies are procured by photographic printing. To take a portrait on glasseither a negative or positive-requires five operations. First, giving the glass plate a collodiou coating ; second, exciting the glass plate ; third, exposure in the camera fourth, developing the latent image ; fifth, fixing the picture.

APPARATUS.

A camera is the first requisite. The most convenient form consists of two portions of boxes, one sliding within the other.

The donble-combination lens iz used for portraiture. It consists of a set of three glasses, mounted in a brass tube, with a rack and pinion adjustiment.

A camera stand is requisite, which should be from four to five feet high. A tripod stand, with a screw to fix the camera with, is the best.

A porcelain bath is required to hold the silver solution for exciting the collodionized plate.

One or two graduated glass measures, to measure the solutions, estimated by fluid measure.

A set of scales and weights for weighing the chemicals.
Two or three porcelain dishes, for holding solutions of silver, touing bath, \&e.; \&c.

A printing frame will be required, after taking a nerative pieture, to produce the paper copies.

A few packets of different-sized glass, a piece of wash-leather, and a linen cloth, will complete the requisites.

DARK ROOM.

It will be necessary for the success of the second, third, and fourth operatious in producing a collodion picture, that they should be performed in a dark room. The best and easiest way will be to obtains small room or closet with a window, and to cover the window with several sheets of yellow paper, which will exclude the chemical rays. A table or shelf should be fixed under the window, and a pail kept at the side, containing water for washing the pietures.

If a glass room cannot be had, the photographer must arrange an apartment according to his means. In selecting a room, he must bear in mind that it should not only have a good side light, but a sky-light, if possible.
In taking a portrait, the sitter should not be opposite the window, but a little behind it-a more even focus is thus secured.

A proper background is of some importance. A white wall will do very well, but something a shade darker will be better.
In focussing the lens lave the stand and camera placed seren or cight ft. from the sitter. The better to observe the image, a dark cloth is thromu over the camera and head of the operator. The proper attitude of the person sitting for the portrait must be left to the taste of the operator Allow the sitter time to get seated, and accustomed to the light, before removing the eap off the lens. And now, having concluded these preliminary remarks, we will proceed to take a picture.

Positive process.
Chemicals. - The most important chemical used in photograply is collodion. As it is extremely volatile, it should be kept in a stoppered bottle.
Erciting Bath.-Nitrate of silver, 2 drachms; distilled water, 4 ounces; iodized collodion, 6 minims. Filter before using.
Developing Solution.-Protosulphate of iron, 2 drachms ; acetic acid, 2 drachms; methylated alcohol, 2 drachms ; water 10 ounces.
F'ixing Solution.-Cyanide of potassium, 2 drachms; water, 6 cunces. This solution will keep for months without losing its strength.
manipulation.
The Collodion Coatiny.-Having selected a piece of glass, entirely free from blemishes, and quite clean, hold it as level as possible by the lefthand corner, then, in the centre, form a good pool of collodion. Slant the glass so that the collodion may cover all portions, taking care that it does
ent form consists of
ure. It consists of a rack and pinion ad-
om four to five fect a with, is the best. ion for exciting the
o the solutions, esti-
cals.
ions of silver, toning
negative picture, to
wash-leather, and a

1d, third, and fourth they should be pery will be to obtaiua window with several ical rays. Λ table or rept at the side, con-
ust arrange an apartte must bear in mind kly-light, if possible. site the window, but

A white wall will do er.
ced seven or eight ft. dark cloth is throrn roper attitude of the kaste of the operator to the light, before oncluded these pre-
photography is colkept in a stoppered
lled water, 4 ounces;
chms ; acetic acid, 2 ounces.
ns ; water, 6 cuuces. strength.
glass, entirely free possible by the leftollodion. Slant the ing eare that it does
not touch the hands. Pour the superfluous quantity back into the bottle. The glass is now ready for immersion in the silver bath, which is called

Erciting the Plate. -The manipulation may be conducted in daylight up to this point ; but as the immersion of the collodionized plate renders it sensitive to light, recourse must be had to a dark room. Having the silver solution ready, place the prepared glass on the dipper, and immerse in the solution. When the plate has remained in the bath about a minnte it should be withdrawn, then immersed for half a mintte longer, then drain the glass plate, place it in the dark slide of the camera, and proceed with the third operation-
Exposure in the Camera.-Assuming that the camera has been prepared, and the image properly focussed, remove the ground glass screen, and iusert the slide coutaining the plate. Desire the sitter to keep perfectly still, and look at some dark object ; then take the cap off the lens and allow the plate to be exposed for twenty or thirty seconds, then close the shutters of the dark-slide, and return to the dark room to
Develop the Picture.-Having excluded all white light from the dark room, remove the glass plate from the slide. Holding it by the left-hand corner, proceed to pour on the developing solution. Begin by pouring on at one edge, inclining the plate so as to enable the liquid to flow uniformly over the surface. The first effect will be the appearance of white lights, then the half tones, and, finally, the darker shades. When this is obtained, the plate must be thoronghly washed. It can then be passed on to the next and last operation-
Fixing the Picture.-Having well washed the picture, the door of the dark room may be opened to observe the action of the fixing agent. Pour this mixture over the plate until the creamy appearance is dissolved. When this is the case, it must be again washed and set on edge to dry. As the picture is now finished, it should be varnished with jet rarnish, which should be poured on the plain side of the glass. In mounting the picture, put it into a gilt mat and preserver ; and when finished, the lights and shades will be shown to perfection.

NEGATIVE PROCESS.

Chemicals.-Negative collodion differs slightly from positive in the preparation o: the iodized solution.
Exciting Bath.-Nitrate of silver, 2 drachms; distilled water, $3 \frac{1}{2}$ ounces; iodized collodion, 3 minims.
Develnping Solution.-No. 1. Proosulphate of iron, 1 drachm ; acetic acid, 2 drachms ; methylated alcohol. 2 drachms; water, 4 ounces. No. 2. Pyrogallic acid, 13 grains; citric acid, 15 grains ; distilled water, 4 onnces.
Fixing Solution.-Cyanide of potassium, 2 drachms; water, 5 ounces.

MANIPULATION.

The Collodion Coating is applied in the same manner as for positives, and then
Sensitized, which is accomplished by immersion in the nitrate lath. The plate should remain in the bath from two to three minntes. When the collodion surface presents a nice even film, drain off the excess of silver, and lay the glass plate carefully in the dark slide, taking care not to allow any specks of dust or dirt to get near it. It is then ready for
Erposure.-After exposing the plate for the necessary time, which will be donble that required for it positive, proceed to
Derelop.-Having removed the dark slides in the dark room, pour the developer, No. 1, evenly over the plate. As the picture will appear suddenly, it must be watched. Continue the action of the irnn developer until there is fear of the dark shadows becoming veiled. When the glass
plate has been washed, pour into a measure-which must be perfectly clean-sufficient of the developer No. 2 to cover the surface of the plate, to this add ten minime of the silver batil. This mixture must be used immediately by pouring it over the plate. When sufficiently intense, the surface must be again washed. It is now ready to be
Fixed, using the cyanide solution. This is to be poured over the plate in the same manner as the developer, and the surplus rebottled. It should now be thoroughly washed to remove all traces of chemicals, which, if allowed to remain, would eventually spoil the picture. The negative will now require to be

Varnished.-The most convenient varnish for a tyro to use is amber or crystal varnish ; it is simply poured on the plate, and then drained off at the lower end.

PRINTING PROCESS.

Chemicals.-Exciting bath; nitrate of silver, 120 grains; distilled water, 2 ounces.
Touing Bath.-A cetate of soda, 30 grains; carbonate of soda, 10 grains; chloride of gold, 1 grain; distilled water, 4 ounces. This solution will keep for a considerable length of time, and may be used over and over again until the gold is thoroughly exhausted, when more must be added, if again required.
Fixing Bath.-Hyposulphate of soda, 1 ounce; distilled water, 10 ounces. This solution may be made up for a fortnight before using, as it is much better for keeping. It must not, however, be used a second time, but a fresh one made for every batch of prints.

MANIPULATION.

Sensitizing.-Filter the silver solution into a shallow dish, then take a piece of albumenized paper cut to the size, and, holding the two ends, let the centre drop until the albumenised face touches the solution; then lower the ends, and leave the paper floating. When it lies flat, and ceases to curl up, it should be removed, and, when perfectly dry, it may be passed on to the next operation.
Printing the Positive.-Take a printing frame and remore the back bourd; then lay the negative in the rabbits of the frame with the collodion side upwards, and cover the face with a sheet of sensitized paper, replace the back board, turn up to the frame, and expose to the light. When the desired strength of picture is obtained, remove the paper, and proceed with the

Toning Process.-Having removed the prints into a dark comer of the room, wash them in several changes of water to remove the uitrate of silver. They are now ready for the toning bath, therefore immerse them in a porcelain dish, filled with the solntion. When the color of the prints change 'from a brown to a purple black, remove them to the last operation, the
Fixing Process.-The pictures are immersed in the hyposulphate solntion for about five minutes, then washed in running water for at least ten minutes. As the fixing solution will greatly reduce the depth of the print, it should be over-printed, to allow of the reduction, else the detail of the picture will be entirely lost.

Mounting Prints.-Starch is the most suitable adhesive substance. It is prepared by mixing a small quantity with sufficient boiling water to work into s stiff paste.

Apply the starch to the back of the picture by means of a brush, then carefully lower the prints on to the card, lay a piece of blotting paper over it, and rub to expel the air bubbles. When nearly dry, place under pressure for a few hours. The picture is now finished.
must be perfectly face of the plate, re must be used ently intense, the
ed over the plate lus rebottled. It ces of chemicals, sicture. The nega-
to use is amber or hen drained off at

1s; distilled water,
of soda, 10 grains; solution will keep er and over again must be added, il
listilled water, 10 it before using, as , be used a second
v dish, then take a g the two ends, let the solution; then a it lies flat, and a perfectly dry, it
remore the back p with the collodion ensitized paper, repose to the light. ove the paper, and
dark comer of the hove the nitrate of herefore immerse Vhen the color of emove them to the
hyposulphate soluater for at least ten depth of the print, se the detail of the
sive substance. It nt boiling water to
is of a brush, tisen e of blotting paper nearly dry, place nislıed.

CONCLUDING REMARKS.

In purchasing apparatus, it is advisable that the tyro should be accompanied by one who is experienced in such matters; any mistakes as to the quantity and quality of the articles required is thus prevented.
The camera may be made either square, oblong, or bellows body, according to taste. The former is considered the nost serviceable and the cheapest.
The lens may be had without a rack and pinion if desired. A better focus, however, is obtained by having the rack adjustment; it is also much easier to work, and it is not hable to shift when the cap is remored. Some lenses are provided with diaphragms or stons, but as these are rather expensive, I should advise the young tyro to make his own, which In can easily do by cutting different sized holes in several pieces of stiff cardboard, and then making tinem to fit the interior of the lens tube. These daphragms, it must be borne in mind, are only to be nsed on certain occasions, as, for instance, when the sun is shining, the light of course is much too powerful for the open aperture of a lens. It is, therefore, requisite that it should have a stop inserted in order to retard the rapid action. A diaphragm with an opening of about one inch diameter will be sufficiently large for a quarter-plate lens.
Camera stands are made of various shapes and material ; the one most recommended is the plain ash tripod, that being both light and useful, and the most portable.
The sensitizing bath should not measure less than seven by five inches, as that is the proper size for quarter plates.
The graduated measures should hold at least five and ten ounces rospectively.
The funnel may be elther six or cight inches in diameter, with a long, narrow neck.
The toning and fixing dishes should be as large as possible, in order to aliow the prints plenty of room, and preventing them adhering to each other.
Chemicals may be purchased in small quantities, but it is not advisable to buy collodion in less quantities than five ounces, as it is extremely rolatile, and soon loses its power of action.
Nitrate of silver may be bought either in crystals or blocks ; tise former is preferable, as it can be obtained in smaller quantities than the latter, which is only sold in one ounce boxes.
Hyposulphate of soda, protosulphate of iron, and methylated alcohol are exceedingly cheap, as are also most of the other chemicals.
The tyro must be very careful, when using cyanide of potassium, not to allow the least drop to enter any cuts in the esh, for, being a most deadly poison, it is likely to cause death, if the part is not immedtately washed in warm water and the poison thereby removed. As cyanide possesses an odor something like peppermint, it is advisable not to place it within the reach of children.
The silver bath should be filtered at least three times before using ; this will ensure the removal of every particle of collodion.
The toning and fixing baths, after being made up, shonld be allowed to stand for at least four-and-twenty hours before being used. The longer these solutions are kept the better they work.
If the tyro wishes to become a first-class portrait taker, he must study the following rules, and strictly adbere to them :-

RULES.

1. Never allow any one but the sitter to be present when taking a por twit.
2. Always make it a rule to have a place for everything, and everything in its place.
3. Never open the door of the dark room when exciting or developing a plate.
4. The camera and dark slide should be dusted out every morning previous to being used.
5. Never allow any one to meddle with your apparatus, as it is very easily put out of order.
6. Do not handle your sitter more than you can help, but tell him in what position you wish him to stand, aud he will pose himself much better than you can.

PHOTOGRAPHIC REQUISITES.

The following is a correct list of all articles required in photographic portraituro : Square mahogany camera, double combination lens, tripod stand, screw stand, screw top, porcelain bath and dipper, two graduated glass measures, set of scales and weights, a glass or porcelain fumnel, me deep and two sliallow dishes, a tent, printing frame, a packet of quarter-size glass, some filtering paper, a wash-leather, and a lines. clotli, negative and positive collodion, crystalized nitrate of silver, protosulphate of iron glacial acetic acid, methylated alcohol, chloride of gold, hyposulphate carbonate, and acetate of soda, cyanide of potassium, distilled water, \&c. Sea also page 552.

CHEMICAL NOMENCLATURE.

For an intelligent apprehension of the meaning of chemical terms we will define several relating to sulphur, which, combined with oxygen, produces an acid. This acid exists in two states of saturation, possessing different properties. It is necessary to designate all the saline components of these two acids and to trace sulphur in its various combinations with alkalies, earths, and metals. The five following terminations describe these five states of the same principle. 1. Sulphuric acd signifies sulphur in the greatest degree of saturation with oxygen. 2. Sulphurous acid signiifies sulphur combined with a smaller proportion of oxygen. 3 . Sulphate is the generic name of the salts composed by the sulphuric acid. 4. Sulphite is the name of the salts formed by the sulphurous acid. 5. Sulphuret s the name of the various combinations of sulphur not acidulous.

In union with oxygen, carbon is carbonic acid, combined with gas, it forms carbonic acid gas. Oxydized, and composing salts with bases of iron, minerals, or alkall, it becomes carbonate of lime, iron, or potash. In union with oxygen, it forms with iron carburet of iron, \&c. Salts are discriminatea by two alames, the one denotes the acid, the other the base. For example sulphate of iron is a combination of sulphuric acid and iron, sulphate of soda is a union of sulphuric acid and soda, muriate of soda is a compound of muriatic acid and soda. Salts composed of acids ending in ous, have the termination ite instead of ate. See the following examples in sulphur.
Sulphuric acid, a strong acid. Sulhpuric acid, a w eakacid.
Sulphuret of iron, Sulphur and iron. Prot-oxide of sulphur is the first degree.
Deut-oxide, the second degree.

[^4]ITppo-sulphurous acid,-less oxygen than sulphurousacid (1 tc 2). Hypo 2 vilipinuric acid-less than sulphuric.
ing, and everything iting or developing every moming preratus, as it is very
elp, but tell him in pose himself much
reã in photographic bination lens, tripod pper, two graduated oorcelain funnel, me acket of quarter-size nen cloth, negative rotosulphate of iron gold, hyposulphate distilled water, \&c.

RE.

chemical terms w θ abined with oxygen, aturation, possessing 1 the saline compovarious combinations ng terminations deIphuric actd signifies gen. 2. Sulphurous ortion of oxygen. 3 . y the sulphuric acid. sulphurous acid. 5. f sulphur not acidu-
mbined with gas, it salts with bases of me, iron, or potash. iron, \&c. Salts are d, the other the base. phuric acid and iron, a, muriate of soda is ssed of ncids ending the following exam-
third degree. y degrees.
o salt of sulphure
It of sulpherous acid. - salt of a double
sacid (1 tc 2). Hypo

ON HINTTING AND TRARPING.

To Trat the Common Black Bear-Select a suitable spot for the trap between logs, trees, or hille, close to their suspected haunts, and secure it well with a short, stout chain. Bait the trap with a piece of pork, mutton, or beef, and if the bait is scented with honey it will prove a powerful attraction; the bear will push himself forward where there is any thing to eat, being dominated more by greed and voracity, than by craft and cumning. He is a No. 1. contractor at a job for taking a fat porker from the farmer's pen off to the woods, and will squeeze himself futo a deadfall or figure 4 trap, intent only on getting at the bait, but is decidedly dangerous to attack single-handed with a gun, as he is perfectly furious when wounded. On one occasion, a bear emerged from the woods and destroyed a sheep belonging to the writer. One of the farm thands, a veteran hunter and trapper, took the remains of the sheep to the woods and placed them in such a position, near some fallen trees, that the bear would be compelled to go through a passage way between tiro logs in order to reach the carcass. At right angles with this passage war, but back from it, he secured a Spencer rifle (loaded with slngs) in a firm position, so as to sweep the passage, and arranged a small cord extending across the narrow a venue, with one end fastened to the trigger of the rifle, and the other to the timbers opposite its muzzle. The result was a loud bang from the rifle in the evening, a lanterr hunt in the woods at night, and a dead bear shot through the heart behind the forelegs, within a few feet of the rifie. The black bear is usually less than 6 ft. in length, domiciles under the snow and in hollow logs during winter, and produces from 1 to 5 at a birth, generally in January.
The Grizzly Bear is a huge brute of vast size, sometimes as much as 8 or 9 ft . in length, and of prodigious strength. He is of massire build, has a thick stout neck, shaggy hair, coarse formdable tusks, and powerful claws of great length; is altogether an ugly customer and requires for his capture the largest size trap that is made. In the Northwestern (British) Territory, on sighting the hunter he generally makes for his enemy, and has a curious habit when 60 or 70 yards distant of sitting up erect on his haunches and taking a survey of the field, as if calculating his chances in the coming fray, and will repeat the exumination at intervals of nearly 20 yards as he approaches. The hunter will do well to rescrve his fire until the bear comes within a few yards' distance, when, if he suddenly extends his arms the animal will come to a full stop and erect himself again. This is the time to take unerring aim at close quarters and make sure work, for if he fails ho will never hunt another bear. In the Sierras, the Rocky Mountains, and in California, no animal roaming his native wilds surpasses the grizzly in savageness and strength. His weight is upon the average from 1000 to 1200 ibs ., and one bite of his jaws or one stroke of his paw is certain death, On the Pacific coast
he is often hunted by mounted Vaqueros, who usually go five in a company ; four use the lasso, which they throw over the bear at opposite angles from each other, and while he is thus held tight from four opposite directions, it is possible for the fifth man to approach and finish hum with a knifo. It is extremely dangerous work, for if one or more of tho ropes should slip, unless it is immediately secured by another successful throw, there is danger of instant death to the nearest man if his horse is not smart enough to carry him off in safcty. The grizzly makes jumps of 10 fect, and when he lias a chance to charge it requires immense agisity to dodge or escape him. All of the vaqueros havo a number of lassos, and in case of a slip make prompt action with another throw. In nearly every case the grizzly invites attack, he will run from men at an extreme distance, but never fails to make a savage charge if he comes within hailing distance.

Baits for Trappens' use.-1. Fish Oil, is mado by mincing eels, base, trout, or other small fish, and allowing the picces to remain in a loosely corked bottlo exposed to the rays of the sun for 2 or 3 weeks during the heat of summer, until a sort of oil is generated, which owing to its very intense odor, is perceived by wild animals at an immense distance and forms a most attractive scent. 2. Oil of Anise. 3. Oil of Rhodium. 4. Assafcetida. 5. Oil of Amber. 6. Oil of sweet fennel. The last noted arttcles (five in number) are procured in drug-stores. 7. Muskrat-musk, a most powerful scent, is an oil oltained from that animal, and is contained in glandular sacs situnted near the anns. 8. Castoreum, called Bark-stone by the fur traders, is a fatty substance of an intensely strong odor contained in similar sacs in the back parts of the Beaver. It forms a more attractive scent for that animal than any other. 9. Otter musk, derived in a similar way from the otter, is very successful in attracting that animal. 10. A mixture composed of equal parts of fish-oil, assafoetida, musk-rat-musk, and oil of anise, is said by old trappers to be the most attractive scent obtainable for almost any animal. The odor reaches far and wide, forming what a Frenchnian would call "one grand stink" of the first magnitude. It is used on baits for traps, and for scenting trails leading to the traps by sprinkling it in successive drops on the ground. 11. \AA rank codfish drawn along on the earth by means of a string, in a direction leading to the traps will ilso answer this last named purpose very well. 12 Mnsk-rat musk and skunk musk mixed. This receipt has been sold for \$75. 13. Unslaked lime $\frac{1}{2} \mathrm{lb}$. salammoniac 3 ozs ., or muriate of ammonia, 3 ozs. Mix and pulverize, keep in a corked bottle a few days until a thorough admixture takes place. For mink, sprinkle on the bait around the trap. Keep in a closely stoppered bottle. This receipt has been sold for $\$ 50$. In using these compounds on baits for trarping foxes and other sly game, it is often advisable to smear a little en the trap in order to overpower the human scent arising from handling them ; it wonld be a better way to wear gloves when bandling traps, and employ a slight smearing of heeswax or blood to overcome the odor of the iron.
To protect the hen roost from these depredators, saw out an aperture large enough to admit the fox on a level with the ground. Inside the roost place a box without a lid and open at one end. This open end must bo placed against the aperture in the wall, on the ground, so that the fox will pass into it on his entrance into the roost and the side without the lid will be uppermost. Set your trap in the box just opposite the entranco to the roost, secure it with a chain and lightly cover with dried leaves, grass, or other material adapted to conceal it. Next, place a chicken inside a smaller box and mail slats on one side instead of a cover, and place this box with the slatted side downwards, on the top of the first box, immediately over the trap and exposed to the view of the fox. The tempe
y go five in a com. io bear at opposite lit from four oppoach and finish him one or more of the another successful man if his horse is izzly malies jumps uires immense agila number of lassos, r throw. In nearly men at an extreme o comes within hail-
mincing eels, bass, remain in a loosely 3 weeks during the h owing to its very aense distance auld Dil of Rhodium. 4. el. The last noted 7. Muskrat-musk, wimal, and is conCastoreum, called an intensely strong e Beaver. It forms 9 . Otter muskh, deul in attracting that il, assafoetida, muskthe most attractive aches far and wide, stink" of thie first nting trails leading he ground. 11. A string, in a direction purpose very mell. ceipt has been sold r muriate of ammo. e a few days until a on the bait around ceipt has been sold ing foxes and other he trap in order to cm ; it wonld be a d employ a slight the iron.
wo out an aperture round. Inside the This open end must md, so that the fox side without the lid osite the entrance with dried leares, place a chicken ina cover, and place f the first iox, imfox. The temp-
tation will prove too much even for a fox to resist, and he will enter only to be caught in the trap. Mink, raccoons, weasels, skunks, \&e., may be caught in the same manner. Close up every entrance to the roost except the one just described.
In trapping Mink in the water, the trap should be set in a shallow part, not more than one or two inches deep, with the bait suspended about 18 inches above it ; this compels the animal to erect itself on its hind legs, or leap upwards to get the bait, and thus to tread on the trap and get caught. Traps may also be set sunk in their beaten tracks, or at the mouths of their holes, and concealed by dried grass, leaves, \&c., with excellent effect.
In trapping Wolves or Fores, use a trap well cleaned with weak lye; after drying, oil or grease it well, and smoke it over burning hair or feathers. Iu handing it use clean buckskin gloves to avoid imparting the least human odor. Make the bed for the trap about 3 . ft. in diam. so that the jaws when set will be on a level with the ground. Cover with fine dried grass, wheat, oat, or buckwheat chaff, secure it well with a chain, level all neatly to a natural appearance, and bait with fresh meat or roasted cheese. In going and coming, your chances will be increased by rubbing fish oil, or some other powerful odor on the soles of your boots, to scent the way leading to the trap. Wolves and foxes are easily destroyed by mixing a little strychnine with grease and concealing it in pieccs of meat scattered around in places where they haunt. It destroys auimal life in a very few minutes after it is taken, but it is injurious to the fur.
In trapping the OTTER, take a large sized steel trap, set it, hang it over a fire 2 or 3 hours, then take a stick or board, and get into your boat or canoe, go to the place most frequented by them, and place the trap about 3 inclies under water and carefully cover it with leaves, light trash or grass gathered from the bottom of the stream, and chain it securely. Be very careful not to touch the bank above water, if you do, your labor is gone for nothing. The otter will leave at once for a quieter home many miles distant from the scene. In visiting your trap never go nearer than the opposite side of the stream, or go by meaus of a boat. When caught, the otter will point directly for his den; if the trap is not heavy enough to drown him, a weight can be attached to the chain.
Raccoons may be caught in a steel trap set on the edge of a swamp, $1 \frac{1}{2}$ ins. below the surface of the water, and secured by a chain to a stake. Suspend the bait-a pieceof a clickein, fish, or frog-2 ft. above the pau of the trap. The raccoon will leap for it, and when he comes down, up goes the trap and holds him a prisoner. Another plan is to set the trap ou an old \log in or near the swamp, then get two long poles or old limbs, set one on each side of the log over the trap, crossing it like the letter x, so that the coon will have to go under them aud over the trap. Bait the trap if you wish, but the coon is certain to run the old log if he comes in the neighborhood. One of the surest ways to catcl raccoons is with a good cur dog, one that will not give tungue on track, but will bark at the tree.
Muskrats may be taken in large numbers by sinking an old barrel with its top on a level with the ground on the edge of a stream near thelr laumts. Half fill it with water, put in a couple of slingles or light strips of board to float on the water, on these place small bits of sliced apples, potitoes, or carrots, and place some more in the rums of the muskrats, so as to lead them towards the barrel. The rats will leap into the barrel after their food and camnot get out. A cheaper and more effective contrisance could not be imagined. In using a trap, note a tree or old log with recent droppings on it leading from the bank luto the stream. On this set your trap, say, 2 ins. under water, place a bait on a projecting
stick about 6 or 8 ins. above the pan of the trap, securing the latter with a chain sufficiently long to permit access to deep water, but not to go ashore. By this means the fur is preserved in good order and the aninial is safely secured. In winter it is quite common for trappers to take the muskrats by approaching quietly on the ice and driving a spear into their house. They must be approached with the greatest caution, as they take to the water at the slightest noise. Another way is to make an opening in the slde of their house, set the trap in their bed, lightly covering it with moss, \&c.; allow a sufficient length of chain to permit the anlmal to leap into the water, secure the chain by a fastening outside the liouse, plaster: up the aperture with mud, retire, and await results.
Squirrels may be taken by setting a steel trap on the upper mil of a fence where they frequent ; set a pole with an ear of corn fastened to it so that the bait may be suspended 6 or 8 ins. over the pan of the trap, and in reaching for the bait the squirrel will get caught.
Badgers may be caught by setting the traps, carefully covered, at the mouth of their holes, or in their tracks or resorts about cultivated fields. They may also be taken in deadfalls, using a piece of ment for a bait, and if the ground is hard frozen during early spring, they may be expelled by filling their holes with water. In summer the water would soak away through the earth, during hard frost it cannot do so, and the animal is compelled to come out of its hole or drown.
In trapping Beavers, the best place to set the trap is right at the entrance to their holes in the banks, a few inches under water. Get a small stick, and batter or bruise the thickest end soft, smear it with bait No. 8, and stick the small end in the bank so that the baived end will project a fow inches above the water right over the pan of the trap; the beaver, in raising himself to get the bait, will get caught. Another way is to break an aperture in the dam a few inches below the surface of the water, set the trap on the upper side of the break, and the beaver wili get caught when he comes to iuvestigate and repair the damage. The trapper will usually secure his prize by placing his trap a few inches below the surface of the water at those places where they make their landings by springing from the stream onto the bank.

The Pine-Marten or Americas Sable lives in the trees and preys on partridges, mice, squirrels, hares, \&c. A piece of either of these may be used as bait, or the head of a fish, pheasant, or a piece of meat, and the trap may be placed in a hollow tree, in any natural or artificial enclosure, or in the track of a deer ; in each case let it be well covered with light grass, decayed moss, or rotten wood, so as to present a natural appearance.

The Fisher-Marten is attached to low, swampy ground, is partially web-footed, and subsists on fish, mice, rabbits, \&c. It may be caught in the same manner as the last-named animal. Be careful to scent the trap and concen it properly, also attach it to a spring pole or twitch-up contrivance, so that when caught it be elevated out of the way of becoming a pre: to larger animals, and prevented from dismembering itself to get clear of the trap. The Pine-Marten and the Fisher both live and breed in hollow trees; they are by $n o$ means very cumning or difficult to trap, but are absolutely furious when canght.

The Woodchuck, or Ground Hog, as it is styled in Canada, constructs burrows in the ground, extending 20 or 30 feet, usually entering the slope of a hill, at the root of a tree or stump, under a fence, or in crevices between rocks. They are very destructive to crops in cultivated fields. Sometimes they are drowned or flooded ont of their holes by means of water, at other times they are shot, but in the great majority of cases they are caught by traps set without bait. (although they will.take roots,
ring the latter with ater, but not to go rder and the animal trappers to take the ag a spear into their nution, as they take o make an openiug htly covering it with the anlmal to leap ie the house, plaster
the upper rail of a corn fastened to it the pan of the trap, lit. ully covered, at the ut cultivated fields. of meat for a bait, g , they may be exthe water would unot do so, and the
trap is right at the inder water. Get a ;, smear it with bait baiced end will proan of the trap ; the aght. Another way w the surface of the and the beaver will : the damage. The pa few inclies below nake their landings
he trees and preys either of these may piece of meat, aud ral or artificial enbe well covered with esent a natural ap-
ground, is partially It may be caught in ful to scent the trap b or twitch-up cone way of becoming bering itself to get th live and breed in lifficult to trap, but

Canada, constructs y entering the slope , or in crevices becultivated fields. holes by means of t majority of cases hey will.take roots,
corn, or breaa), and carefully covered with paper, sand, \&e., at tho mouths of their holes.
Gopiers may be caught by making a slight excavation at the mouth of their hole and placing a trap so that the pan and jaws will be on a level with the surface of the ground and covered as above described.

HUNTERS' AND TRAPPERS' TABLE,

GHOWING THE VARIOUS BIZES OF NEWIIOUSE TRAPG ADAPTED TO THE CAPTURE OF DIFEERENT KINDS OF GAME.

Kind of Anlmal.	No. of Trap.	Bait required.
Squirrel,	1	Grain, nuts, or ear of corn.
Gopher,	1	do. do. do.
Muskrat,	1 or 11/2	Carrots, potatoes, apples,
Mink,	$11 / 2$	Fowl, flesh, or roasted fish.
Fisher-Marten,	$11 / 2$	Meat, muskrat or deer flesh, fish:
Skunk,	$11 / 2$ or 2	Mice, meat, plece of a fowl.
Fox,		Fowl, fesh, fish, toasted cheese.
Kaccoon,	2 or 3	Chicken, fish, or frog.
Badger,	3	Mice, or flesh of any kind.
Otter,	3 3	Fish, plece of a biru, or otter musk.
Marten, Beaver,	3 4	Head of a fish, plece of meat, or fowl.
Wolf,	4	a stick, Waste parts of tame or will fowl.
Common Black Bear,	5	Pork, beef, ear of corn, honey.
Grizzly Bear,	6	do. do. do. do.

Note.-The numbers 0,1 , and $11 / 2$, respectively, are single spring traps; No. 0 is the smallest size; all the others are double spring traps, No. 6 being the largest trap made. The above baits should be scented, where necessary, by a proper selection from the preparations previously described. Wildcats, foxes, wolves, and all the weasel tribe will take flesh and fish of all kinds, with this exception, that foxes, wolves and dogs will not eat their own kind; weasels of every kind will.
All furs are best in winter, but trapping may be dono with profit from the first of October to the beginming of April. All fur-bearing animals lose the best part of their fur as the warm weather approaches, and regain it as the cold weather sets in during the fall, so that from the first of May to near the end of September trapping is but labor lost. This process is indicated in the case of the muskrat and some other animals, by the color of the inside part of the skin. Towards summer it becomes brown and dark, a gign that the best fur is gone. Afterward it grows light-colored, and in winter, when the fur is in the best order, it is altoeether white. When the pelt is white it is called prime by the fur dealers. The fur is then glossy, thick, and of the richest color and the tails of such animals as the mink, marten, and fisher, are full and heavy Beavers and muskrats are not thoroughly prime till about the middle of winter; other animals are prime about the first of November. Tho skins of animals trapped are always valued higher than those shot, as shot not only makes holes, but frequently plow along the skin, making furrows as well as shaving off the fur. Newhouse gives the following rules to trappers as the resilt of much experience:

1. Be careful to visit your traps often enough, so that the skin will not have time to get tainted. 2. As soon as possible after an anlmal is dead and dry, attend to the skinning and curing. 3. Scrape off all superfluous
flesh and fat, and be careful not to go so deep as to cut the fibre of the akin. 4. Never dry a skin by the fire, or in the sun, but in a cool, shady place, sheltered from rain. If you use a bam door for a stretcher, as boyi sometimes do, uail the skin on the inside of the door. 5. Never use "preparatlous" of any kind in curing skins, nor even wash them in water, but simply stretch and dry them as tiken from the animal.
To Deodohize Skunk Skins, of Scented Clothing.-Hold them over a fire of red cedar boughs, and sprinklo with chloride of lime ; or wrap them in green hemlock boughs when they are to be had, and in 24 hours they will be cleaned.
For arsenical soap for preserving skins, see page 124. Skulls of animals may be rapidiy prepared by boiling in water for a lew hours ; a littlo potash or lye will facilitate the removal of tie flesh. A mixture of equal parts of good glycerine and water, to every gallon of which is added loz. of the crystals of carbolic acid, constitutes a good preserving liquid for all animal substances. The use of pure glycerine, with about $\frac{1}{2}$ pt. alcohol, and $\frac{d}{}$ oz. carbclic acid, added to each gal., makes an excellent mixture for preserving the tissues of soft animals, where it is desired to preserve the color as well as the tissues.

According to M. Devergie, of the Paris School of Practical Anatomy, a mixture of 3 pts of glycerine, and one of carbolic acin, injected into dead bodies, will prevent any unpleasant odors emanating from them for sereral months. Another high authority, Dr. Lowell, of Brooklyn, reconmends as a preservative fiuld, the use of zinc chloride. The quantity used for a human subject is 5 gals. The apparatus required consists of a porcelain lined vessel, which is elevated to such a height that the solution is injected into the artery by the simple gravity of the liquid, as it descends throngh glass and rubber tubing. Dr. Lowell writes : "The injection may be made by either artery or vein. I prefer the brachial artery above the elbow as the point for introduction of the glass tube, for the primary incision is slighter, and consequently divides smaller and fewer veins than when I expose the femoral artery. I use the gravity method, and introduce about five gallons of the antiseptic fluid. The effects are eminently satisfactory. The color of the integument is improved."

To Presenve Insects.-After killing the insect with chloroform, paint it with a solution of carbolic acid in alcohol-4 grains to the ouncethen dry in the sun. This will keep it fresh and beantiful.

To Trap Hawks or Owrs.-Take a poie 20 feet long. Set it a short distance from the house or barn, or on the poultry house. Split the top so as to admit the base of a common steel trap, which should be secured. When the trap is set the depredators will bo pretty certain to alight on it and get canght, as they usually select a lofty perch from which to pounce upon their prey.

The Shooting of Brrds.-The wanton shooting of harmless birds, merely for sport, is a most heartless and cruel recreation. The plea of commercial necessity and self-preservation maty he urged in behalf of the shooting and trapphing of wild animals, but no sach excuse can be alleged for the extermination of harmless birds. let them sing in the brond vault of heaven to their heart's content, and lenant the fields and their forest homes without molestation. A hunter warrates that he once fired at a bird which he followed up as it fluttered away. He said, "I saw a sight I never will forget. There it was, with its wings broken, and all bespattered with blood, at the nest with its young. Ifelt so bad that I vowed never to shoot another bird !" Again we say, spare the innocents.

To Select Furs.-A sure test of what dealers call prime fur is the length atad density of the down next the skin. This can be determined
cut the fibre of the but in a cool, shady Pa stretcher, as boy loor. 5. Never use even wash them in n the anlinal. tuinco.-Hold them hloride of lime ; of oo be had, and in as

Skulls of auimals few hours ; a little A mixture of equal which is added 102 erving liquid for all about $\frac{1}{2}$ pt. alcohol, excellent mixture for ired to preserve the
ractical Anatomy, a injected into dead from them for sepf Brooklyn, recomride. The quantity equired consists of a eiglit that the soluof the liquid, as it well writes : "The I prefer the brachial of the glass tube, for livides smaller and

I use the gravity itiseptic fluld. The integument is im.
the cbloroform, paiut dins to the ouncetififul.
bug. Set it a short ouse. Split the top should be secured. rtain to alight on it om which to pounce
of harmless birds, tion. The plea of ged in behalf of the cuse can be alleged sing in the brond the fields and their that he once fired He said,' "I saw a gs brolien, and all I felt sn bad that I pare the innocents. ll prime fur is the can be determined
by blowing a brisk current of air from the mouth against the set of the fur. If the fibres open readily, exposing the skin to the view, reject the article; but if the down is so deluse that the breath cannot jenetrate it, or at most shows but a small portion of the skin, it is all right.
To Clean Furs.-Strip the furs of their stuffing and binding, place them, if possible, in a flat position, and brush them briskly with a stiff clothes-brush. Cut out all moth-eaten portions, and replace by new bits of fur to match. Sable, chinchilla, squirrel, fitch, \&e., should be treated by an applleation of hot bran (warmed in a pan), well rubbed into the fur with the hand. Repeat this two or three times, shake the fur, and give it a good brushing, to iree it from dust. White furs may be cleaned by laying the furs on a table, and rubblug them with bran made moist by warm water. Rub untll quite dry, then apply dry bran. The wet bran should be put on with flamel, the dry with book muslin. In addition to the above, light furs should be well rubbed with magnesia, or a piece of book muslin, after the brau process.

ON BOOK-KEEPING.

In Book-Keeping, he who buys what he does not pay for at the time, is said to go in debt for it, and is called a debtor, and he who sells the goods and gives credit for them is called a creditor. In entering accounts it is usual to abridge the terms and write Dr. for Debtor, and Cr. for Creditor. In every case the reciiver is always the Debtor, and the seller is alwayn the Creditor. In Book-Keeping, the thing received is Dr., the thing dolivered is Cr . ; what you owe is Cr., what owes you is Dr. The whole system of Book-Keeping rests upon charges and credits; when you sell to your neighbor, it is a charye against him, and you must charge him with it on the deblt slde of the account ; when you receive anything from him, it is a credtt, and you must credit him with it on the credit side of the account.

The word To, in keeping accounts, denotes that the debtor owes for what has been sold to him, and the word $B y$, is an indication that the debtor has made a payment by which he has paid a part or the whole of the debt charged to him.

There are two methods of book-keeping, Single and Double Entry ; the last is employed in extensive and complicated mercantile business, where a check is required upon each entry, to prove that it has been properly recorded. The first is generally used by persons engaged in ordinary busincss, as it is more simple and sufficiently correct for such purposes. It requires but three books-the Day-Book, Ledger, and Cash-Book; to these may be added, a Bill-Book, in which all notes, received or given, are recorded, showing when drawn, by whom, in whose favor, length of time, when due, anount of note, and any explanatory remarks requlred ; also, a Sales-Book, in which orders for goods or the detalls of sales are entered, and a Receipt-Book, where receipts can be permanently kept. DAY-bOok.
The Day-book should contain statements of every business transaction, which glves rise to persons owing us or to our owing them, properly arranged under the head of delitor or creditor. The accounts should be entered in this book at the time they were created, or in the order in which they occurred in business.

The book shonld be commenced by stating the name of the owner and his residence. The day, month, and year, should then be written, and repeated at the head of each page corresponding with the date of the first transaction on the page, the subsequent dates on the page may stand above the transaction to which they belong. In making an entry the name of the person with whom we deal is written, with Dr. or Cr. at the right of the name, to show whether ho becomes debtor or creditor by the
transaction. Then a statement should follow of the ousinesis done, specifying the articles bought or sold, and the price of each. Th. totaj amonit should be added up and entered in the dollar and cent columus. The person with whom you deal is debtor for whatever he receives of you, and creditor for whatever yon receive of him, is the rule for determining how an entry must be made. The entries in the Day-book are trans. ferred to the Ledger, where all the transactions relating to an individual are recorded on a page devoted to his account. The figure at the left of an entry indicates the page of the Ledger to which it has been carried.

If a mistake is made in an account, it should not be corrected by altering the original entry but a new entry made debiting or crediting the amount of the error, thus, "John Smith, Cr. by [or Dr. to] error in accomnt of Oct. 6, $\$ 1.50$." This will euable a person to awear before a court that his book contains his original entries without an alteration.

LEDGER.
The Ledger is employed for collecting the scattered accounts of the Day-book. The accounts which relate to the same individual are brougt: together on one page, showing all the debits and credits, thus emabling the owner to tell at a glance the state of his account with any person. The Dr. accounts are placed on tho left hand of the page, and the Cr. on the right. The Ledger may be ruled according to the example on page 704. Every Ledger should have an index, in which all the names it contains are alphabetically arranged, with the page of the Ledger on which the account can be found.

Posting Accounts.-Transferring accounts from the Day-book to the Ledger is called posting. Commence with the first name in the Day-book, which in our example is M. Marshall ; begin by writing his mame in a fair hand at the top of the page, with lis residence, if different from your own, placing Dr. on the left, and Cr. on the right of the name. As he is debtor to us we commence at the left hand, writing at the first column the year, month, and day, in the second the page of the Day-book on which the original entry can be found, in the third the name of the article, or if several articles are record d under one date, they may be entered with the general designation of sundries or merchandise, and in the fourth column the total amount of the transaction. Against the account in the Day-book mark the page of the Ledger to which it-has been rosted; a mark can also be made to show that it has been transferred to the Ledger. Now take the second trunsaction in the Day-book, and if it is another name take a new page in the Ledger, and proceed in the same manner as the first. In this way all the entries in the Day-book are posted to each person's account, every week or month as oppoitunity may occur. By subtracting one side from the other the balance which is due will bo found. The specimen page represents three pages of a Ledger, to correspond with three persons who have transactions in the Day-book.

Balance Sheet.-This may be made to accomplish a doubie purpose, as it will exhibit the state of the owner's accounts, by determining the amonnts owing him and that he may owe, and also prove that tho accomnts have been correctly posted and added. The method is as follows: rule ". hect of paper similar to ledger page, for debtor and creditor ; add up a. ine items of credit on a page of the Day-book, and enter the amount on the sheet, then add the debits in the same manner, and proceed in this way for whatever time it is wished the proof should cover, add up the two columns and subtract one total from the other, and the difference will be the balance of the Dw-book. Turn to the Ledger and obtain the balance of each person's account, and place it under its proper head ; add these up, and the difference will be the Ledger balauce. If the two balances agree, it proves the cutries have been correctly posted.
the ousiness done, of each. Th. toth : and cent columus. r he receives of yon, rule for determining Day-book are trans. ing to an individual figure at the left of it has been carried. not be corrected by debiting or crediting y [or Dr. to] crror in on to swear before a out an alteration.
ered accounts of the dividual are brougt: cedits, thus enabling nt with any person. page, and the Cr . on example on page 744. he names it contains lger on which the ac-
the Day-book to the ame in the Day-book, riting his name in a different from your the name. As lie is a the first column the Day-book on which rme of the article, or may be entered with e, and in the fourth st the account in the thas been rosted; a transferred to the pay-book, and if it is proceed in the same in the Day-book are outh as oppoitunity the balance which is ts three pages of a transactions in tho
h a doubie purpose, by determining the prove that the achethod is as follows: r and creditor ; add nd enter the amount and proceed in this d cover, add up the and the difference dger and obtain the is proper head ; add ce. If the two balposted.

BOOK-KEEPING.

DAY-BOOK.
Robert Baker, St. Johi, N. B., October 2, 1877.

BOOK-KEEPING.
LEDGER.

Casif-Book.
1 Dr.
Sasi.
Cr. 1

A complete balance-sheet should be made ont once or twice a year, when an inventory of stock on hand is taken and added to the debtor balances of accounts, and the original capital is added to the credit balances, (or balances we owe, these compared will give the amount of profit or loss. It will be remembered that this sheet is an accomnt between onrselves and our books.

All the accounts in the Ledger ought to be balanced twice a year. To do this add up each column and find the difference, and make an entry of this balance on the side that is smallest (this shonld bo made with red ink to distinguish it from other entries) ; both sides now being equal, draw a line under them to show the fact. Now place the balance on tho oppositeside. so that it will exhibit the true state of the account. (See M. Marshall's account of the Ledger page.)

> CASH-BOOK.

The Cash-book records the payment and receipt of cash. Cash is made debtor to the cash on hand and cash received, and credited with what is paid out. At the close of each day or week, the cash on haud is comnted, and the amount entered on the credit side. This should make the debits and credits equal ; the amount of cash on hand is then entered on the debtor side. If money is paid to or received from a person who has an account with us it is also entered in the Day-book; the total receipts and expenditures are carried to the Day-book as often as the Cash-book is balanced. (See form of Cash-book.)

As a help to compute interest we append the following Table to show the time required for a given mumber of dollars to draw an equal number
of cents at various rates of interest. The rule is to strike off the odd nts from the principal and you have the interest at the following rates:

erest cent.	No. Days.	Interest per cent.	No. Days.	Interest per cent.
4	90	7	No. Days.	
43	80	$7 \frac{1}{3}$	48	10
5	72	$7-30$	58	$10-40$
$5-20$	70	8	45	35
6	60	9	40	

The next Table shows the various sums of money which draw 1 cent interest per day, calculated at different per cents. so that the number of cents will always be found equivalent to the number of days the money has been drawing interest.

Cr. $\quad 1$

Amount.	Per cent.	Amount.	Per cent.	Amount.	Per cent.
$\$ 410$	4	$\$ 52$	7	$\$ 36$	10
80	4.5	50	$7-30$	35	$10-40$
72	5	48	75	30	12
70	$5-20$	45	8	34	15
60	6	40	9		

Valcable Intemest Rules, Basis 30 nays per montif on 360 days to the Commercial year. Multiply the principal by the required number of days, and for 4 per cent. divide by 9 , and point off ; lor 5 per cent. divide by 72 ; for 6 per cent. divide by 6 , and point off three figures from the right; for eight per cent. divide by 45 ; for 9 per cent divide by four, and point off three figures from the right; for 10 per cent. diride by 36 ; for 12 per cent. divide by 3 , and point off three figures from tho right; for 15 per cent. divide by 24 ; for eighteen per cent. divide by 2 , and point off three figures from the right, for 20 per cent. divide by 18 .

A new way, called "a rule for reckoning interest on odd days, at any mte per cent., which involves no subdivision whatever," is as follows:

Multiply the principal by the number of days，and for 6 per cent．divide by 60 ；for 7 per cent．by 51 ；for 8 per cent．，by 45 ；for 9 per cent．by 40 ；for 10 per cent．by 36 ，for 6 twice over ；for 12 per cent．by 30. For further information refer to interest Tables．

TABLE，SIIOWING THE NUMBER OF DAYS FROM ANY DAY IN ONE MONTH TO THE SAME DAY IN ANOTIIER．

From	$\stackrel{\dot{5}}{5}$	$\begin{array}{\|l} \dot{0} \\ \text { 品 } \\ \hline \end{array}$		官会	突		$$	官	$\frac{\operatorname{con}}{\frac{20}{4}}$		ث்	$$
Januar	365		$1-9$	99		12		181	212	243		330433
Februa		4365		2859	5989		120	0150	181	1212		
March．		6337	7365	35	1.61	61		2122				4245225
April．		306	6334	34365		30	61		122			321424
May		276	6304	4 335	5365	65	31	161		2123	3153	318421
		245	5273	3304	4334		365	30	61			21531×3
July		215	5243	3274	4304		335	365		162		2123153
Aug．		3184	42	2243	3273	3	304	4334	365	3 t		129122
		153	3181	1212	2242	42	273	3303		4365		
Oct		123	3151	1182	2212	12	243	3273	304	435	365	5 3161
	61		2120	151	1181	1	212	242	273	304	4334	4365 30
D				${ }^{0} 121$								4335.365

Explanation．－To find the number of days from January 20 to Dec．20，follow the horizontal line opposite January until you reach the column headed by December，when you will find 334，representing the required number of days，and so on with the other months．During leap year，if February enters into the calculation，add one day to the result．

HOW TO CONDUCT A SUCCESSFUL BUSINESS．
That short credit and small profits forms the golden rule for success in trade may be seen from the following table，exhibiting the amounts re－ alized for $\$ 100$ at various percentages during various periods．I

If turned over every 3 months， $\begin{array}{ccccc}6 & 6 & 6 & 6 & 6 \\ 6 & 6 & 6 & 8 & 6 \\ 6 & 6 & 6 & 12 & 6 \\ 6 & 6 & 6 & 2 & \text { years，} \\ 6 & 6 & 6 & 5 & 6\end{array}$

Am＇t at 3 pr ．ct． $\$ 326.20$
180.61 155.79
134.39
115.92
106.09

Am＇tat 5 per ct． $\$ 703.99$ 265.39 207.89 162.88 127.62
110.25

Am＇t at 8 pr ．ct． $\$ 2172.45$
466.09
317.21
215.89
146.33
116.64

Am＇tat 10 pr ．ct． $\$ 4525.9 ?$ Now
672.75
417.79
259.37

161,05
121.00
: 6 per cent. divide for 9 per cent. by 2 per cent. by 30 .

day in one month

Thares Allowed by the Jobbers of New Yoric Citx. - It is understood that if a retail merchant orders less than an original package on which the jobber gets tare that no tare is allowed by the jobber to the retailer.

Argols-Actual tares.
Barley, \&C.-Come 100 llos . in keg -all net.
BIID SEED-2 perct.
BUTTER-1 1 b . on tubs as soakage; 2 lbs. on tirkins; pails net welght.
California Honey-cases-(weighing 70 to 75 lbs .), 14 lbs .
Camaway Seed- 2 per et.
CuEese-Always net or mrkil tares.
Cuncons-Casks, marked tares, 10
per ct. additional.
Cirnos, and all Peels-21/2 lbs. per box.
Coffees- 1 per ct. on everything except as below.
Jamaica and St. Domingo, 2 per ct. ; Savanilla, in double bags, and Laguayra, in heavy bags, 2 per et. Costa Rica, in heavy bags, 2 per et. Old Goveriment Java, in mats, 1 per ct.
Sexican eoffee-in bales, 15 lbs.
Mocha Coffee- $1 / 2$ bales, 6 lb ; $1 / 4,4$ lb. ; $1 / 8,21 / 2$ a. 3 11
Cumants-Bbls, 27 to 29 lbs , averare ; in box, 4lbs.
Dires-In frails, 9 per ct.
Figs--Drums, 10 per et. ; in kegs, 10.
Layer figs, Boxes, 12.
Hominy - 200 lbs net.
Lentils-2 peret.
Molasses and Syrups-Always allow $1 / 2$ gal. out.
Netmegs-Cases and easks marked tares.

Prunes-German, 4 lbs. per box. French-Marked tares. Turkish, in casks, marked tares.
Raisins-Sultana, in boxes 10 per ct.
Rice- 4 lbs. per bag; tierces 10 per ct.
Rock Candy-In bxs marked tares.
Sal Sonn-Casks, 7 per ct.
Sods-English, mrkd English tares.
Spiciss-2 per ct., except Cinnamon and Cloves.
Cassia - 9 per et. on bales and mats ; and $11 / 2$ lbs. extra for bale; cases 17 Jbs .
Cloves-9 libs. per bale.
Sugar-Hhds., 12 per ct. ; Refined Sugars always net or marked tares. Boxes- 15 per et. Mats and Bags -1 per et. Barrels-Demarara, execpt where marked net, 12 per et. The per cent for bags and mats with the trade applies only to East Indin sugars. On bags and mats imported from other countrics the tare is according to agreement between buyer and seller.
Tapioca-1 per et. Sago-2 per et. TeA-Invoice weight ascertained as follows: three to four pkgs are taken out of each 50 or 60 (usually those numbered the same), the tea turned out, and the pkgs weighed; the average of the three or four is takell as the tare of the whole.
Valencia Ratsins-5 lbs. per box, usually.

Xics-2 lbs. per bag.
Items Regarding Fisi.-Mackerel comes in barrels, half and quarter burrels, and kits, containing full weight, respectively, 200, 100, 50 , and 20 lbs. No 1 mackerel shonld not be less than 13 inches in length, from the extremity of the liead to the fork of the tail, fat, free from rust, taint, or damage. No. 2 mackerel should not be less than 11 ins. in length, fat, and free from rust, \&c. No. 3 mackerel should not be less than 10 ins. in length. No. 3, large, should not be less than 13 ins., and in quality are those that remain after the selection of No. 1. No. 4. mackerel comprise all not in the above, and should be free from taint or damage.
The abovo is the standard established by law in Massachusetts, and is generally accepted by the trade elseivhere. Mackerel should be kept covered with brine and not exposed to the air as they become rancid or "rusty," after a few days. Mess mackerel-the finest fish, with head and tail removed. Extra No. 1's aro selected fish. Large No. 2's-Fish over 13 ins. in length, ind not good enough in quality for No. 1's.

Scaled herrings shouki bo fat fish, free from scales, and when smoked be of a bright golden color. No. 1 herring are generally small and poor fish. The complaints of short weight packages of fish are very many, some of which exceed the entire profit.

Hints to Grocers.-To keep ants out of sugar, take, say, 3 ozs. gun camphor, wrap it in one thickness of tea-paper, lay it on the sugar in the barrel and they will leavo at once. Keep your tea in a close chost
or canister, and ireep coffee by itself, as its odor affects other articles. Look after the number of oranges and lemons in a box and see if they hold out. If not, claim. Oranges and lemons keep best wrapped in soft paper, and if possible laid in a drawer. Keep bread or cake i il a tin box or stone jar. Cranberries will keep all winter in a firkin ol water in a cellar. September and October butter is tho best for winter tise.

Fiavoring Extiacts, 27 Kinds. -The formila given below repre. sent the average standard,strength, but they may be reduced if required. 1. Extract of Lemon, oil of lemon, 2 ozs., freshly grated lemon peel, 1 oz , alcohol, 2 pts. 2. Ext. of Oranye, oil of orange, 12 drs ., freshly grated lemon peel, 4 ozs., alcohol 2 pts. 3. Another, Valencia oranges, 1 doz., alcohol, 2 pts. Carefully detach the yollow portion of the rind, and macerate it for ten days in the alcohol. Cwing to the difficulty of procuring fresh oil of orange, this formula is generally preferred. 4. Ert. of Rose. Red rose leaves, 2 ozs., oil of rose, 1 dr., alcohol, 2 pts. $\quad 5$. Ext. of Celery, celery seed, bruised, 2 ozs., alcohol, 1 pt . 6. Eist. of Gingei, tincture of ginger, 1 pt ., alcohol, from $\frac{1}{2}$ to 1 pt. Some use the tincture withont dilution. 7. Ext. of Bitter Almonds, oil of bitter almonds, 1 oz . alcohol, 13 ozs , water, 6 ozs . Some color it with $\frac{1}{2}$ oz. tincture of turmeric. 8. Ext. of C'innamon. Oil of cimnamon, 2 drs ., Ceylon cinnamon, bruised, 4 ozs., diluted alcohol, 2 pts. 9. Ext. of Peppermint. Essence of peppermint " S. P., 1 pt., alcohol, from $\frac{1}{2}$ to 1 pt. Some prefer the essence wit "intion. 10. Ext. of Coriander. Powdered coriander, 4 ozs., oil $\quad . \quad$ Ier, 1 dr., alcohol, 21 ozs., water, 8 ozs. 11. Ext. of Nutmey. Oh of mutmeg, 2 drs., powdered mace, 1 oz , alcohol, 2 pts: 12. Ext. of Vunilla. Vanilla bean, 1 oz ., loaf sugar, 1 oz ., alcohol, 70 per cent. anfleient. Triturate the vanilla with the sugar until a No 20 powder is oltain In cice into a 2 pt. stone jug with two ozs. of the menstrumm, cork thghty, iad dicest several hours at a temperature of abont 150°. Allow the misture to cool, transfer it to a percolator, pack it fimmy, and pour enough alcohol on it to make the percolate measure 1 pt. 13. Ext. of Spcarmint. Essenco of spearmint, U. S. P., 1 pt ., alcohol, from $\frac{1}{4}$ to 1 pt . Some use the essence without dilution. 14. Ext. of Anisc. Auise seed, 2 ozs., oil of star anise, 1 oz ., alcohol, 2 pts. 15. Ext. of Pine Apple, Artificicil. Chloroform, 1 f. oz., aldelyde, 1 do., butyric ether, 5 fl. ozs., butyrato of amyl, 10 do., glycerine, 3 fl. ozs., alcohol, 100 do. 16. Ext. of Śassafias. Oil of sassafras, 1 oz., sassafras in coarso powder, 2 ozs., alcohol, 2 pts. 17. Ext. of Peach, Artificial. Oil of bitter almonds, 2 ozs., acctic ether, 1 oz ., alcohol 3 pts. 18. Ext. of Nectarine. Extract of vanilla, 1 pt., extract of lemon, 1 pt., extract of pine apple, 8 ozs. 19. Ext. of Wintergreen. Oil of wintergrcen, 1 oz., alcohol, 1 pt., cudbear, or cochineal, 10 ozs. 20. Ext of Clove. Powdered clove, 4 ozs., dilated alcohol, 1 pt. 21. Ext. of Blackberyy, Artificial. Tinet. of orris root, (1-8) 1 pt., acetic ether, 30 drops, buttric ether, 60 drops. 22. Ext. of Tonk't Becm. Tonka beam, eoarsely ground, 4 ozs., diluted alcohol, 1 pt. 23. Ext. of Allspicc. Allspice, corsely ground, 4 ozs ., diluted alchohol, 1 pt. 24. E'xt of Pear, Artificial. Acetic ether, 5 fl. ozs., acetate of amyl, 10 do., glycerine, 10 :!. ozs., alcohol, 100 do. 25. Ext. of Apple, Arifificial. Chloroform, i f. oz., nitric ether 1 do., aldelyyde, 2 fl. ozs., acetic cther, 1 do., valerianate of amyl, 10 fi. ozs., oxalic acid, 2 drs., glycerine 2 fl . ozs., illcohol, 100 do. 26. Ext. of Strawbervy, Artificial. Nitric cther, 1 il. oz., aretic ether. 5 do., formic ether, 1 fi . oz., butyric ether, 5 do., salicylate oi methesl, 1 fl . oz., acetate of amyl, 3 do., butyrate of amyl, 2 fl.ozs., glycerine, 2 do., alcohol, 100 do. 27. Ext. of Raspbervy, Artificial. Nitric ether' 1 fl . oz., aldehyde, 1 do., acetic ether, 5 fl. ozs., formic ether, 1 do., butyric ether, 1 fl. oz., benzolc ether, 1 do., œuanthylic ether, 1 n. oz., sebasic ether, 1 do., salicylate of methyl, 1 f. oz. acetate of amyl, 1 do, butyrate of amyl, 1 fl . oz., tartaric acid, 2 ozs., glycerine, 4 fl. ozs., alcohol, 105 do. Fot other receipts, consult pp. 30,159 , and 207.
ats other articles. x and see it they best wrapped in ad or calse in a tin at firkin on water for winter tise. iven below repreeduced if required. 1 lemon peel, 1 oz., rs., freshly grated ia oranges, 1 doz., of the rind, and difficulty of proreferred. 4. Ert. alcohol, 2 pts. 1 pt . (6. Est. of pt. Some use the s, oil of bitter alwith $\frac{1}{2}$ oz. tincture drs.,Ceylon cinnaPeppermint. Fso 1 pt. Some preer. Powdered co , water, 8 ozs. 11. ace, 1 oz ., alcoliol, sugar, 1 oz., alco a the sugar until a 3 jug with two ozs. urs at a temperait to a percolator, ake the percolate eatrmint, U. S. P., withont dilution. e, 1 oz., alcohol, 2 1 fl. oz., aldcliyde, do., glycerine, 3 fl. ssafras, 1 oz., sasExt. of Peach, Artioz., alcohol 3 pts. ct of lemon, 1 pt., Oil of wintergreen, 20. Fxt of Clove. et. of Blackbery, er, 30 drops, butyka boan, coarsely illspice. Allspice, of Pear, Artificial. he, 10 It. ozs., alcom , i fl. oz., nitric rianate of amyl, 10 100 do. 26. Ext. c ether. 5 do., formethey, 1 fl. oz., rine, 2 do., alcohol, her 1 fl. oz., aldee., butyric ether, 1 -, sebasic cther, 1 butyrate of amyl, Ohol, 105 do. For

The credit system has bankrupted more people than perhaps all other causes put together. The most rigid scrutiny should therefore take place in every instance where credit is solicited. A good way is to make the party sign a statement of his assets, debts, means of payment, \&c., and grant a limited credit on that basis. If the result proves intentional frand then you have your remedy at law. Cash down is the only absolately safe rule. Curtail every possible expense. Let the profits accumulate, hold on to them, and avoid meertian outside speculations. See table of daily savings on page 587, and profit by its suggestions. Attend to the details of your business, see that the store is opened in good time, goods dusted, floor swept, paper, twine, nails, \&c., picked up and cererthing kept in trim order. In establishing a business it is not always the best plan to open out in a new locality where rents are low and expenses light. The result will be in many cases, that before the new locality acquires the ability to render adequate support to a respectable business (after an unavailing struggle) the funds of the merchant will gradually give out, and he will be obliged to close his doors at the very time whien he should have opened them. If, however, he succeeds, the dealer will do well to confine his attention more to the supply of the necessaries than the luxuries of life, until a more general demand arises for the litter as the neighborhood grows older.
Taking everything into account, the best locality for business purposes is in a city or town in a prominent throughfare where those whose trade you desire can most easily tind you. A suitable place being secured, mount a proper sign board in a prominent manner, and make sure to present an imposing display of your choicest goods in your store windows. This, of itself, is a powerful attraction to passers by, who will frequently see just the article they require and call for it at once. This accommodation, coupled with civil trentment on your part, will often secure you a permanent customer, for people are bound to go where they are well used. A notable and most successful method of attracting customers and building up a lucrative business, is to sell a few of the leading staples at low figures, and obtain a fair profit on the rest. The most sagacious and far-seeing merchants do this, with the most astonishing financial results. In fact, thousands who are independently rich would now be bankrupt but for this system of transacting business.
The following directions deserve a wide circulation :-
"Enter into a business of which you have a perfect knowledge. In your own right, or by the aid of friends on long time, have a cash capital sufficieut to do at least a cash business. Never venture on a credit business at the commencement. Buy all your goods or materials for cash; you can thus take every advantage of the market, and pick and chose where and when you will. Be careful not to overstock yourself. Rise and fall with the market on short stocks. Always stick to those whom you prove to be strictly just in their transactions, and shun all others even at a temporary disadvantage. Never take advantage of a customer's ignorance, nor equivocate nor misrepresent. Have but one price and a small profit, and you will find all the most profitable customers-the cash ones -or they will find you.
"If ever deceived in business transactions, never attempt to save yourself by putting the deception upon others ; but submit to the loss, and be more cautious in future. According to the character or success of your business, set aside a liberal percentage for printing and advertising, and do not hesitate. Never let an article, parcel, or package, go out from you without a handsomely-printed wrapper, card, or circular, and dispense them continually. Kcep yourself unceasingly before the public by judiciously advertising; and it matters not what business of utility you make
choice of, for if intelligently and industriously pursued, a fortune will be the result.
"Learn to say 'No' with decision ; 'yes', with caution-' No' with decision whenever it resists temptation ; 'yes' with caution when it implies a promise, A promise once given is a bond inviolable. A man is already of consequence in the world when it is known that we can im. plicitly rely upon him. Such a one is often preferred to a long list of applicants, for some important change which lifts him at once into station and fortune merely because he has this reputation, that when he says he will know a thing he knows it, and when he says ho will do a thing he will do it. Reflect over these maxims; you will find it easy enough to practice them."

Rest assured industry and economy will be sure to tell in the end. Waste not want not go hand in hand. If in early life these habits become confirmed, no doubt can exist as to the ultimate triumph of the merchant in attaining a competency.

Be self-reliant and punctual. As you gain experience in business you can form your own judgment and act ou it with more safety than you could on outside advice, and let no effort be considered too great which results in fulfilling your engagements and keeping your word. A good charcter for punctuality is in itself a valuable capital, as it makes one in a large measure the master of another's purse. In expressing yourself, be frank, speak to the point; form a habit of thinking vigorously and speaking correctly; say what you mean; and do what you say.
In buying goods never take advantage of another's necessities to beat him down to a figure which leaves him little or no profit, perhaps a loss, because he must have money. There is no manhood in such transactions, it may enhance your immediate profits, but will be disastrous to you in the end, besides being most unjust to the immediate sufferer. Let all your actions in buying and selling conform to the requirements of the golden rule.

Be always alert to the acquisition of knowledge relating to your business, this may be gained by conversation with experienced merchants, by the attentive reading of practical books treating on mercantile matters, and by taking trade papers, which in these stirring times have attained great perfection, embracing as they do an immense range of subjects, treating, each in its respective sphere, subjects of immense importance, relating to the hardware, grocery, dry goods, drug, and other mercautile trades, besides full reports of the markets pertaining to each business, an item which in itself no business man can afford to lose sight of. In this place the advice of the American Grocer to its subscribers to Count, Measure, Weigh, and Gauge Everything You Buy, crmot be too strongly urgued upon the notice of business men. Profits will be greatly enhanced by taking advantage of the discounts which nearly all business men offer for cash payments. Keep your credit good and use it sparingly and discreetly.

A noted merchant amassed an immense fortune by the observance of these four simple rules: 1. Obtain tho earliest and fullest information possible in regard to the matter in? hand. 2. Act rapidly and promptly upon it. 3. Keep your intentions and means secret. 4. Secure the hest employees you can obtain, and reward them liberally. See pp. 500 .

Rothschild's rules were. ":. I combined three profits I made the manufacturer my customer, and the one I bought of my customer ; that is, I supplied the manufacturer with the raw material and dyes; on each of which I made a profit, and took his manufactured goods, which I sold at a profit, and thus combined three profits. 2. Mako a bargain at once, be an off-handed man. 3. Never have anything to do with an

d, a fortune will be

ith caution- ' $\mathrm{No}{ }^{\prime}$ vith caution when inviolable. A man wn that we can im. to a long list of ap; once into station at when he says he Il do a thing hic will y enough to prac-

11 in the end. Waste abits become conof the merchant in
rience in business ore safety than you too great which revord. A good charnakes one in a large yourself, be frank, isly and speaking
necessities to beat fit, perhaps a loss, such transactions, sastrous to you in sufferer. Let all quirements of the
ing to your busiced merchants, by tercantile matters, mes have attained ange of subjects, nense importance, other mercantilo each business, an sight of. In this ribers to Count, UY, crunot be too fits will be greatly tearly all business nd use it sparingy
he observance of dlest information ily and promptly - Secure the best y. See pp 590 . fits I made the y customer ; that ial and dyes ; on rred goods, which Lake a bargain at ag to do with an
nulucky man or place. I have seen many clever men who had not shoes to their feet. I never act with thein; their advice sounds very well, but fate is against them ; they do not get on themselves, how can they do good to me? 4. Be cautious and bold. It requires a great deal of caution and a great deal of boldness to make a great fortune, and when you have got $I t$, it requires ten times as much wit to keep it."
Rules of John McDonough the millionaire of New Orleans. "1. Bemember always that labor is one of the conditions of our existence. 2. Time is gold ; throw not one miuute away but place each one to account. 3. Do unto all men as you would be done by. 4. Never put off till tomorrow what you can do to-clay. 5. Never bid another do what you can do yourself. 6. Never covet what is not your own. 7. Never think any matter so trivial as not to desenve notice. 8. Never give out that which does not first come in. 9. Never spend but to produce. 10. Let the greatest order regulate all the actions of your life. 11. Study in your course of life to do the greatest amomit of good. 12. Deprive yourself of nothing necessary to your comfort, but live in an honorable simplicity and frugality. Labor then, to the last moment of your existence."
Render yourself faniliar with your business and bcoks, and do not be unduly anxious to extend your trade, remembering that a small business on cash capital yields better profits than a large business conducted on credit ; also remember that the goods on your shelves are much better than having them charged upin bad debts. If it happens that you run an account with a doubtful customer, prudence requires that you should close the account at once and use every possible means to collect it without delay. It frequently happens in cases of this kind that prompt action will resnlt in the recovery of the whole debt, when a very slight delay will cutail a total loss. Every populons community is infested by such a vast number of incorrigible rascals who never intend to pay their debts, that dealers are justified in rejecting every application for credit where the financial ability of the applicant is in the slightest degree doubtful.
Avoid selfishness, niggardliness and parsimonionsuess in the use of money or means. True nobility of character always finds its greatest pleasure in assisting and uplifting humanity. Viewed in this light it requires but slight exertion to solve the riddle propounded by old Mr. Honest in the Pilgrim :-
"There was a man, though some did count lim mad, The more he threw away the more he had."
The world presents many notable instances of a gencrous policy, It is rafe to say that Peter Cooper, by his generous consecration of $\$ 2,000,000$ to the up-building of the Cooper Institute, not to mention his other benefactions, has conferred more substantial benefits on humanity than whole dynasties of tyrants who misgovern empires, and render themselves a terror to peaceable nations.
In mercantile matters courage is indispenable, slackness is absolute ruin. It requires courage to tell a man you will not credit him, courage to insist on prompt payments from customers, courage to speak your mind candidly at all times, courage to deny yourself the possession of many things you want. It requires courage to refuse to conform to the absurd demands of fashion, to show respect for real worth even if it appears in humble garb, and to discountenance unprincipled rascality in fine clothes. It requires courage to act justly without fear or favor, to live within your means, to pay your delts, to collect your accounts, to withstand ridicule while acting righteously ; in one word, if you lack courage never go into business at all.
In mercantile circles the commercial traveller occupies a most important position and in many cases proves himself a most valuable auxiliary 34*
to the merchant. To become a successful traveller it requires prolonged service on the rond, a vast amount of shrewdness, and a proficund know. edge of human uature. He must possess a clear head, a good temper, a ready, casy, and natural aptitude for making profitable bargains, with a good gift for mental, off-hand calculations in all possiblo emergencies.

In a work treating of commercial travellers in France, we find the following doscription of one of them : "With his customers, as every where elso, he is polite and obliging ; ho kisses the baby, pats the spaniel, pays a compliment to the young lady behind the counter, and offers a pinch of sunff to the master of the shop. He inquires respecting the state of the vintage, foretells the result of the season, spenks at some length on the state of the grain market, obligingly inquires after madane's health, and invites her husband to call and see him in Paris 'Wo'll dine at tho Rocher,' laughs the traveller, adding, in a lower key, 'and discuss a bottle of A 1, eh ?' Briefly, he obtains an order, and often a very extensivo one."

In marking goods it is usual with merchants to make use of a prirate mark, phrase, or key-word to designate the cost and selling price of their goods, the object being to conceal these points from all except their own salesmen. The following words and phrases present a choice from which to make a sulection.

GAS FIXTURE.
BLACK IIORSE.
MLSFORTUNE.
IMPORTANCE.

FISH TACKLE. CASH PROFIT. SO FRIENDLY. GAINFUL JOB.

BROWN SUGAR. NOW BE SHARP. ELUCIDATOR.
OF INDUSTRY.

It will be noticed that each word or phrase contains ten letters, no two alike, the object being to use letters instead of figures in marking the goods. For instance, take the phraso

In marking the cost and selling price on a ticket, we assume that the cost is $\$ 3.25$ and the selling price $\$ 4.37$; this would be represented by the dumb letters $s a_{2}-f s t$. The cost price is generally placed uppermost on the tag, the selling price below it, thus $\frac{s \pi t}{\overline{s t t}}$. An extra letter, styled a repeater, is used to obriate the repetition of a letter or figure as well as to prevent the disclosure of the private mark, for instance instead of writing 366 by the key-word, which wonld be $s x x$, use as a repeater the letter 0 , and make it read $s x$. Fractions may be written thus: $4560_{3}^{0}=f 1 x$ $\frac{n}{6}$. For further information on marking goods see page 210.

In advertising, let your announcements be short, spicy, attractive, and prominently displayed; study brevity, using as few words as possible to express yoar meaning. A long, diffuso advertisement kills its object, people will not read it. Let an advertisement be truthful, freo from senseless bombast, circulate them widely, and when your new customers come in, fulfil to the letter, the promises made in your announcements; you will thas obtain their confidence, retain their custom and their efforts to obtain more customers for you. Remember, judicions advertising alway pays; but it requires judgment to advertise aright. Select the chamels which circulate most widely among the class of customers you desire to reach, and advertise persistently and liberally. Every doilar expended will bring tenfold profits. In advertising on printed cards or circulars, it is an important object to commect them with some matter valuable to the receiver, such as a calendar, a railway time table, an elegant picture, or any other matter that will be preserved for its inherent value. Lithograplied circulars, in imitation of the handwriting, sent direct to partios, are a first class advertising media. Never quit advero
requires prolonged la profound know. d, a good temper, a able bargains, with sible emergencies. trance, we find the customers, as cvery by, pats the spaniel, unter, and offers a ires respecting the m, speaks at some inquires after ma see him in Paris ag, in a lower key, tains an order, and
ke use of a private elling price of their 11 except their own t choice from which

N SUGAR. 3E SHARP. DATOR. USTRY.
lins ten letters, no res in marking the
ve assume that the represented by the laced uppermost on xtra letter, styled or figure as well as nce instead of writas a repeater the 11 thus: $456 \frac{3}{3}=f 1 x$ ige 210.
cy, attractive, and ords as possible to it kills its object, ruthful, free from ur new customers amouncements; m and their efforts icious advertising cright. Select the of customers you ly. Every dollar n printed cards or with some matter time table, an eleed for its inherent handwriting, sent Never quit adver-
tsing until you quit business. The most successfal merchants in New York are the ones which advertise largely, and consider their outlay in this manner just as necessary as the payment of their rent or clerk hire.
Next to prominence in announcing your business is clvility, politeness, and honest treatment of customers. These elements of character, which can never be ignored without serious detriment to any one engaged in public business, cost nothing, and will often enable the small dealer to outstrip his rich rival. A cheerful, civil, aud polite manner is all-powerful in obtaining and retaining customers, and a grand mistake is often made by men on the road to fortune, in forgetting or neglecting to exercise this cheap and pleasant means of its ultimate attainment.
In opening an account with a bank provide yo :self with a proper introduction. Never draw a cleck forn larger sum than the nmount at your credit, and do not send your check to a remote person with the expectation of depositing funds to meet it before it gets back; the telegraph may explode that bubble. Never exchange checks with any ors, or give a check under the stipulation that it is not to be used until a given time. Never take a distint check from a nelghbor to pass it free through your bank, giving him your check for it. Never give your check to a stranger; it is liable to be raised, and passed, thus entailing a heavy loss on the tank. In sending a check to a distance, with the name and residence of the payee, thus ; John Ramsden \& Co., of Buffalo, N. Y. This will give a cluc to the bank when it is presented for payment. In presenting anaccommodation note for discount, tell your bank the real nature of the paper. It is much better to act in this candid, mereserved mamer than otherwise. Never consider your bank arbitrary if it declines to discount an accommodation note; in any event never wrangle or contend with it, but act squarely with them by settling in full, and then go elsewhere if discourteously treated. If you wish to get a customer's note discomed to obtain funds to take up a prior note by the same customer, inform your bank fully about it. Don't waste arguments to induce your bank to discount paper which it has already declined, it may have the best of reasons for such action. In your dealings with bank officers never exhibit asperity of temper, but study politeness, civility, candor and courtesy under all circumstances.

COMMERCLAL AND LEGAL FORMS.

No. 1. Negotiable Note.
$\$ 400$ Montreal Jan. 1, 18-. Three months after date, I promise to pay Oliver Cromwell, or order, Four Hundred Dollars, for value received. Note.
For an interest-bearing note, add "with interest" after "valuo re. ceived."

No. 2. Jomt Note.
$\$ 430$ R Mos
St. John, N.B., Jan. 4, 18-.
Six months after date we jointly, but not severally, promise to pay Gomas Bruce, or order, Four Hundred and Thirty finc Dollars, for value weived, with interest.

Join Spencer, David Thomson.
No. 3. Note payable at a Bank.

$\$ 1000$

New York, Jan. 11, 18 -.
Three months after date, I promise to pay to the order of Hirain Brown. the Sum of One Thousand Dollars, value received, at Park Na. tional Bank, New York.

Peter Pringle.

No. 4. Note payable by Instalments.
$\$ 100$
Toronto, Feb. 10, 18 -
For value received, I promise to pay to John Fleming, or order, One Hundred Dollare, in the way and mamer following, to wit : Flity Dollars in three months from date, and Fifty Dollars in four months, with iuterest on the several sums as they become due.

Alex. Armstrong.
No. 5. Note not Negotiable.
$\$ 600$
Syracuse, N.Y., July, 15, 18-
Three months after date, for value received, I promise to pay Thomas Bonner, Five Hundred Dollars.

William T. Bell.
No. 6. Note on Demand.
$\$ 300$
Hamilton, March 14, 18-.
On demand I promise to pay John Rose, or order, Three Hundred Dollars, value recelved, with interest.

Wheliam Wallace.
No. 7. Note payable in Merchandise.
$\$ 700$
Fredericton, N.B., June 1, 18-.
For value received, on or before the first day of November next, I promise to pay to A. Gibson, or Order, Seveu Hundred Dollars in good merchautable Spruce Logs, at his Sawmill near this city, at the market value on the maturity of this note.

Joiln Streamdriver.
No. 8. Due Bill for money.
London, Ont., June 20, 18-. $\$ 140$ sof Due to Johu Baxter, or order, on demand, One Hundred and forty ${ }_{50}^{50}$ Dollars, value received.
J. B. Periking.

No. 9. Due Bill payable in Goods.
$\$ 200$
Chicago, Ill., July 14, 18-.
Due on demand, to R. Wyllie, Two Hundred Dollars, in merchandise from our store.
T. M. Hunter \& Co.

No. 10. Check on a Bank.
No. 16.
New York, July 20. 18-
Ninth National Bank.
Pay to Bradford \& Parker or order, Three Thousand -_io Dollars. $\$ 3,000$
G. Burnham.

No. 11. Form of a Bank Draft.
$\$ 6,300$
Banif of the Metrofolis
No. 197.
New York, Aug. 5, 18-
Pay to the order T. M. Banker Six Thousand and Three Hundred Dollars.

Duplicato unpaid G. A. Copeland, Cashier.

To Ellot Nat. Bank, Boston.

No. 12. Sight Draft.

o, Feb. 10, 18 ug, or order, One wlt : Fifty Dollars ouths, with luteres
x. Armstnong.
, July, 15, 18ise to pay Thomas
lliak T. Bell.

March 14, 18; Three Hundred ciasi Wallace.
B., June 1, 18-. November next, I d Dollars in good ity, at the market
itreamdriver.
t., June 20, 18-. ne Hundred and J. B. Periking.
I., July 14, 18s, in merchaudiso

Hunter \& Co.
k, July 20. 18-
_ion Dollars. G. Burnham.

No. 197. k, Aug. 5, 18-. Three Hundred Duplicato unpaid ELAND, Cashier.

New York, Aug. 10, 18-. At Slght, pay to the order of R. Pitman \& Co., Six Hundred dollara value received, and charge the same to our account.

Georar Root \& Co.
To James Allison, Chicago.

> No. 13. Time Draft.
$\$ 200$
Thir $\quad 3$ after date, pay to the Order of Johin Mall, Two Hundred and Wily sollars, value received, and charge to our account,

T, Basining \& Co.

No. 14 Set of Foreign Bills of Exchange

Exclange for $£ 5,000$
New York, Aug. 10, 18-
Ten days after sight of this First of Exchange (our Second and Third unpaid), pay to the Order of David Perry, Five Thousand Pounds Sterling, ralue received, and charge the same without further advice, to,

Joseril Seligman \& Co.

To Barina Brothers.

$$
\text { No. } 220 \quad \text { London, Eng. }
$$

Exchange for $£ 5,000$
New York, Aug. 10, 18-.
Ten days after Sight of this Second of Exchange (First and Third unpaid), pay to the order of David Perry, Five Thousand Pounds Sterling, value received, and charge the same without further advice, to

Joserif Selfaman \& Co.
To Bay Brotirers.
No. -- London, Eng.
Exchange for $£ 5,000$ New York. Aug. 10, 18 -
Ten days after Sight of this Third of Exehange (First and Second unpald), pay to the order of David Perry, Five Thousand Pounds Sterling, ralue received, and charge the same without further advice, to

Joserh Seligman \& Co.

To Baring Brothers.

No. 220. London, Eng.
No. 15. Form of a Protest.
$\$ 2,000$
New York, Aug. 15, 1877.
Please to take notice, that a Promissory Note for Two Thousand Dollars, made by Robert Brown, May 12, 1877, and endorsed by you, having been duly presented and payment thereof demanded, which was refused, is therefore protested for non-payment, and that the holders look to you for payment, interest, costs, and damages.
To U. Look out.
I. L. Ketchuar. Notary Public.

No. 16. Reccipt for Money on Account.

Received, New York, March 23, 1878, of Thomas Paywell, Seventy-five dollars on account.

No. 17. Reccipt in Full.
Fredericton, N. B., March 12, 18-.
Received of John Murray, One Hundred Dollars, in full of all demands to date. $\$ 100$.
\square
Henry Blackburn.
No. 18. Receipt for Money advanced on a Contract.
Woodstuck, Ont., May 1, 18-.
Received of A. Campbell, One Thousand Dollars in advance, on a coutract to build for him a Frame house on Dundas street.
R. Tl. nbull.

No. 19. Rect 'pt for Rent.
\$200
Galt, Ont., June 1, 18.-
Received of A. Thomson, Two Hundred Dollars in full for one yeur's reut for dwelling on Water Street.

Charles Wilson.
No. 20. Receipt for a Note.
$\$ 400$
New York, June 2, 18-.
Received of Hiram Edson, hig unte for Four Hundred Dollars at three months, in full of account.

Thomas Harrison.
No. 21. Order for Mfoney.
Baltimore, June 5, 18-.

Mr. Robert Hill,

Please pay Thomas Jamisou, or Bearer, Fifty dollars on my account. David Hillman.

No. 22. Order for Merchandise.
Mr. R. T. Bonner.
Please deliver to the bearer, Joseph Fallett, such goods as he may desire from your store to the amount of Sixty-five dollars, and charge the same te my account.

Jonn Gardiner

No. 23. Letter of Credit.

1 Toronto, October 5,18-.
Gentlemen:-Allow me to introduce to your firm the Bearer, Mr. J. S. Harper ; should he make a selection from your stock to the anount of One Thousand Dollars, I will be answerable for that sum in case of his non-payment.

Yours, truly,
Rufus Barlow
To Lord \& Taylor, Now York,

No. 24. Landlord's Agreement.

This cerifies, that I have let and rented, this first day of June, 1878, unto Robert Walker, my house and lot No. 150, Dundas street, London, Out., and its appurtenances ; he to have the free and uninterrupted occupation thereof for one year from this date, at the yearly rental of One
, March 12, 18full of all demands

ry Blackburn.

ontract.
nt., May 1, 18-. advance, oll a conR. Te .nbull.
nt., June 1, 18. full for one yeur's
harles Wilson.
ork, June 2, 18ed Dollars at three
romas Harmison.
ore, June 5,18 -.
es on my account. David Hillman.
ods as he may dears, and charge the

Joun Gardiner
, October 5, 18-. the Bearer, Mr. J. ek to the amount of sum in case of his

Rufus Barlow
day of June, 1878, das street, London 1 uninterrupted ocearly reutal of 0 ne

Thousand Dollars, to be paid monthly in adrance ; rent to cease it dostroyed by fire, or otherwise made untenantable.

Jas. Kingman.

No. 25. Tenant's agreement.

This certifies that I have hired and taken from Joseph Kingman, his house and lot No. 150, Dundas street, I nudon, Ont., with appurtenances thercto belonging, for one year, to commence this day at a yearly rental of One Thousand Dollars, to be paid monthly in advance, unless said housc becomes untenantable from fire or other causes, in which case rent ceases; and I further agree to give and yield said premises one year from this first day of June, 1878, in as good condition as now, ordinary wear and damage by the elements excepted.
Given under my hand this day.
Ronert Walker.
No 26. Notice to Quit.

ToA. B. Palmer.

Sir:-Please observe that the term of one year, for which the house and land, situated at 47 Pearl street, and now occupied by you; were rented to you, expired on the first day of June, 1878, and as I desire to repossess said premises, you are hercby requested and required to vacate the same.

> Yours truly,
T. II. Carter.

No. 27. TCnant's Notice of leaving.
Dear Sir: The premises I now occupy as your tenant, at No. 56, Main street, I shall vacate on the first day of May, 1878. You will please take notice accordingly.
Dated this 26 th day of March, 1878.

Wilhiam Gildert.

To Join Lawrence, Esq.

No. 28. Common Form of Bond.

Know all Men by these presents, that I, David Wilson, of Fredericton, York County, Province of New Brunswick, am held and firmly bound unto John Scott of the place aforesaid, in the sum of six hundred dollars, to be paid to the said Jolm Scott, his heirs or assigns; for which payment to be well and truly made, I bind myself, my heirs and assigns, by these presents.
Sealed with my seal, and dated this first day of August, one thousand eight hundred and serenty-eight.
The condition of this obligation is such, that if I, David Wilson, my heirs, assigns, or executors, shall promptly pay to the said John Scott, his heirs or assigns, the sum of six hundred dollars in three equal ammual instalments from the date hereof, with amnual interest, then the abovo obligation to be void ; otherwise to be in full force and virtue.

DAVID WILSON, (L.S).
Sealed and delivered in
Presence of
adam Clark.

No. 29. Form of Bill of Salc.

Know all men by these Presents, that I, Peter Denman, of the city of Boston, in the County of Middlesex, and State of Massachusetts, of the first part, for and in consideration of the sum of six hundred dollars, lawful money of the United States, to me in hand paid, at or before the ensealing and delivery of these presents, by Robert Ensign of the same place, of the second part, the receipt whereof is hereby acknowledged, have bargained and sold, and by these presents do grantand conver, unto the said party of the second part, his executors, administrators, and assigns, one six year old dark-bay horse fitteen hands hagh, one black horse, one double harness, one carriage, two cones and five pigs, то mave and to hold the same unto the said party of the second part, his heirs, administrators and assigns for ever.

And I do for myself, my heirs, executors, and administrators, covenant and agree, to and with the said party of the second part, to warrant and defend the sale of the said goods and chattels hereby sold unto the said party of the second part, his executors, administrators, and assigns, against all and every person and persons whatsoever.
In witness whereor, I have hereunto set my hand and seal, this sixth day of April one thonsand eight hundred and seventy-eight.

Sealed and delivered in presence of

$$
\left.\begin{array}{l}
\text { delivered in presence of } \\
\text { Petiri Wilson, } \\
\text { J. Goddand. }
\end{array}\right\}
$$

PETER DENMAN, (T,S).

No. 30. Chattel Mortgage.

This indenture, made this fifteenth day of April, one thousand eight hundred and seventy-eight, betireen David Allan of the town of Guelph, County of Wellington, Province of Ontario, party of the first part, and Alfred Baker of the same town, county and Province. party of the second part.

Witnesseth, that the said party of the first part, for, and in cousideration of the sum of six hundred dollars in hand paid, the receipt of which is hereby acknowledged, does hereby grant, sell, convey and confirm unto the said party of the second part, his heirs and assigns forever, all and singular, the following described goods and chattels, to wit :

1 Weber plano, 4 black walnat bedsteads, 1 stove, 2 mahogany bureaus, 2 sofas, 1 dozen chairs, etc., now in possession of said Allan, in his dwelling at No. ———street, Guelph. To have and to hold all and singular the goods and chattels above bargained and sold, or intended so to be, unto the said party of the second part, his executors. administrators and assigns forever. And the said party of the first part, for himself, his heirs, assigns, and administrators, all and singular the goods and chattels above bargained and sold mito the sald party of the first part, and against all and every person whomsoever shall, and will, warrant and forever defend

Upon condition, that if the suid party of the first part shall and do well and truly pay unto the sald party of the second part, his executors. administrators, or assigns, the sum of six hundred dollars lawful money of this Province, with interest thereon, one year from this date, thence thicse presents shall be vold. AND tho said party of the first part, for himself, his executors, and assigns, doth covenant and agree to and with the said party of the second part, his executors, administrators and assigns, that in case defanlt shall be made in the payment of the said sum aboro
mentioned, then it shall and may be lawful for, and I, the said party of the first part, do hereby authorize and empower, the said party of the second part, his executors, administrators, and assigns, with the aid and assistance of any person or persons, to enter my dwelling-house, or such other place or places as the said goods and chattels are or may be placed. and take and convey away the said goods and chattels, and to sell or dispose of the same for the best price they can obtain, and, out of the proceeds thereof, to retain and pay the stid sum above mentioned, and all charges tonching the same, rendering the overplus (if any) unto me, or to my executors, administrators or assigns.

And, until default be made in the payment of the said sum of moncy, I am to remain and continue in the quiet possession of the said goods and chattels, and in the full and free enjoyment of the same.

In witness whereof, I, the said party of the first part, have hereunto set my hand and seal the day and year first above written.
Signed, sealed and deliv-
ercd in presence of
George Robson, Thomas Neilson.

DAVID ALLAN, (L.S.)

Note.-The law, both in Canada and the United States, requires that all chattel mortgages should be filed in the Clerk's, Register's, or Recorder's office of the town, city, or county where the mortgagor resides, and the property is, when mortgaged. Unless the same is renewed at or before the close of the year, its virtue expires, and every creditor will have the same right to the property as the mortgagee.

No. 31. Claim to be filed by Lien C'reditor's un Clerl's Offce.

Ilenry Wilson, of Buffalo, in the County of Eric, and State of New York, lumber merchant, files his clain for five hundred and sixty dollars against a certain house and lot of ground, belonging to John Rodgers, situated on the south side of Clinton street, No. 27, in the plan of said city, containing in front on Clinton street, forty fect, and in depth one hundred feet, bounded on the north by the said Clinton street, on the west by ground of John Smith, on the east ground of Thomas Nelson, and on the south by ground of Thomas Carter, for that sum due him for lumber and other materials furnished by him, in erecting the aforesaid house in October, 1877.

HENRY WILSON.
Norember 4, 1877.
Note.-The above form is applicable for any claim whatever that may be dne to lumber merchauts, brick-makers, carpenters, painters, masons, plumbers, or others engaged in furnishing materials or labor in erecting buildings.

No. 32. Form of Judyment-Note.

For value received I promise to pay to Henry Jordan of Lockport, ar Order, four hundred dollars, with interest, on the first day of June next ; and 1 hereby nominate, constitute, and appoint, any attorney-at-law of this State, my true and lawful attomey, irrevocable, for me and in my name to appear in any court of record of this State, at any time after the above promissory note becomes due, and to waire all process and service thereof, and to confess judgment in favor of the holder hereof for the sum that may be due and owing hereon, with interest and costs, waiving
all errors, etc., with stay of execution until the first day of April nert.
Witness my haud and seal at Lockport, N. Y., this first day of Decem. ber, in the year one thousand eight hundred and seventy-seven.
Signed, scaled, and deliv-
ered in presence of
Josepif Inman,
Robert Kerr.

THOMAS WEBSTEI, (L.S.)

Note.-The above note enables the holder, in several States, to enter up judgment thereon without suit, if not paid when due.

No. 33. Form of Note for Indzana.

$\$ 200$.
Richmond, Ind., April 1, 18-.
On demand, for value received, I promise to pay Charles Marsh, or Order, two hundred dollars, with interest, payable without any relie! whaterer from valuation or appraisement.

ROBERT MILLER.
No. 34. Form of Note of Pennsylvama.
$\$ 500$. Philadelpaia, Pa., April 8, 18-.
Three months after date, 1 promise to pay to the order of Thomas Maxwell, five hundred dollars, without defalcation, for value received.

ALEXANDER REID.
No. 35. Form of a Bill of Lading for Timber, de.
Shipped, in good order and condition, by Robert Godfrey \& Co., on bond the good ship "Dominic Sampson," whercof P M. Marshall is master for this present voyage, now lying in the port of St. John, N. B., and bound for Liverpool, England. To say :-

66,760 feet Mer. Spruce, all under deck.
100 M . Spruce laths, all under deck.
90 M . ft . Mer. Pine, all on deck,
being marked and numbered in the margin ; and are to be delivered, in like good order and condition, at the aforesaid port of Liverpool (the danger of the seas and fire always excepted), unto Thomas Adans \& Co., or to assigns, he or they paying freight for the said timber at the rate of ten dollars per M. Iect, and one dollar per M.. for laths, without primage and average accustomed.

In wotness wher. ff, the master of the said vessel hath affirined to three bills of lading, all of this tenor and date; one of which being accomplished, the others to stand void.
P. M. MARSHALL.

Dated at St. Jolm, N. B., $\}$
June the Eth, A.D. 1878. $\}$
No. 36. Form of a Survey Bill of Lumber, \&c.
Surveyed from Alex. Gibson of Nashwaak, New Brunswick, th Schooner "Inflexible" Captain Duncan. To say :-
$43,600 \mathrm{ft} .2 \times 8$, from 12 ft . long up (Mch.) Spruce.
37,500 " No. 1 Pine boards.
19,400 " 10×12 Mer. Pine timber.
24,500" Hemlock boards (Mch).
159 M. No. 1 Pine Shiugles.
Nashwank, N. B.,
DAVID MORRISON,
June 5, Amno Domini 1878.
y of April ne:t irst day of Decem. ty-seven.

EBSTEI, (L.S.)
States, to cuter de.
3., April 1, 18-. Charles Marsh, or vithout any relie!

BERT MILLER.

a.

A. , April 8, 18-. order of Thomas r value received. KANDER REID.
ber, de.
Godirey \& Co., on \mathbf{P} M. Drarshall is of St. John, N. B.,
to be delivered, in of Liverpool (the Thomas Adans \& said timber at the for laths, without
th affirined to three hich being accom-
M. MARSHALL.
ri, \&c.
ew Brunswick, to
) Spruce.

No. 37. Form of Agreement and Warrant for the Sale of Horse.

This agreement, mado this eighth day of April, one thousand eight hundred and seventy-eight, between Robert Pringle of the village of Stanley, county of York and Province of New Brunswick, of the first part, and David Brown of said place, of the second part.

Witnessetr, that the said Robert Pringle hereby agrees to sell to the said David Brown his darci-bay horse, with a white star in the forehead, and black mane and tail, and to warrant the said horse to be well broken, to be kind and gentle, both under the saddle and in single and double harness, to be sound in every respect and freo from vice, for the sum of onc hundred dollars, to be paid by the said David Brown, on the severth day of June next.

In consideration whereof, the said David Brown agrees to purchase the said horse, and to pay therefor to the said Rovert Pringle the suni of ie hundred dollar's on the seventh day of June next.
In witness whereof, \&c. (as in No. 29).

No. 38. Agreement to Cultivate Land on Shares

This Agreement, \&c. (as in No. 30).
Witnesseth, that the said Robert Pringle agrees with the said David Brown, that he will properly plough, harrow, till, fit, and prepare fo sorring, all that certain field of ground belonging to the said Brown, which field lies, etc. (here insert description of field) containing about tell acres, and to sow the sane with good fall wheat, finding one-half the seed wheat necessary therefor, on or before the fifteenth day of September next : and that he will, at the proper time, cut, harvest, and thresh, the said wheat, and winnow and clean the same, and deliver the one-half part of the said wheat to the said David Brown, at his barn, on his premises, in the village of Stanley, aforcsaid, near his dwelling house, within ten days after the same shall have been cleaned; and will carefully stack the one-half of the straw on the premises of the said David Brown, near to his barn aforesaid.

And the said David Brown, in consideration of the foregoing agreement, promises and agrees, to and with the said Pringle, that he may enter in upon said field for the purpose of tilling and sowing the same, and of harvesting the crop ; and free ingress and eqress have and enjoy for the purpose aforesaid; and that he will furnish to the said Pringle one-half of the seed wheat necessary to sow the same, on or before the fiftenth day of September next, and permit the said Pringle to thrash and clean the wheat upon the premises of the said David Brown.

In witness whereof, \&c. (as in No. 29), both parties will sign.

No. 39. Lease of a Farm.

This Indenture, made this first day of March, one thousaud eight nundred and seventy-eight, between Peter Marshall, of the towuship of Dumsries, county of Waterloo, and Province of Ontario, of the first part, and Robert Walker of the said township and county of the second part.

Witnesseth, that the said Peter Marshall, for, and in consideration of the yearly rents and covenants hereinafter mentioned, and reserved on the part and behalf of the said Peter Marshall, his heirs, executors and administrators, to bo paid, kept, and performed, hath demised, set, and to farm let, and by these presents doth demise, set, and to farm let, unto the said Robert Walker, his heirs and assigns, all th':t certain piece,
parcel or tract on sana situate, lying and being in the township of Dum. fries aforesaid, known as lot No. (here describe land) now in the posses sion of - containing one hundred acres, together with all and sin. gular the buildings and improvements, to have and to hold the same unto the sald Robert Walker, his heirs, executors and assigns, from the - day of _next, for, and during the term of five years, thence next ensuing, and fully to be complete, and ended, yielding and paying for the samo, unto the said Peter Marshall, his heirs and assigns, the yearly rent, or sum _ dollars, on the first day of -in euch and every year, during the term aforesaid, and at the expiration of said term, or sooner if determined upon, he the said Rohert Walker, his heirs or assigns, shall and will quietly and peaceably surrender and yield up the said demised premises, with the appurtenances, unto the said Peter Marshall, his heirs and assigus, in as good order and repair, as the same now are, reasonable wear, tear, and casualties, which may happen by fire, or otherwise, only excepted.

In witness whereof we have, etc. (as in No. 29).

No. 40. Warranty Deed by Husband and Wife, with Covenants.

This Indenture, made this eighteenth day of June, in the year of our Lord one thousand eight hundred and seventy-eight, between John Wilson, of Newton, county of Sussex, State of New Jersey, and Charlotte, his wife, of the first part, and Peter Cunningham of the same place, of the second part.

Witnessern, that the said party of the first part, for and in consideration of the sum of two thousand dollars in hand, well and truly paid by the said party of the second part, the receipt whereof is hereby acknowledged, have granted, bargained, and sold, and by these presents do grant, bargain, and sell, unto the said party of the second part, his heirs and assigns, all tho following described lot, piece, parcel or tract of land situated in the town of Newton, county of Sussex, and State of New Jersey, to wit: (HPe o describe the property.)

Together with all and singular the hereditaments and appurtenances thereunto belonging or in any wise appertaining, and the reversion and reversions, remainder and remainders, rents, issues, and profits thercof; ard all the estate, right, title, interest, claim and demand whatsoerer, of the said party of the first part, either in law or equity, of, in, and to, the above-bargained premises, with the hereditaments and appurtenances: To have and to hold the said premises above bargained and described, with the appurtenances, unto the said party of the second part, his heirs and assigns, for ever. And the said John Wilson, and Charlotte Wilson, his wife, parties of the first part, hereby expressly waive, release, and relinquish unto the said party of the first part, his heirs, executors, administrators and assigns, all right, title, claim, benefit, and interest whatever, in, and to the above-described premises, and each and every part thereof, which is given by or results from, all laws of this State pertianing to the exemption of homesteads.

And tine said John Wilson and Charlotte Wilson, his wife, party of the first part, for themselves and their heirs, executors, and administrators, do covenant, grant, bargain, and agree, to and with the said party of the second part, his heirs and assigns, that at the time of the ensealing and delivery of these presents they were well seized of the premises above conveyed, as of a good, sure, perfect, absolute and indefeasible estate of inheritance, in law and in fee simple, and have good right, full power, and lawful authority to grant, bargain, sell, and convey the same, in manner and form aforesaid, and that the same are free and clear from all former and other grants, bargains, sales, liens, taxes, judgments, assess•
wnship of Dum. wr in the posses with all and sin. to hold the same assigns, from the five years, thence Iding and paying 3 and assigns, the - in each and xpiration of snid Walker, his heirs der and yield up ato the said Peter epair, as the same may happen by

h Covenants.

1c, in the year of Iht, between John ey, and Charlotte, the same place, of
rand in considernl and truly paid cof is hereby acthese presents do ond part, his heirs el or tract of land ad State of New
ad appurtenances the reversion and d profits thereof ad whatsoever, of of, in, and to, the d appurtenances: aed and described, ond part, his heirs Charlotte Wilson, iive, release, and rs, executors, adand interest whath and every part this State pertain-
wife, party of the d administrators, said party of the the ensealing and e premises above efeasible estate of right, full power, the same, in mannd clear from all adgments, assoss•
ments, and incumbrances of what kind or nature soever; and the abovobargained premises in the quiet and peaceable possession of the said party of the second part, his heirs and assigns, against all and every or persons lawfully claiming or to claim the whole or any part thereof, the said party of the first part shall and will warrant and forever defend.

In testimony whereof, the said parties of the first part have hereunto set their hands and seals the day and year first above written.

JOHN WILSON (L.S.)
Sigued, sealed and delirored in presence of Menry Nelson. Robert Reid.

No. 41. Acknowledgment of Deed.

Sussex County, N. J.
On the eighteenth day of June, one thousand eight handred and serenty-eight, personally appeared before me John Wilson, and Charlotte, his wife, whom I know to be the persons described in, and who executed the within instrument, and who severally acknowledged that they executed the same: the said Charlotte being by me examined separate and apart from her husband, acknowledged that she executed the same freely, and
without fear or compulsion from him.

Minute of Record.

PHILIP HUNTER, J. P.
Becorded in the Clerk's office of the County of Sussex, in Liber 45, p. 81, of Mortgages, 18th June, 1878, at 30 minutes past 2 p.m.

Robert Watts, Register.

No. 42. Mortgage of Land to secure Payment of Money.

This Indenture, made the tenth day of April, one thousand eight hundred and seventy-eight, between John Hunter, of Dorset, county of Bennington, State of Vermont, merchant, and Margaret, his wife, of the firstpart, and William West, of the same place, agent, of the second part: Whereas, the said Johin Hunter is justly indebted to the said party of the second part, in the sum of five thousand dollars, lawful money of the United States, secured to be paid by his certain bond or obligation, bearing even date with these presents, in the penal sum of ten thouand dollars, lawful moncy as aforesaid, conditioned for the payment of the first-mentioned sum of five thousand dollars, as by the said bond or obligation, and the condition thereof, reference being thereunto had, may more fully appear. Now this Indenture Witnesseth, that the said parties of the first part. for the better securing of the said sum of money mentioned in the condition of the said lond or obligation, with interest thereon, according to the true intent and meaning thereof, and also for and in consideration of the sum of one dollar to me in hand pald by the said party of the second part, at, or before the ensealing and delivery of these presents, the receipt whereof is hereby acknowledged, have granted, bargained, sold, aliened, released, conveyed, and confirmed, and by these presents do grant, bargain, sell, alien, release, convey, and confirm, unto the said party of the second part, and to his heirs and assigus for ever, all that
certain piece, parcel, or lot of land, situate, lying, and being: (Here clescribe premises.) To have and to hold the same, together with all and singular the tenements, hereditaments, and appurtenances thereunto belonging, or in any wise appertaining, and the reversion and reversions, remainder and remainders, rents, issues and profits thereof; And cliso, all the estate, right, title, interest, dower, property, possession, claim, and demand whatsoever, as well in law as in equity, of the said parties of the first part, of, in, and to the same, and every part and parcel thereof, with the appurtenances. To have and to hold the above granted and described premises, with the appurtenances, unto the said party of the second part, his heirs and assigns, to his and their proper use, benefit, and behoof forever. Provided always, and these presents are upon this express condition, that if the said party of the first part, his heirs, executors and assigns, shall well and truly pay or canse to be paid unto the said party of the second part, his executors, administrators or assigns, the said sum of money mentioned in the condition of the said bond or obligation, and the interest thereon, at the time, and in the manner mentioned in the said condition, according to the true intent and meaning thereof, that these presents and the estate hereby granted shall cease, determine, and become null and void. And the said John Hunter, for himself, his leirs, executors, and administrators, doth covenant and agree to pay unto the said party of the second part, his executors, administrators, or assigns, the said sum of money and interest, as mentioned above and expressed in the said condition of the said bond. And if defanlt shall be made in the payment of the said sum of money above mentioned, or the interest that may grow due thereon, or of any part thereof, that then, and from thenceforth, it shall be lawful for the said party cf the second part, his execntors, administrators and assigns, to enter into and upon all and singular the premises lereby granted, or intended so to be, and to sell and dispose of the same, and all benefit and equity of redemption of the said party of the first part, his heirs, execntors, administrators, or assigus therein, at public anction, according to the act in sucil case made and provided: And as the attorney of the said party of the first part, for that purpose by these presents dinly authorized, constituted, and appointed, to make and deliver to the purchaser or purchasers thereof, a good and sumfient deed or deeds of conveyance, in the law for the same in fee simple, and, ont of the money arising from such sale, to retain the principal and interest which shall then be due on the said bond or obligation, together with the costs and charges of advertisement and sale of the premises, rendering the overplus of the purchase money (if any there shall be) nnto the said John Hunter, party of the first part, his heirs, executors, administrators, or assigns, which sale so to be made shall forever be a perpetual bar, both in law and in equity, against the said party of the first part, his heirs and assigns, and allother persons claiming or to claim the premises, or any part thereof, by, from, or under, him, them, or either of them.

In witness whereof, the parties of the first part have liereunto sef their hands and seals the day and year first above written.

JOHN HUNTER, (L.S.)
MARGARET HUNTER, (L.S.)
Slgned, sealed, and delivered in presence of

Thomas Bates, William Bell.
ng: (Here describe th all and singular reunto belonging, rsions, remainde: tlso, all the estite, aim, aud demand arties of the first thereof, with the ated and described of the second part, it, and behoof forn this express conirs, executors and ato the said party igns, the said sum or obligation, and mentioned in the ming thereof, that se, determine, and himself, his heirs, ze to pay unto tho rators, or assigus, e and expressed in all be made in the r the interest that at then, and from he second part, his and upon all and to be, and to sell redemption of the strators, or assigus, cin case made and first part, for that ed, and appointed, hereof, a good and or the same in fee sale, to retain the kid bond or obligament and sale of honey (if any there part, his heirs, expe made shall forinst the said party sons claiming or to under, him, them,
ave hereunto set tell.
CER, (L.S.S.)
HUNTER, (L.S.I

No. 43. Form of Satiffaction Piece.

I, William West, of Dorset, Bemnington County, Vermont, do hereby certify that a certain mortgage, bearing date the tenth day of April, one thousand eight hundred and seventy-eight, made and executed by John Hunter, and Margaret, his wife, of the same place, and recorded in the office of the Clerk of the county of Bemmington, in Liber 45, p. 76, of Mortgages, on 10th day of April, 1878, is paid. Dated 1st May, 1878.

WILLIAM WEST, (L.S.)

Bennington County, Vermont, SS.:

On the first day of May, 1878, before me came William West, to me personally known to be the individual described in, and who executed the above certificate, and ackuowledged that he executed the same.

> JOHN HAMPDEN, J. P.

No. 44. Assignment of Mortgage.

Know all men by these Presents, that I, William West, of Dorset, comnty of Bemuington, State of Vermont, agent, of the first part, for and in consideration of the sum of five thousand dollars, lawful money of the United States, to me in hand pand by John Howard, of the same place, farmer, of the second part, at or before the ensealing and delivery of these presents, the receipt whereuf is hereby acknowledged, have granted, bargained, sold, assigned, transferred, and set over, and by these presents do grant, bargain, sell, assign, transfer, and set over, unto the said party of the second part, his heirs and assigns, a certain indenture of mortgage, bearing date the 10th day of April, one thousand eight hundred and seventy-eight, made by John Hunter, and Margaret, his wite, and recorded in the office of the Register of the county of Bemnington, State of Vermont, in Liber 36, of Mortgages, p. 50, together with the boud or obligation thereto belonging, and the money due, and to become due thereon, with the interest, To have and to hold the same unto the said party of the second part, his heirs, administrators and assigus for ever, subject only to the proviso in the said Indenture of Mortgage mentioned. AND I do hereby make, constitnte, and appoint the said party of the second part, my true and lawful attorney irrevocable, to my name or otherwise, but at his own proper costs and charges, to have, use ind take, all lawfill ways and menus for the recovery of the said money, and interest, and, in case of payment, to discharge the same as fully as I might or could do if these presents were not made.

In witness whereof, I have hereunto set my hand and seal, the first day of May, one thousand eight hundred and seventy-eight.

WILLIAM WEST, (L.S.)
In presence of $\left.\begin{array}{l}\text { Duncan Forbes, } \\ \text { John Reid, }\end{array}\right\}$
Note.-Deeds, mortgages, and assignments of mortgages should be put on record in the Register's office withont delay after being executed. The foregoing forms (as well as the following) are suitable for either the United States or Canada.

No. 45. Form of Will for Real and Personal Property.
I, Joseph Knight, of the city of Toronto, county of York, and Prorince of Ontario, grocer, realizing the uncertainty of life, and being of feeble
health, but of sound mind, memory, and judgment, do make and declare this to be my last will and testament in manner and form following, to wit:

First, I give, demise, and bequeath unto my eldest son, Robert Knight, the sum of four thousand dollars, now on deposit in the Bank of Montreal, together with my grocery store at Nu. - ___ street, with all the tenements and improvements thereto belonging: to have and to hold unto my said son, his heirs and assigns forever.

Second, I give and bequeath unto my beloved wife, Charlotte, abso. lutely, the house in which I now reside, at No. - _ street, together with all the furniture therein, including piano, organ, linen, china, the plate, wearing apparel, etc., together with ten thousand dollars in Bank stock and Railway bonds, now lodged in my safe; the same to be in lieu of her dower at common law.

Third, I give and bequeath to my invalid mother, Ellen Knight, the Income and rents from my farm in Scarboro during the term of her natural life. Said farm to revert to my sons and daugliters in equal proportion upon the demise of my said mother.

Fourth, I give and bequeath unto my youngest son, Joseph Knight, three thousand dollars, also my tenement house on - street, with all the improvements thereto belonging; to have and to hold unto my said gon, his heirs and assigns forever.

Fifth, I give and bequeath the sum of one thousand dollars to my executors, to be equally divided between them, in full, for all services in the matter of the execution of this my last will and testament.

Sixth, I direct that my debts and funeral expenses be paid from moneys now on deposit to my credit in - Savings Bank of Toronto, the balance of such money, together with all the rest and residue of my estate, to my three daughters, Mary, Ellen, and Isabella, to be equally divided between them for their use forever.

I hereby nominate and appoint Darid Waterson, Robert Ford, and James Thomson, the executors of this my last will and testament, and revoke all other and former wills made and executed by me.

In witness whereof I have hereunto set my hand and seal this tenth day of April, one thousaud eight hundred and seventy-cight.

JOSEPH KNIGHT, (L.S.)
Signed, sealed, published, declared and acknowledged, by the abovenamed testator, to be his last will and testament, in our presence, and we each, at his request, and in his presence, and in the presence of each other, subscribe our names as witnesses.
Alexander Adam, 75 King St., Toronto.
Thomas Robson, 214 Yonge St., Toronto.
adam Clark,95 Adelalde St., Toronto.
make and declare orm following, to
in, Robert Knight, e Bank of Montreet, with all the 1ave and to hold
, Charlotte, abso-- street, together linen, china, the d dollars in Bank sanne to be in lieu

Ellen Knight, the term of her natuiu equal propor-

1, Joseph Knight, street, with all old unto my said
and dollars to my for all services in tament.
paid from moneys Toronto, the balsidue of my estate, e equally divided

Robert Ford, and testament, and reme.
and seal this tenth -eight.
ENIGHT, (L.S.)

Note. -The provisions of a will should, in every case, be so clearly defincd that there can be no mistake abont the meaning. Any person of proper age, and sound judgment may convey property by will. All legatees are debarred by law from witnessing wills in which they are interested; thelr signature would nullify the whole instrument, and no person can serve as executor if he be under 21 years of age, a lunatic, convict, imbecile, or an alien at the time of proving the will. The father may appoint his wife, son, brother, or any other relative as executor, and each in their turn may do likewise, as confidenco may exist. An addition to the will, called a codicil, designed to modify, add to, or clange previous bequests, may be executed at any time, but in every case it must be rendered as definite and precise as the will itself, witnessing included.

No. 46. Agreement for the Sale and Purchase of Land.

Tins afreement, made and executed the first day of May, one thousand eight hundred and seventy-eight, between Charles Giles, of Kingston, Ulster county, State of New York, farmer, of the first pari, and Thomas Kingman, of the city of New York, mllkman, of the second part.
Witnesseth, that the said party of the first part, for and in consideration of the sum of three thousand dollars (to him promised to bo paid), of whioh the sum of five hundred dollars is now paid, the receipt of which is hereby acknowledged, and the remaining twenty-five hundred dolurs is hereby agreed to be paid at the time tho deed hereinafter mentioned is given, hath contracted and agreed to sell to the said party of tho second part, all that certain piece, parcel, or tract of land situate in the town of Kingston, county of Ulster, and State of New York, aforesaid, known and described on the map made by Thomas Adams, surreyor, and filed in the Clerk's office of the said county. October 5, 1830, [by the number (47) forty-seven,] and bounded and described as follows: (Here describe propert y). And the said party of the first part agrees to execute and deliver to the said party of the second part, a warranty deed, with full covenants, for the said described lands : Provided, and upon condition nevertheless, that the said party of the second part, his heirs and assigns, pay to the said party of the first part, his heirs or assigns, for the said land, the sum of three thousand dollars, lawful money of the United States, in the way and manner following, to wit:
(Here specify the amount and dates of payments.)
And the said party of the second part, for himself, his heirs, executors, and administrators, doth covenant and agree, to and with the said party of the first part, his heirs and assigns, that the said party of the second part will pay the said several sums as they become due, without any deduction for taxes or assessments whatever: And it is further agreed between the parties to these presents, that, if defanlt be made in fulfilling this agreement, or any part thereof, on the part of the said party of the second part, then, and in such case, the said party of the first part, his heirs and assigns, shall be at liberty to consider this cancelled, and the money already paid forfeited, and to dispose of the said land to any other person in the same manner as if this contract had never been made.

In witness whereof, we have bereunto set our hands and seals the day and year first above written.
$\left.\begin{array}{c}\text { Signed, sealed, and deliv- } \\ \text { ered in presence of } \\ \text { STEPEEX HAMILTON: }\end{array}\right\}$

CHARLES GILES. (L.S.)
THOMAS KINGMAN, (L.S.

No. 47. Power of Attorney, General Form.

Know all men by these presents, that I, Robert (iraint, of Brooklyn, in the county of Kings, and State of New York, merchnnt, have made, constituted and appointed, and by these presents do make, constitute and appoint, Thomas Bamerman, of the city of Hamilton, in the county of Wentworth, and province of Ontario, a true and lawful attorney for me, and in my name, place and stead, and in my behalf, to (here insert the duties to be performed), hereby giving and granting unto my said attorncy full prwer and authority in the prenises to use all lawfil means in my nam: ind for my sole benefit, for the purposes aforesaid. And generally to do and perform all and every act and thing whatsoever, requisite and necessary to be done in and about the premises, as fully to all intents and purposes as I might or could do if personally present, with full power of substitution and revocation, hereby ratifying and confirming all that my said attorney, or hissubstitute, shall lawfully do, or cause to be done, by virtue hereot.

In witness wheneof, I have hercunto set my hand and seal this first day of May, one thousand eight hundred and seventy-eight.

ROBERT GRANT, (I.S.)
Sigued and sealed in presence of $\}$ David Scotir.
Note.-In cases where the attorney is empowered to sell land and grant deeds, the power of attorney must be placed on record in the County Register's offlce.

No. 48. Agreement for Building a House.

Anticles of Agreement, made the first day of June, one thousiud cight hundred and seventy-eight, between John Hall, of Lockport, in the county of Niagarn, and State of New York, of the first part, aud George Hunter of the said town, county and State, of the second part.

Witnesseth, that the said John Hall, party of the first part, for considerations hereinafter noted, contracts, bargains, and agrees with the said George Hunter, party of the second part, his heirs, assigns, and administrators, that he the said IIall, will within four months, next follow. ing this date, in a good and workmanlike manner, and according to inis best skill, well and substantially erect and finish a three-story brick dwelling house on lot No. - street, which said house is to be of the following dimensions, with brick, stone, lumber, and other materials, as described in the plans and specifications hereunto amexed.
(Here describe buildings, material, plan, de., in full.
In consideration of which, the said George Hunter does, for himself and legal representatives, promise to pay to the said John Hall, his heirs, executors, and assigns, the sum of six thousand dollars, in the way and manner following, to wit: One thousand dollars at the beginning of said work, one thousand dollars on the first day of August next, one thonsand dollars on the first day of September next, and the remaining three thousand dollars on the completion of the building.

It is also agreed that the said John Hall, or his legal representatives, shall furnish, at his or their expense, all brick, stone, lime, lumber, doors, blinds, glazed sash, window frames, nails, paint, and other materials required for the building and finishing of said honse.

It is further stipulated that in order to be entitled to said payments, the said John Hall, or his legal representatives, shall, according to the architect's appraisement, lave expended, in labor and material, the value of said payments, on the house, at tlme of payment.
t (Grant, of Brook. merchant, have do make, constiHamilton, in the and lawful attorny behalf, to (here granting unto my to use all lawful purposes aforesaid. thing whatsoever, remises, as fully to nally present, with ying and confirm. wfully do, or cause
d and seal this first eight.
GRANT, (L.S.)

1 to sell land and on record in the
une, one thousand of Lockport, in the t part, and George nd part.
first part, for cond agrees with the rs, assigus, and adonths, next followd according to his 2 three-story brick d house is to be of nd other materials, mnexed.
in full.
does, for himself ohn Hall, his heirs, res, in the way and e beginning of said st next, one thonhe remaining three
al representatives, me, lumber, doors, ther materials re-
to said payments, 1, according to the and material, the ellt.

And for the true and faithful performance of all and every of the corenants and agreements above mentioned, the parties to these presents corenant and agree, each with the other that the sum of one thousand doliars, as fixed, settled, and liquidated damages, shall be paid to the other by the failing party within one month from the the of so falling.

In witness wheheof we have hereunto set our hands the year and day first above written.

JOHN HALL

GEORGE IUUNTER.
Note.-Agreements should be executed in Iuplicate so that each party may hold a copy. If erasures or interlineations are mado in agreemeuts, contracts, deeds, mortgages, etc., the fact should be stated on the paper that they were so done before tho parties sigued it. Anounts and dates should always be written out, and not expressed in figures. F'raud ritiatcs every contract into which it enters. Sce legal brevities on page 587.

No. 49. Assignment of a Patent-Right.

Wimereas I, David Ritchie, of the city of Newark, in the county of Essex, and State of New Jersey, engineer, did obtain letters-patent of the United States for improvements in steam-engine governors, which letters-patent bear date the first day of April, one thousand elght hundred and seventy-eight; and wherens Peter Jackson, of the city of Toronto, in the comnty of York, and I'rovince of Ontario, is desirous of purchasing from me all the right, title, and interest, which I have in and to said invention, in consequence of the grant of letters-patent therefor:

Now this Indenture wirnesseth, that for and in consideration of the sum of oue thousand dollars, lawful money of the United States, to me in hand paid, the receipt of which is hereby acknowledged, I have assigned, sold, and set over, and do hereby assign, sell, and set over unto the said Peter Jackson, all the right, title and interest which I have in the said invention, as secured to me in the said letters-patent (for, to, and in the several provinces of the Dominion of Canada, and in no other place, or places.)

The same to be held and enjoyed by the said Peter Jackson, for his own use and behoof, and for the use and behoof of his legal representatives, to the full end of the term for which the said letters-patent are or may be granted, as fully and entirely as the same would have been held and enjoyed by me had this assigument and sale not been made.

In testimony whereof, I havo hereunto set my hand and seal this first day of May, one thousand eight hundred and seventy-eight.

DAVID RITCHIE, (L.S.)
Signed, sealed, and deliv-)
ered in presence of
Robert Logan,
John A. Bruce.

No. 60. Form of Afflavit.

$\left.\begin{array}{l}\text { State of Vermont, } \\ \text { Countr of Rutland. }\end{array}\right\}$ to wit.
Rnbert 1 on, of the town of Whitehall, in the county aforesaid, hei" duly sworn, says (here state the facts), and further says not.
in to this fifth day of
ROBERT DAWSON. October, A.D 1877, before me.

John Wallace, Commissioner of Deeds.

No. 51. Partnership Agreement.
This Agreement mado this first day of Jamary, 18:8, between Thomas Murray of Toronto, York connty, Province of Ontario, Dominion of Canada, of the first part, and Johm Campbell, of the same place, of the second part : witnesseth : That the said parties agree to associnte themselves as co-partners, for a period of seven years from this date, In the business of buying and selling groceries and such other goods and commodities as belong in that line of business; the name and style of the firm to be "Marray \& Camplecll." For the purpose of condncting the business of the above named partnership, the said Murray has at the date of this agreement, invested four thousand dollars us capital stock, and the said Campbell has paid in the like sum of four thousand dollars, both of which amomuts are to be expended and used in common, for the mutual advantage of the partics hereto, in the management of their business. It is further agreed by both parties hereto, that they will not, while associated as co-partners, follow any avocation or trade to their own private advantage ; but will throughout the entire period of copartnership, put forth their utmost and best efforts for their mutual advantage, and the increase of the capital stock.

Tinat the details of the business may be thoroughly understood by each other, it is agreed that during the aforesaid period, accurate and full book accounts shall be kept, in which each partner shall record, or canse to be entered and recorded, full mention of all monies received and expended, as well as every article purchased and sold belonging to, or in any wise appertaining to stid parthership; the gains, profits, expenditures and losses being equally divided between them.

It is further agreed that once every year, or oftener, should either party desire, a full, just, and necurate exhibit shall be made to each other, or to their executors, administrators, or assigns, of the losses, receipts, profits, and increase made by reason of, or arising from, such copartnership. And after such exlibit is made, the surplus profit, if such there be, resulting from the business, shall be divided between said partners, share and share alike. Either of said partles shall be allowed to draw a sum, first year, not exceeding nine liundred dollars per anmum, from the capital stock of the firm, in monthly instalments of serenty-five dollars each, which amomb may be varied, more or less, by subsequent agreement. And further, sihould either partner desire, or should death of either of the parties, or other reasons, make itnecessary, they, the said copartuers, will each to the other, or, in case of death of elther, the surviving partner to the executors or administrators of the party deceased, make full, accurate, and final :ccomet of the condition of the partnership as aforesaid, and will farly and accurately adjust the same. And, also, upon tiking in inventory of the said capital stock, with insrease and profit thereon, which shall appear or 's found to be remaining all such remainder shall be equally apportioned and divided betu :en them, the said copartners, their ececutors, or administrators, share and shars alike.

It :anslso agreed that in case of a misunderstanding arising with the partners aforesaid, which camot be settled between themselves, such difforeice of opinions shall be settled berbitritors upon the following condstions, viz. : Each party to choon one arbltrator, which two this elected shall choose a third; the three thas chosen to determine the inerits of the case, and adjust the basis of a settlement.

In withess whercof the partieanforesaid hereunto set their hands and senls the day and year first above written.

Signed in the presence of John Stewart,
Gfo. Smith.

Thomas Murray, John Campbel.
$\left[\begin{array}{ll}\text { L. } & \text { S. } \\ \text { L. } & \text { S. }\end{array}\right]$

No. 52. Assignment for the Benefit of Creditors.

T, 18:3, betwee» Ontarlo, Dominthe same place, agree to ussociate from this date, in other goods and ame and style of se of conducting id Murray has at lollars as capital of four thousand used in common, management of hercto, that they rocation or trade the entire period for their mutual
hly understood ly iod, accurate and er shall record, or mies received and 1 belonging to, or ns, profits, expen-
uer, should either be made to each , of the losses, reing from, such colus profit, if such betw cen said partalll be allowed to lollars per ammm, ints of seventy-five ess, by subsequent e, or should death mry, they, the said of elther, the sure party deceased, n of the partneradjust the same. 31 stock, with inid to be remaining divided betw: ca trators. share and
sing with the partelves, such diffore following conditwo thit:s electod bine the incrits of
et their hands and

Murray, [L. S.] mipmel.

Know all men by these presents, that I, John Currie, of the Town of Rutland, County of Rutland, and State of Vermont, for value received, have sold, and by these presents do grant, sell, assign, and convey unto John Davidson, of the same place, all the accounts, debts, dues, notes, bills, and demands ennmerated and specified in the schedule herennto anncxed, and marked "Schedule A.;" (the schedule should state the assimn:.ient io which they belong, and be dated and signed by the parties jor the purpose of identification), to have and to hold the same, unto the said John Davidson, his heirs and assigns: In trust to collect, sue for, demand, receive, and recover all such sums of money as may be due, oring, and payable thereon; and after paying all reasonable and proper costs, charges and expenses, to pay to each and all of my crediwrs the full sum that may bis duo and owing to them from me, of whom the said John Davidson is one, and a full and complete list of whom with the trie anount due to each, is contained in the schedule hereto annexed, marked "Schedule B. ;" and if the proceeds of the sald notes, accounts, bonds, and so forth, be not sufficient fully and entirely to pay off and satisfy each and all of my creditors, then to pay them pro rata in proportion to the amount due and owing to each. And if the proceeds as aforesaid shall be more than sufficicnt to pay crery one of my creditors, then to pay and return to me the balance that may be left, if any, after paying all my creditors as aforesaid.

And I do hereby nominate, constitute, and appoint, the said John Davidson my true and lawful attomey, irrevocable, in my name or otherwise, for the purpose aforesaid, to ask, demand, sue for, collect, receive, and recover, all and singular, such sum or stams of money as now or hereafter may become due, upon, for, or on account of any of the property, effects, things ln action, or demands ahove assigned ; giving and grauting unto my said attorney full power and anthority to do and perform every act, deed, and thing: requisito and necessary in the premises; as fully, to all intents and purposes, as 1 might or could do if this assignment had not been made ; with full power of substitution and revocation, hercby ratifying and confirming all that my said attorney or hils substitute may lawfully do, or cause to be done, in the prenises, by virtae hereof.

In witness whereof I have hereunto set my hand and seal this fifth day of October, 1878.

Signed, sealed, and delivered,
Junin Ccrare, [L. S.]
In the presence of
Ronent Palmen,
Peterf. Sileldon,

No. 53. Form of Composition reith Creditors.

Note.-The following shows the form ne a contract between a debtor who is only able to pay a portion of his debts, with his creditors, whereby they agree to accept a certain sum less than the original claim; and, upon receipt thereof, not to prosecute or trouble tha debtor on account of his debt.

Koui Alf Men ny these Presents, that whereas Johin Smashwell, is jn: ily indebted to us, Robert Rogers, Andrew J. Reid, and Heury Midcon, ereditors of tho said John Smashwell, in divers sums of money, which ho has become unable fully to pay and dischargo; thereforo we, the sald creditors, do consent und agree with th' - rid John Smashwell, to demand less than the full amount of our respective clains, and to accept of ten cents for every dollar owing to each of us the said creditors of
the said John Smashwell, in full satisfaction and discharge of our ser. eral claims and demands ; the said sum of ten cents on th dollar, to be paid to each of us, our heirs, executors, and administrators, within the space of thirteen months from the date hereof. And we, the creditors aforesaid, do further severally and respectively coveuant and agree with the said Johm Smashwell, that he may, within the said term of thirteen months from the date hereof, sell and dispose of his goods and chattels, wares and merchandise, at his own freo will and pleasure, for the parment of the ten cents on the dollar of each of our respective debts, and that neither of us will at any time hereafter suc, arrest or attach the said John Smashwell, or his goods and chattels, for any debt now duo and owing to us or any of us, provided the said John Smashwell does well and truly pay, or cause to be paid, the said ten cents for every dollar of each of our several and respective claims against him. And all and each of the covenants and agreements herein contained shall extend to and bind our several executors, adininistrators, and assigns.

In witness whereof, we hereminto set our hands and seals this fiftecuth day of November, one thousand eight hundred and seventyeight.

Signed, sealed, and delivered,
In tho presence of
Thomas Barclay, John Thompson.

Robert Rogers, [I.S.]
Andrew J. Reid, [L.S.]
henty Middefton. [L.S.]

No. 54. Agreement for the Hiring of a Clerk or Workman.

This agreement made the first day of October, one thousand cight hundred and seventy-eight, between Andrew Scrvlee of Niagara Falls, in the cominty of Niagara nud State of New York, of the first part, and Thomas Merchant, of the city of Buffalo, in the county of Eric and State aforesaid, of the second part-

Witnessetir, that the said Andrew Service has agreed to enter the service of tho said Thomas Merchant as clerk (journeyman, mechanic or laborer, as the case may be) in tho store, (or factory, \&c.) of the said Thomis Merchant, and faithfully, honestly, carefully, and truly obey, and to the utmost of his power serve tho best interests of the said Thomas Merchant, for and during the space of one year from the date of this agreement, for the compensition of six hundred dollars per annum, payablo quarterly.

And the said Thomas Merchant covenants with the said Andrew Ser. vice, that he will receive him as his clerk (or journeyman, \&c.) for the term of one year as aforesaid, and will pay him for his services as such clerk (or journeyman, \&c.) the sum of six hundred dollars annually in quarter yearly payments.

In witness whereof wo have heremento set our hands and seals the day and year first above written.

Signed, sealed, and delivered,
In tho presence of John W. Watson, Wilhiam Strong,

Andrew Service, [L. S.] Thomas Merchant. [L. S.]

Noтe.-To prevent troublesome lawsuits and quarrels, it is often desirable to fix the damages for the riolation of contracts. This may be done by inzerting the following, just before the witnessing clause.

And it is furtaer agraed between the parties hereto, that the party that shall fail to perform this ugreement on his part will pay to the other the Jull sum of sixty dollars, as liquidated, fixed, and settled damages.
harge of our ser. on a dollar, to be trators, within the we, the creditors ant and agree with d term of thirteen goods and cliattels, asure, for the payspective debts, anid rest or attach tho any debt now duo n Smashwell does ents for every dol. inst him. And all tained shall extend 1 assigus.
nds and seals this dred and sevent:-

Rogfrs, [L.S.] N J. Reid, [L.S.] Middereton. [L.S.]

nWorkman.

me thousand eight e of Niagara lialls, : the first part, and ty of Erie and State
greed to enter the eyman, mechanic or $y, d c$.) of the said y, and truly obey, iterests of the said ear from the date of dollars per ammum,
e said Andrew Ser. eyman, \&c.) for the his services as such dollars amnually in
ds and seals the day
envice, [L. S.] erchant. [L. S.]
rrels, it is often derets.' This may be essing clause.
ies hereto, that the his part will pay to d, fixed, aud settled

No. 55. Apprentices' Indentures.

This Indenture Witnessetir, that Robert Hill, now aged sixteen ycars, by and with the consent of his father, Thomas Hill, hath voluntarily; and by his own free will and accord, put and bound himself apprentice unto Moses Goldsmith, of No. - Maiden Lane, New York, jeweller, to learn the art, trade, and mystery of the business of working and mannfacturing the precious metals, and as an apprentice to serve from this date, for and during, and until the full end and term of six years next ensuing, during all of which time the said apprentice his master faithfully, honestly, and industriously shath serve, his secrets keep, all lawful commands obey, and at all times protect and preserve the goods and property of his said master, and not suffer or allow any to be injured or wasted ; he shall not buy, sell, or traffic with his own goods, or the goods of others, and not be absent from his master's service day nor night without leave, and in all things belave himself as a faithfu! apprentico ougit to do during the said term. And the said master shall use and employ the utmost of his endeavors to teach or causo him, the said apprentice, to be taught, or instructed in the art, trade, and mystery of a jeweller as aforesaid, (here insert conditions as to board and lodyings, rate of wages, time of payment, \&c., as ayreed beticeen the parties.)

And for the true performance of all and singular the covenants and agreements aforesaid, the said parties bind themselves firmly, each to the other firmly by these presents.

In witness whembor, the partles aforesaid have hereunto set their hands and seals the twenty-fifth day of October, one thousand eight hundred and seventy-eight.

Signed, sealed and delivered,
In the prosence of
William Gordon,
Thomas Workman.
I do hereby consent to and approve the binding of my son, Robert hill, as in the above indenture mentioued.

Thomas IIfl.

No. 56 . Agreenvent of Teacher with School Trustecs.

This agreement, made this first day of November, one thousand eight hundred and seventy-eight, between Peter Whatkby, of the villago of Stanley, comnty of York, Province of New Brunswick, Dominion of Canada, school teacher, of the first part, and David Brown, Johm Sansom, and Willian Currie, of the village, county, province, domiuion aforesaid, school trustees, of the second part.

Witnessetir, that tho said Peter Whackbo; holding a certificato from tho proper authority as a duly qualified fist class teacher, has agreed to enter the service of the said school trustees as teacher in tho common school in sald village, and that lie will faithfully, honestly, and diligently render his best services in teaching and instructing the ehildren, and all others in attendance on said school, imparting to them, according to the best of his ability, a thorough lonowledge of reading, writing, arithmetic, grammar, and the other English branches usually turght in common sehools, and further, that he will, by every means in his power, maintain good morals, order, and discipline, and discontenance hmmorality among the attendants at said school, and will faithfully ober all reasonable wishes and commands of the snid trustees, for aud during the space of one year from the first day of December next, for the compensation of twelve hondred dollars per amum, payable quartenly.

Aud the said David Brown, John Samsom, and Willam Currle, covenaut
with the said Peter Whackboy that they will engage him as teacher in said school for the term of one year as aforesaid, and will pay him for his services as such teacher the sum of twelve hundred dollars per anuum, in quarter yearly payments.

In witness whereof, we have herenuto set our hands and seals the day and year first above writtell.

Signed, sealed, and delivered,
In the presence of
David R. Moore,
David Potter.
'Peter Whackboy, [L. S.] David Brown, [L. S.] John Sansom, [L. S.] William Curbie, [L. S.]

No. 57. Form of Marriage.

In conformity to an orderly and long established custom the ceremony of marriage is usually performed either by a clergyman or civil magistrate ; the latter may be a justice of the peace, a justice of the supreme court, a judge of an inferior court, the mayor of a city, or a police justice, as the law of the land may enpower and authorize chem to solemnize marriage. In Canada and some of the States, a license to marry must first be procured of the city, town, or county clerk, or other agent appointed for that purposo, duly authorizing the clergyman or magistrate to marry the afflanced parties. Marriago is a civil contract, and may be entered into by parties capable of consenting thereto. It camot be entered into by idiots or lunatics. When brought about by force or fraud, it is also void. Marriage is likewise prohibited between near relations. The parties must be of the age of consent, which is generally fourteen in males, und twelve in females. No particular ceremonies are enjoined by the common law to the valid celebration of the marriage rite, but the following form is in common use by magistrates in the United States.

Form of Marriage.

(The man and woman standing, the justice will say to the man:)
"Will you have this woman to be your wedded wife, to live together after Gon's ordinance, in the holy estate of Matrimony, to love her, comfort her, honor and keep her, in sickness and in health, and forsaking all others, keep thee only unto her, so long as you both shall live ?"
(Nert, addressing the woman, the justice will say:)
"Will you have this man to be your wedded husband, to live together after Gon's ordimance, in the holy estate of matrimony, to love, honor, and keep him, in sickness and in health, and forsaking all others, keep thee only to him so long as you both slmillive?"
(Each party responding in the affirmative, the justice will then direct them to join liands and say:)
"By the act of joining hands you take upon yourselves the relation of husband and wife, and solemuly promise and engage in the presence of these witnesses, to love, honor, comfort, and cherish each other as such, so long as you both shall live ; therefore in accordance with the laws of the State of - I I he hereby pronounce you husband and wife."

No. 58. Short Furm of Marriage.
(On the contracting parties rising and joining hands the jusite will say:)
'By this act of joining hands you do take upon yourselves the relation of husbaud and wlife, and solemnily promise and enguge, in the preseuce of these wituesses, to love, houor, comfort, and cherish each other as
him as teacher in 1 will pay him for ed dollars per anuds and seals the
ckboy, [L. S.]
vN, [L. S.] M, [L. S.]
Jheie, [L. S.]
tom the ceremony n or civil magis. e of the supreme or a police justice, to solemnize marmarry must first r agent appointed agistrate to marry d may be entered ot be entered into fraud, it is also lations. The parfourteen in males, 3 enjoined by the te, but the follow. d States.
to the man:)
e, to live together , to love her, comth, and forsaking " shall live?"
l say:)
Id, to live together y, to love, honor, s all others, keep
ce will then direct
selves the relation re in the presence ish each other as cordance with the you husband and
ds the jusitice will
selves the relation e, In the presence ish each uther as
anch, as long as you both shall live ; therefore in accordance with the laws of the State of - I do hereby pronounce yout husband and wife."

The form used by clergymen varies but very slightly from the foregoing ; to all intents and purposes it is the same, although the wording may be modified accordiug to the mode prescribed by the denomination to which the clergyman may belong. The marriago license must be returned by the clergyman or magistrate to the issuing clerk for record, whoshoild also at the time of issue, furnish a blank marriage certificate to be filled by the magistrate or clergyman at the conclusion of the ceremony. The certificate, which should, for obvious reasons, be always most carefully preserved by both husband and wife, may be in the following form

No. 50. Marriage Certificate.

MARRIAGE CERTIFICATE.

State of Michigan,

This certifies

That John Goodfellow, of Chicago, in the State of Illinois, and Sarah Lovejoy of Detroit, Wayne county, State of Michigan, were at the house of John Splicewell, in the said city and county by me joined together in

HOLY MATRIMONY,

On the tenth day of January, in the year of our Lond, one thousand eight hundred and seventy-seven.

In the presence of Timothy Courtwrle, Pastor of the First - Church, Thomas Hopegood.

> Gamalier, Banctext, Pastor of the First Detroit.

On Legar Advice. - Lord Mansfield considered a clear understanding of the duties of men in society as the true basis of legal science. He says: "I may cite one of the ablest lawyers of this century, who, to strong natural sense, united to largest exporicuce, for a similar ophionmy honored master, the late Mr. Tidd. I well remember the advice he gave to a pupil who was about to commence practice: 'When you are called upon for your opinion, make yourself perfectly familiar with all the facts, and tinen eonsider what is right. You may be pretty sure that is the law, without looking much into cases. When once the facts are well ascertained, few persous differ in opinion as to the result of a civil action.' "'

Prayer of Dr. Samuel Johnson when he was about to commence the study of Lau, September 26, 1765.
Almighty God, the Giver of Wisdom, without whose help resolutions are vain, without whose blessing study is ineffectual, enable me, if it be Thy will, to attain such knowledge as may qualify me to direct the doubtful and instruct the ignorant, to prevent wrong and terminate contention; and grant that I may use that knowledge which I shall attain to Thy glory and my own salvation, for Thy blessed Name's sake. Amen.

Auatria, Gold, Quadruple Ducat,
". Bucat.
" Soverelgn (for Lombardy),
". Sllyer, Rix Dollar.
"i" Florin,
" " 20 Kreutzera,
Lira (for Lombardy)
Baicn, Gold, 5 Gulden,
" Sllver, Crown,
Bavaria, Gold, Ducal, or Florin,
" ${ }^{2}$ silver Crown,
". ". Florin,
." ". 0 Kreutzera
Belgium, Gold, 20 Franc piece, ${ }_{25}$ Franc piece
". Silver, 5 France.

* * 2K Franca.

42 Francs,
Bolivia, Gold, Doubloon,
": Sllyer, Dollar,
" 4 D Dollar (llebased 1830),
Brazil, Gold. Piece of 6,400 Relia,
"' Silver, 1,20 Reia,
.، ${ }^{\prime \prime}$,
"" " 400 Rels,
Bremen Silver, 33 Grote,
Britain, Gold, Sovereign,
". Sulver, IIalf Crown,
Brunswiek Gold, Ten Thaler,
" Silver Thaler
Central Anverica, Gold, Doubloon,

- Sllver, Dollar

Costa Rica, Gold, Half Doubloon, 1850, silver, New Real.
Chilli, Gold, Doubloon (hefore 1825), ". Doubloon (since 1835),

* Silver, Dollar,
" $\because \quad 4$ Dollur,
Denmark, Gold. Doub Fred. or 10 Thal.
"ï Silver, Rigsbank Daler,
" \because : Specie Daler.
" " 82 Skillinga,
Ecuador, Gold, Y Doubloon,
Siver, ADoliar
Egypt, Gold, 100 Pinatera,
France, Gold, 20 Francs,
\because Silver, 5 France,
Frankfort, Sllver. Florin,
Greece, Gold, 20 Drachma,
" Silver. Drsehm.
Guiana, Br., Silver. Guilder,
Hanover, Gold, 10 Thaler,
\because silver. Thaler (Ane silver),
." Thaler (750 fine).
Hayti. Silver, Dollar (100 centimea),
Hesse Cassel, Silver Thaler,
The quarter of wheat is equal to the quarter of a ton of 2240 lbs . or 560 lls .; 70 lbs. In weight are an English bushel of wheat, while 60 lbs. of wheat make our bushel ; so that the U.S. Wheat bushel is just 6 -it the of the English or imperial, and a quarter of wheat in England is equal to $91 / 8$ bushels in the United States, though in capacity to only $81 / 4$ bushels.
The barrel of flour containe 5 Winchester bushels, and weighs, net 1961 lbe . The barrel of Indian corn contains $31-8$ bushels. The weight of a gallon of molasses is usually 11 lbs. but sometimes 10 or 12.

1pee, ${ }^{\text {phaler, }}$	0 7 7
m,ar. $1: 5$	13. 530
av. \quad1 0 09 18	
	$2{ }^{265}$
tiders, 4007	
juiklers, $\quad 12$	1200
Jullier. 040	
aty-five cents, 0	0000
uilders, 0882	
ding the silver, 15 cf 0	
the the stand., 1.5	
uding the silver, 15360	
llar, or 10 Reals, $0 \leq 00$	
	1030
- $\begin{aligned} & 2 \\ & 0\end{aligned} 230$	
Lima, to 1830, 1 , is is	
01837.	
i., Arequipa "0 ${ }^{\text {a }}$ n	
tlar Pesco, 0	049
n, ${ }_{0}$	
Own, $\quad 056$	
Frederixk,	
ler, average, 0110	
Thal. 3Y Gulden ${ }_{1} 1038$udi,	
-10 Scudi), $\quad 030$	
coty, 1135	
ees,	
re, ${ }^{0} 83{ }^{31}$	
haler,	
6, Thaler 0000	
(XIV E. M.)	
publoon). ${ }^{3} 90$	
eles Thaler, 0520	
ters (new), anters, 0	
orin,	
of 2240 lbs . or 660 lbs ; 60 lbs. of wheat make ths of the English or to $91 / 3$ bushels in the	

d weighs, net 196 lbe . weight of a gallon of

STATE AND PROVINCIAL LATS REGATDING LEGAL AND BPECTAL INTEREST, THE LIMIT OF TIME IN ACTIONS FOR DEBT, \&C., together with the largest sums obtainable by legal proCESS BEFORE A JUSTICE OF THE PEACE IN VARIOUS STATES, TERRITORIES AND PROVINCES.

Sutes and Territories.									Penalty for Usury.
Alabama,	\$100	10	3	6	20	1	8	8	Forfeit all Int
Arkansas,	500	10	3	5	10	1	6	10	For. prin. and int.
drizona,	300	5	2	4			10		None.
Callorado,	300	3	2	6	5 3	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	10		No
Commecticut,	100	17	6	6	20	3	7	7	For. excess of int.
Dakota Ter.,	100	20	6	6	20	2	7	12	Forfeit all int.
Delaware,	100	2	3	6	20	1	6	6	Forfeit prill.
Dist. of Columbia.		12	3	3	12	1	6	10	Forfeit all int.
Florida,	50	20	4	5	20	2	8		None.
Georgia,	100	20	4	6	7	1.	7	12	Forfeit all int.
daho Ter.,	100	5	2	4	5	2	10	24	Fine andimpris't
Llinois,	200	10	5	10	20	1	6	10	Forfeit all int.
Indiana,	200	20	6	20	20	2	6	10	Forfeit ex. of int.
lora,	300	10	5	10	20	2	6	10	Forfeit all tht.
Kansas,	300	15	3	5	5	1	8	12	For. all int. over 12,
Kentucky,	50	15	2	15	15	1	6	8	Forfeit all int.
Louisiana,	100	20	3	5	10	1	E	8	Forfeit all int.
Maine,	20	20	6	20	20	2	6		Sone.
3aryland,	100	12	3	3	12	1	6	6	Forfcit ex. of int.
Massachusetts,	300	20	6	20	20	2	6		None.
MichIgan,	300	10	6	6	6	2	7	10	For. ex. over 7 p.c.
Minneeota,	100	6	6	6	10	2	7	12	None.
Mississippl,	150	7	3	6	7	1	6	10	For. excess of int.
Missouri,	300	10	5	10	20	2	6	10	Porfeit all int.
Sontana Ter.,		10	5	10	10	2	10		None.
Sebraska,	100	10	4	5		1	10	12	Forfeit all int.
Nerada,	300	4	2	4	5	,	10		Nonc.
Sew Brunswick	20		6	6	3	1/2	6		None.
Sew Hanipshire,	13.33	20	6	6	20	2	6	6	For 3t the ex \& costs
New Jersey,	100	16	6	6	20	2	7	7	Forfeit of all int.
New Mexieo,	100	10	0	10	10	1	6		None.
Sew York,	200	20	6	6	20	2	7	7	For of contract.
North Carolina.	200	10	3	,	10	3	6		Forfeit of all int.
Ohio,	300	15	6	15	15	1	6	8	For. ex, over 6 p.c.
Ontario, Can.,		20	6	6	20	2	6		None.
Oregen	250	20	6	6	10	2	10	12	For. prin. and int.
Pennsylvania,	100	20	6	6	20	1	0	6	Forfcit ex, of int.
Quebec, Call.;		30	5	5	30	1.2	6		Nonc.
Rhode Island,	100	20	6	6	20	1	6		Nonc.
South Carolina,	100	20	6	6	20	2	7		None.
Tennessee,	500	6	6	6	10	1	6	10	Forfeit ex. of int.
Texas,	100	5	2	4	10	1	8	12	14
Utah Ter.	300	7	2	4	5	1	10		None.
Vermont,	200	8	6	14	8	2	6	6	Forfeit ex. of int.
Virginia,	50	20	5	5	10	1	6	6	Forfeit of all int.
Wash. Ter	100	6	3	6	6	2	10		None.
West Virginia,	100	10	5	10	10	1	6	-	Forfeit ex. of int.
Wleconsing	300	20	6	3	20	2	7	10	Forfeit of all int.
Wyoming Ter.,	100	15	6	15	15	1	12		None.

Condensed synorsis of the lafts pertaining to the COLLECTION OF DEBTS,

Throughout tife United States and Dominion of Canada,

Presenting a digest of the laws of each State, Territory and Province, relat ing to Exernptions irom Forced Sale, Mechanics Lien, Arrest and Attach ment for Debt, Assignments, Garnishment, Bills and Notes, Jurisdictiono Courts, Judgments, Executious, Chattel Mortgages, Deeds, Rights of Married Women, Wills, \&c.

The immense utility of the following compilation will be self crident 4 every Mechanic, Farmer, Trader, Merchant, Business Man, Professiona Gentleman and Householder, whose interests are in the slightest degre identified with, or dependent upon, the supreme rule of law and orde throughout the community. The cnormons losses resulting from ignorame of the law on the aforesaid subjects are absolutely incalculable, and th diffusion of information bearing upon them camot become too gencral. Th coercive appliances of the Law are regarded with much disfavor by schem ing and dishonest debtors, for it is well settled upon sound principles an the highest authority, that every bargain to do anything which the law for bids, or the omission to do anything which the law cnjoins, is null am void. No contract can be enforced which contravenes the principles of the common law, the provisions of a statute, or the general or public policy of th law. In Nellis vs. Clark (4 Hill's Rep. 424), it was held that the vendord real estate sold for the purpose of defrauding his creditors, could not re cover the price.

Business men, and all others having outhying debts to collect, are referre to an invaluable work entitled, The Collection Compendium, published b E. A. Smith, 516 Pine st., St. Lonis. The work presents a new and origina system for the collection of claims by means of local agents at all points the United States and Canada, upon very low stipulated rates of percentage without the intervention of third parties. With this work at land 110 ma need be at a loss to collect a debt in any part of the country (provided the debtor is reaponsible), on the most reasonable terms, and with very sligh loss of time.

SPECIAL LAWS OF ALABAMA.

[^5] Notes, Jurisdictiono ds, Lights of Married
vill be self evident 4 ss Man, Professional the slightest degret le of law and orde ulting from ignorne - incalculable, and th ome too geucral. TL h disfavor by schem sound principles an ng which the law lor enjoins, is mull an 4 the principles of th or public policy of the Id that the yendor reditors, could not re
to collect, are refere endium, published b its Ω new and origina agents at all poiutsi od rates of percentage work at hand no ma country (provided th. and with very sligh

BAMA.

erty.-By the Constity esident of this stste esident, shall be exemp issued for the collectio onstitution (1868). Exer ling and appurtenance , town or village, or y, town or village, wit upied by any residento e exempt from sale bt contracted since th extend to any mortgas ion of such homestes d without the voluntar stead of a family, afte debts contracted sing ninority of the children eame shall be exemy ens ens for work done ${ }^{\text {an }}$ the mechanics' lien to

In addltion to the above, the Legislature passed an Act (approved April 23 L, 18:33, exempting by statue the personai property of any residient of thls State to the value of $\$ 1,000$, to be selected by the resident. The homestead of every residont not exceeding one hundred and sixty acres of land, and appurtenances thereon, to be selected by the owner thereof, or in lieu thereof, at the option of the orner, any lot in a city, town or viliage, with the dwelling and appurtenances thereon, said lot not to exceed $\$ 2,000$ in value.
Lien of Mechanics axd Labonems.-lBy act, approved March 19th, 177s, a lien is given to laborers and employees (excent officers) of rallroads in this State, for work and labor done by them as such. Such extends to all the property, tights, effects and credits of every descripticn of such railroad companies. A lien is nlso given to all contractors, mechanies, builders, bricklayers, plasterers, painters, and every other person whatever in the State of Alabama, for work and labor done by them as such, and for materials furnished; and such lien extends to all the rights, title and interest of the person or persous for whom the work is done, or the materials furnished, in the property upon which such work is done and for which such materials are furnished, including the land upon which such property may be situated. Provided, that all the liens given under this act shall all be held to be waived, unless procecdings are commenced within six months diter the completion of such work, to enforee same. Such liens are enforced by process of attachment. (Act, approved 18th March, 18i5.)
Collection of Debts.-Attachment may issue for the collection of a debt, whether due or not for any money demand, the amount of which can be certainly scertained, to recover damages for the breach of a contract where the damages re not certain or liquidated; and where the action sounds in damages merely, upon an aflidavit made by the creditor, or his agent or attorney, that the debtor assonds, secretes himself; or resides out of this State, so that process camot be nered upon him, or is about to remove his property out of this State, whercby the plaintiff may lose his debt or be compelled to sue for it in another State; or Hat the debtor has frnudulently disposed of, or is about fraudulently to dispose oblis property ; or that he has money, property or effects liable to satisfy his debts, which he fraudulently withholds; and stating the amount due, and that the attachment is not sued out for the purpose of vexing or harrassing the debtor, upon the plaintiffs executing bond payable to the defendant in double the umount sworn to be due, or when he is unable to give bond with sumlient surety, upon making affidavit to that fact, an attachment may lisue against the state of the defendant, real and personal. Attachments auxiliary to suits pendlng may be issued on the same grounds as in original attachments, in which case the suit proceeds as if commenced by original aitachment.
Every action founded upon a contract, express or inplied, must be prosecuted In the name of the party really interested, whether he have the legal title or not, rabject to any defense the debtor may have against the payee or creditor previous whotice of transfer ; but this does not apply to bills of exchange, or instruzents payable in bank or at a designated place of payment, and commercial intruments.
Arrest in civil action or impriscnment for debt is prohibited in this State. Dutates of deceased persons are subject to the payment of all debts except certain exemptions in favor of the widow and children of the deceased.
deeds, Mortgages, Rigits of Marbied Women, Wille, etc.-Acknowl-
 drcuit courts and their clerks, chancellors and registers in chancery, judges of probate, justices of the peace and notaries public. If taken in other States of te United States, they may be taken by the judges and clerks of the federal courts, judges of any court of record in any State, notary public or commissioner spointed by the Governor of Alabama. Beyond the linits of the United States, uth acknowledgements and proof may be taken by the judge of any court of feord, mayor or chief magistrate of any clty, town, borough or county, notary poblic, or any iliplomatic, consular or commercial agent of the United States. Noother proof or anthentication of such acknowledgement is necessary than the enilicate of such offeer, unless such officer be a justice of the peace, when it must be certifled that such officer was a justice of the peace, and that his attestation is geuuine, by some judge of a court of record, or a commissioner of that tate.
All conveyances of land must be written or printed on parchment or paper, ma signed by the vendor, or by his agent, legally authorized in writing, and hea the party cannot write, his name nust be written for him, with a cross and 34 Fords as follows : "his marly;" and when so executed ruust be attented by tro winesses who can write, who must write their names witnomes thereto.

The wife may relinquish her right to dower by joining with her husband in a conveyance of land, and acknowledging same as above provided. Husband's muat join in conveyance of wife's separnte property.

If the grantor is unknown, his identity may be established by witnosecs sum. cient to satisfy the offeer before whom the acknowledgment is made.
[Acknowledgment of Husband and Wife.]
[Form.]
$\left.\begin{array}{c}\text { The State of Alabama, } \\ \text { Butler County, }\end{array}\right\}$ ss.
I (name and style of officer) hereby certlfy that Thomas Clark and Sarah Ciark, his wife, whose names are signed to the foregoing conveyance, and who aro known to me, acknowledged before me on this day, that locing informed of the contents of the conveyance, they executed the same voluntarily, on the day the same bears date.
Given under my hand this the day of , A.D. 187.
(Signature and title.)
The real and personal property of any female in this State, aequired before marriage, and all property to whieh she may bo entitled by gift, grant, dube: itance or devise, shall not be liable for any debts, obligations nind engagements of her husband, nnd may be devised or bequeathed by fier as she were a femme sole. (Const, of 1868). A conveyanco of the wife's separate estate may be made by the husband and wife jointly, signed in the presence of two witnesses, or as knowledged before any offecr authorized to tako acknowledgments of deed. Ihe husband is not liabie for the wife's debte contracted before marriage; bat she may be sued alone and her separate property is liable for tho satisfaction thereof.

When no offcer is convenient for taking acknowledgments, a deed mayw àtested by two witnesses, and afterward proved in the following form :

[Form.]

$\left.\begin{array}{c}\text { The State of Alabama, } \\ \text { Benton Counts. }\end{array}\right\}$ ss.
I (name and style of officer) hereby certify that , a subscribing witnew to tho foregohng conveyance, known to me, appeared before me this day, and being sworn, stated that
, the grantor in the conveyance, voluntarily ecuted the same in his presence, and in the presence of the other subscribing witness, on the day the same bears date; that he attested the samo in the presenc of the grantor and of the other witness, and that such other witness subscrib his name as a witness in his presence.

Given under my hand this the
day of
, A.D. 187
(Signature and title.)
The examination of the wife separate and apart from her husband is nese sary to convey the title to my homestead exempt by the laws of this Stum (Sec Exemptions). This examination may be had before a circuit or suprey juilge, elianeellor, or judge of probate or justice of tho peace, who must condan thereon a certificate in writing in the following form:
[Form.]
$\left.\begin{array}{l}\text { State of Alabama, } \\ \text { Countr of Mongan, }\end{array}\right\}$ ss.
I, , judge, (ehancelior, notary public or justice of the peace, as the may be), hereby eertify that on the before me the within nanied day of
A.D. 18 , known (or made known) to me to be vart apart from her husband, touching the signature of the within edged that she signed the same of her own free will and accord, and withoutto constraint or persuasion of her husband.

In witness whereof, I hereunto set my hand this the day of 187 A. B. (judige, chancellor, etc., as the case may be).

The widow, (if no provision is made for her by will), is entitled to one-tio part of the real estate of which her husband died seized, and to which she not relinquished the right of dower, and one-halt of the personal property there be no children or if there be but one child; if thero be moro than child, and less than fire, she is entitled to \approx child's part; if there be five child or more, she is entilled to one-fifth part in absolute right. She shall be cind of one-half of her husband's absolute estnte when he dies leaving no lineal cendants, unless the estate is insolvent. The widow may dissent from or m provislo:i in a will, and elaim ber dower, at any time vithiti one yenr afte:
her husband in a cos. ed. Husband'a must ed by witncrecs sum. it is made.
nas Clark and Sarab conveyance, and who at beling informed of o voluntarily, on tbo
A.D. 187
(Signature and title.) State, acquired befors d by gift, grant, inke. lons and engagement : as she wcre a femm to ostate may be made of two witnesses, or 4 owledgments of deeds before marriago ; bat jle for tho sattsfaction
gments, a deed may ollowing form:
a subscribing witnem te mo this day, and bety veyanco, voluntarile of the other subscribigy the saino in the prosex other witness subscrim
, A.D. 187
(Signature and title) m her husband is nese the laws of this Stum ore a circuit or supres peace, who must cnder
ce of the peace, as the A.D. 18 , 15 known) to me to be y b exainined separate 4 o within ackny 1 accord, and withouth

the

day of the case may le). 1), is cutitled to onezed, and to which she f tho personal propery there bo moro than rt; if there be five child ght. She shall be cind daes leaving no lineal vitlis ont from or
probate of the will. The widow may retain the dwelling-place, house, plantation, Sc. free from rent, until her dower is assigned her.
Chattel mortgages, are legal in this state but ars null and vold as to creditors and purchasers withont notico until recorded, unlesa the property is brought into this state subject to such incumbrance, in which case they must be registered within four months, and if such property be removed to a different county fron that in which the grantor resides, the conveyance must be recorded within ix months from the removal, or it ceases to have effect as to creditors and purchasers from the grantee without notice. All such mortgages must be recorded in the connty where the grantor resides, and also where the property is.

Whils.-Every person 21 years of nge, and of sound mind, may dispose of inds by will. Wills must he signed by the testator, or by some one in his presence ail at his request, and attested by throe or more witnesses. Noncupativo wills may be established when the testator in his last illness calls on persons to ake notice that such is his will.

SPECIAL LAWS OF ARKANSAS.

Lxemptions.-Home worth $\$ 5,000$, and personal property $\$ 2,000,160$ acres of land, or 1 town or city lot being the resldence of a honseholder or the head of a tamity, the appurtenances and improvements thereto belongthg, to the value of w, 000, and personal property to the value of $\$ 2,000$.
Meclinilics' Lien.-Mechanies, material men and laborers havo a lien on land ami improvements to the extent of their labor. The original contractor must the his lien within three months after all the things shall have been dowe or furpishei. Sub-contractors must give notice to owner, proprictor, agent or trustee, before or at the time he furnishes any of the things or performs services. Thete bave precedence over all other subsequent incumbrances.
Collection of Debts.-Attachments may issue against a defendant's property upon the following grounds; In actions for recovery of money where tho wionis against a non-resident; one absent four months ; has left the county 4t his residence to avoid the service of summons; alaout to remove, or jas removed his property, not leaving enough to satisfy plaintiff's claim ; coneals himself; has sold his property with fraudulent intent to cheat, hinder or leay his creditors, or is about to do so. Bond in double the amount claimed, ritil gond securities, residents of connty.
Boats running on the navigable water of the stato may be attached for debts pntracted by the owner, \&e., on acconnt of work or supplics furnished the pat.
No arrest is allowable for debt in any civil action or mesue, or final process, niess in cases of fraud.
In suits on open clains, the affavit of plaintiff, legally taken and certifed, ill be leemed syiclent proof unless tho defendant shall, under oath, deny the orrectress of the account, elther in whole or in part, in which event the Haintiff must prove the disputed portion of his account by other evidence.
Afidavits may be made out of the stato before a commission appointed by tho overnor of Arkansas for that purpose, or before a mayor of a city ${ }^{\text {a }}$ judge of a burt, notary publtc, or justice of the peace, whose certificate shall bo deemed rool of its oxecution. The afflavit must be signed by the affiant, the certimate of the officer shall be written separately, following the signature of tho finut, and all verifications must be attached to the instrument verificd.
Garuishment can be issued upon judgments or attachments against any peron owing the debtor, or laving his property in possession.
Assignments of bonds, bills, notes, agreements, and contracts in writing, for e payment of money or property, are permissable hero. Assignments for the Hefii of creditors are held good. Every assigument of every instrument of iting must bear date of the true day on which it was executcd.
Every protested draft or bill of exchange draws 10 per cent. interest from te of protest. If drawn upon any person in the state, it is in addition subject 2 per cent. damages, if on any person and payable in Alabama, Louisiana, ississipp, Tennessee, Kentucky, Ohio, Indiana, Illinols, and Missouri, or any Int on the Ohio river, 4 per cent. damages, if upon any person and payable any other place in the United States, 10 per cent. damages on amount specified the bill. fif owned by any person within this state, 2 per centum ; if without state, but in the U.S., 6 per centum, if without the limits of the U. S., 10
per centum. The holder shall have his action against the owner, endorser, en acceptor, or either of them, and the protest is beld to be evidence of demand and refusal of payment.

Judgments in circuit courte are a lien upon real entate in county for 3 yenre, and may be revived so as to continue lien to 10 , after which no execution can ib, sue. Judgnents in justice coirts can form a lien by filing transcript in circuit clerk's offico.

Executions cannot jesue for 10 days after judgment unless ordered by the court nnd when issued to the proper officer are liens upon property liable to seizure. If no goods be found the debtor and any one supposed to owe him, or have hit property in possession can be made anenablo to answer under oath what property or luterest he has subject to execution.

Jurisdiction of justice of the peace in matter of contract is $\$ 100$ exclusive of interest, for damages $\$ 100$; in replevin $\$ 300$ and in suits concurrent with the circuit court wihen amount does not exceed $\$ 300$. Circuit courts have juridiction of all sums over $\$ 100$, both at conimon law, and in equity.

Deeds, Momtgages, and Chattel Mortgages, Mights of Marbid Women, Wills, \&c.-Deeds must be under seal-a scrawl is a seai. Acknowledigement, if mado in this State, may be made before a justico of the peace of the county whero the land lies, judge of supreme or circuit court, or clerk of any court of record, or notary public ; if out of the United States, before the court of any State, Kingdom or Empire having a seal, or any mayor or chief oficert of any city or town having an ofticial seal, or before any offteer of any foreiga country, who, by the laws of such country, is authorized to take probate of be conveyance of real estato of his own country, if such othcer lias, by law, an of cial seal. When taken out of this State. but within the United States or their territories, before any court of the United States, or any State or territory haring a seal, or the clerk of any such court, or before the mayor of any city or tom, or chiof of any city or town having a seal of offlee, or before any commissionee appointed by the Governor of this State. The seal must be attached, when there is one, and the deedrecorded in the county where the land lies.

The following is the form when husband and wife join in the deed, the latter releasing dower. It is neccssary for husband and wife to join in, whether bind own or her property :
[Form 1.]
State of
COUNTY OF
Be it remembered that on this
day of
, one thousand eight hundred and seventy , before me, the undersigned, who are personally known to me to be the same persons whose names are subs scribed to the foregotug thatrument of writing, as parties thereto, and severalld acknowledged the same to be act and deed for the purposes and consides ation therein mentioned.

And at the same time the suid
wife of the said
baving beea by me first made ncquainted with the contents of said instrument, on an exsm. Ination separate and apart from her said husband, acknowledged that sie enf cuted the same and relinquished dower in all the property therein mentioned freely and without compuision, or undue influence of her said husband.

In testimony whereof I have hereunto set my hand and seal of oftice, the day and year first above written. (Signature.)
Married women can hold property, both real and personal, free from the debs of her husband, buta sehedule, under onth, nud veritted by the oath of soma other reputable person must be made by the husband and wife, and filed in thy recorder's oftice of the County where the property is, and of the County wher they reside. A widow shall be endowed of the third part of the property whers of her husband was seized of an estate of lulheritance at any time during th marriage, unless the same was relliquished in legai form.

A Chattel mortgage is of no avall as a lien unless recorded in the Count where the proverty is.

Wills shoula be executed as shown in Business Forra No. 45, on pp. 815-ny and established by the disinterested evidence of at least three unimpeachab winnenses to the Landwriting and signature of the testator.

10 owner, endorser, on evidence of demand

In county for 3 years, I no execution canis ig transeript in circuis
as ordered by the count erty liable to seizure. owe him, or lave his nder oath what prop
et Is $\$ 100$ exclusive n! sults concurrent with cuit courts have juriequity. giohts of Married wl ts a seal. Acknor. ustlce of the peace of it court, or clerk of any ates, beforo the court mayor or chief oficet y ofticer of any forelga to take probate of the cer has, by law, an of. United States or thelt tate or territory haring or of any city or towo, fore any conmissloner oe attached, when thets ad lies. n in the leed, the latter to join in, whether him
one thousand eight , came d, whose names are subs thereto, and severally purposes and considen
having beea istrument, on an exsm nowledged that sho ene erty therein mentioned er said husband.
nd seal of office, the dry (Signature.)
onal, free from the deby led by the oath of som nd wife, and filed in th d of the County when th of the property whery at any time during to 2. recorded in the Counts
1 No. 45, on pp. 815-44 st three unlmpeachal Or.

SPECIAL LAWS OF CALIFORNIA.

Enemptions From Forcen Sain-IIouse worth \$5,000 and personal properiy. Necessary household and kitelien furniture, one sowing machfie and one piano in actual use: wearing apparel and one month's provisions for the family. Farmbig utensils ; also 2 oxen, or 2 horses, or 2 mules, and their harmess, ons cart or wagon, and food for such oxen, horses or mules for one month; also seed to $\$ 200$ in value. 'Iools or implements of an artisan necessary to carry on his trade; the seal of n notary ; the histruments of a plysicime, dentiat and murveyor necessary to the excrcise of their profession, with their professional llbraries, and the professional Hibrarles and furniture of lawyers, juilges and ninisters of the gospel. The cabin of a miner, not exceeding fin valuo the sum of 8500 , also his appllances for mining, not to exceed in the aggregate tho sum of $\$ 500$, anid 2 horses, mules or oxen, with thetr harness, and food for such oxen, horses or mules for one month. Four cows with their sucking calves, nul 4 logs with their stecking phas ; poultry not excecding in value $\mathbb{S} 50$. The earnings of the judgment debtor for his personal serviees rendered at any timo withia 5 days next preceding the levy. The shares held by a momber of a homestead assorlation, not exceeding in value $\$ 1,000$, if the person holding the shares is not the owner of a bomestend undor the laws of this State. All moneys, benefts or ammities growIng out of any lifo insurance on the life of tho debior, in muy company corporated under the laws of tho State, if the ammal preminms pald do not execed 8500 . Homesteal for tho heal of a famlly, not to exceed $\$ 5,000$ in value.

Mrehanics' lifen.-Mechanies and material men have a lien for labor and materials on tho land and improvements to the extent of their claims. Tho original contractor must flle his claim within (i) days, and the laborers within 30 days, after the delnt accrued. This lien attaches from the commencement of tho work, and has preceduro over any subsequent or previous unrecorded encumbrance.

Cohifection of Dents.-Attachment may fssue on aflidavit and undertaking With two sureties, in a sum not less than $\$ 300$, or greater than the nmonnt claimed, In action upon a contract, express or fimplied. for tho direct payment of money, where the eontract is made or is jayable in this state and is not sacured, of tho security becomes valueless; and in in action upon a contract, express or implied, against a defendant not reslding in this State. Every speches of property notexempt is subject to attachmont.

Arrests lin clvil aetions are not allowable in this Stato except as follows:-1. In an action for the recovery of money or camages on a cause of action arising upon a contraet, express or implien, when the defeminnt is nbout to depart front the State with intent to defrand his creditors. I. In an action for a tine or penalty, or for money or property embezzied, or frandulently misapplied, or convefted to his own use by a public oftleer, or an offleer of a corporation, or an utttorner, or factor, broker, agent or clerk, In the course of his employment assuch, or by any other person in a thduciary capacity, or for misconduct or ueglect in ofthe or in a professional employment, or for a willful violation of duty. 3. In anaction to recover possesslon of personal property unjustly detained, when tho property or any part thereof has been concealed, removed or disposed of, to provent its being found or takenthy the sheriff. 4. When defentant has beengulty of frand in contracting the debt or incurring the obligation for which the action is lironght, or in concenting or disposing of the property, for the takling, conccallig or conversion of whiehthenetion is brought. 5 . W'hen tho defendant has remevel or disposed of his property, or is about to do so, with intent to vafraud his creditors. No female enn boarrested in any action.

Garnishment may be mate umler execution or attachment against any ballee of the dehtor, ant when the debtor's Interest or right is acknowledged in a specitied oun or article, the said sum or article may be paid over to the Sheriff under an order of court.

Iulgments in all courts of recoril and in the justices' court, when filed in the county court, are liens from the time they are docketed, whleh must be within 24 hours after their remition, on all real estate owned by the defendant not exempt and situated in the county where the juigment was rendered, for a period of 2 rears, unless the defendint stay execution by an appeal bond, in viluch cas.? the lien ceases. By recording a transeript of the docket in any other county the lien attaches to all lefendant's real estate sitnated therein not exempt. No lien is ctedited by judgment on personal property.

Fxecutions may be issued at any tlme within byears after entry of judgment, and do not affect property until there is a levy. Ont of justices' courts, as courts
of record, they may be levied on personal or real property. Real estate sild under exocution is subject to redemption within six months. Judgnent debtors or their bailces, after the return of exceution not satisfled, may be examined under oath concerining their property.

Assignments in trust for the benefit of creditors, are null, as against any cred. tor not assenting theroto. The decd of assignment must be in writing, aeknowedged nud recorded like a conveyance of real estate. Mado to sccuro indorsers or sureties aro valld. Notes, bills, bonds, accounts and almost every species of contract, is assignable. The party in futerest must sue on an assigned contract,

Boats and vessels navigating tho waters of the is Stato, are liable for debts contracted by the master, owner, agent, or consignce thereof, foz work done or supplies furnished, or for fitting out, repairing, or cquipping such boats or vessels, or for all sums due for anchorago or wharfage, or ior all injaries done to persons or property by such boat or vessel, provided the wages of inariners, boatmen, and others employed in the servico of such boats or vessels, shall have the preference, and be flrs'c paid. Vessels are also llable for damages accruing from the not performance or mal-performance of contract touching the 1 ransportation of persons o: property. All actions against boat.: or vessels must be commenced within 15 days after cause of action accrucs.

Damages are s.llowed oll illls of exchange protested for non-acceptance or nonpayment in favor of holders for value only, as follows: 1. If drawn upon any person in this State, $\$ 2$ on each $\$ 100$ of the princiral sum specificd in the bili. \&. If drawn uponany person ont of this State, but in any of the other States or territory west of the liocky Mountains, $\${ }^{\prime \prime} ;$ on cach $\$ 100$ of the prineipal aum spec. fied in the bill. 3. If drawn upon any person in the United States cast of the Rocky Mountains, $\$ 10$ on eachs $\$ 100$ specfited th the bill. 4. If drawn upon any person in any place in a forcign conntry, $\$ 15 \mathrm{ch}$ cach $\$ 100$ of the principal sum specitied in the bill, and from the time of notice of dishonor and demand of pay ment, lawful interest inust be allowed upon the aggregate amount of the prinepal sum and clamages. Notarial protest is evddence of demand and refusal of payment at the timio and in the manner stated in the protest.

Deeds. Montgages, and Chattel Montgages, liggits of Marmed Womfe, Wifls, \&ic.-Decds are not required to be under seal, as all privale seals are abolished in this State. Must be acknowledgel within tho State, befor a justice or clerk of the supreme court ; or t judge or a elerk of a court of record; or a mayor or recorder of a eity ; or a court commissioner : or a county recordet or a notary public ; or a juatice of the peace. Without this state and in the linited States, before a justice of the peace or clerk of any court of record of the Enited States; or a justice, judge or clerk of any couri of record of any sitate or a commissioner appointed by the Governor of this State for that pur pose; or a notary public or any other oflicer of the sinte where the acknowledg ment is made, authorized by itslaws totake such acknowledgment. Without the United States, before a minister, commissioner or charge d'affaires of tho Unitd States, resident and accredited in the country where such acknowledgment is mede; or a judge of a court of record of the country where the acknowledgmer: is made, or a commission appointed for that purpose by the Governor of the State pursuant to speeial statntes ; or a notary pulbic. The husband or wife can each, without the consent or assistance of the other, convey his or her sepasate property. They must join in a conveyance of their community property.

Ihe following is the gencral form of the certificate of acknowledgment:
$\left.\begin{array}{l}\text { State of Califonnia, } \\ \text { Covinty of Amador, }\end{array}\right\}$ ss.
On this
day of
, in the year of
, before me, 3 has Simpson, notary publte, personally appeared,) to be the person whoso name ls pok proved to me on the onth of scribed to the within instrument, and neknowledged to me that he (or they) er cuted the same.

Joun Simisos, Notary Public.
The form of certifleato when grantor is a married woman must be substantis." as follows:
State of Caidfornia, County or Nevada. $\}$ ss.
erty. Real cstate mM his. Judgment deblon led, may be examined 11, as against any cred. be in writing, acknow: ado to secure indorsers almost overy species 4 n an assigned coutract. are linble for debts con, fez work done or sup , guch bonts or vesseli, injaries done to persons mariners, boatmen, and ill have the preference, ceruing from the nonie tranaportation of per. ist be commenced wibin
or non-accepiance or nor1. It drawn upon uny a specified in the bill. ? tho other States or ter. Uho principal sum spec. inted States east of the
4. If drawn upon ang 00 of the principal sum onor and demand of par. ato amount of the princ. demand and refusal it otest.
, higits of marmed nder scal, as all prisale a within tho State, belom clerk of a court of recond; aer: or a county recorder: is state and in the Cunted of of record of the Lnited of recori of nuy state: this State for that pur $t \rightarrow$ whero the ncknowledf wledgment. Without the ed daftaires of the Cutted such acknowleulgment il here the acknowledgmer: 3 by tho Governor of tu The husband or wife community property. of acknowlodgnent :
, before me, $\mathbf{J}^{\mathbf{4}}$
known to ird erson whose name is out f me that ho (or they) est
imison, Notary Public. oman must be substantia
, before mc, Jedy
, known to me
on whose name is subsent man, and upon an exams
stion, without tho hearing of her husband, I made her acquainted with the contents of the fustruments, and thercupon she acknowledged to mo that sho executed the same, aud that she does not wish to retract such execution.

Johs Johnstos, Notary Public.
F-operty of uevery description acquired by the wifo before marriage, and that acquired afterward by gift, bequest, devise, or descent, shall bo her separate property, and will in no case be liable for tho debts of her husband. The husband's property of every kind similarly acquired, "ill be his separate property, and not liable for debts due by his wifo previous to marriage. Tho property of each shall be liable only for the dobts of the owner. All property acquired subsequent to marriage, aside from that acquired by gift, bequest, devise, ordescent, shall be common property, but under the husbani's entiro control. Such common property cannot be sold unless by an instrument in writing, signed by both husband and wife, and ncknowledged by her upon an examination soparato and apart from her husband, before a justice of the supreme court, judge of the diotrict court, county judge or notary publie, or if without the State, there to ackinwledge before some judge of a court of record, or a commissioner appointed by anthority of the State to take acknowledgement of decds.

A fill and complete inventory of tho wifo's separato property shall be made out and signed by the wife, and proved in the manner required by law for proot of a conveyance of land; the filing of this inventory in tho recorder's office in tha comity where neh property is situated, slinll be notice of the wife's title, and all said property shall be excmpt from seizure for her husbands lebts.
fon the death of either husband or wite, one-half of the common property shall go to the survivor, nud the other half to the descendants, of the deceased husband or wife, subject to the payments of the debts of the decensed. If there be no descendants of tho deceased husband or wife, the whole sinall go to the surwhor, subject to such pn; mient.

As to dower, no estate shall bo al: 7ed to tho husband as tenant by courtesy upou the decease of his wife, nor any s:state in dower be allowed to the wife upon the death of her husband.

Chattel mortgages are void as to third parties, unless possession of chattele passes from mortgagor, albelt the mortgage may bo recorde??.

Any marricd woman may dispose of all her estato by winl, and may alter and revoke such will, but the eonsent of tho husband, in writing, must beannexed to every such instrument, and itmust be subseribed, nttested, proven, and recorded in like mannor as a will is required to be witnessed, proven, and recorded, unless the wifo has power to mako a will, conferred by marriago contract, signed by her jusband before marriage.

No wills, except noncupativo wills, shall bo ralld, unless in writing, and sipned by tha testator or by some person in his presence, and by his express direction, and attested by two or more competent witnesses subucribing their names to the will, in the presence of the testator.

No moncupative will bequeathing an estato over $\$ 500$, shall be valid, unless proved by two witnesses, who were present at the making thereof ; nor umless it be proved that the testator, at the time of pronouncir \rightarrow the same, did bid somo one present to bear witnoss that surh was his will, o. that effect; nor unless euch noncupative will wns made at the time of the last . $\rightarrow \infty$, and at the dwell-ing-house of tho deceased, or where he or she had been wing for the space of 10 days or more, exeopt whonsuch person wastaken slek from home, and died defore his or her return.

SPECIAL LAWS OF COLORADO.

Fixemptions from Forced SAle-Ifome worth \$go00 aid personal Properiy. Fvery person being a honseholder and head of a finmily, is entiled to a homic. stead hot exceeting in value $\$ 2000$. To entitle such person to this cxemplion, he must enter the word "liomestead" on the margin of his recorded title. The foltowing propenty, when owned by any ferson being head of n family, shall be exempt: Fanilly petures, school hooks and library, pew in chureh, burial sites, all wearing apparel of family, ali beds, bedsteads, toves and cooking utensils, kept for use of debtor and family, nnd other household furnitura not exceeding $\$ 100$ in value, provision and finel necessary to tha family for 6 months, tools, etc., of any mechanic not exceading $\$ 300$ in value, l:brary and implements of sny professional min not excecding $\$ 300$, draft animuls to tho value of $\$ 200,1$ cow mind calf, 10 sheep mud the necessary food for them for 6 months, 1 farm "n•ก'ו, rart. ete.. 1 plongh, 1 harrow and other farming implenents not exceeding

850, in value. Persons not at tho head of a family, only entitled to wearing apparel and property to the vaiue of $\$ 300$.

Mecilanics' Lien.-Persons who perform work or furnish materials to tho amount of more than $\$ 25$ for the construction or repairing of any building may have a lien thereon. Principal contractors must file their lien in 40 anid subcontractors within 20 days aícer last work done or material furnished. Action thercof must be commenced within 6 months from date of filing lien.

Cohection of Dents.-Plaintiff must file a bond, with security, payable to defendant, in donble tho amonnt swore io be due, with the customary, conditions, and then tile an affdavit, alleging positively one or more of the following causes before attachment san be issued: 1. That the debtor has departed, or is about to depart from the State with intent to conceal his effects. 2. That he is a non-refident, or is a foreign corporation, or conceals himself. 3. That he is aboutt to remove or dispose of his property to the injury of his ereditors, or that he fraudulently contracted the debu, or has removed away any of his properiy with intent to hindor or defrand lis ereditors.

In sittachment, replevin or meritorious defence may he made, when necessars, by the affidavit of tho attorney or agent for tho plaintiff.

In assignments a debtor has the riglit to prefer one or more creditors to the exclusion of others, except when the assignment is fraudulent, or where bankruptey interposes.

Bifls, notes, bonds, or other written instruments aeknowledging indebtedness, and made payable to any person or persous, are assignable by endorsement, and the assignee may sue in his own name. Assignments are ruled by the common law.

Jurisdiction of justices courts extends to $\$ 300$ for recovery of money or personal property, probrite courts to $\$ 2000$, over all cases, both at law and in equity, district courts aro without limit as to amount or character of ciaim.

Summons to justice court must bo issued 5 dinys, and served at least 3 days before trial ; in probate and district courts they must be issued and served at least 10 days before the return day.
A. judgment of a court of recoril is a lien on an cetate, real or personal, of the judgment debtor, owned oraftorwards acquired by him, within tho jurisdiction of sueh court, for a period of seven years after the last clay of the term of court at which such judgment was rendered; provided. execution be issued therech within one year from the time such judgnent licn acerued; jndgment before justices of the peaco may becomo a lien on real estate by tiling a transeript of such judgment in the oftice of the clerk of the district sourt of the county in whieh sueh judgment was rendered.

Execution from justice of tho peace can be issued immediately after judgment and is a lien on personal estate of the debtor from the time of the delivery to the cunstable, and can be levied only on personal property. Execution from courts of record, bind the property of debtor from tino of delivery toshertff. Every species of property, real and personal, and every interest in real entate, legal or equitable, is subject to exceution. Lainds sold on execution may, within six months after such sale, be redcemed by the execution debtor. Execution creditor shall receive from sheriff a certificato of purchase, which should be recorded. After expiration of six, and at any time before the expiration of nine months, any judgment creditor may redeem sueh land 2 y sueing out execution on his judgment and paying to the othicer the nmount (with ten per cont. per annum thereto, from date of sale) for which the lands were sold.

The process of garnishment may be exercised either on execution or attachment.

Arrest and imprisonment on eivil process is prohibited in this State.
In sults on bilis, bonds, notes, and siminr instruments, the defendant, before he will be permitted to plead, demur, \&e., munt tile an "davit of merit that he lias as lie believer, a good and sufficient defence to said suit or some part thereof.

Allidavits of persons withont the Stato may be made before any notary pullic or clerk of nuy count of record under their respective seals.
bilis of exihange expressing "Value received" duly prosented and protested for non-acceptance or non-payment, entitle holder to recover from drawer of endorsar thereof, upm due notice of such protest, the amount of such bill, with legal interest from time when sumo shonhl have been paid, and ten per centumi damages in milditiois thereto, and costs and charges of protest. Parties to such Instrumenta as entiorsers, makers, aceeptors, may le sued separately or jointly, Record required to be kept by notaries public, competent evidence to prove 'ama and mamer of service of notice of protest, names of parties, and deseriptio', and amount of instrument.

ittiled to wearing

materials to the any building may ien in 40, and suburnished. Action g lien. curity, payable to customary condito of the following as departed, or ts ts. 2. That he is scif. 3. That he is s creditors, or that ny of his properiy
le, when necessary,
ore creditors to the ant, or where bank-
lging indebtedness, endursement. and by the common law. y of money or perlaw and in equity, claim.
vell at least 3 days ssued and served at
or personal, of the din the jurisdiction of the term of court be issued therecs a; judgment before ling r transcript of urt of the county in
ately after jualgment of the dellivery to v. Execution from i dellvery to sheriff. terest in real estate, ecution muy, withh debtor. Execution which should be rebexpiration of nine tueing ont oxecution th ten per cent. per old.
execution or attach-
this State.
he defendant, before prit of merit that he suit or some part
ro any notary public
sented and protested over from drawer of unt of such bill, with and ten per centum est. Partics to such eparately or jointly, idenco to prove'min and doserlptio', and

Sheriffs are amenable in treble damages to nggrieved party, and fine not lese than $\$ 25$ nor more than $\$ 250$ for any malfeasance in offtce.
deeds, Mortgages, Chattei, Mortgages, Rights of Marbied Women, Wills. \&c.-Conveyances must bo under seal; a serawl is sumpient. A conveyance made in compliance with all requisites earries with it right to immediate possession. All covenants in the deed run with the land conveyed. A power of attorney to convey should be under seal and recorded with the deed made therennder.

Acknowledgments of deeds written In the State may be made beforo any justice or juige of the supreme or distirict courth, or before niy elerk or deputy elerk of such courts under tho seal thereof, or before any probato juigo under the seal of his court, or before tho clerk and recorder of any county or his deputy under the county seal, or before any notary public under his notarial seal, or before any justice of the peace.

Without the State and within the United States, before the Recretary of any State or territory, the clerk of any court of record, or conmissioner if deeds for this State, or before any oflicer authorized hy the laws of the State were taken to take acknowlengments. The seal of any of tho above officers minst accompany the certificate, and when not taken before the secretary of a State or territory, or clerk of a court of record, the certineato of the clerk of some court i lecord where the oflicer taking the acknowledgenicnt resides must ace ryany such acknowledgement that such oflicer is the person tho assumines to be.

Without the United States beforo nny United Staten consul, mayorof any city under his ollicial seal, any court of record of any foreign state, under the certificate of the judge thercof and the seal of such court.

[Form of Acknowledgment by Unmarried Grantor.]

1. (name and style of otlice) in and for sald county, in the Stato aforesald, do hereby cerify that A. Bi, whe is personally known to me to be tho same person whose namo is subseribed to the amexed deed, appeared liefore me this day in person, and permowlodged that he signed, sealed and doll vered the said instrument of Writig as his free dind volnntary act for the uses and purposes therefn ret forth.

Given under my hand and (style of seal) this D. 18
[omcial seal.]

$$
\text { Is } \quad \begin{gathered}
\text { day of } \\
\text { (Signature.) } \\
\text { (S } \ddagger \text { yle of oflee.) }
\end{gathered}
$$

, A.

Form of certificate where the husbami and wife join in a conveyance is the same as the forcgoing form, except that affer ine name of tle husiand or wife, A. B,, is inserted, "cidd C. D., his wifo" (or her hasbanl, as the caro may be), "who are personaliy known, ete.," down to the teste, before which is inserted the following:
"And the pald C. D., wifo of the said A. B., haring been first examined by me separate and apart from and out of tho hearligg and presence of her salid huslmin, and the contents, meanling and ofeet of the within deed having been by mi. fully explained to her, acknowledged to me that she executed tho same freely and voluntarily, and without any coercion or compulsion on the part of her sald lushand, and that she does not wish to retract the same."

Teste as in foregoing form. Witnesses to deeds are not necessary, but are doslrable.

Any marricd women :nay bargain, sell and convey her estate, real and per-- mal, and make a. contract with reference thereto, as though a femme sole. she may also sue and be sued, contract delits in her own name and upon ber own credit, execute anv instrument of writing, and julgments may be pronounced and cuforced agai.at lier as though a femme sole.
A chatel mertgage shall not be valid as against thith partles, muless there he a delivery to the mortgagee of such property, in whose possession it shall remain matil the lien expires; or unless the mortgagor thath acknowledge such mortgage icfore ε justien of the peace in the justice's district where such murtgagor resides, who shall keep a memorandum of the same.

If the mortgagor retuin possession of the property mortgaged, the mortgage must exp:cesly provide for such possession ; otherwige it is voh. A mortrage of astock of goods wherein the mortgagor bas the ripht to sell the same is voil. Chattel mortgages may be acknowlodgel in any townslip in which is situated the cominty seat. Where the mortgagor residea in such township, before any justiee of the peace, notary public, or connty clerk.

SPECIAL LAWS OF C.ONINECTICUT.

Exemptions from Forced Sale.-No Home exempted.-Personal property as follows, viz. Of the property of any one person, his necessary apparel and bedding and houschold furmiture necessary for supportirg life ; arms, military equipments, uniforms or musical fustruments owned by niy member of the nilftia for milltary purposes ; any pension moneys received from the United States while in the hands of the pensioner ; inplements of the debtor's trade, his itbrary, not exceeding $\$ 500 \mathrm{in}$ value : 1 cow, not exceeding $\$ 150$ in value; any number of sheep not exceeding 10 , nor exceeding in all $\$ 150$ in value $; 2$ swine and the pork produced from 2 swine, or 2 swine and 240 lbs. of pork; of the property of any ono person having wife or a family, 23 bushels of eharcoal, 2 tons of other coal, 200 lbs . of wheat flour, 2 cords of wood, 2 tons of hay, 200 ibs. each of beef and tish, 5 bushels each of potatoes and turnips, 10 bushels each of Indian corn rand ryo, and the meal or hour manufactured therefrom, 20 lbs each of wool nud thax, of the yarn or cloth made therefrom, and istove mad the pipe belonging thereto : the horse of amy practicing physician or surgeon of a valne not exceeding 3200 , and his saddjo, briule, harness and buggy ; boat owned by one person and uzed by him in the business of planting or taking oysters or elams, or taking shat, together with tho sails, tackle, righing and implements uscd in said business, not exceeting in vahe 8 an0 ; 1 sewing machine, being the property of any one person using it or having a family ; one pew, being the property of my person having a family ordinarily ocenpying it, and lots, in any burying ground approprinted by its proprietor for the burfal pace of any person or family. The husband's interest in the wife's estate camot be taken for his debts during the life of the wife or nny issue of their marriage, exeept for delts contracted for the support of such wife or issue. Any delt that has acerued for personal gervice net exceeding $\$ 10$, or if the debtor have a wife or family not exceeding $\$ 25$, and ali benefits allowed by any association in tinis State on account f sickness, are exempt: provided, ilat in suits brought for a debt aceruing for house rent, provisions, wearing apparel or fuel, furnished to the debtor or for the use of inis famlly, only 810 are exempt, and no exemption is allowed for personal board of the debtor or his family.

Mrecilanies' Lien.-Material men and mechaules have \mathfrak{n} lien on land and bulhlings for the amount of their claim, provided the same exceeds $\$ 25$. To render the lien valid, the elaimant must fite a certiticato of the claim, veritied by oath, with the towa clerk within 60 davs from the time when ho commenced to furnish materials or render services. Where the claimant is a sub-contractor ho must, unless his contract with the origina! contraetor is in writing, assented to by the proprietor, give noilee in writing to the proprictor within 60 days of tho time he commences to furnish materials or render serviecs that he intends to clain a lien, otherwise he can have none. This hien takes precedenco of all subsequent fincumbrances.

Collection of lents.-Attacliment in eivil actions, may be issued and lovied uponany property of the debtor that is not by statute exempt from attachment and execution. An attachment may be dissolved by the substitution of a bond. No action lies for tiamnges ar!sing from mattachment, unless the sult was malicious. Whero the amont attached is so great as to be vexatious or oppressive, the court will order a relense of a portion of the property. An attachment rematns a lien for sixty days after the rendition of juigment th the ease of persomal property, and four uonths in the ease of real estate.

The debtor is oxempt from arrest in all actions founded on contract, express or implied. In actions sonnding in tort and for fraud the debtor may be inprisoned, but ean obtain a disehntge on taking the "poor debtor's oaih."

Assignments in insolvency are mado to a trusteo and in use to the beneflt of ali the credltors. A transfer of property made 60 days liefore the assignment is good. Convevances made in the regular con rse of hisiness, or for a present consideration, are valid in the absence of frand. Jurisatiction of justlee courts estends to $\$ 100$, and either pary has the right of appeal in all cases.

Courts of common pleas and the district court have original jarisdiction of ali causes in equity where the matter in demand does not exceed sion and canses in law where the demand exceeds $\$ 100$ and does not exceed $\$ 500$, and appellate jurtsdiction in enses brcught by appeal from justices.

The superior court has origimily jurisiciction in law and equity of all cases whe:e the demand exceeds $\$ 600$, and appeliate jurisdiction where there is 110 cominon pleas or distriet court in the county. The supreme enurt of arrors has 10 United States or's trade, his il. i0 in value; any alue; 2 swine ant of the property of 1,2 tons of other lbs. each of beef h of Indian com each of wool and e pipe belonging He not excceding oy one person and clams, or taking ased in said busiproperty of any erty of any person ing crounit approfamily. The husits during the life :ontracted for the rsonal service not eding $\$ 25$, and all sickness, are exfor house rent, - for the use of nis personal board of
Hen on land and excceds §25. To the cloint, verited en he commenced is a sub-contractor writing, assented r within 60 days of cesthat he intends precedence of all
ay be issued and kempt from attachsubstitution of a unless the suit was exatious or oppres\%. An attachment fir the case of per-
a contract, express lebtor may be imtor's oảh."
to the beneflt of the assignment is for a present conjustice courts exases. 1 jarisdiction of ali S500 and causes in und appellate jur-
equity of all cases where there is 110 court of arrors has
final anil conclusive jurisdiction in all matters. In determining the amount of the damand, interest to the comnencement of the suit is inciuded, but not conts.

Any debt owing to the defendant, or any goorls or estate in the bands of a thiri party may be taken by process of garnishment.

Fxecution may be taken out any time during the lives of the parties. If either be dead, scire facias on the judgnent must be brought. A judgment that has lain dormant for 20 years is presumed to be satisfied. The juigment itself creates no lien, but any property that has been attached in the suit fin held to respond to the judgment.

A negotiable note must be for the payment of money only, payable to some person or his order or bearer. A negotiable promissory note on dumand is con sifered over-lue and dishonored after four months. Jiays of grace aro mot al fowed onsight or demand notes, or on bank checks. Protests of inland bills of cxchange and promissory notes, protested without this State, are prima facie evidence of the facts therejn stated. When a bill of exchange, drawn or negosated in this State upon any person in any other, State, territory or district of the Cinited States, shall be returned unpaid and dhly protested, the person to whom the same is paynble is entitied to recover the damages, accoriting to the place where payable, over and above the principal sum, together with the lawful interest on the aggregate amount of such principal sum andriamages from the the at, which notice of such protest sliall have been given, and payment of said prinejpal sum and damages demanded.

Sheriffs refusing to pay over money collected, when demanded, are liable to pay two per cent. a month on the amount received from time of demand ; failIng to execute process or making false or illegal returns, are liable to pay all damages. Any officer, indoising, demanding or receiving more than legal fees on any civil process, is liable to pay to the person against whom the charge was uado threefold the amonnt charged.

No person is disqualifled as a witness in a civil action by reason of any interest lin the case or conviciion of nuy crime, but the fact may be shown to discredit his testimony.

Deeqs, Mortgages, Cifatter Mortanges, lights of married women, \&e. Conveyances of real estate must be in writing, sealed by the grantor and subscribed by him or his attorney duly authorized, atested by two witnesoes, with their own hands, and acknowledged by the grint. as his free act and deed. A scrawl enclesing the letters L. S. (C.S.S.) is equivi.ent to a seal. The acknowledgment, if in this State, is made before a judge of a court of rocoril of this Stato or of the United States, justice of the pence, commissioner of the school fund, rommissloner of the superior court, notary public, town cleik or assistant town clerk ; if lin any other State or territory of tho Uniced States, before a commissioner appointed by the Governor of this State and residing therein, or any offlcer authorized to take the acknowledgment of deeds fin such State or territory ; and if in a foreign country, before any consul of the United States, or notary public or justice of the jeace in such torejgn country.

Conveyances of real estate situater. in this State and powers of attomey therefor, executed and acknowledgedi hany other State or territory in conformity to its laws relative to the conveyance of lands therein sitnated, are valid. The wife need not bo privately examined apart from hor lusbanl.

The busband joins with the wife in the convegaice of her real estate, bit conreys his own without her signature. Dower attaches only to the real estala belonging to the hushand at his decease.

The following form of acknowle lgment is used in all cases:
State: of consecticut.
Curstr of,$\} s 8$.
38. , A. D. 18
l'ersonally appeared
, signer andiseater of the forgoing instrument, and acknowledged the same to be hif free net und deed before me.
(Signature.)
Martied woman may hold real esiate to their separate use in their own name. In all conveyances of ine same the husband must join. The husband is trusten of the wife's personal estate, and accountable to her for the avalls. lie may be removed for cause, and another trustee appointed. She may wo sued for her contracts and acts; her husband is not llable upon any of such causes of action. She may also enter into n contract jointly with her husband for the beneflt of her sole estate, or their joint estato, and be sued on the sume. She may also carry on busiuess, nnd if any right of action accrues to her therefrom, maysue upon the pame as it she were unmariled. The whlow shall have the right of dower in one thirif of the real estate of which her husbaud died possessed in his own right, to be to her during her natural life.

A chattel mortgage of property not perishable in its nature is good, although the grantor retuins possession, but the deed must be executed with all the formallties required in town records, as in the case of real estate. Property exempt from exccution is also a proper subject for a chattel mortgage. Conveyunces of other species of personal property, unaccompanied by possession, are void a againgt ereditors. Wills must be fin writing, subseribed by the testator, and ab tested by the withesses, all of them subscribing in his presenec.

SPECIAL LAWS OF DISTRICT OF COLUM. BIA.

Exemptions frox Forced Salef-No Home exempted, Personal Property of the following value is exempt from ilistraint, nttachment, or sale of exceution, except for servants or laborers wages due: Wearing apparel, household fumiture to the amount of $\$ 300$; provisions and fuel for $\mathbf{3}$ months, mechanies tools or implements of any trade, to the value of s 200 , with stoek to the same amount; the llbrary and implements of a professional man or artist, to the value of $\& 300$: a farmer's tean and other utensils, to tho value of $\$ 100$, fanily pletures and library to value of $\$ 400$.

Meciranics' Liens.-Any perfon who, by virtue of any contract with owner of any building or his ugent, jeriorms labor or furnishes niaterials for construction or repair of sucli building, slall, upon tiling in othce of clerk of the supreme conrt of the Distrjet, at any thme nfter commencement of the buiding, and within three months after completion of such bullding or repairs, a notiee of his futention to hold a tien upon the property for the anonnt diue or to become dine to hili, specilienly setting forth the anount clatmed, lave a hen upon sueh buidfing and lot of ground upon which the samo is situatel, for such labor done or materials furnished, when amount exceeds \$20. Any sub-rontractor, journeyman or laborer employed ln construction or repair of any buililing, or fin furuishIng any materials or machinery for same, may give, nt iny time, owner thereof notice in writing. particularly setting forth amount of his claim and services rendered for which his omployer is indehted to him, and that ho holds the owner responsible, and the owner of the bulliling shall he liable for the claims but not to exceed the amount due from him to employer at timo of notice, or subsequently, which may be recovered in and action.

Colinection of Dents. - A wit of attachment and garnishment may be issued whenever plalntiff, his agent or attorney shall fllo in clerk's oftlee, at commencement or during pendency of suit, an afimavit (supported by testimony of one or more witneases, showligg grounds upon which lie bnses metion, and setting fortli plaintifi has just right to recover against defendaint; ani' also stating either that defendant is a non-resident of fisiriet, or evalos service of orlinary process by eoncealing himself or withtrawing from distriet tempuraily. or has removed or is ahout to remove some of his property from distriet to defeat just demands. plaintiff must niso dle his undertiaking, with sumbetent surety, to be approved ly clerk, to make good ill costs and damages by reason of wrongiul suing out of attachment.

Arrest In civil actions is unknown here.
Assignments are ragulated by the prineiples of common law.
I Iatiees of pence have juifulletion in all civil cases where amount claimed to be due for debt or damages arising ont of contracta, express or impleel, of danages for wronga, or injuries to permons or property, does not expeed \&ifu, ix. cept in cases involving titio to real estate, netions to recover damages for asfante, or aseanlt and battery, or for mallefous prosecution or actions against justices of peace or other ofllcers for miscondnct in oflice, or in aetions for siander, verbal or written. Supreme court of District of Columbin posserses same powers and exercises same jurisdiction as circuit courts of Unfted Sintes. Any oue of justices of sall court may hohi a speciai tern with same powens and juristiction possessed by United States district courts. Any one of andd justices may holia criminal court for trial of all crimes and offences arising fin the District. Snpreme court of District has furisiletion of cases nrising under copy-right and patent laws; and of all applications for divorco ; and also has jurisdiction as probate court.
a goorl, although tith ail the form. roperty exemit Conveyances of sion, are vold as testator, and at.

Persmal Property ale on exceution, household furmimechantics tools the same amomint ; the value of $\$ 300$; nily pictures and
ntract with owner rials for conatrucerk of the sujpreme uilding, and withnotice of his inten. to become due to I upen such build. neh labor done or nitractor, journeyling, or in furrish me, owner thereof laim and servicus he helds the owner the claing but nutb e, or subsequenty,
ruishment may be in elerk's ottice, at orted by testimony bnses action, and fendant ; and ulso evadus service of listrict temperaily, m distriet to defent suffictent surety, to reason of wronigit
w.
re amonnt claimed ress or limplied, or lot exceell \leqslant the , cxamagen for assaul, against justiece of for slmader, verbal es same powers and ates. Any oue of is and jurisdiction iustiees imay holds in the District. Suder copy-right and las jurisuletion as

Judgments aro lien on real estate from date of rendition and on personal property when execution is issued and in marshal's hands. Execution may lssue the day judgment is rendered. There is no redemption after execulion sale.
deads, Montgages, lights of Mahieid Women, bitc.-Acknowledgments of deeds nay le made beforenny of the following named oflicers of State, district, comity or territory within United States, in which person making deed may be living, namely : Before any judge of eourt of record and of law; any chancellor of State; any judge of supreme, circuit, district or territorial courts of the tuited States ; any fintice of the peace ; any notary public; any commissioner of elrenit court of district appointed for that purpose. The ofleer taking acknowledgment must annex to the deed a certiticate under his hand and seal, te following effeet :
state of
consty
:\} (Or city, ote.), to-wit :

I, Toseph Mereer, a notary publie, (or other preseribed officer, giving his title) in and for the county (or city, or parish, or distriet) aforesaid, in the stato (er territory, or distriet) of , to hereby certify that A. B., a party (or A. B. and (C. D., partles) to a certain deed bearing date on the
day of
and hereto annexed, personally appeared lefore me in the county (or city, etc.), aforewnid, the said A. B. (or A. 13. and C, D., ete., being personally well known to me as (or proved by the oaths of credlble witnesses before me to he) the person (or persons) who executed the said deed, and acknowledged the same to be hils (her or their) act and deed.
Given under my hand and
seal this
day of
A.D, 18 . ,IOSEPH MERCER.

The following is the form where husband and wife join in the deed, the lattei relinguishing dower, or when she is a party with her husband to any deed:
$\left.\begin{array}{ll}\text { Srate of } \\ \text { cornty }\end{array} ;\right\} \quad$ (Or city, ete.), to-wit:
I. Josejh Mercer, a notary public in and for the county aforesaid, to hereby certify that A. 13. andi (. D). Lis wife, parties to a certain deed bearing date on the day of $, A, j$. 18, and hereto annexed, personally appeared before me, in the county' aforessid'; the said A. 13. and C. D., his wife, being prenonally well known to me an (or proved by the oaths of credible witnesses before mo to be) the persons who executed the said deed, and acknowleged the same th le their act and deed; and the said C. D., wife of said A. B., being by me exsuined privily and apart from her sadil husband, and having the deed aforesaid freely explained to her, acknowledged the samo to be her net nad deed, and declared that she had willingly signed, sealed and delivered the same, and that she wished not to retraet it.
(iiven under my hand and
seal this
day of
A.D. 18 Josepli melacer.

When acknowledgments are mado heyond limits of District, whithin United States, the certlicate of the same must be accompanied by a certiticate of the register clork or other mbile oflleer having eognizamee of the fact minder his oflcial seal, that, nt the date of the acknowledgment, the oflicer taking the same Wat, illtet, the oflicer he purported to be. Deeds made in a forelgn country may be exeented and acknowledged beforo any judgo or chancellor of any conrt, master or master extraordinary in chancery, or notary public, or before any secretary of legation or consular oflleer of the United States.
('matrec Montgages-Must be revorled within twenty days after execution. Xo hill of sale, deed of trust or mortgage for property exempt by law from execution is blading, unless signed by wife of debtor. The right of any married womm to property, personal or real, belonging to hor at time of marriage or acquirel during marriago in any other way than by gift or eonveyance from her husband, aro as absolnte as if she were unmarried and are not subject to disposal of her hushand nor linbie for his debts. Any married womin may convey, devise and bequenth her property or any interest therein in the same manner and with like effect as if she were inmarried. Any married woman may contract and suo and be sued in her own name, !n all mattors having relntion to her sole and separate property, in the same manmer as if she were mmarried. Neither the husband nor his property is bound by my such co tract mado hy a murried woman, norllable for my refovery agalnst her in any such suit, but judgment may he cnforced by exeention agalnst her sole and separate estate in sume marner as if she were ummarried.

DAKOTA, HOMESTEAD LAW.

Exemption fron Forced Sare.-Home or 80 Acres with buildings, or House, and one-half acre in a Village or City, and I'ersonal l'roperty. The householder is entitled to a homestead conslsthg of not more than 80 acres of land with buildings and appurtenances thereon, and personal property aggregating in value not to exceed $\$ 1500$, which personal property is detined by statute.

SPECIAL LAWS OF DELAWARE.

ExEmptions mhom Forced Sale.-No Home Excmpted, Personal Property, 8275.-Family library, school books, family Bible, family pictures, seat or pew in charch, lot in burial ground, all wearing apparel of debtor and family ; and in addition to above, tools, implements anil fixtures necessary to carry on trade or b.ainess, not exceeding sis. Head of family, in addition to above, or other personal property not excee ing $\$ 200$. And in Now castlo cbunty, wages for labor and service are exempt from execution attachment.
mechanics lien-Mechanics, builders, artizans, laborers or other persous, having performed or furnlshed work and labor or materials or both, to an amount exceeding $\$ 25$, in or for the erection, alteration or repair of any house, building or structure, in persuance of any contract, express or implied, with the owner or agent of such building or structure, may at any time within six months from tho completion of sadd work and labor, or the furnishing of such materlals, file in the oftice of tho prothonotary of the connty in which said building is situate a bill of particulars of his claim, with an afflavit setthg forth that the defendant is justly indebted to the plaintifi in a sum of $\$ 25$, and has refused or neglected to pay or secured to be paid to the said plaintiff the amount due on his claim. The atlidavit must identify the property and glvo the names of the parties claimant, and the owner or repuied owner of said building. Judgment obtalned shall be a lten on said butiding or structuro and the real estate attached thereto upon whieh the same is erected, and shall relato back to the day upon which the work or laborer furnishing of materials was commenced, and shall take priority aceording. Where several contractors are employed, in pursnance of any contract with the owner or agent, there shali be no priority of lien, but all be paid pro rata.

Collection of Dents.-What is known as a " domestic attachment," may be jesued agatist any inhabitant of thls State after a return to a summons or capias jasued and delivered to tho sheriff or a coroner ten days before the return thereof, showing that the defendant eannot be found, and proof satisfactory to the court of the canse of action; or npon alldavit made by the plaintiff or some other eredible person, and thed with the prothonotary "that the defendant is justly indebted to the platutiff in a sum exceeding $\$ 50$, and has absconded from the place of his usual iboule, or gone out of the state with intent to defraud his creditors or to clude process, as is believed." All creditors sharo in proceeds of sale of property.

A foreign attachment may be issucd agalnst a person not an finhabitant of this State, after a return to a smmmons or eapias, issucd and delivered to the sheriff or coroner 10 days before the return thereof, slowing that the defendant camot be found, and proof, satisfactory to the conrt, of tho causo of action ; or upon affidavit made by the plaintiff or some other credible person, and tiled with the prothonotary, "that the defendant resides out of the state, and is justly indebted to the said plaintiff in a sum exceeding 850 ."

No capias shalt be issued on any judgment in a civil actlon (against any free White person) until the return of exceution determines that the defendant has not suftieient real or persomin property within the comity to satisfy the debt or damage thercin expressed: or until the plaintiff in such judgnent, or some creilible person for him, sh il make a writtenaflldavit, to be dited in prothonotary' ollice before the issuing of the wrtt, to the same effect; nor then untess the plaintif in said julgment (or deeree), or some credible person for him, shall, in addition to the above requirement, make a written athdavit, to be filed in the prothonotary's offlee (\mathbf{r} register in chancery) before the issuing of the process stating "that tho defendant in such judgment (or decree) is justly indebted to the sadd plaiutiff in a sum exceeding $\$ 50$, and that ho verily believes the sail defendant has secreted, conveyed away, assigned, settled or disposed of either monsy,

W.

uildings, or House, Tho householler of land with build. ating in value not

ARE.

Personal Property, tures, seat or pew r and family ; and y to carry on trade to above, or other ity, wages for labor
or other persous, jals or both, 10 an apair of any honse, ir implied, with the e withinsix months g of such materlals, Cha sald building is etting forth that the and has refused or e amount due on his names of the parties Juigment obtalned te athached thereto day upon which the da shall take priority ssuance of any conh2, but all be pald pro
attachment," may be a summons or capias s before the return proof satisfactory to lie plaintiff or some at the dofendant ls has absconded from ntent to defraul his share in proceeds of
an inhabltant of thls vered to the sheriff that the defendant 3 cause of action ; or erson, and tiled with tate, and is justly in.
Ion (against any free at the defenduit has o satisfy the debt or judgment, cr some led hip prothonotary's hen unless the plain. r him, shall, in add. e thed in the prothothe process stating indebted to the said the saill defendant d of elther mones,
coods, chattels, stocks, securitles for money, or other real or personal cstate of the value of more than $\$ 50$, with intent to defrud his creditors, and shall, moreover, in such affdavit, specify and set forth the supposed fraudulent transactions."

As to remedy, the party arrested may have a hearing before any judge, upon the specification of framd, upon petitlon and reasonable notlee to the other side.

As to asslguments, all bonds, specialties, and noies in writing, payable to any person, or order, or assigns, may be assigned, and the assignees, or indorsees, or their executors or aiministrators, may in their own mame suc for and recover the money due thereon; provided, that all such assignments of bonds and specialdies shall be under hand and seal, and betore at least two eredible witnesses.

In assignments for the benellt of credliors, the assignce, within 30 days after the execution of said assignment, sha!l tile in office of the register of chancery of the county in which the real and personal estate of the assignor is situate, an inventory or schedule of the estate or effecesso assigned, together with the aflidavit of said assignce that the same is a full and complete inventory of all such estate and cifects, so far as the same has come to his knowledge. The chancelior shati appoint two appraisers, whoshall appralse the same and make return thereof under oath. The assignee shall give bond. With at least two sutheient sureties, to be approved by the clancellor, in double the amount of the appraised value of the extate soasslgned. The assignee to render annual accounts of his trustceship minti his tinal account is rendered and approved. Exceptions may be flled to the account of sald assignee, and a heallug be had npon the same and proceedings be had upoll said bonds for the protection of interested partles.

As to garnishment, in writs of attachment, domestic or foreign, to compel appearance of defendant, there is a clause commanding the sherift, "That he summon the defendant's garnishees to uppear at the next superior court, to derlare what goods, clattels, rights, credits, money or effects of the defendant they have in their hands respectively." The writ is dissolved at any time before judgment, by the defendant giving special bail to the action, and the garnishees are dilscharged. If a garnishee, duly summoned, does not appear as required, he may be compelted by attachment to nppear and answer or pead, and he shall be so compelled within two terms, or the attachment, as to him, shall be dissolved. If the appear, and at the request of the phantiff, ninswers under onth that he had no money, goods, chattels, ilghts, credits or effects of the defendant llahle to attachment, in his hands or possession, at the the he was notitied of the attachmant, or at any time after, he shall be discharged. 13nt if the plahtilf shall reyuire him to plend, he shall plead nulla bona, on whith the plaintiff may take issio nud go to trial; and if it be found that the garnishee had, at the time he was nothied of the nttachment, or at any time after and before his plea pleaded, any money, goods, chattels, or effects of the defondant in his hands or possession, the jury shatl ronder a yerdiet for tho piaintiff and assess damages to the value of such property, and judgment shall be entered against such garnishee therefor, with costa ; snelt judgment shall be pleadable by the garnishee in bar to any action at the sult of the defendant.

Julgments of courts are liens from the time of entertng upon the real estate of defendant within the county in which they aro rendered; after the lapse of 20 years they are presumed to be paid, but this presumption may be rebutted. Upon a return of mulla bona, on execution issued hy a justice of the peace, or when the defendant pleads his freehold, a transeript of said judgment may be filed in the saperior court of the county, and the judgment made a lien upon land, and executio:n then issnes out of said superior court.

Exechions may issue to any county: personal preperty must he frst exhausted before real estate can be levied inpon. Personal property is bound from the (ime the writ comes into the liands of the sheriff, if an actual lery be mado within tio days thereafter. The hien of sucha lesy remains in full force for 3 years, as against a subsequent execution levied upon the same goods. Sale at expiration of 30 days after levy. Notice by advertisement, posted at least 10 days lin tive or more publie places lit the coment, two of which shall be in the lundred of 1 -fendant's residence. Goods and chattels of a tenant are liable to one year's rent in arrear or growing due, in preference to execution.

After exhanstling personalty, inquisition is held on lands, upon 10 days' noItce. If the rents and profits for seven years are sufficient to satisfy the debt and eosts, a writ of elegif may issue, under which the lands are delivered to the plaintiff, to bo held until the debt is satistied. If not sumflent, is writ of venditioni exponas issues and the land is sold, upon 10 days' notice by advertisenents and publication. When the sale is contimed by the court the officer makes a deed to purchaser, capins ad satisfactendum.

Property of the debtor in the hands of third persons ean we reached cither be fore or after flnal juigment, and under attachment by process of garuishinent, upon an alldavit belng mate by the plaintiff, his agent or attorney, that he itoed not belleve the debtor will have in his possession visible property in this State of sufteient value to satisfy his demand.

Damages for non-payment or non-acceptance of forelgn bills, bills of exchange are at the rate of 5 per cent. On the hundred of the prineipal sum. Notes nul bills in this State are assignablo as at common law.

Jurisdietion of justice courts extends to $\$ 00$, county courts to $\$ 300$, besldes probate powers, and thal jurisdletion where amount in controversy does not exceed \$ 100 . Cirenit conrts have general jurisdiction in both law and equity eases, with appellate jurisdiction fron cases arising in the connty courts, and final jurisdiction insuch enses. The supreme court has appellate jurisijetion in all cases in equity, and all cases at law where the anount in controverzy exceeds $\$ 300$.

Julgments obtained in courts of record aro llens on all the eatate of the defendant in the county where the judgment was obtained, from jts date. If obtained fin any other county in the State than where the tand lles, becomes a lien on the land of the defendant from the time it is recoriled firsald county; Judgments obtalncal before a justlee of the peace can be made a lien on the real extate of the defendant, if it is recorded within ten days after it is obtained, th tho comby clork's office. Judgments from other States can be used only as evldence in a sult brought on thenlin this state.

All the lands, goods and chattels of the defemant may bo levied on and sold under excenton, and is a lien on the personin property of the defendant from the time it comes to the hunds of the sheriff, There is ino stay of execution and no redemption of property sold under exerution.

Deeds, Mourgagies, Iiguts of Manmi:n Wosien, \&c.-Deeds must be in writing, sealed and delivered in the presence of n:ot less than two witnesses-a serawl, with the word seal written in it, is sufliclent sersl. If a deed is exe ruted In this State it must be before two withesses, and the frantor may acknowle 'ge the execution of the same before any judge, clerk of the circuit eonrt, motary public or justice of the peace within the state. If executed out of the state and in any othor State or territory, the deed may be executed aceording to the laws of the state or territory whero executed anil the execution thereof acknowledged before any juige or elerk of a court of record, notary public, justice of the peace or other chicer muthorized by the laws of such stateor territory to take tho acknowledgnent of deeds, or before any commissioner of the State of Florida. If executed in any foreign country, it may be executed aecording to the laws of such country, and acknowledged before any notary public, or any minister plentpotentiary, extracordinary, infulster reshlent, charge d'affitires, commissioner or consul of the United States-shonld the deed be acknow ledged In any other State or conntry, before any otticer not having a seal of office, he should have attached thereto a certifleate of tho elerk of a court of recori, a certifleate of the secretary of state, minister phenlpotentiary, extrandinary, minister resident, chirge d'affites, commissioner or consul (as the case may be), that the pernoll whose name is subscribed to the certifleate of acknowleigment was, at the date thereof. such offleer as he is therein represented to be, that ho belleves the signathre of such persons anbseribed thereto to be genuine, and that the deed is executed and acknowledged according to the laws of such State, terrltory or foreign country.

The following is the form used where the acknowledgment is taken out of the State:
State of
County of
130 it remembered that on this
day of
187 , personally пן peared before me, a notary publie, duly appointed nnd anthorized by the executive anthority of the state of , under the laws of suil State, to take within sadd State proof and acknowledgments of deeds (or other otheer as tho case may be), to be used amil recorded in such State, A. B., to me well known to be the person who executed the foregoing (and annexed) deed by him sealed, subseribed, and the said A. 13, neknowleged the execution thereof to be his free act and deed, for tho uses and purposes therein mentioned.

In witness whereof, I have hereunto set my hand and aflixed iny oflicial seah the day and year first above written.
reached eilher be of garnishment, eney, that he lioe erty in this State

1. bills of exchange sum. Notes nud
ts to $\$ 300$, besides versy iloes not ex\checkmark and equity caser. eourts, and flual jurisdiction in all introversy exceeds
atate of the defenddate. If obtained ones a lies on the unty Jadgments o real estato of the Ined, in the comity ly as eridonce in a
levied on and sold he defendant from y of execution and
-Deets must bo in n two witnesseri-a a deed is exe uled may acknowle 'ge Ireuit conrt, notary dout of the state a according to the on thereof acknowlubble, justice of the territory to tuke tho le state of Florida. ling to the laws of any minlster plenies, commissioner or d' in any other Siate hould hare attached cate of the secretary r resident, charle it the person whose at the date thereof. es the slgmature of he dieed is executed erritory or foreign
t is taken out of the

87 , persomally nip zed by the executive tate, to take within cer as the case may 11 known to be the ${ }_{2}{ }_{2}$ sealel, subscribed, its free act and deed,
xed my oflelal seak .L, Notary Public.

They take priority according to date of recording in proper ofllee, and are liens only from such date. Tho lien of a purchase money mortgage recorded whihin aixiy days after it is made has preference toany juelgment agalnst the mortgagor, or ofier llen of a date prior to the mortgage chattel, unknown.
The real and personal property of any married woman, acquired prior to March 17, 18i5, or whieh she then held, or which she may aequire after that date, in any manner whatever, from any person other than her husband, shali bo l:er sole and separate property; and the rents, issues and profles thereof shall not ba sulbject to the disposal of her husband nor liable for hifs debts. Married women, purrihasers of real estate, may secure purchase money, or part of it, by recogni\%: ance, bond, mortgage or otherwise, as single women miny; her husband need yict be a party or consent to sueh act of giving security, and is not linible unless lio is a pirty thereto. May give bond with or without warrant of attorney. Married women may receive wages for her personal libor and maintaln an artion therefor, may deposit anme or other moneys belonging to her in bank, etc.. free from her bashand's conirol. May prosecute anil defend sults at law, or in equity, for preservuion and protection of her property; make contracte in respect to her property, upon which sults may be brought as though she was, femme sole, whether the contracts were made before or after marifage, and her property shall be charged therewith.

Whils must be in writing, and signed by the testator, or by some other person suiferibing the testator's name, in his presence and by his express direction, and attested and subscribed by two competent witnesses, in the presence of the testator.

SPECIAL LAWS OF FLORIDA.

Exemptions From Forceid Sale.-Home, Fiatm, or House and Lot, and Penanal Property. - A homesteal to the extent of 160 acres of land, or the hali of one aere withint the llmits of any heorporated efty or town, owned by the head of a family residing in this State, together with \$1,000 worth of persnnal properiy, and the improvements on the renl estate, shall be exempted from forced snle under miy process of law, and the real ostate, shall not be alienable without the Joint consent of husband and wife, when that relation exists. "But no property shall lie exempt from salo for taxes, or for the payment of obligations contracted for the purchase of snid premises, or for the crection of improvements thereon, or for house, tield or other labor performed on the same. The exemption herein provided for, in a eity or town, shall not extend to more improvements or bulldlugs than the residence or business homse of the owner."

Mechanics' LiEN.-Mechanies and other jersome berforming labor or furnishing materials for the construction or repair of any building, or who may have furnished any engine or other machinery for any mill, listillery or mannfactory, may have a llen on surf building, mill or distillery, ete., for the same to the extent of the interest of the tenant or contractor. Sub-contractors, journeymen and inborers liave also lien, upon their giving nothe in writing to the owner that they hold him responslibe for whatever may be due them.

Chliection of Dents.-There is no imprisonment for debt in this State. Attachment may he had of the debtor's property nym amldavit made by the plaintiff, or his agent, or attorney, that the defendait is removing his property ont of the State, or abont to remove it. or is a nom-resident of the State, or is removing or abont to remove beyond the limits of the state, or absconds or secretes himself, or is frandulently disposing of his property, or is concealing the sanne, or is removing same out of the judicial distrlet where defendant resides. Before the atachment eminsue the plaintiff must enter linto a bond with suffeient gecurities in nin amount douhle the sum eladmed by him. An attachment will also be issued ngalnst the property of the defendant on a delit that is not due; gro ictal, it falls due in nine months from the time it is asked for-u pon an afflids. it by the plaintiff or his agent, sotiling forth the facte of the ease; and, also, that the defendant is actually removing lus property. from ont the State, or is framinlently concealing or disposing of the same for the purpose of evailing his finst debte. A bond shail niso be given, as in the case where the debt is actually due.

Assigmments, unloss fraululent, are gool in this State, though preference be given to creditors; and even asslgnments made in another State, conveying property situated in this State, are held good against an attaching creditor.

> IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences

Stay of execution on judgment, for want of affidavit of defense ; G months, if security be given 20 days after judgment. On judgments before justice of the peace 6 monshs' stay on defendant pleading his freehold, and 9months' stay on his giving security.

All checks, nctes, drafts or bills, inland or foreign, payable without time or at slght, are due and payable on presentment, withutut grace ; days of grace shall be allowed on all checks, drafis or bills. féaeign or inland, payable at a future or different time from that in which thoy are dated, or which are made payable on a partictilar day after date.

Tho danages olt bills of exchange drawn upon any person besond the seas, and returned with legal protest, shall as to the drawer, indorser and all concerned, be at the rate of 20 per centum on the contents of such bills in addition thercto. Notes, checks and other negotiable instruments, becoming payable on Christmas day, fourth day of July, Thanksgiving day, first day of January, and twenty-second day of February, shall be deemed to become due on the secular day next preceding the aforementioned lays respectively.

Summons may be served on defendant by stating the substance of it to him persona!ly, or by leaving a copy at his usual place of abode, in the presence of a white adult person, 6 days before the return thereof. And whenever suit is brought against persons not residing in this State but doing business here, eltherby branch establishment or agency, it shall be sumfient scrvice of writ of summons to leave a copy thereof with any agent, or at the usual place of ousiness of such person or persoris, or his, her or their agent. 10 days before the return thereof.

Deeds, Rigits of Marmied 'Vonidn, Wills, \&c.-Acknowledgments may be taken ont of the State before any consul-qeneral, consul or commercial agent of the United Staters, duly appointed in any foreign country, at the places of their respective oflicial asidences, or before any judge of the district or circuit court of the United States, or the chancellor or miny judge of a court of record, or the mayor or chief cficer of any city or borough, and certified under the hand of sueh chancellor, juspe, mayor or officer and the scal of his office, court, city or borough; or in open conct, certified under the hand of the clerk, and the seal of the court; or before a cemmissioner of deeds, apmointed by the Governor (whose seal shail be so engraved as to make an impress ion that will show distinctly the name, offcial title, date of appointment and term of office of such commissioner). Only one witness is necessary to a deed. A scrawl is regarded as a seal.

The certificate of acknowledgment must show the wife relinquishes her dower, and the private examination should be certified in the words stated in the following form :
[Form by Man and Wife.]
$\left.\begin{array}{l}\text { State fe Delaware, } \\ \text { County of }\end{array}\right\}$ ss.
Be it remembered, that on the
day of
In the year of our Lord one thousand elght hundred and subseriber (name and title), John Whlson and Mary Wilson, his wife parties to this indenture, known to me personally (or proved on oath of Ricbard Roe) to be such, and severally acknowledged said indenturo to be their act and deed re spectively, and the sald Mary Wilson being at the same time privately examined by me, apart from her husband, arknowledged that she executed the said indenture willingly, without compulsion, or threats or fear of her husband's dir pleasure.

Given under my hand and official seal the day and year aforesaid.
(Signature and title.)
[Form of Certlficate where Grantor is Unnarried.]
STATE of Delaware, $\}$ ss.
Be it remembered, that on the
day of
, In the year of our Lord one thousand elght hundred and , personally came before the subscriber (name and title), John Wilson, party to this indenture, known to me personally (or proved on oath of Peter Smith), to be such, and acknowledged said indenture to be his act and deed.

Glven under my hand and oflicial seal the day and year aforesaid.
(Slgnature and title.)
There is no statutory provision for proof of deed by subscribing witness out of the State. Deeds must be recorded within one year after the sealing and deliverg of the instrument.

Mortgages are executed and acknowledged in the same maner as deeds, and are foreciosed by proceedings in the superior court by writ of scire facias, and atter judgment, sale of the premises is made by writ of levarifacias.
lefense ; 6 months, if before justice of the 19 months' stay on his
le without time or at days of grace shall bo ayable at a future or are mado payable on
son beyond the seas, indorser and all consuch bills in addition becoming payable on t day of January, and due on the seculardas
ubstance of it to him e, in the presence of a And whenever suit is jusiness here, eitherby of writ of summons to e of iousiness of such the return thercof. cknowledgments nay il or commercial agent \mathbf{y}, at the places of their listrict or circuit court court of record, or the under the hand of tueh , court, city or borough; d the seal of the court; ernor (whose seal shail w distinctly the name, in commissioner). Ouly as a seal.
wifo relinquishes her the words stated in the
, in the year of our onally came before the onn, his wife, partics to h of Richard Roe) to be their act and deed re imo privately examined executed the eaid inderof her husband's dir

r aforesaid.

(Signature and title.) married.]
, in the year of out onally came before the indenture, known to me , and acknowledged sald

r aforesaid.

(Signature and title.) ibscribing witness out of the scaling and deliven
mnner asdeeds, and are If scire facias, and aftes racias.

The wife must join with the husband in the execution of deeds: to relinquish her dower, and the following should be in the certificate of acknowli.gment:
" Personally came C. D., wife of the said A. B., to me well known, etc., and acknowledged she made herself a party to and executed the same for the purpose of reinquishing her dower, in and to the lands and tenements therein described; snd the said C. D., on a private examination taken and made before me, separately and apart from her said husband, acknowledges and says that the sald relinquishment and renunclation of dower was and is made freely and voluntarily, and without any compulsion or constraint, apprehension or fear from her said husbaud, the said A. B., to which acknowledgment the said C. D. has in my presence and this day set her handand seal."
(Signature and titia)
All personal and real property owned by the wife before her marrlage, or to which she shall become entitled by inheritance, gift, purchase or devise during marriage, shall be and remain her sole and separate property, and free from the dehts of the husband. But, in order that it shail be free from his delts, an inventory of the same must be made out in six months afi \quad r marriage. or after the same shali be acquired by her, and recordel in the circuit court elerk's office in the comty in which it is situated. A married woman can sell and convey all real estate inherited by her in the sume way as she could if she were sole ; but in all conveyances of any of her real estate her husband must join in the execution and scknowlelgment. She is also entitled to dower in one-third of all the real estato seizel by her husband at the time of his death, or at any time during his life, unless she has relinquished the same ; and she is also entitled to one-third of his personalty.

No mortgage of personal property shall be effectual or valid to any purpose whatever, unless such mortgage shall be recorded in the office of record for the county in which the mortgaged property shall be at the time of the execution of the mortgage, and unless the mortgaged property be delivered at the time of execution of the mortgage, or within twenty days thereafter, to the mortgagee, and slaall continne to remain truly and bona fide in his possession. Mortgages of personal property shall be admitted to record upon the same proof as real property, or by proof being made upon oath by at least one credible person, before the recording officer, of the hand-writing of the mortgagor, in cases in which there shall be no attesting witnesses to the mortgage.

Wills must be in writhng, signed by the testator or by some other person in his presence, and by his express directions, and shall be attested and su'jscribed in the presence of the testator by tinee or more witnesses.

SPECIAL LAWS OF GEORGIA.

Exemptions from Forced Sale.-A Home worth \$2000, and personal property worth $\$ 1000$. Eich head of a family, or guardian or trustee of a family, of minor children, shall be entitled to a homestead or realty to the value of $\$ 2,000$ in specie, and personal property to the value of $\$ 1,000$ in specie, both to be valned at the time they are set npart. And no court or ministerial officer in this State shail ever have jurisdiction or authority to enforce any judgment, decree or execution against said property so set apart-including such improvements as may be made thereon from time to time-except for taxes, money borrowed and expended in the improvement of the homestead, or for the purehaso money of the same, and for labor done thereon, or material furnished therefor, or removal of incumbrances thareon. And it shall be the duty of the General Assembly as carly as practicable, to provide, by law, for the setting apart and valuation of said property, and to enact laws for the full and complete protection and security of the same to the sole use and henefit of said families as aforesaid.
Mremanics' Lien.-Laborers shall have a general lien upon the property of their employers liable to levy and sale for their labor, which is superlor to all other liens. except liens for taxes, the special liens of landlords on yearly crops, sal such other liens as are declared by law superior to them. Laborers shall also have a special lien on the products of their labor superior to all other liens, except liens for taxes, and special liens of landlords on yearly crops, to which they shall be inferior. All mechanics of every sort, who have taken no personal security therefor, shail, for work done and material furnished in building, repairing or improving any real estato of their cmployers, all eontractors; material men and personsfurnishing materiol for the improvement of real estate, all contractors for bailding facterics, furnibing material for the same or furnizhing
machinery for the same, and all machinists and manufacturers of machincry in cluding corporations engaged in such business, who may furnish or put up in any county of this State any steam mills or other niachinery, or who may repair the same, and all contractors to build railroads shall each have a special lien on such real estate, factories and railroads.

Coliection of Accounts.-Attachinent may issue where the debtor resides out of the State; when he is actually removing or about to remove without the limits of the county; when he absconds; when he conceals himself; when he resists a legal arrest; when he is causing his property to be removed beyond the limits of the State ; when the debt is created by the purchase of property, upon such debt becoming due; when the debtor who created such debt is in the pos. gession of the property for the purchase of which the debt was created; when a debtor shall sell or convey or conceal his property liable for the payment of his debts, for the purpose of avoiding the payment of the same, or whenever a debtor shall threaten or prepare so to do. Attachment bonds must he in double the amount of the debt, and conditioned to pay the defendant ali damages sustained in consequence of the attachment. in the event the plaintiff shall fail to recorer.

Arrest and imprisonment for debt is unknown in this State.
An assignment or transfer by a debtor, insolvent at the time, of real or person. al property, or choses in action of any deseription, to any person, either in trust or for the Denellt of or in behalf of creditors, when any trust or benetit is reserved to the assignor, or any person for him, is fraudulent in law against creditors, and as to then mull and void. A debtor may prefer one creditor to another, and to that end he maay bona fide give a lien by mortgage, or other legal means, or he may sell in payment of the debt, or he may transfer negotiable papers as collaterial security, the surplusin such cases not being reserved for his own benefit, or that of any other favored creditor, to the exelusion of other creditors. All choses in action arising upon contract may be assigned so as to vest the title in the assignee, but he takes it, except negotiable securities, subject to the equities existing between the assignor and dehtor at the time of the assignment and until notice of the assignment is given to the person liable.

In cases where suit is pending, or where judgment has heen obtained, the plaintiff shall be entitled to the process of garnishment under the following regnlations. The plaintiff, his agent or attorney-at-law, shall make an aflidavit before some officer authorized io issue an attaehment by this code, stating the amount claimed to be due in sueh action, or on such judgment, and that he has reason to apprehend the loss of the same, or some part thereof, unless the process of garnishment do issue, and shall give bond, with good socurity, in a sum at least equal to double the amount swom to be due, payable to the defendant in the suit or judgment, as the case may be, conditioned to pay said defendant all costs and damages that he may sustain in consequence of suing out said garnislment, in the event that the plaintiff fails to reccver in the-suit pending, or it should appear that the amount sworn to be due on such judgment was not the.

If any bill of exchange, iraft or order, is made payable at any place out of this State and within the United States, and the same is returned under protest for non-asceptance or non-payment, the holder thereof shall be entitled to recover of the drawer and endorsers in the first case, and the acceptor also in the latter case, in addition to the principal, interest and protest fees, five per cent. on the principal as damages for non-acceptance or non-payment. If such bill, draft or order is payable at a place without the limits of the United States, the holder may recover ten per cent. damages as right for non-acceptance or non-payment.

The superior courts are the highest courts of general original jurisdiction. They have exclusive jurisdiction of divoree suits, cases respecting titles to land and equity cases. The powers of a court of ordinary and probate are vested in an ordinary for each county. Justices of the peace have jurisdiction in all civil cases where the principal sum claimed does not exceed \$100. except where jurisdiction is exclusively vested in other courts.

Writs to the superior courts must be tiled twenty days, and served fiftecen days before the first day of tho tem to which they are returnable. Actions are triable only at the second term, except suits for rent, which are triable at the first term. In justices' courts, summonses shall bear date 15 days before the time of trial, if the amount is under $\$ 50$, and shall bear date 20 days before the time of trial when the amount is over $\$ 50$, and shall be served at least 10 dags before the time of trial.

All judgments obtained in the superior, inferior, justices' or other courts of this State shall be of cqual dignity and shall bind all the jroperty of the defendant, both real and personal, from the date of such judguent, except as
rers of machinery in rnish or put up in any who may repair the a special lien on such ere the debtor residet remove without the als himself; when he e removed beyond the ase of property, upon teh debt is in the pos. ; was created; when a or the payment of hils or whenever a debtor nust be in clouble the all damages sustained if shall fail to recover. tate.
time, of real or person. person, either in trust st or benefit is reserved v against creditors, and litor to another, and to er legal means, or he gotiable papers as col. ved for his own benefit, fother creditors. All o as to vest the title in , subject to the equities ie assignment and untii
has been obtained, the nder the following reg. hall make an affidavit this code, stating the gment, and that he has ereof, unless the process 1 soeurity, in a sum at le to the defendant in pay said defendant all suing out said garnish. the suit pending, or it idgment was not due. at any place out of this urned under protest for ll be entitled to recover eptor also in the latter 8 , tive per cent. on the nt. If such bill, draft hited States, the holder cceptance or non-pay-
l original jurisdiction. speeting tities to land d probate are vested in ve jurisuliction in all
exceed $\$ 100$: except
ys, and served fiftecell urnable. Actions are hich are triable at the te 15 days before the ate 20 days before the served at least 10 days
-es' or other courts of ic property of the dejudgnent, except as
otherwise provided in this code. When any person has bona fille and for a valuable consideration purchased real or personal property, and has been in possession of such reai property for four years, or of such personal property two jears, the same shall bo discharged from the lien of any judgment ugainst the person from whom he has purchased. When a judgment lien has attached on personai property which is removed to another state and sold, if brought baek gain to this State it will be sukjeet to the judgment lien. No judgment herealter obtained in the courts of this State shall be enforced after the expiration of seren years from the time of its rendition, when no execution has been issued upon it; or when execution has been issued, and seven years shalt have expired from the time of the entry upon the execution, made by an officer anthotized to execute and return the same; such judgments may be revived by scire facias, or be sued on, within threc years from the time they become dormant. Execution may issue immediately upon the rendition of judgment.
Defds, Mortgages, hights of Married Women, Wills, \&e., A deed to lands in this State niust be in writing, under seal, signed by the maker, attested bs at least two witnesses and delivered to the purchaser, or sone one for him, and be made on a valuable or good consideration. No preseribed iorm is cssential w the validity of a deed to lands or personalty. If suflicient in itself to make bnown the transaction between the parties, no want or form will invalidate it. Adeed to personalty needs no attesting witness to make it valid; in other respets, the principles applicable to deeds to lands are applieable to it. Generdiy a deed is not necessary to convey title to personalty. Fvery deed convering isids shall be recorded in the office of the clerk of the superlor court of the county where the land lies within one year from the date of sueh deed; on failure to record in this time, the record may be made at any time thereafter; but ench deed loses its priority over a subsequent deed from the same vendor recorded in time and taken without notice of the existence of the first. To authorize the record of a deed to realty or personalty, it must bo attested, if executeilout of this State, ly a commissioner of deeds for the State of Georgia, or a consul or vico-consul of the United States (the certificates of these officers under their seals being evidence of the fact), or by a judge of a court of record in the State where executed, with the certiticate of the elerk, under the seal of such court, of the genuineness of the signature, of such judge. If executed in this State, it must be attested by a juige of a court of record of this State, or a justice of the peace, or notary publie, or clerk of the superior court in the county in which the last three mentioned offieers respeetively hold their appointments: or if subsequently to its execution the deed is aeknowledged his presence of either of the above-named ofleers that faet certifled on the deed by such officer shali a titlo it to he recorded. If a deed is neither attested by nor aeknowledged beine cither of the oflicers aforesain, it may bo admitted to record upon 'the mavit of a subseribing witness before either of the above-named officers teslifying to the execution of the deed and its attestation according to law.
All property of the wife at the time of her marriage, whether real or personal or choses in action, shall be and remain the separate property of the wife, and all property given to, inherited or aequired by the wifo during eoverture, shall bhall vest in and belong to the wife, and shall not be liablo for the payment of any debt, default or contract of the husband. Tho wife is a femme sole as to her eparate estate, unless controlled by the settlement. Every restriction upon the power in it must be complied with; but while the wife may contract, she gannot bind her separate estate by any contract of suretyship, ior by any asumption of the debts of her husband, and any sale of her separate estate, made pa creditor of her husband in extinguishment of his debts, shall be absolutely oil.
Wills mast be in writing, signed by the testator or some person in his presenee mid by his express direction, and attested and subseribed, in the presence of he testator, ly three competent witnesses if to pass real estate, and two if peronal property.

SPECIAL LAWS OF IDAHO.

Exmmptions from Forced Sale.-Home worth \$20no, and Personal Property roth $\$ 300$. The head of a family, being a householder, either husband or wife, maj pleet a honestead not exceeding in value $\$ 2000$; while furniture, teams, tools, fock, and other personat property enumerated by statute, to the value of $\$ 300$ or bore, according to valuation, shali be exempt from execution, except upon a pidgent recovered for its price, or upon a mortgage thereon.

SPECIAL LAWS OF ILLINOIS.

Exemptions from Forced Sale.-Home worth $\$ 1000$, and Personal Property. Exemptions are as follows, except for wages of any liborer or servant: An estate of homestead to the extent in value of $\$ 1,000$, and proceeds of the sale thereof to that amount for one year after such sale. Insurance on homestead is exempt where a loss occurs thereon to the extent property insured would hare becn if not destroyel. Personal property is exempt as follows: 1 . The necessary wearing apparel of every person. 2. One sewing machine. 3, The furniture. tools and implements of any person necessary to carry on lils or her trade of basiness, not exceeding in value $\$ 100$. 4. Materials and stock designed and procured by him or her and necessary for carrying on his or her trade and business, and intended to be used or wrought therein, not exceeding $\$ 100$ in value. 5 . The implements or library of any professional person, not exceeding $\$ 100$ in value.

And in addition to the abovo property, when the debtor is the head of a family and resides with the same, the following: 1. Necessary beds, bedsteadsand bedding, two stoves and pipe. 2. Necessary household furniture, not exceeding in value, $\$ 200$. 3. One cow and calf, and two swine. 4. One yoke of oxen, or two horses in lieu thereof, used by the debtor in obtaining the support of his family, not exceeding in value $\$ 200$, and the harness thereof, not exceeding in value $\$ 10$. o. Necessary provisions and fuel for the use of the family for three months, and necessary food for the stock hereinbefore excmpted for the samo time. 6. The bibles, school books and family pictures. 7. The family librar. 8. Cemetery lots or rights of burial, and tombs for repositories, for the dead. 9 . $\$ 100$ worth of other property suited to his or her condition in life, selected by the debtor.

When the head of a family dies, deserts, or does not reside with same, such family is entitled to the benefit of exemptions just mentioned. The wages and services of a defendant, being the head of a family and residing with the same, to an amount not exceeding $\$ 25$, are exempt from garnishment.

Mechanics' lisen.-Any person, by contract, express or implied, or both, with the owner of any lot or piece of ground, furnishing labor or materials in building, altering, repairing or ornamenting any house or building on such io: has a lien upon such lot or whilding for the amoment due him for such laborot material. To the extent that the furnishing such labor or materials has inereased the value of such property, such lien takes preeedence over prior incumbrances. Proceedings to enforce a mechanics' lien must be conmmenced by the original contractor within six months from the time when the lastparment for labor, or materials becomes due, in order to enforce such lien against other creditors or incumbrances

Collection of Debts.-Arrests in civil actions, may be made under a Statute which provides that when any person shall be about to commence a suit in any court of record in this State founded upon contract, if he shall tile an aftidarit setting forth the cause of action, the amount due the plaintiff, and facts showing that defendant fraudulently contracted the debt, or that he has concealed, assigned, removed or disposed of his property with intent to defraud such plaintiff; and shail present such aflidavit to a judge of Ω court of record, or if there be no such judgo in the county at the time, then to a master in chancery; and if sufficient cause be shown, bail may be given. The judge or officer ordering the issuing of such capias must require bond from tho plaintiff, with security to bo approved by the clerk issuing the writ, in clouble the amount sued for, cenditioned for the effectual prosecution of the capias by plaintiff and payment of all damages defendant by him sustained, on account of the wrongful suing out of writ.

Writs of attachment mav issue for the following causes: 1 . Where the credi tor is a non-resident, 2. When the debtor conceals himself or stands inde flance of an officer so that process camot be served on him. 3. Where the debtor has departed from the State with the intention of having his effects re moved therefrom. 4. Where the debtor is abont to remove his property frem this state to the injury of creditor seeking to attach. 5. Where the debtor has within two ycars preceding the flling of the affidavit required in this proceeding to be filed by attaching creditor, fraudulently conveyed or assigned his effects or a part thereof, so as to hinder or delay his ereditors. 6 . Where the debto has, within two years prior to the filing of such afthdavit, fraudulently conceales or disposed of his property so as to linder or delay his creditors. 7. When the debtor is abont fraudulently to conceal, assign or otherwise dispose of his prop erty or effects so as to hinder or delay his creditors. 8. When the debt gad

INOIS.

and Personal Property. borer or servant: An id proceeds of the salo urance on homestead is erty insured would hare llows: 1 . The necessary ine. 3, The furniture. on his or her trade or und stock designed and r her trade and Dusiness, gg $\$ 100$ in value. 5 . The ceeding $\$ 100$ in value. tor is the head of a fam. sary beds, bedstcalsand furniture, not exceeding 4. One yoke of oxen, of ining the support of his tereof. not exceeding in 3 of the family for three exempted for the rame
7. The family library. sitories, for the dead. n in life, selected by the
reside with same, such itioned. The wages and I residing with the same, shment.
ress or implied, or both ing labor or materials in or building on such lot lue him for such labor or r materials has increased nee over prior incum. nust be commeuced by time when the last pasenforce such lien agalnet

be made under a Statute

 commence as suit in any he shall the an aftidarit hintiff, and facts showing that he has concealed, it to defraud such plaint of record, or if there be ster in chancery ; and if ge or ofticer ordering the ntiff, with sceurity to be amount sued for, conintiff and payment of all he wrongful suing out ofes: 1. Where the credi. imself or stands lid de on him. 3. Where tho of having his effects re emove his property froma Where the debtor ias uired in this proceeding or assigned his effectur - 6 . Where the debto , fraudulently conceaied reditors. 7. When the wise dispose of his prop When the debt 80e
for was fraudulently contracted on the part of the debtor; prorided, the tatements of the debtor, his agent or atcorney, which enstitute the fraud, shall hare been rednced to writing and his signature attached thereto by himself, his rent or attorney.
To entitle a creditor to sue out an attachment, the elaim whicin he seeks to make the basis of this proceeding mast exceed $\$ 20$ in a court of recorl. Plaintifi, in attachment before issuance of writ, is required to file with tho clerk iscuing same a bond to the defendant with suffleient surety in double the snm risorn to be dut to him, conditioned for the payment of all damages and costs recorered against him for wrongfully suing out such attachment. Attachments may be iesued by justices of the peace where the amount chamed is within their frisdiction for the same canses wheh authorize their issue from courts of record ind under substantially the same restrietions.
Assignments for the benefit of creditors may be made so as to prefer one or more, or a certain class of creditors.
If no preference is made by the debtor the creditors have an equitable lien for Deir pro rata proportions. If the assigmment is made with the tintent of delaying or defrauding creditors, it is void-not neeessarily so, if its effect is to delay creditors.
One partne can assign all the partnership assets for the payment of firm lebs. Chose in uction, except negotinble instruments, can not be assigned bere so as to give assignce a right of action on them in his own name.
Garnishne process may issuo both from justices courts and courts of record, ether o: attachment or after judgment and execution returned nulla bona yuinst any person owing debtor or having money, property or effects belonging whe debtor in his possession.
The aceeptance of a bill need not be in writing. Where foreign bills, drawn rition this State and payablo out of the United States, are duly protested for tonpayment or non-acceptance, the holler is entitled to ten per cent. damages, fiaddition to the costs of protest, from the drawer or indorser. On bills drawn in this State and payablo out of the State, but within the United States, duly protested us aforesanl, to five per cent. damages. Any note, bond, bill or infrument in writing, made payable in money or artieles of personal property to an person mamed as payee therein, is assiguable by indorsement under the tand of such person, in the same maner fos all bills of exchange. Every assignor mindorser of such instrument is liable to the action of any snbsequent assignee thereof, if such assignee has used tue diligence by the institution and prosecutim of a suit against the maker thereof for the recovery of the money or properTdue thereon, or damages in lleu thereof, and has obtained julgment, but by the use of due diligence has been unable to oltain satisfaction thercof. A note, bond, bill or other instrument in writing, layable to bearer, is transferable by delirery, and every indorser thereof is a guarantor, unless otherwise expressed in yis indorsement.
Justices of the peace have jurisdietion in their respective counties, where the mount claimed, including interest, does not exceed $\$ 200$. 1. In all actic ns prising on contract for the recovery of money only. 2. In actions for lamages Corinjury to real property, or for taking, detaining or injuring personal property. in In actions for rent and distress for rent. 4. In actions against railway comranies and those operating railways for kiling or injuring horses or other stock lor loss or injury to baggage or freight; and for injury or damage to reai or personad property, caused by setting fire to the same by their engines orotherwise. 5. In eplerih when the value of the property chaimed does not exceed $\$ 200$. 6. In ecions for damages for fraud in the sale, purchase or exchange of perscnal property, and in all eases where the nction of debt or assumpsit will he.
Circuit courts have, by the Constltution, original jurisdiction of all causes at hav and in equity, and such appellate juristletion as may be provided for by daw. Appeals lie from justices' courts directly to these courts, defendant to bead at said term. Before justices, summons must be served three days before sturned.
Judgnents from courts of record are a lien on the real estate of the Mdgment debtor, situated in the county wheren judgnent is obtahed tom the time same are obtained, are revived for the period of \bar{y} years. Then execution is not issued on a judgment within one year from the time the ame becomes a lien, it shall thereafter cease to be a lien; but execution may suse on sneh judgment at any time within said 7 years, and it becomes a lien on such real estate from the time of the delivery of such writ to the officer for ervice. Such judgments may be sued upon or revived within 20 years after the hate thereof and not after. Judgments rendered by justices of the peace may
be made a tien on real estate by fling a transcript thereof in the offce of the clerk of the elrcuit court for the county in which judgment was rendered. Sues transcripts can only be filed when it appears by return of execution on judg ment that defendant has not personal property in the county where same ni obtained to satisfy such juclgment and costs.

Executions issue fromi courts of record immedlately after rendition of judg ment and at any time thereafter for seven years, and to any county in the state They are a lien upon the personal property of the judgment debtor from the timo of delivery to the oflicer. Real estate sold under exceution may be redecme in twelve months. Executions from justices' courts camot be levicd on reale tate, and do not issue until twenty days after judgment, unless the judgmen creditor or his agent make oath that the benctit of the judgment is in dangere being lost unless execution issue immediately. Executions from justices' cour are also a lien upon the peramal property of the defendant from the time of thei delivery to the constable. There is no way of staying executions in this State en cept by appeal.

Deede, Montaages, Mhits of Marmed Womex, Wills, \&C. Deed and other conveyances of real cstate, must be under seal : any scrawl intende for a seal is, however, sutheient. No subseriblug wituess is necessary, either the validity of the instament or to eutitle the same to record. Suchinstrument may be acknowledged within this State lefore a master in chancery, a notang public, a United States commissioner, circnit or county clerk, jnstice of the peace or any court of record having a seal, or any judge, justice or clerk of such court Such acknowledgment must be attested when taken before a notary public o United States commissioner by his ofticial seal. When taken before a courto clerk thereof, by the seal of sneh court ; and when taken before a justice of the peace residing out of the county where the land conveyed is situated, a certifical of the county clerk of the county wherein such justice resides, must be adiled under his seal of office, to the effect that the person taking such acknowled ment or proof was a justice of the peace in said county ut the date therco When acknowledged without the State, but within the United States, side acknowledgment may be taken before a justice of the peace, a notary public United States.commissioner, commissioner to take acknowledgments of deed mayor of a clty, clerk of a connty, or before any judge, justice or elerk of th supreme court, or any circuit or district conrt of the United States, or any judge justice or clerk of the supreme, circuit, superior, district, county or conmu pleas court of any of the United States or their ternitories. When such acknow edgment is made before any notary public, United States commissioner, com missioner of decds or clerk, it shall be certitied by such officer under his officia seal; if before the mayor of a clty, under the seal of the city; if before a justio of the peace, a certifleate must be added as in case of prof or acknowlelgmen within the State before a justice of the peaco residing without the cownty when the land conveyed is situated. Acknowledgments may be made in accordang with the laws of the State, territory or district where made, and the cerificate a clerk of a court of record in such jurdsdiction to that effect, under his han and the seal of said court, is evidence that such acknowledgment was so made.

When acknowledged without the United States, such acknowledgment ma be taken before any court of any republic, state, kingdom or empire having seal, or any mayor or chief officer of any city or town laving a seal, or befo any minister or secretary of legation, or consul of the United States in an forelgn country, attested by his ofticial seal, or before any officer authorized tho laws of such foreign country to take acknowledgments of conveyances real estate, if he have a seal ; such acknowledgment, in all cascs, mist be es tested by the official seal of such court or officer ; and in case such acknowled ment or proof is taken other than before a court of record, or mayor, or chi officer of a town having a seal, proof that the officer taking the same was dul authorized by the laws of his country so to do must accompany the certificate such acknowledgment.

The following in the statutory form of certificate. It is the same, substa tially, whether grantor is unmarried or deed executed by husband and wife : State of Illinois, County of Sanganon. \}ss.

I, (name of offleer and title), do hereby certify that (grantor and if wife so her name "his wife"), personally known to me to be the same person who name is subscribed to the foregoing instrument, appeared before me this day person and acknowledged that he signed, sealed and delivered the said inist ment as his free and voluntary act, for the uses and purposes therein set fortb
reof in the office of the eut was rendered. Surl nof exccution on jude county where same in
after rendition of judg , any county in the siste dgment debior from the ceution may be redeemed mot be levied on reales ent, unless the judgmen judgment is in danger lous from justices' cour ant from tho time of thei xecutions in this State ex

Hax, Wills, \&c. Deed al : my scrawl intende :ss is necessary, cither rccord. Suchinstrument er in chancery, a notary clerk, justice of the peace ice or clerk of such cour efore a motary public d a taken before a courn ca before a justice of tb ed is situated, a certificatil e resides, must be adided taking such acknowled nty at thio date theroo the United States, surl e peace, a notary publii knowledgments of deed e, justice or clerk of the nited States, or any judge trict, county or conm ies. When such acknowl ptates commissioner, eom 1 officer under his officia le city; if before a justio rcof or acknowledgmea without the cownty wher be maile in accordang bade, and the cerifificate lat effect, under his har vledgment was so made. ch acknowledgment ma gdom or empire laxing having a seal, or befor the United Siates in an any officer anthorized nents of conveyances in all cases, must be in case such acknowied ecord, or mayor, or chit king the same was duf ompany the certificate

It is the same, substa y lusband and wife:
grantor and if wife jo the same person who ed before me this day elivered the said inisth rposes therein set fort

Giren under my land and (private or offlial as the case may be) scal, this (day d month) day of (month), A. D. (year).
No decd or other instrument can be construed as relcasing or waiving the right of homestead, unless the same shall contain a clause expressly relensing or firing such right ; and in such caso, the certificate of acknowledgment must wnaill a clause substantially as follows: "including the release and waiver of be right of homestead."
Nochattel mortgage or trust deed is valid as against the rights of third persons, mess possession thereof elanll he delivered to and remain with the grantee, or the astrument shall provide for the possession of the property with the grantor, and x properly acknowledged and recorded. Such instruments may be ackowledged deeds. They are valid for any period not excceding two years. After the exgiation of the tlme provided in the mortgage for tho possession of the mortaged property by the mortgagor, such possession, if continued, renders the errgage fraudulent and void as to third parties with or without notice, actual froustructive, of such mortgage.
Married women may own in their own right real and personal property, and Eanage, sell and convey the same to the samo extent, rud in the samo mamus hat a married man can, properly belonging to him. They may sue and be sued ithout joining their husbands, to tho samee extent as if unmarried. A married foman may make contracts and incur liabilitics which may be enforced against er to the same extent as if she were sole, but she camnot enter into or carry on ar partnership buslness without her husband's cousent, unless ho has abandoned rdeserted her, is idiotic or insane. or is confined in the penitentinry. The es de of courtesy is abolished, and the surviving hushand or wlfe is endowed of gethird part of all lands whereof the deceased husband or wifo was seized of hestate of inheritance at any time during the marriage, unless the same has en relinquished in legal form. Dower may be barred by release thereof in due om of law, and by jointure or devise, accept in lieu thereof.
Wiils must be in writing, signed by the testator, or by some one in his presence dod by his direction, and attested by two credible witnesses.

SPECIAL LAWS OF INDIANA.

Exemptions from Forced Sale.-Home and Persmal Property of the folving value.-Any resident householder has an exemption from le y and saie pder execution, of real and personal property, or both, as he may select, to the dne of $\$ 300$. The law further provides that no property shall be sold by virtue (an exccution for less than twe thirds of its appraised cash value, the prosions of this law can be waived in contracts. To do this, the note or contract touli read: "Payable without any relief whatever from vnluation or appraisent laws."
Mechanics' Lien.-Material men and mechanies have lien for labor and aterial on the land and improvements to the extent of their claims. The orifinl contractor must file his claim within two months, laborers within 60 ers, and all other persons claiming a lien within two months after the debt culued. This lien has precedence over all otler liens or encumbrances placed the property subseqnent to the conmencement of the building or improveents. Must be foreclosed in 12 months.
Colecetion or Debts.-No persons can be arrested here except in cases fraud, actual.
Writs of attacliment, which may be obtained by any creditor, can only be issued the following grounds:-1. Non-residence of any of defendants. 2. Where ar of defendants is secretly leaving the State, or has left the State with intent defraud his creditors. 3. Or conceals himself that summons cannot be served pon him. 4. Or is removing, or about to remove, his property subject to exceuon, or part thereof, out of the State, not leaving enough to satisfyplaintiff's claim. Or has sold, conveyed or otherwise disposed of his property subject to execuen, or has suffered or permitted it to be sold with the fraudulent intent to eat, hinder or delay his creditors. 6. Or is about to sell, convey or dispose of me with such intent. A statutory undertaking in all cases in attachment must executed, the measure of damages in an action on which is in the discretion the jury.

In atiachments lovied oin real estate, tho levy and dis pendens are notice f all purposes. In altachments, execpt on ground of non-residence, caution shoul be lised.

An assignment in trust, for the benefit of crealitors inure for the benefi: of a credltors of the grantor, whether hamed in the deed of assigment or not; th deed of assignment must be aeknowledged and recorded like other deeds. On partner cannot assign all the partnership assets for the payment of partne ship debts, but only his own share of them. Aesignments made to seat sureties or endorsers prior to any payment by them, are valla. Notes, blle, a counts and every species of contract or claim are assignable, and the assigneed the on it in his own name.

In motes and hills, acceptors are ehargeable only when their acceptance is writing on the blll ; or, if on a seperato plicee of paper, when the party whogar the erellit saw the seperate paper; or if a promise is made in writhig to acee ondraft before it is drawn, and the draft is in the hands of any person who gix credit on the strength of of this writing.

All parties to notes or bills, whether indorsers, makers or acceptors or parti in any manner, can be sned jointly or separately in the sanse or in several tlons. Drafts, orders or bills of exelange, payable at siglit or on clemand, deomed duo the day they aro presentedfor payment, and if umpaid, may be tested. Notarial protest is evfdence of clemand and refusal of payment, at time and in the mamer stated in the protest.

A bill in the State, payable ont of the State, protested, if payable in the Cnit States, is entitled to eight per cent. damages; if payable ont of the linit States, ten per cent. damages. Sheriff's are liablo to pay ten per cent. damag on fallure to pay over any money collected by then.

Justlee Courts have exelusivo juristliction of all sums under $\leqslant 50$, , n concurrent jurisdiction with the circuit courts to $\$ 200$. Service of sumum must be made in eircuit courts 10 days before the tirst day of term, and in jasti courts 3 days before trial.

Judgments in courts of record are liens on real estate for a period of years; the judgment may then bo revived for ten years longer ; judgments a no liens on personal property. Transeripts of judgment before jastice, if if in the elrcuit court, are liens on real estate.

Executions issne, on plaintiff's order, the day after fudgment, and are a if on personal property, when issning out of a justice's conrt, from tho time ti are delivered to the officer; when issuing from courts of record, from the tin they aro issued. Fxecutions from a justice cannot be leved on real estato. Ere species of property, real or personal, books of account, debts and judgmen whether tho interest in real estate be a legal or equitable title, is subject execution and sale at law. Redemption after exceution salo is permittel. an exceution from a court of record is returned unsatisfied, tho debtors can summoned and required to state under oath what property or interests theyla or own which may bo reached by execution.

Deeds, Rights of Married Women, Wilts, \&c.-Deeds, must be und seal, a scrawl, however, is regarded as a seal. The acknowledgment, if made this State, may be made before a justlee of thi peace of the county where land lies, before a judge or beforo a notary mblle; if out of the State, before commissioner of this State, notary pubilic, or before the chief officer or maver a town or city who has a seal, or before a consul or minister of the Unit States who has a scal. The seal must be attached, and the deed recorded in county where the land lies.

The following is the form of certificate where the grantor is unmarried:
[Form.]
$\left.\begin{array}{l}\text { State of Indiana, } \\ \text { County of Stark. }\end{array}\right\}$ ss.
CoUNTY OF STARE. ${ }^{\text {Sefor }}$
Beroreme, , 187 , personally appeared tho in and for said county, this day of ho within-named, and acknowledged the execni Witucss my forcgoing deed of conveyance.
Witness my hand and oficial seal.
(Simnaturo and title.)
Murried women can hold real or personal property to their seperate use. noto or endorsement by a married woman will not bind her seperate estate will be a nullity. The widow is endowed with one full and equal third part of the lands, tho legal title to which was in her husband during coverture, un such right of dower was legally barred.

A elia!tel mortgage of perishable artleles which are left in the hands of grantor, with right to use the same, is void ; so is a mortgage of a stoek of goc the grantor having a right to sell ; so is any mortgage, if unregistered and
is pemelens are votice !d residence, cautton shoul nure for the benef.: of a of assigment or lot; th ed like other dechs. or the payment of partue ;nments made to secur o valicl. Notes, bills, 2 able, and the assigneece
en their acceptance is : when the party who gat larle in writing to acce of any persoll who gat
rs or aceeptors or partic 10 sanse or in severai a sight or on demmul, al ni if umpaid, may bern fusal of payment, at il
ed, if payable in the C"nite nyrable out of the limat priy ten per cent. damag
all sums under $\leqslant 50$, as 200. Service of simun day of term, and in justi
estate for a period of th ars longer ; judgments al rent beforo justice, if fil

- judgment, and are a court, from the timetio s of record, from the tin cried on real estate. Ere mint. debts and judgmen itable title, is subject ion sale is permitted. tisfied, tho debtors can perty or interests therla
y-Deeds, must be und knowledgment, if made of the county where t out of the State, before o chief ofincer or maror r minister of the Unit the deed recorded in t
rantor is ummarricd:
- this day of knowledged the cxectu: (Signature and title.) to their seperate use. d her seperato estate: and equal third partof 1 during coverture, unle left in the hands of t tgage of a stock of gocd if unregistered and
ehatels left with the grantor ; a chattel mortgage unrecoracia more tnan ten darg is void, except between the parties; so is also a recorded mortgage, if the poods are left unreasonably long with the grantor after defauit is madie in payment.
Wills must be in writing, and signed by the testator, or by some person in his presence and by his express direction, and attested and subscribed in the preRuce of the testator by two or more competent witnesses.

SPECIAL LAWS OF IOWA.

Exemptions from Forced Sale.-Farm of 40 Acres or House and Lot in City and Personal Property, The homestcad must embrace the house used as a home by the owner thereof, and if he has ts. o or more houses thus used by him, at differpat times and places, he may select which ho will retain as n homestead. If withinatown plat it must not exceed $1 / 3$ aere in extent, if not in Ω town plat it must fot embrace in the aggregate more than 40 acres. But if when thus limited, in diher case its value is less than $\$ 500$, it may be enlarged until its value reaches that amount.
Wearing apparel kept for actual use; trunks to contain same; 1 gun ; private libaries and family portraits ; musical instruments not kept for sale; 2 cows; 1 Dose ; 50 sheep ; 6 hogs ; 6 hives of bees; 1 bed and bedding for every two in the mily; household and kitchen furniture not execeding $\$ 200$; spinning-wheel, loom Trdsewing machine ; provisions and fuel for 6 months ; the tools, instruments or boks of debtor, if a farmer, mechanic, surveyor, lawyer, elergyman, physician, acher or professor. If a printer, printing-press, and tyjes, ete., for the use of wh newspaper othice, not excceding $\$ 1200$. The personml carnings of the debtor whis fanily for the 90 days preceding the execution. To an unmmied person, person not the head of a fanily, ordinary wearing apparel and trunks to conin the same are exempt. If a debtor abseonds and leaves his family, such procrty allowed to the head of a family shall be exempt in hands of his wife and fildren, or either. A single man, not the head of a family, non-residents, and bose who have started to leave the State are exeluded from tho above exempions; their property is liable to execution, with the exception of ordinary wearpa apparel, and trunks to contain the same; value not to exceed $\$ 75$.
No exemption shall protect property againstexecution for the purchase money bereof.
Mizcinanics' Lifen.-Every meehanie or other person doing any labor, or furishing any material, machinery or fixtures for the ercetion or improvement of or building, by virtue of any contract with the owner, agent, trustee, contraepor sub-contractor, shall have a mechanies' lien on the buildings, fixtures and cal estate. Railways are liablo in the same way as other property for construcon and improvements. No person who takes collateral security on the same ontract is entitled to a lien. The lien must be flled in ninety days after the laor to affect purchasers or incumbrances without notice; as between the oriinal parties, it can be filed any time in five years.
Collection of Delsts.-Arrestin civil action is unauthorized by law in this tate.
Writs of attachment may issue, by sworn petition, on one or more of the dlowing grounds: 1. That defendant is a foreign corporation or acting as such. That he is Ω non-resident of the State. 3. That he is about to remove his propny out of the State, without leaving suffeient remaining for the payment of 6ts. 4. That he has, or is about to dispose of his property, in whole or in art, with intent to defrand creditors. 5. That he has absconded, so that ordiny process cannot be served uponhim. 6. That he is about to remove permaently from the State and refuses to seeuro the debt. T. That he is about to mirert property into money for purpose of placing it beyond the reach of credit7. 8. He lias property and rights which he conceals. 9. That the debt is fir toperty obtained under false pretenses. In No. 4, 6 , ind 9 , attachment may we nmenced before the deli is due. Bond must be three times the amount ained, and sheriff may attach fifty per cent. in valne more than amount amed. Attachment cali only be levied on property not exempt from execution. Assignments for the benefit of creditors must be made for the benefit ali creditors pro rata. An inventory of assets and liabilities must be forn to by the insolvent, with a list of the ereditors and their respecto demands. Assignments must be chuly neknowledged as tiansfers of
real estate, and recorded in the county where the insolvent resides, or where the busliess in respect of which the same is made has beell conducted. The astigne Hhall ille the assignment and inventory with the elerk of she district court, an shail give bond for the performance of his duty in donble the amonnt of the invent ory and vaiuation. No dividend can be declared in less thin three monhe Creditors may accept their pro rate of assets, and take judgment for the remain der if they cionse.

Garnishument can be issued either on exeeution or attachment against an perwon owing the clebtor or having his property in possession. The parnishee entitled to compensation for his trontile and expense; this is paynble out of the fund, if any is found in his hands, or if nothing is due from the garnishee, the the plaintiff is bound to phy this sum.

Aeceptors of notes and bills are liable only when their aceeptance is in dorsed in writing ; or, if on seperate piece of paper, when the party whe gar the eredit saw the seperate paper ; or if a promise is made in writhly, to accep a draft before it, is drawn, and the draft is in the liands of any person who gar credit on the strength of this writing. The rate of damages to be allowei and paid on the non-aceeptance or non-payment of bilis of exchange drann or en dorsed in this State is as follows: If bill be drawn upon a person at a place oud of the United States, or in California, Oregon, Neverla, or any of the territorim flve per cent. upon prinelpal speeitied in the bill, and interest on the same from the time of protest. If drawn upon a person at any other place in the luith States, other than in this State, three per cent, with interent. All parties notes and bills, whether endorsers, acceptors or makers, ean be sued jointiso seperatel:. Notarial protest is eviden:ce of demand and refusal of payment stated therein.

Jurisdiction of Justices of the peace, $\$ 100$, but by agreement of parties mas be extended to $\$ 300$.

Circuit court has exclusive jurisdiction of probate business and appeals from justices of peace. District conrt has exclusive criminal jurisdietion. The wh conrts havo concurrent jurisdiction in eivil enses, except such as are speciad eireuit court as above. Service of summons must be ten clear days in distme and eircuit, and five in justice courts.

Juigments in courts of record are a lien from their rendition and for 10 ged thereafter, on all real estate owned by the defendant, or subsequently acquin, by him, and situated in the county where the judgment is rendered. The jurf nient can be revived at the end of that time. No execution ean issue on a jud ment in a court of record older than ten years; new suit has to be brought ond same. Judgments in courts of record create no lien on personal property, execution can issuc on a justice's judgment five years after its rendition, with revivor. Judgments before justice can be made to create lien on real estate filing a transeript of the judgment in the circuit court.

Execution may issue as soon as judgment is obtained, but one ean be out the same time. Execution from a court of record, may issue to any county ini State. From a justice, can be levied on personal property only. Real esta may be redeemed within a year after sale; but if defendant illes stay bond, appeals to supreme court, his equity of redemption is cut off. If the defenda fails to redeem in six months, any creditor of the defendant, whose demand is lien on the real estate sold, may redeen within nine months from date of sale.

Deeds, Rights of Marhied Women, Wilis, \&c.-Ackhowledgment deeds, made in the State, must be before ajndge of any court of record, clerk supreme, distriet and circuit courts, or their deputies, county auditor or deputy, each notary public and justice of the peace in his own eounty. Ackno ledgiments out of State must be before some court of record, before some con missioner for the State of Iowa, or before a notary public or justice of the pesc If before a justice of the peace the certificate of clerk of the district court of 4 county as to his offlcial character must bo attached.

Chattel mortgages must be acknowledged as other conveyances aud record in the county where property is situate. Foreclosiures can be mule by shen without action in court. The mortgaged property is left in possession of mon gagor, unless otherwise provided. Sales under chattel mortgage foreclosus ghall be in the samo manner as other sherifi's sales.

Married women can hold property the same as any other person, and arel ble on all contracts made by them, but her own property is in no ease liable! her lusband's debts. The common law riglit of dower exists in this State, 2 in executing deeds, she must acknowledge separate and upart from her husbay that she was made acquainted with the contents of sueh conveyance, and reli quished her dower freely and without compulsion from her lusband.
ent resides, or where the onducted. The astigneo the distriet conrt, and he amount of the invent ess than three mothes udgment for the remaing
attachment against any ssion. The carnisher it his is payable out of the rom the garn'shee, them
their acceptance is in hen the party who gary ade in writing, to accep of any person who gary nages to be allowed an fexchange drann oren a person at a place ous or any of the teritores nterest on the same frod lier place in the Uwik interest. All parties y r8, cmin be sued jointly ld refusal of payments
greement of parties ma
misiness and appeals frou nal jurisdiction. The in cept such as are speciat ten clear days in distra

- rendition and for 10 res or subsequently acquir nt is rendered. The jur ution can issue on a jul fit has to be brought on th on personal property, after its rendltion, withr eate lien on yeal cstatt
d, but one can be out issuo to any country in operty only. Leal esth fendant files stay bond. cut off. If the defenda dant, whose demand is ouths from date of sale. \&C.-Acknowledgment y court of recoril, clers lies, county auditor or b his own eounty. Ackno record, before some com lie or justice of the pean of the district court of 4
conveyances and recorde 8 can be made by sher eft in possession of mat cel mortgage foreclosur
other person, and arely ty is in no case liable exists in this state. 2 d upart from her husbay th conveyance, and relif h her husband.

All Wills, except noncupative, must be in writing, signed by the testator, or orsome person in hils presence and by his express direction, and attested and subsibed in his presence by two or more competent witnesses. Subsequent ineomvency of the witness will not invalidate the will. Noncupative wills, proved frtwo competent witnesses, when the value of the estate does not exceed $\$ 300$, se ralid.

SPECIAL LAWS OF KANSAS.

Exemptions from Forcen Sale.-Home of 160 Acres of Farm Land, or House ad Ome Acre in a Village or City, and lersomal Property. A homestead to the arent of 160 acres of farming land, or of ohe acre whthin the limits of an incorprated town or eity, occupled as a residence by the family of the owner, tor ther with all improvements on the same, of whatever valne is exempt. Excmpinns of personal property allowed a resident, belng the head of a family, are: befamily library, bible and sehool looks; famlly pictures and musical instrupents in inse: a pew in a church anil lot in a burial gromm; all the wearlng aparel and all beds, bedsteals and bedding usci by the family ; cooking-stove, mpeniages and cooking utensils. and other stoves and appendages necesanry It the use of the family, a sewing machine: all sphining wheefs and loonk, mother implements of industry and other household furniture not abve enupeated, not to exceed 8500 in value; 2 cows, 10 hings, 1 yokc of oxen, anci 1 me or mule, or, in lien of the yoke of oxen and horse or ninle, a span of horses mules; 20 sheep and wool from same, either raw or mannfaetured; the wcesC food for the stock mentloned above for one year; 1 wagon, cart or uray; plows, one drag and other farming utensils not exceeding $\$ 300$ in value; profidons and fuel on hand sutlicient for a year; the necessary tools and implecents of any meehanic, mincie other person. used and eppt for the purpose of anging on his trade and busmess, together with stock in trade not exceeiling Fo in calue ; the library, implements and oflice furniture of any prof essionril mn. Exemptlons of personal property alloweda resident of this State, not the ad of the family, are : wearing nppacel; pew in a church and lot in a burial fond; necessary tools and instruments of any mechanic, miner or other perm. used and kept for the purpose of carrying on his trade or business, together ith stock in trade as above. The carnings of a debtor also, for persona. series reudered within 3 months next preceding the issuing of an execution, are rempt, if it appear they are necessary, in whole or in part for the support of his mily. No personal property is exempt from attaeliment or execution for the ages of any elerk, mechanic, laborer or servant.
Mechavics' Lies.-Material men and mechanics have hen for labor and terial on the land and improvements to the extent of their claims. The gimal contractor must tle his claim within four months; all other persons siming a lien, within two months after the debt acerued. This lien has precenez over all other liens or encumbrances plaeed on the property subsequent to pcommmencement of the building or improvements.
Collection of Debts.-Arrest and bail, in civil actions, are provided for by daws of this State.
The order of arrest is issued by the clerk, or by the justice, only upon positivo marit showing one or more of the statutory gronnds therefor similar to those which writs of attachment issue. (See Attacliments.) Before the oriler pes, the plaintiff must also fle an undertaking, with sufficient surety, confioned for the payment of damages oceasioned by the arrest, if wrongful. In pctiec, this remedy is seldom resorted to in Kansas.
Attachment, against the property of defendant may issue in civil cases, when defendant, or one of several defendants, is a foreign corporation or non-resi. mbut not in either of these instances for any claim other than \AA debt or deind arising on contract, juigment or decree, unless the eanse of action arose olly within the limits of this State. It may also issue when the defendant or of several defendants las absconded with fraudulent intent, or las left the anty of his residence to avoid summons, or concealed himself to avoid summis, or is ubont to remove his property, or a part thereof, out of the jurisdiction the court with fraudulent intent; or is about to convert it into money to put erould reach of creditors; or has property which he conceals, or has assigned, mived or disposed of his property; or is about to do so, wath intent to defraud, der or delay creditors ; or fraudulently contracted or incurred the debt, fility or obligation ; or where the action is brought for damages arising from
the commission of any crime, or for seduction, or where the debtor fails to par on delivery where, by the contract, he was to pay on delivery. The order if issued (as in case of arrest and bail, supra), only upon affidavit and undertaking But, where the defendant is a foreign corporation, or where the defendant orde fendants are all non-residents of the State, the undertaking is not required.

Garnishee process, in attachment proceedings, is also provided for against ang person or corporation having possession of property or beling indebted to the def fendant.

Assignments in trust, for the benefit of creditors, inure for the bencfit of al creditors of the grantor, whether named in the deed of assignment or not; 4 deed of assignment must be acknowledged and recorded like other deced Assignments made to secure sureties or indorscrs, prior to any payment by them are valid here. Assignment of every species of contract or claim may be madein this State, and the assignee may sue thereon in his own name.

Acceptors of notes and bills are chargeable only when their acceptance is writing on tine bill ; or, if on separate piece of paper, when the party who ga the credit saw the separate paper ; or if a promise is made in writing to accepi draftbefore it is drawn, and the draft is in the hands of any person whoga credit on the strength of this writing, (Bills of exchange and notes duis ph tested for non-payment or non-acceptance, entitle the holder to recover damago as tollows : if drawn on or made by a person outside the State, six per cent.; outside any of the United States or territories, ten per cent. damages on it principal suni). All parties to notes or bills, whether endorsers, makers or ceptors, or parties in any manner, can be sued fointly or separately in the san or in several actions.

Justices of the peace have jurisdiction in actions on contract on account, bii note or bond where the amount claimed or balances due does not exceed 830,5 actions on undertakings given in civil proceedings before them where the tir due or demanded does not exceed $\$ 500$; in replevin where the value of property does not exceed $\$ 100$. District courts have gencral original jurisdiction In all cases, and appellate jurisdiction from infericr courts. Upon default, jod ments may be obtained before justices after three days' service of summons, in contested cases, a delay of thirty days may be readiiy obtained before job ment, and afterward ly a stay of execution as above stated. (See Execution In the district court, if in session, judgment may be taken upen default afl forty days' service of summons, but in contested cases, lssues must be made for triai ten days prior to the term. Terms of the several district courts of State are held as often as every six montins.

Judgments are a lie:1 upon the real estate of the debtor in the county whe rendered, for the period of five years, and may be made a lien upon real ettate other counties by filing in the clerk's ottice thercin an attested copy of the k nal entry of the judgment. Justices' judgments may be made a lien upons estate in same manner. But if execution be not taken out and levied withina year after rendition of judgmant, the lien becomes inoperative as against ou judgment creditors. Judgments which have become dormani, may be reris by the court upon motion of the judgment creditor and notice to the parties terested.

Executions may issue the day judgment is rendered.-Exceptions.- If word "appraisement walved," or words of similar import, be inserted in, mortgage, bond, note, bill or written contract, judgment shall be rendered cordingly, and execution shall not issue thereon for 6 days. If upon the dad in cases of judgnent rendered by justices of the peace, my person, residers the county, being good and sufficient security, shall, within 10 days, unders that the judgment shall be duly paid, execution shall be stayed for peis ranging from 30 to 120 days, accorling to the amount of the judgment.

Executions are a lien on personal property only from the time they actually levied. Executions from a justice canmot be levied on real es Redemption, after execution sale, is nuknown. If an execution (from aco of record) is returned unsatisfied, the debtors can be summoned and requg to state under oath what property or interest they have or own, which nas. reached by execution.

Deeds, hights of Married Women, \&C.-Deeds in this State need n* under seal. When acknowledged within this State, it must be before somen having a seal, or some judige, justice or clerk thereof, or some justice of peace, notary public, county clerk or register of deeds, or mayor or clerk fincorporated clty. When acknowledged without this State, it must be bo some court of record, or clerk or officer holding the seal thereof, or before notary public or justice of the peace, or commissioner to tako acknowicdeg
the debtor fails to pas delivery. The order ddavit and undertakin? ere the defendant ordo ing is not required. provided for against ans eing indebted to the do
re for the bencfitolal f assignment or not : 4 rded like other deades to any payment by them tor claim may be mader name.
en their acceptance isi hen the party whogar ade in writing to accept is of any person who gar mge and notes duly ${ }^{104}$ nolder to recover damazs 10 State, six per cent.; jer cent. damages on th endorsers, makers or or separately in the san
n contract on account. bii ne does not exceed $\$ 330$. fore them where the in where the value of eneral original jurisdictia ourts. Upon default, jut ;s' service of summons. ${ }^{\text {n }}$ diiy obtained before jof stated. (See Executions taken upon default dit 3s, issues must be made everal district courts of
lebtor in the county rid ade a lien upon real estate y be m ated copy of the en out ande a lien upont noperative as against ϵ ne dormanit may be rein ad notice to the parties
dered.-Exceptions.-11 import, be inserted ins ment shall be rendered b days. If upon the ded ace, any person, residem 1, within 10 days, undery shall be stayed for pers t of the judgment.
y from the time the? t be levied on real es be sumn hextion from a have or own, which mut.
ds in this State need nex it must be before somes eof, or some justice d ds, or mayor or clerk is State, it must be seal thereof, or before er to tako acknowlede

Fpointed by the Governor of this State, or before any consul of the United anes, resident in a foreign port or conntry. If taken before a justice of the mace, the acknowledgment mist be accompalned by a certificate of his ofticial macter, under the band of some court of record, to which the seal of said art shail be afflxed.
The following is the form of acknowledgment required:

Da this day of , A. D. 187 , before me, a in and for W , personally came , to mo personally known to be the same poranhose name aftixed to the foregoing conveyance as grantor and facknowledged the exeeution of the sime.
Intestimony whereof, I have hercminto subseribed my namo and affixed my seal. the day and year last above written.
(tasband and wife should always join in conveyances.) No separate ac urledgment is required on the part of the wife.
Harried women can hold real or personal property, to their separate nse, same as ummarried. A note or endorsement made by a married woman fllind her property the same es if she were unmarried.
Clattel mortgages of perishable articles, which are left in the hands of the tagor, with the right to use the same; or of a stock of merchandise which ffin the hands of the mortgagor with privilege to sell in due course of his fines, or in any manner for his own beneflit ; or of any chattels which are left the possession of the mortgagor, the mortgage not being duly registered, are Was to the creditors of the mortgagor, unless they have notice of the same.

SPECIAL LAWS OF KENTUCKY.

Empptions from Forced Sale.-Home worth $\$ 1,000$, and Personal Prop-

 To bona ficle housekeeper with a family, resident in the State: 2 work w, or 1 work beast and 1 yoke of oxen; 2 plows and gear ; 1 wagon and a set an, or 1 cart or dray ; 2 cows and calves ; 10 head of sheep ; provisions sufat to sustain the family one year, and provender sufficient to support the one year ; 1 sewing machino ; the usual household and kitchen furniture fited value, ete.; the tools of a mechanic not exceeding $\$ 100$ in value; the yies of ministers of the gospel, physicians and attorneys-at-law not to exin value $\$ 500$, but the last is not in addition to the two work beasts, m, eart or dray. In aldition to the personal property exempt from execucall clebts or liabilities created after the 1st of June, 1866 , so mueh land, ding the dwelling-house and nppurtenances owned by the debtor as shall xceed $\$ 1,000$, shall also be cxempt to the bona fide housekeeper with a fam-Echanics' Liexs.-There is a general law for the Stato (not applying to fron comnty, which has a special aet in somo respects different) giving anies and materlal men lieus upen the improvements and interest of the orer in the land for work done and material furnished. Sub-contractors aborers may acquire a lien, by giving the employer written notice of their and that they look to the land and improvements for compensation. Liens be filed in sixty days and suit brought in six months, to enforce claims, or are lost.
Llecrion of Debrs.-A defendant in a civil action may be arrested when idarif is filed and bond given, for causes for which an attachuent will
edefendant may give bail, or in lien of bail, deposit in the hands of tho for in court, the amount of money mentioned hin tho order of arrest. In It of both, he will be committed to jail, there to remaln matil he pays the gives lail or take the insolvent debtor's oath.
achment, in a clvil action for the recovery of money, may issue against the ty of dhe defendant, or a garnishee where the action is aqainst: 1. A deit, or several defendants, who, or some one of whom, is a foreign corpora-ranon-resident of the Stace. 2. Who has been absent therefrom four 8. 3. Has departed from the State wilh litent to defraud his creditore. 4. paf left the ecunty of his residence to avoid the seivice of a summong. 8 .

So conceals himself that a summons cannot be served on him. 6. Is about remove, or has removed his property, or a material part thereof, out of this satit not leaving enough therein to satisfy the plaintiff's claim or the claim of sai defendint's creditors. 7. Has sold, conveyed ontherwise disposed of his propertf or suffered or permitted it to be sold, with the frandulent intent "o cheat, bind or delay hiscreditors. 8. Is abont to sell, convey or otherwise dispose of h property with such intent. An attachment shall not be granted on the groum that the defendant, or defendants, or any of them, is a foreign corporation, of non-resident of this State, for any claim other than a debt or demand arisiz; contract. To obtain an attachment, the plaintiff must file an affilavit, showing 1. The nature of his claim. 2. That it is jnst. 3. The amount which the affia believes the plaintiff onght to recover. 4. The existence in the action of som one of the grounds above enumerated. No attachment will issue until bondan security in double the amount of the debt is given.

A defendant may be arrested in a civil action for canses for which an attad ment may issue, on tiling aftidavit and giving bond.

Assiguments, sales, mortgages, judgments suffered in contemplation of inm vency and with a design to prefer one or more creditors to the exclusion in who or in part of others, shall operate as an assignment and transfer of all the pro erty and effects of the grantor, and shall enure to the benetit of all his cred ors.

Garnishee may be summoned on attachment. He shall not be subject ansts beyond those caused by his resistance of the elaim against him. Atter turn of execution, endorsed "no property found," an equitable action mas brought for the discovery ly the defendant of money, closes in action, equitit and legal interests, ete. In such an action, any one indebted to the defendan: hoiding money or property belonging to him may be made defendant. Atto ments may issue without athdavit or bond. The court shall enforce the sume der of money, property, etc., and may commit to jail any defendant or garnish refusing to make such surrender.

All bills, bonds or notes, for money or property shall be assignable so as vest in the assignee the right of action. Three days of grace are allowed ont of exchange. The endorser on a note, unless put on the footing of a foreignt is discharged, unless the holder brings suit ayainst the maker, if note rems unpaid, at the flrst court held after its maturity, and prosecutes the maker te bolvency. Promissory notes, payable and negotiable at a bank in this Sta which shall be endorsed and discounted by said bank, or by any other bank, sh and are placed on the same footing as foreign bills of excliange.

Justice courts have jurisdictlon exclusive of the Circuit Court, but conenar with the quarterly court, of all actions and proceedings for the recovery of mug or personal property, where the matter in controversy, exclusive of interest costs, does not exceed $\$ 50$ in value, and in other cases specially provided b; ute. Justlees of the peace in Jefferson county and a few other counties jurisdietion to the extent of $\$ 100$, exclusive of interest and costs.

The Court of Appeals has gencral appellate jurisdiction over all courts, exg Where the judgment grants a divoree, or is rendered by a quarterly, county, pol city, mayor's or justice's court. Circuit Courts have general original juriz tion of nili actions and proceedings for the enforcement of civil rights and red of civil wrongs, except when exclusive jurisdiction is given to other cog (Civil Code, § 18.) They have appellate jurisdiction of the judgments of quart courts when th:e amount in controversy exceeds \$20. Quarterly Cintsh jurisdiction of actions to recover money or personal property not exceedin value \&illo. They have appellato jurisdiction from judgments of justices of peace for $\$ 5$ and over.

Summons must be issued and served 10 days before return day thereof. equitable proceedings the summons is returnable in twenty days. In just courts, on sums less thau $\$ 50$, it is returnable in five days, and on sums gre than $\$ 50$, in ten days.

Executions issue, from magistrates courts for sums less than $\S 00$, in 50 for sums over $\$ 50$, in 10 days; from the Jefferson court of common pleas, 9 terly courts and circuit courts in ten days ; from the Lonisville Chaucery in 15 days nfter judgment rendered ; is returnable to some rule day of the e not under 30 nor over 70 days from the test, and binds the real estate but nof personal estate (until levied) of the defendant only from the time the same i livered to the proper otlicer to exceute. For canse shown, the court mar immediate execntion.

A judgment is not a iien on the property of the defendant. A judgmentma enforced by issuing execution at any time within 15 years from its remdi
on him. 6. Is about hereof, out of this sithti in or the claim of disposed of his properth it intent "o cheat, binde therwise dispose of granted on the grourf foreign corporation, or ebt or demand arisis, o file an affidavit, siowing amount which the affia amo in the action of sm ; will issue until bond an uses for which an attad n contemplation of inso to the exclusion in whol d transfer of all the pry benefit of all his ered
e shall not be subject m against him. Alter a equitable action may choses in action, equitab idebted to the defendan: made defendant. Ation t shall enforce the surg any defendant or garuise
all be assignable so as f grace are allowed on bo the footing of a foreignt he maker, if note rema prosecutes the maker to at a bank in this Sto or by any other bank, exchange.
Ircuit Court, but conenm gs for the recoveiy of mot ay, exclusive of interest s specially provided by: a few other counties st and costs. etion over all courts, ex y a quarterly, county, po a general origimal jung is of civil riglits and red the given to other con 20. judgmenterty of quart l property net uigments of justices of
re return day thereol. danty days. In jus ms less than $\$ 00 . \mathrm{in} 5 \dot{d}$ urt of common pleas. 9 Lonisville chancert some rule day of the ${ }^{\circ}$ s the real estate but ne hown, the the same is
endar,t. A judgment ma years from its rentia

Esh renewal of execution revives the judgment for 15 ycars from the date of weh renewal. Foreign judgments must be proven by certiticate of judge and elerk.

Writs of provisional seizure may also issue, without the plaintiff giving bonch
A defcudant may replevy for 3 months a judgment or execution against him, ar any time before a sale of property under the same, by giving to the officer as dilization, payable to tho plaintiff with good security for the amount thereof, indiding interest, costs and half commissions up to that time.
If land sold under exccution does not bring two-thirds of its value, the defendlnt or his representatives shall have the right to redeem the same within a gir.
derds, Rights of Married Women, Wills, \&c.-Deels neel not be undirseal. Deeds executed in this Stato by persons other than married women, as; be almitted to record: first, on the acknowledgment before the clerk of a cunity court by the party making the deed ; or second, by the proof of two subvibing witnesses, or by the proof of their signatures. Deeds executed ont of the State, and within the United Stated, Dy persons other than marrled women, nyb be admitted to iecord when the same shall be certified under his seal of afie by the clerk of a court or lis deputy, or by a notary public, mayor of a city arsecretary of state, or commissioner to take the acknowledgment of deeds, or frajudge under the seal of his court to have been acknowledged or proved befire him in the manner hereby required. Deeds executed out of the United fites by persons other than married women, may be admitted to record when besame shall be certificd by any foreign minister or consul, secretary of legaBa of the United States, or by the secretary of foreign affairs, certilied under iiseal of office or the judge of a superior court of the nation where the deed bill be exceuted, to have been acknowledged or proved before him in the manexpreseribed by law.
A deed of a married woman, to be effectual, shall be acknowledged before we of the officers named in the preceding sections, and lodged in the proper fie for record. Previous to such acknowledgment, it shall bo the duty of tho ficer to explain to her the contents and effect of the deed separately and apart on her husband, and therenpon, if she freely and voluntarily acknowledgo the man, and is willing for it to be recorded, tho officer shall certify the same. prisy examination need not be stated in certificate.) When the acknowledrEnt flall be taken by an oflicer out of this State, the same shall be acknowlbuland certified to the effect following :
fite of Kentucky, $\}$ ss.
bown, city, department or parish of)
1, A. B. (here give his titie), do certify that this instrument of writing from D. and wife (E. F., or from E. F., wife of C. D.), was this day produced to me the partles, and which was acknowledged by the said C. D. to be his aet and *iand the contents and the effect of the instrument being expinined to the NE.F. by me separately and apart from her husband, she thereupon declared utshe did freely and voluntarily execute and deliver the same, to be her act Adeed, and consented that the same might be recorded.
Giren under my hand aud seal of offico.
[seal.]
A. B. (signature and title.)
proof by subscribing witness.
$\left.\begin{array}{l}\text { Let of Kentucky, } \\ \text { PTY of Mercer. }\end{array}\right\} s s$.
L,A. B. (here give the title), do certify that this day came before me G. H. and the subscribing witnesses to the foregoing deed (or otherinstrument) by C. D. M., which witnesses are personally known to me to be the samo whose names so written as witnesses, and being solemnly sworn by me in due manner, did tally deelare, on their oaths, that the said C. D. did. cknowledge this instruat to be his act and deed, and that the signature theretc was mude by him. they know him to be tho same person who is named as the grantor therein, that they did subseribe said deed as witnesses by his request.
biven under my hand and seal this [ELAL.]
day of 18 itt mado by residents of the State, must be legally loulged for record withitty days from the date thereof. By non-residents, and in the United Stated, pin four months ; if out of the United States, within twelve months. Deeds are legally recorded until the clerk's tax is paid. The county clerk is the reer of deeds. Deeds must be recorded in the county where the land lies, and Peffect in the order in which they arerecorded.

Chattel mortgages must be duly acknowledged and rocorded. The poses sion of the property mortgaged may remain in the mortgagor. Five years' pos session operates as a bar to the mortgagec. A mortgage on a stock of gonds is only valtd as to the goods in store at the time it is given, and is not good as to after-acquired stock.
The real estate of a married woinan owned before, or acquired after marriage, fiall not be liable for the debts of her husband, but aro liable for debts of het and her husband jointly created, in writing, for necessaries furnished her or any member of her family. The property of the husband shall not be subject to the payment of any of the wife's debts ineurred previous to marriage.

Wills must be in writing, signed by the testator or by some other person intis presence and by his direction; and if not written wholly by himself, must be at tested by two or more competent witnesses, subseribing their names in lis presence.

SPECIAL LAWS OF LOUISIANA.

Exemptions front Forcen Sale.-IIome of 160 Acres of Land, and Personat Property, in all worth $\$ 2,000 .-160$ acres of land, with buildings and improvement therzon, occupied as a residence, and bona fide owned by the debtor, having : family, a person or persons dependant upon him for support; together with personal property, makiug in all a value not exceeding \$2,000. Tools of trade salaries, wages, and personal services, all wearing apparel, all agricultural im^{2} plements, working cattle, and provisions and supplies necessary for carrying en the plantation for the coming year. No home exempted in the city or villages and in any case only for benefit of persons having a family.

Mechanics' Lien.-The contractor has a lien for the payment of lis labore the building or other work which he may have constructed. Workment ployed immediately by the owner in the construction or repair of any buildin have the same privilege. If the contractor bo paid by the employer, actions f work and supplies furnished the former will not lic against the latter, by moncys due the contractor by the employer may be seized and applied toward payment. No agreement for work exceeding $\$ 500$, unless reduced to writin and registered with the recorder of mortgages, shall be privileged as above. Fo amounts less than $\$ 500$, this formality is clispensed with, but the privilege limited to 6 months from the time of completed work. Workmen employedo vessels or boats have a lien on the same, and are not, in any case, bound to duce their contracts to writing, but their privileges closes if they allow the ref sels to depart without exereising their right.

Collecerion of Debts.-Arrest, in civil action, may bo made of a debto who is about to leave the State without leaving sufficient property to eatisfy th judgment sought to be obtained by the creditor, and held until seeurity it gire that he will not depart from the State without leave of court ; provided, the no citizen of another State shall be arrested at suit of resident or non-resdea creditor, exeept upon oath that the debtor has abseonded from his residence. rest or attachment may be made whether the debt is due or not, and agent attorney may swear to the best of his knowledge and belief.

Writ of attachment may issue against a defendant for the following eause 1. Where the defendant is a nou-resident. 2. Where he is about to lave State permanently. 3. Where he conceals himself to avoid bein:g citcd. \therefore. Wh he has mortgaged, assigned or disposed of his property, or is about to do $s 0$. 1 intent to give an unfair preference to some of his creditors, or place his prepe or evidence of debt beyond the reach of his creditors. In every case wher attachment is sought, the petitioning creditor must give a bond, payablo to clerk of the court for an amount cne-half over the claim demanded, with sure residing within the jurisdletion of the court. Writs of sequestration may issu this Stato upon an aftidavit made by party, or agent, or attorney in lis abeen showing one of the following grounds, after exceuting a bond with one goodrg dent surety in an amount to be determined by the judge; 1, Where the plaint who lias had possesslon of the property for one year, has been ejected by for 2. Where the plaintiff seeks the possession of movable property, and feas party having possession of the same may impair its value, may remure it bey the jurisdiction of the court, or may conceal or dispose of it during the conti ance of the suit. 3. Where a wife sues for soparation from bed and board, or separation from property alone, and lias reason that her husband may injure! dotal property or waste the fruits and revenues produced by the sanc during pendencr of ine anit. 4. Where the defendant has asked for a stay of proced
recorded. The postes agor. Five years' pas on a stock of goons in ven, and is not good a
required after marrizse liable for debts of het ies furnished her or any all not be subject to the marriage.
some other nerson in Lis by himself, must be e: ing their names in is

ISIANA.

res of Land, and Personal ildings andimprovement by the debtor, having support ; together with $\$ 2.000$. Tools of trale arel, all ayricultural 1 m necessary for carrying ed in the city or villares mily.
he payment of his labores astructed. Workmen em or repair of any building the employer, anctions ic against the latter, by seized and applied towart anless reduced to writin o privileged as above. Fo with, but the privilege in orkmen employed loses if they allow the ra
may be made of a deba ent property to eatisfy ha aeld until security is git ve of eourt ; provided, th of resident or non-reside led from his residence. duc or not, and agent belicf.
for the following came - he is about to leare avoid being cited. $\%$. What y, or is about to do so, wil litors, or place his prope bive a bond case where ine demanded, wilh gur sequestration way sistie r attorney in his abeerg a bond with one goorry ge ; 1, Where the plaing le property luc, may remure thery 0 of it during the conis
from from bed and board, of ced by the same during fod for a stay of promet
ings against him, and at a meeting of his creditors they should fear he will arail bimself of such stay of proceedings to dispose of the whole or part of his property. 5 . Where the plaintiff lias a lien or privilego on property.

Writs of sequestration may also issue, without the plaintlff giving bond, in cases where ho seeks to enforce a landiord's, seaman's, mechanic's or laborer's lien.
The assignment of notes, bills, accounts, or claims of any kind is valid, and the assignce may sue in his own name, but tho assignment of a debt must be nofified to the debtor. Garnishment can issue on an execution or attachment gginst any person owing the debtor, or having his property in possession.
Justice of the peace lias jurisdiction up to $\$ 100$, ineluding parish courts, origlnal jurisdiction, from $\$ 100$ to $\$ 500$. District courts on all amounts over $\$ 500$. Apdeals from justices, when over $\$ 10$, returnable to the parish courls, except in the parish of Orleans, where retirnable to third district court when over $\$ 10$. Ippeals lic from parish court on suins over $\$ 100$. From district court to suprem* court over $\$ 500$. Service of citation must be made for ten days before any action can be taken.
Judgments, to operate as a lien, must be recorded in the morigage book of the parish recorder. It then becomes a judicial mortgage on all the real estate of the debtor where recorded.
There is no stay of execution, and it can issue at any time after judgment. So redemption of property sold under execution or mortgage.
deeds, Righits of Marimed Women, Wills.-Deeds are valid without ectawl or seal. They mast be acknowledged in the State before a notary publle or recorder, or in presence of two withesses, who may prove the signature. If acknowledged out of the State, before a commissioner of Louishana, or in conformity to the laws of the State where acknowledged, and in the latter case tho official character of the officer before whom the acknowledgincut is taken must be properly verified. The husband must join in the execution of a deed made by the rife eonveying her real estate, and authorize her.

When the husband sells his own real estate, the wife must join him and revoune a!l her rights, and she must be examined apart from her husband and daly informed of the mature of the act. No particular form of words is necessary, exeept the above must be shown. This form is used:
state of
Controf ,\}ss.
Be it remembered that on this day came before me, John IIampden, a notary pablic within and for the county aforesairl, duly commissioned and acting as such, A. B. and his wife, C. D., to me known personally (or proved such by two credible nitnesses) to be the persons whose names are subseribed to the foregolng deed; and the said A. B, acknowledged that he had executed the said conveyance, for the consideration and purposes therein mentioned and set forth; and the eaid C. D., being by me first made acquainted with the contents of saidinstrument In an examluation apart from her husband, and fully advised of the nature of ber rights upon hls property, acknowledged that she executed the same freely, and without compulsion or undue influence of her said husband.
Witness my hand and seal of othec, on this day of , 187. JOIIN ILAMPDEN, Notary Public.
The estate of a married woman, whether acquired before or after marriage, remains her separate estate, and camot be sold by her husband. All property ocquired during marziage from tho joint or scparate earnings of husband and wife, and the revenues of the separate property of each, is equally divided betreen them. A married woman has no dower in her husband's estate, but it is best for leer to joln in any conveyance mado by him, in order to renounce any chams she may have on his estate. (She has no claim unless her lien or mortgage is recorded.) The husband must join his wife in any conveyance of her eparate estate.
There is 110 ehattel mortgage in this State, but the law ereates certain privileges upor movables, which are as follows: 1. The vendor's privilege on the norables not paid for; 2. For debts duo for necessary supplies furnished to ny farm or plantation and for money actually adranced for the supplies and ecessary erpenses for any farm oi plantation on the crops of the year or the proceeds thereof; 3. 'The lessor's privilege on the crops and movables nthe property leascd; 4. Architects, undertakers, furnishers of material, etc., on the edifices or other works built or repaired.
These privileges are, however, preserved, and ean be acquired only by having corded in the paris' where the property is the account containing the statenent of indebtedness in detail, and the balance due, under the oath of the party
dolng or having the work done, and this to be recorded the day the contract wad entered into, to have effect against third parties.

Tho estate of a married woman, whether acquired before or after marriage. remains her separate estate, and cannot be sold by the hasband. All propeity acquired during marriage from the joint or separate earnings of husband and wife, and the revenues of the separate property of each, is equally divided between them. A married woman has no dower in her husbands estate, but it is best for her to join in any conveyance made by him, in order to renonnce any claims she may have on his estate. (She has no claim unless her lien or mortgage is recorded.) The husband must join his wife in any conveyance of her neparate estate. The wifo may make her last will without tho authority of her husband.

SPECIAL LAWS OF MAINE.

Exemptions from Forced SAle.-Ifome vorth \$500 and Personal Property Homestead to the value of $\$ 500$, or lot purchased from the State, for a homestead. After the death of the debtor, his widow and minor children are ontitled to the same exemption. A lot in a burying-ground ; wearing apparel; necessary house hold furniture not excecding $850 ; 1 \mathrm{bed}$, bedstead and bedding for every twotn the family ; all family portraits; bibles and school-books in use; copy of the statutes, and a libratry not exceeding 8150 ; one cooking-stove, 12 cords whod, 5 tons anthracite coal and 50 bushels bituminons coal ; $\$ 10$ worth of lumber, wowl or bark ; all produce until harvested; 1 barrel of flour; 30 bushels corn an grain ; all potatoes; all flax raised on 1 acre of land and all artieles manufacture therefrom for the family; tools in trade; 1 sewing machine worth si00; pair working cattle or mulcs; 1 or 2 horses, not exceeding in value $\$ 300$, and hay to keep them throngh the winter : one cow and heifer; 10 sheep, and the lambs and wool raised from them, and hay to keep them during tho winter ; 1 plow a cart or truck wagon ; harrow ; yoke with bows, ring and staple; 2 chains; mowing machine, and one boat of 2 tons.

Mecinanics' Liex.-Mechanies have a lien on buildings for labor and mate rials furnished for erecthog or repairing same, which may be enfo ced by attach ment in ninety days after same are furnished or lator don and agains vessels for four days after same is lamehed.

Collection of Dents.-Arrests in civil actions can be made. In actionse tort, the body is committed, unless bail is given. In actions on contract ore ten dollars, aud the debtor is about to depart from the State to reside beyond the limits of the State, and carries with him property more than sufficient for hiif support, he can be arrested.

Every assigmment made by a debtor for the beneft of creditors shall prorid for a proportional distribution of all his real and personal estate, except what by law exempt from attachment, among allhis creditors, becoming partie thereto, and in whatever form mado shall have the effect aforesairl, and be als construed to pass all such estate, whether specified therein or not. A release mas be inserted in the deed of assignment, which shall forever discharge the assign from the claims of such creditors as become partics thereto. The assignor shal make oath as to the truth of the assignment. The assignee must, within fourtee days after the assignment is made, give public notice of his appointment some newspaper printed in tho connty where the assignor lives, such netice by continued three weekssuccessively. Three months from such assignment allowed creditors to become parties thereto. If the assignment is not swo: to and notice not given, then the same is void against attaching creditors. A property conveyed by the asslgnor previous to and in contemplation of th assignment, with tho design to delay, hinder or defrand creditors, or to gir preference to one creditor over another, shall pass to the assigneo notwithstand ling such transfer.

Writ of attachment may be issued in any civil action and can be levied on a property not exempt, which creates a lien that continues for 30 days after el cution issues.

Negotiable notes, bills, aind honds are assignable, so that assignecs may sued their own name. Any veraon who holds any goods, effects or credits belongin to a debtor may be required, under the "trustee process," to leliver up the sang for the credtitor to reach, except $\$ 20$ due the debtor for wages, and even the when the debt is for necessaries.

As to motes and bills, on any promissory note, inland bill of exchange, in
day the contract was
re or after marriage. asband. All propeity ruings of husband nul is equally divided beband's estate, but it ls order to renounce ally nless her lien or mortany conveyance of her it the authority of het

INE.

and Personal Properiy. State, for a liomestead. Iren are entitled to the plarel ; necessary house pedding for every two lu ss in use; copy of the -stove, 12 cords wood, 5) worth of lumber, woul ir ; 30 buslels corn and tll articles mauufacture⿻ machine worth $\$ 100 ; 1$ ng in value $\$ 300$, and has 10 sheep, and the lambs ing the winter $; 1$ plow and staple; 2 chains;
lings for labor and mate ay be enfo ced by attacio lator donr and agains
in be made. In actious actions on contractere state to reside beyond th fe than sufficient for hil
of creditors shall prorid hal estate, except whal litors, becoming partie eet aforesaid, and be als ein or not. A release mas er discharge the assimn reto. The assignor sha ee must, within fourtee nor his appointuent from sueh assigument ssignment is not swo: attaching eredltors. A in contemplation of th Ind creditors, or to gin (o assignee notwithstang
and can be levici on a es for 30 days after el
hat assignees may sue "to credits belongh Or wages and the sang d bill of exchange, dre
or order for payment of inoney, payable in this State at a future day, or at sight, and not on demand, a grace of three days shall bo allowed. In an action on a promlssory note, payable at a certain place, either on demand or on demand at or after a tlme speeffed therein, the plaintiff shall not recover unless he proves a demand made at the place of payment prior to the commencement of the suit. So person shall be charged as an acceptor of a bill of exchange, draft or written order, muless his acceptance shall be in writing, signed by him or hls lawful uent; and no walver of demand and notice by an indorser of any promissory aote or bill of exchange shall be valid unless it is in writing and signed in like manner. No action can be maintained uponany noto or other security given for moxieating liquors, sold in violation of the act relating to sales of intoxicating Hquors, unless the securlty is negotiable paper in the hands of an innocent boder, and for value. No agreement that personal property, bargained and delivered to another, for which a note is glven, shall remain the property of the payee till the note is paid, is valid, unless it ls made and slgned as a part of tho aote ; nor when it is so signed in a noto for more than $\$ 30$, unless it is recordedllko mortgages of personal property. Damages on protest of bills of exchange, of HNO or more, payable by the acceptor, drawer or indorser of one, in this Stato we, if payable at a place 75 miles distant, one per cent. ; if payablo in the State of New York, or in any State northerly of it, and not in this State, three per ent. ; if payable in any Atlantic Stato or territory southerly of New York und portherly of Florida, six per cent.; and in any other State or territory, nine per cent.
The jurisdiction of justlee courts extends to $\$ 20$, supreme judlelal court, of dicivil and criminal matters, and, except in county of Cumberland, exclusive dall sums over $\$ 20$; in county of Cumberland over $\$ 500$, concurrent jurisdiction.
Service must be had, in cases before justice of the peace, 7 days before the remrn day. In the courts of record, on individuals, 14 days, and on corporations, 3days, before the return day.
Judgments aro liens for 30 days where it is created by attachment, but not otherwise. Executlon can issue on judgments after term of the court expires at vhich judgment was obtained for 3 years, and for tho same length of timo after the last execution. Judgments can be sued on for 20 years. The execution canpot be staved unless it is issued. wrongfully, and then only upon giving bond to the judgment creditor.
Deeds, ligifts of Milarried Women, Wills, \&c.-Deeds must bo under ecal ; mawl is not sufficlent. It is not necessary to lave witnesses, but it must be acmomledged in the State hefore a justice of the peace. Out of the State, before any astice of the peace, magistrate, notary public, commissioner for the State, or by my United States minister, consul, or any notary public in any foreign conntry. the wife must join in the deed to rellnquish dower, or she may do it by a separato ped. When she joins with her husband in the same deed, either can acknowldee the instrument. No sepurate examination of the wife is necessary.
The following is the form of acknowledgment to be used in this State.
hate of Maine,
do'vty of Waldo. \}ss.
Onthis day of, 187 , personally appeared the above-named mator, and aknowledged the foregoing instrument, by lifm signed, to be his free tand deed.
Before me, SAh Jonnson, Justice of the Peace.
If acknowledged out of thls State, use this form :
tate of Vermont,
tyty of Wininimam. $\}$ ss.
On this day of , 187 , personally appeared before me R.
nderson, notary public, the above-named
cowledged this instrument to be his free act and deed.
In witness whereof, I have hereunto set my hand and affixed my official seal eday and year aforesatd.
lesal.] R. A nownson, Notary Public. As to property, both real and personal not obtained by them from their husnds, marrled women can control, dispose of, and encumber as though they wero me sole, and free from the debts of their lushands. They can make contracts, Which they and their property are liable, whether notes or otherwise, and it property may be attached and taken on execution to satisfy any judgment. pired against them. They cannot be arrested. A wife must join in a deed m the husband in selling his real estate, to relinquish dower, and he must with her in selling her real estate only when it comes to her from him.

All chattel mortgages made to secure over $\$ 30$ are void, unless possession is given to the mortgagee, or rather taken out of the possession of the mortgagor, and the mortgage recorded in the town where the mortgagor lives.

In this State all wiils must be in writing, signed by the testator, or by some person in his presence and by his express direction, and shall be attested and subscribed in his presence by three credible witnesses.

SPECIAL LAWS OF MARYLAND.

Eximptions from Fonced Sale--No Homesteal Exemption, but Persones Property. The property exempted is the personal property actually necessary for the sustenance of the family and the implements or tools necessary to eam a llvlihood, and wearing apparcl. The Constitution of the Stato directs the Let. islature to pass laws exempting from judleial sale property not excecding siñ. $\$ 100$ is the amount fixed and exempted in pursuance of this constitutional requirement. The exact language of the law is, "all wearing apparcl, books, and the tools of mechanics."

Mecifanics' Lien.-Every building erected, and every building repaired, rebuilt or improved to the extent of one-fourth of its value, shall be subject to a lien for the payment of all debts contracteri for work done or material fur. nished for or about the same; also vessels, boats or machines constructed or repaired within thls State are subject to meechanles' licn. The lien must be filed in the record offico within six months after the work has been flnished or materials furnished. If the contract shall have been made with an arehitect a builder. or any person other than the owner of the ground on which the building is erected, or his agent, notice of intention to claim a lien must bo given to the owner within sixty days. The mechanics' lien has priority over all other liens of incumbrances placed on tho property after the commencement of the building and over mortgages to secure future advances, where tho loan or advance is no actually made until after the commencement of the building.

Collection of Deists.-No person can be arrested in civil acton here Writs of attachment may be obtained on the following grounds: Non-residenc of the defendant, absconding or secretly removing from his place of abode, wil intention to evade payment of his debts. When two summons liave been ri turned non est in any action. No bond is required before issuing the the foregoin cases. Attachment may be had on any debt duc by a married woman trading a afemme sole. Upon affidavit and approved bond in doublo the delt claimef attachment for fraud will be issued where debtor is about to absecid from th Stato; or has, or is about to assign, dispose of, or conceal his property, or som part thereof, or to remove the same with intent to defraud his creditors ; or ha fraudulently contracted the debt. In these cases caution should be used net resort to attachment unless the proof of the alleged fraud is such as would satis a jury upon trial.

Every.species of property, or legal, or equitable interest in property, is sa ject to attachment and execution at law.

Assignments, in trust, for the benefit of creditors, are not regulated by an special enactments and aro common in use. The debtor, so far as the State lat are concerned, may prefer any creditor or class of creditors, or may exact release if he assigns all his property. Any choso in action, judgment, bond, legaey distributive share of an estate may be assigned in writing, signed by the pers authorized to assign the same, and the assignee may sue in his own name.

As to garnishiraent, attachments, either on judgnent or on original proces, those cases where attachments are authorized, may be laid in the hands of a person or corporation who may then bo made to disclose under oath whetb they owe or aro indebted to tho defendant or have any property of his in th possession. $\$ 100$ of the wages due to any laborer, or employee is exemptin attachment or garnlshment.

As to notes and bills, a protest made by a notary public for non-payment non-acceptance, is prima facie evidence of the presentment and non-payment non-acceptance at the time and in the manner stated in the protest, and that noi thereof have been sent or delivered in the manner therein stated. The hol of a protested bill of exchange, drawn in this State on a foreign country, in recover so much current money as will purchase a good bill on the same coung and fiften per cent. damages, and costs and legal interest. If the bill is dra upon any person in any other State, district or territory of the Unitcd sta
unless possession is ion of the mortgagor, or lives. testator, or by some shall be aitested and

CLAND

remption, but Personat erty actially necessary tools necessary to eam e State directs the Les. rty not exceeding sisoo. : this constitutional re vearing apparel, boobs,
very building repairel, Nue, shall be subject to done or material fur. jachines construeted or
The lien must be filed s been thiniehed or matelo with an arelitect ad on which the building licn must bo given to tho ity over all other liens c cement of the building he loan or advance is no ilding.
ed in eivil action bere 3 grounds: Non-residenc his place of abode, wi: summons lave been ro re issuing in the foregoing married woman trading a loublo the delit clained out to absecand from to eal his property, or som anul his creditors; orba ion should be used not ud is such as would satisy
erest in property, is sui
are not regulated by ay r, so far as the State dax ors, or may exact releasi udgment, bond, legacy e in signed by the pers o in his own name. laid original process, close under oath whet property of his in th employee is exempt in
blic for non-payment hent and non-payment he protest, and that noi erein stated. The hol a foreign country, , bill on the same couns rest. If the bill is dry Ory of the United Stas
the holder shall recover so much eurrent money as will produce a good bill on the same place and eight per cent. damages, and costs and legal interest.

Justices of tho peace have jurisdiction in eases where the delt or damage claimed does not exceed one hundred dollars, and in all cases of greater amount the circuit courts of the several counties have jurisdiction, and in Baltimore city dither the superior conrt, court of common pleas, or eity court.

An execution or attachment may issue at any timo within 12 years from tho date of such judgment, or, if there bo a stay thereon, at any timo within 12 years after the expiration of such stay, where there has been no change of parties to wach judgment. In the city of Baltimore, execution ean issue on the day judgmentit rendered. insome of the counties, when judgment is rendered at the first trial term, there is a stay, by rule of court, until tho next term. Every kind of property ean bo reached either by execution or attachment. Redemption after sale upon execution is not allowed. Execution may bo stayed for six months by superseding tho julgment within sixty days after it is entered, by giring two securities who must confess judgment.
Judments are a lien upon the real estate of the defendant from the date of the julgment, and upon all leasehold interests and terms for years, except leascs for not more than flvo years and not renewable. But a judgment is not a lien upon personal property until exeeution is put thto the hands of the sheriff. Excention may issue at any time within twelve years, but after twelve years the judgement is barred by limitations, unless previously renewed by scire ficias. Julgments of justices of the peace can bo mado a lien on real estate by being recorded.

Deeds, Rights of Married Women, Wills, \&c.-The form of conveyances have been simplitied by the code. No words of inheritance are neeesary. Λ fee simple estate passes, unless a contrary intention shall appear by express terms or be necessarily implied. Deeds must be under seal (a serawl is sufficient), and the signature must be attested by at least one witness. A consideration must be stated. In deeds of fee simple property, the wife must join to release her right of dower. No special form of acknowledgment or separate examination is neeessarv for a married woman.
The following is the form of certificate.

State of Maryland,

cocyty of Carrol.
Ihereby certify that, on this day , in the year , before the nabscriber (here insert the ofticial style of the offeer taking the reknowledgment), personally appeard (here insert the name of person or persons makiug the acfrowledgment), and aeknowledged the aforegoing deed to be his act (or did each neknowledge the aforegoing deed to be their respective aet).
[SEAL.]
(Signature.)
In testimony whereof, I have hereunto set my hand and affixed my oticial seal the day and year uforesaid.
The aeknowledgment, if made within the State, may be made before a justice of the peace for any county or city, or a judge of a court of a county or city having a seal. If aeknowledged before a justico of the peace within the State, but out of the county or city in which the real estate lies, the oflicial character of the justice of the peace must be eertilled by the elerk of the circuit court or uperior court under his ofleial seal.
lf acknowledged without the State, but within the United States, the acknowledgment may be made before : First, a notary public (who must aftix his notarial reai) ; second, a judge of any court of the Uniterl States; third, a judge of any court of any State or territory having a seal ; fourth, a commissloner of Marysand to take aeknowledgment of deeds.
If acknowledged withont the United States, the aeknowledgment may be made before: First, any minister or consul of the United States; second, a notary public ; third, a commissioner of Maryland to take acknowledgments. To every certificate before a judge the seal of the court must be affixed.
Married women hold their real and personal property for their own separate nea and entrely protected from the debts of the husband, and there is no necesfity for a trustee. They may devise the same as fully as a femme sole, or may coivey the same by a joint deed with the husband. if the wife die intestate, leaving ehildren, her husband has a life estate in her property; if she die infestate leaving no children, her husband has a life estate in her real estate and her personal property vests in him absolutely. A married woman may be sued bintily with her husband on any note, contract, or agreement which she has executel jointly with him, and the judgments recovered in such cases are liens on the pronertv of both, and may be collected in the same manner as if the defend-
ants wore not husband and wife. A woman iceomes of legal age to convey reai estate at twenty-one, but may receive her property aud release her guardan at -ighteen, or upon marriage.

Bills of sale or chattei mortgages are valld, although the vendor or mortgagot of the chattels remains in possession; provided, they are properiy acknowledged and recorded, and the vendec or mortgagee shall make oath at the time of execution beforo some person authorized to take the acknowledgmont, that the consideration stated in the bili of sale or mortgage is true and bona fide. They may be acknowledged out of the State beforo any person authorized to take acknowledgment of decds, and must be recorded in the county or city where the vendor resides, within twenty days from date. If acknowledgeri within the State, it must be before a justice of the peace or judge of the orphans' court of the elty or county where the rendor resides.

Wills should bo in writing, and slgned by the party making them, or by some other person in his presence and by his express directions, and shall be attested and subscribed in the presence of the testator, by three or four credible wit nesses. A wife may make a will and givo all her property, or any part thereof to her husband, or any one other person, with the consent of tho husbani subscribed to said will. Provided the wifo shall have been privately examined by witnesses to said will, apart out of the prosenee and hearing of her husband, \&e. (in the same manner as provided for in decds), and provided aiso said will bo inade 60 days before death of the testatrix.

SPECIAL LAWS OF MASSACHUSETTS.

Exemptiong from Forced Sale.-Home worth $\$ 800$, and Personal Property. Every householder having a family shall be entitled to an estate of homestead to the extent in value of $\$ 800$, in the farm or lot of land and buildings thereon owned or rightly possessed by lease or otherwiso and occupied by hins as a residence, and such homestead and all right and title therein shall be exempt from attacliment, levy or execution, salo for the payment of his debts or other purposes. To constituto such estato of homestead and to entitle property to such exemption, it shall be set forth in the deed of conveyanco by which tho property is acquired that it is designed to be held as a homestead, or after the title has been acquired such design shall be declared by a writing duly signed, scaled, acknowiedged and recorded on the registry of deeds for the county or distriet where the property is situated. Personal property is exempt as follows : The necessary wearing apparel of the debtor and his family ; 1 bedstead, bed, and the necessary bedding for every two persons of the family; stove and fuci not exceeding $\$ 50$ in value; other necessary lousehold furniture not exceeding in value $\$ 300$; the family library not exceeding $\$ 50$ in valıo; 1 cow, 6 sheep, 1 swine and 2 tons of hay; tools, implements and ixtures for carrying on trade or business not exceeding $\$ 100$ in value; materials and stock designed for his trade or business not exceeding $\$ 100$ in value; necessary provisions not exceeding $\$ 50$ in value ; the boat, fishing tackle and nets of fishermen, actually in use in their business, not exceeding $\$ 100$ in value; tho uniform, arms and accoutrements required by law to be kept by the citizens; 1 sewing machine to the value of $\$ 100$, and the wages for personal labor are exempt from attachment to the cxtent of $\$ 20$ for, a debt or demand other than for necessaries f urnished to the debtor or his fanily.

Mecilasics' Lres.-Any person furnishing labor and materials for the erection, alteration or repairs of any building, shall have a lien on the same, but $n 0$ lien for the materials shall attaeh unlcss he shall notify the owner, in case he is not the purchaser, in writing, that he intends to claim a lien for the same before they are furnished. Where the contract for furnishing labor and materials is for an entire sum, a lien will attach for tho labor, if its valuo can be ascertained separate from the materials, but not beyond such entire sum. Notice in writing from the owner of sueh building, that he will not be responsibie for the labor and materials to be furnished to the party furnishing or performing the same, will prevent the lien from attaching.

Collectron of Debts.-When an arrest of tho defendant in a civil action, on mesne process, in an action of contract, is desired by the plaintiff, the plaintiff, or some person in his behalf, makes aftidavit, and proves to the satisfaetion of some justice of a court of record, police court, judge of a probate court, master in chancery, commissioner of insolvency, and, except in the county of Sulfolk, trial justice or of any justice of the peace,-1. That he has a ood cause of action, and reasonable expectation of recovering a sum amounting to $\$ 20$, exclusive of all
l age to conver real ase her guardlanat
vendor or mortgagor perly acknowledged 1 at the time of exwledgment, that the md bonct fille. They uthorized to take acity or city where the Iged within the State, ans' court of the city

Ing them, or by some and shall be attested or four credible wit, or any part thereot of the husband subrivately examined by of her husband, \&c. ded also sald will be

IUSETTS.

and Personal Property. n estate of homestead and buildings thereon upied by him as a resishall be exempt from is debts or other pur. intitle property to such by which the property , or after the title las , or duly signed, scaled, - the county or distriet empt as follows: The bedstead, bed, and the y; stove and fuel not rniture not exceeding value; 1 cow, 6 sheep, s for carrying on trade stock designed for his provisions not exceedermen, actually in use rm , arms and accoutreewing machine to the hpt from attachment to ssaries furnished to the
materials for the erecen on the same, but no ne owner, in case he is ell for the same before or and materials is for ue can be ascertained im. Notice in writing sponsible for the labor performing the same,
hant in a civil aetion, res plaintiff, the plainprobate soutisfaction the county of master a ood cause of action, to $\$ 20$, exclusive of ail
costs which have accrued in any former action. 2. That he believes, and has reason to believe, the defendant has property not exempt from being taken on execution, which he does not intend to apply to payment of the plantiff's claim; and, 3. That he believes, and has reason to belleve, that the defendant intends to leare the State, so that execution, if obtained, camnot be served upon him ; or (instead of the second or third), that the defendant is an attorney-at-law; that the debt sought to be recovered is for money eollected by the defendant for the plaintiff, and thut the defendant mireasonably neglects to pay the same to the plaintiff. And such atldavit, and the certiticate of the magistrate that he is baistied the same is true, shall be annexed to the writ.

In actions of tort, the arrest of the defendant may be procured when the plaintiff, or some one in his behalf, makes cath, to the satisfaction of any one of suid magistrates, that he believes, and has reason to belleve, that he has a good cause of action against the defendant; that he has reasonable expectation of recovering a sum equal, at least, to one-third the damages clamed in the writ ; and that he believes, and has reason to beliove, that the defendant intends to jeave the State, so that if execution be obtainedit cannct be served on him. An order for arrest on all execution issued on a judgment for iebt or damages in a divilaction, except in actions of tort, may be obtained when tio plaintift, or some one in his behalf, makes athilavit and proves to the satisfoctina of any one of said magistrates: 1. That he believes, and has good reason to beiieve, that the debtor bas property not exempt from being taken onexecution, whicil he does not intend to apply to the payment of the plaintiff's claim ; or, 2 . That since the debt was contracted, or the cause of action aecrued, the debtor has fraudulently conveyed, concealed, or otherwise disposed of some part of his estate, whth a design to seeure the same to his own use and clefraud his ereditors; or, 3. That since the debt was contracted, or cause of action acerued, the debtor has hazarded and paid mency or other property to the value of $\$ 100$ or more in some kind of ganing prohilited by the laws of this State; or, 4. That sinee the debt was contracted the debtor has wilfully expended and misused lis goods and estate, or some part thereof, for the purpose of enabling himself to swear that he has not any estate to the amount of $\$ 20$, except such as is exempt from being taken on execution; or, 5 . (If the action was founded on contract.) That the clebtor contracted the debt with an Intention not to pay the same; or, 6. That the debtor is an attorneyarlaw ; that the debt upon which the juderit on which the execution issued was for money collected by the debtor for the creditor, and that sald attorney unreasonably neglects to pay the same. And such affidavit and the certilieate of the magistrate that he is satistied there is reasonable cause to believe the charges therein contained, or some one of them, are true, shall be annexed to the execution.
No woman shall be arrested on any civil process except for tort. But whenever any person shall obtain a judgment against any woman, whether married of unmarried, for the sum of $\$ 20$ and upwards, exelusive of all costs, which make a part of said judgment, and while so much as that amount remains uncollected, and shall take any execution upon the same, he may demand payment of the same, and upon failure to satisfy said execution, the julgment ereditor may cite the judginent debtor to appear before the court and submit to an examination touching her estate and the disposition of the same.

When a person: is arrested on mesne process in actions of contract, as above described, he mey obtain his release by proving, to the satisfaction of any one of said magistrates, that he does not intend to leave the State, so that execution, if obtained, cannot be served on him, or by taking the oath for the relief of poor debtors, or by giving bail either to pay the judgment or to answer to the exeeution. When a person is arrested on mesne process in an action of tort, he may obtain his release by giving bail. When arrested on exceution, the defendant may obtain his discharge by taking the oath for the relief of poor debtors, before any one of said magistrates, and satisfying said magistrates of its truth. The oath is as follows: "I," A. B., "do solemnly swear that I have not any estate, real or personal, to the amount of thirty dollars, except the estate, goods and chattels which aro by law exempt from being taken on exceution, and that I have not any other estate now conveyed, concealed, or in any way disposed of mith the design to seeuro the same to iny own use or to defraud my ereditors.'
When any of the charges of fraud aforesaid are proved, the debtor shall have no benetit from the provisions for the relief of poor debtors, and may be sentenced t) confinement at hard labor in the house of correction. If the debtor is discharged on execution by taking the poor debtors' oath, the judgment remains in fail force against his goods and estate, but he is not liable to a second arrest of the body.

An attachment of the property of defendant is permitted in all cases in mesne process; eithor by direct attachment or by trustec or garnishoo process. And when the property of the defendant cannot bo reached, so as to bo attachedin i suit at law, it may be reached in equity. In cases of doubt as to the ownership of the property to be attached, the offeer requires a bond of indemulty.

Besldes the courts of minor jurisdletion, as of a justice of the peace outile of Suffolk county having a jurisdiction not exceeding 8100, and of police, dis trict, and munielpal courts having jurisdiction not exceeding $\$ 300$, and establish. ed th tho larger towns and elties of the State, there are tion courts established having jurisdiction throughout the State. First-The superior court holds terms In most of the countics every three months. It has concurrent jurisdiction with the first-named courts from $\$ 20$ to their limit, and exelusive jurisdletion of claims exceeding $\$ 300$ and not exceeding $\$ 1000$ in all countles exeept Suffolk county. In the latter county, the jurisiliction oxtends to $\$ 4000$, and coneurreat jurlsdiction with the supreme judicial court of all claims oxceeding said sums of $\$ 1000$ and $\$ 4000$. Service of prosess must be made in the superior courth days before return day. Second-The supreme judicial court has jurisdietion in equity, concurrent jurisdiction with the supo rior court as above described, es. elusive jurisdiction of libels for divoree, and jurisdietion of questions of law brought up from the superior eourt.

Judgments aro not a lien upon property, but when an attachment has been mado on mesne process, the llen holds for 30 days after julgment, in which to make a levy on the exceution. No execution will be issued within 24 houn nfter judgment has been entered, and all orighal executions must be issued within ono year after the party is entitled to sue it out, and no suecessive executlon will be issued miess within five years after the return day of the one preced. ing it. All executions are returnable in sixty days from their date.
ideeds, Rights of Married Women, Wills, \&c.-Conveyances of lands, of of any estate or interest therein, may be mall by deed oxecuted by any person having anthority to convey the same, or by his attorney, and acknowledged and recorded in the registry of deeds for the county or district where the lands lie, without any other aet or ceremony.

A wafer, or other ten cious substance upon which an impression may be made, is a valid seal in the state. The aeknowledgment of deeds shall be by the grantors, or one of them, or by ${ }^{2}$ th attorney executing the same, and may be made before any justieo of the peace, magistrate or notary publie, or commit sioner appointed for that purpose by the Governor of this State within the United States, or in any foreign country, or before a minister or consul of the United States in any forign country. No subscribing witness is required when the deed is acknowledged by one of the grantors. In caso the grantor refuses to acknowledgo the same, it may bo proved before a justico of the peace in the county where the land lies, or where the grantor or any subscribing witness to the deed resides, by the testimony of the sibscribing witness, ar:delie shali certify the due execution of same. In signing deeds it is not necessary that the wifo be separately examined; it is sufilelent to bar her dower, if she john with her husband in the conveyance.

A married woman may hold real and personal property. May convey the same, make contracts, sue and bo sued in the same manner as if she were sole; but her separate conveyance of her real estate shall be subject to her husband's tenancy by the courtesy. Conveyances, contracts and sults are not authorized between husband and wife. Eyery woman shall bo entitled to her dower a: common law in the lands of her husband, to be assigned to her after his decense, unless she is lawfully barred thereof.

Chattel mortgages of personal property shall be recorded on the records of the elty or town where the mortgagor resides when the mortgage is made, and ou the records of the city or town in which he then prineipally transacts his bus. ness, or follows his trade or calling. If the mortgagor resides without the state, his mortgage of personal property within the State when the mortgage it made, shall be recorded on the records of the eity or town where the property then is; unless a mortgage is so recorded within fifteen days from the date thereof, or the property mortgaged is delivored to and retalined by the mort gagee, it shall not be valid against any person other than the partles thereto, except in the case of a mortgage, contract of bottomry or respondentio or any transfer, assignment or hypothecation of a ship or vessel, and also except In ease of any transfer or mortgage of goods at sea or abroad, if the mortgage takes possesslon of sueh goods as goon as may be after their arrival in this State. When it is required that a mortgage of personal property shall be recorded in the records of two munleipalities, such mortgage shall be considered as duls
din all cases in mestre nishee process. And as to bo attached in ot as to tho ownership of indemmity. o of the peace outside 100, and of police, dis. ing $\$ 300$, and establisho two courts established erior court holds terms irrent jurisdiction with clusive jurisdiction of ountics except Suffolk $\$ 4000$, and concurreat ns exceeding saill sums the superfor court It ourt has jurisdiction in as above deseribed, ex. on of questions of law
in attachment has been : judgment, in which to issued within 24 hours cutions must bo issued und no successive execun day of the ono precel. their dato. Conveyances of lands, or executed by any person , and ncknowledped and rict where the lands lie,
an impression may be ent of deeds shall be by ng tho same, and may be otary public, or commis. of this State within the minister or cousul of the ing witness is required rs. In case the grantor pre a justice of the peace ror any subscribing witbing witness, ar:delic sha!l is not necessary that the - dower, if she join with
perty. May convey the ner as if she were sole; subjeet to her husband's suits are not authorized ntitled to her dower at to her after his decease,
orded on the records of iortgage is made, and ou pally transacts his busiesides without the State, when the mortgage is wil where the properts en days from the date retained by the mort an the parties thereto, tomry or respondentia, c vessel, and also cxcept hbroad, if the mortgaget eir arrival in this stade rty shall be recorded in be considered as dul
recorded, when recorded in the record of one of them ; procinen, it as recorded in the records of the other within ten days from the date of such first record.

Wills must be in writing, and signed by the testator, or by some other person in his presence and by his express direction, and attested and subscribed in the presence of the testator by three or more competent witnesses.

SPECTAL LAWS OF MICHIGAN.

Lxemptions from Fonced SAle.-Home worth \$1500 aul Personal Pro perty. A homsstead consisting of any quantity of land, not excceding 40 aeres and dwelling house thereon and its appurtenances, not included in any recorded town plat or city, or village; or iustead thereof, at the option of the owner, one lot in a recorded town plat or eity, or village, and the dwelling house thereon and its appurtenances. Said property, however, must not exceed $\$ 1,500$ in raluc; if so, it may be sold and tho excess applied in phyment of the judgment. personal property is exempt as follows : All spimning whecls, weaving loom with the apparatus, and stoves put up and kept for use in any dwelling house, a seat, pew or slip oceupled by a person or family in any placo of public worship, all cemeteries, tombs and rights of burial, all arms and accontrements required to be kept by any person, all wearing apparel of every person or family, llbrary and school books of every indivdinal and family not excecding $\$ 150$ in value, and all family pictures. To each houscholder 10 sheep with their tlecees, and the yarn or cloth manufactured from the same, 2 cows, 5 swine, and provision and fuel for six monthis' use, all household goods, furniture and utensils not excecding in value $\$ 250$; tools, implemenm, materials, stock, apparatus, team, phicle, horses, harness or other things to enablo any person to carry on the profession or trade, oceupation or bushess in which ho is wholly or principally engaged, not excceding in value $\$ 250$; and a suthcient quantity of hay, grain, feed and roots for properly kecping for six months the animals hereinbefore speciticd; 1 sewing machine for family use is also exempt. No portion of the property above specifled, however, is exempt from execution upon a judgment for the purchase money.

Mecianics' Lien.-Any person who shall, by contract with the owner, part wher or lessee of any piece of land, furnish labor or materials for construethig or repairing any building, wharf or appurtenances on such land, has a lien thercfor upon said building, wharf, machinery, appurtenances, the entiro interest of said owner, part owner or lessec in and to sald land not exceeding ono quarter-section ; or if in the linits of an incorporated village or city, in tho lot or lots on which sald building, wharf, machinery or appurtenances are situated, to the extent of his claim. Ho must file a verficed certificate with the register of deeds, containing a copy of the contract, if in writing, or if not a stateinent of its terms, with a description of the land, and a statement of tho amount due. and to becomo due, with all credits to which the owner may be entitled.
The owner, part owner or lessee must be notifled of the flling of the certif:ate. In order to have the benefit of the lien, proceedings to foreclose must be taken within six months after the last installment shall become due. A subcontractor has a lien to tho extent of the interest of the original contractor, upon complying with substantially the same provisions as in casc of an orighai contractor. Mechanics, workmen, and other persons, also liave alien in certain caves, for performing labor or furnishing materials in building, altering, repairfag, beautifying or ornamenting any houso or other building, machincry or, appurtenances to any house or building.
Collection of Debts.-Persons may be arrested by capias ad respondendum, in actions arising on contract, to recover damages for breach of promise to marry, for moneys collected by a public oflicer, for any misconduct or neglect in oftice, or in any professional employment, and in other actions than thoso artsing upon contract, where an order for bail shall be indorsed on the writ by a judge of the court, or by a circuit court commissioner.
Arrests may also be made in other actions upon contract than those above specified, if it be made to appear that the defendant fraudulently contracted the debt or incurred the obligation, or that he has property which he has removed, or is about to remore, out of the jurisdiction of the court, with intent to alefraud bls creditors, or which he fraudulently conceals, or which he unjustly refuses to apply to the payment of any judgment.which shall havo been rendered against blm,

Attachments may issue in favor of any creditor against any debtor having property in the county in which the creditor or debtor nay reside, subject to the attachment, in the circuit court of sald county; or in case the debtor has 10 property in the county, or is a non-resident of the State, then an attachment may issuo in the circuit court of any county where the property of the debtor may be found.

The following are the principal causes of attachment: 1. That the defendant has absconded or is about to abscond from this State, or that he is concealed therein, to the injury of his creditors. 2. That the defendant has assigned, disposed of, or concealed, or is abont to assign, disposo of, or conceal any of his property, with intent to defraud his creditors. 3. That the defendant has removed or is abont to remove any of his property out of the State, with intent to defrand his creditors. 4. That he has fraudulently contracted the debt or th: curred the obligation respecting which the suit is brought. 5. That he is a nonresident of the State and has not resided therein for three months immediately preceding the time of commencing the suit; or, $\mathbf{6}$. That the defendant is a forelgn corporation.

No bond is required on nommencement of suit, but the defendant may recover the possession of the property taken by virtue of the writ by delivering to the officer a bond conditioned for the payment of any judgment or the return of the property. Unless this is done, the property must remain in the hands of the officer. Attachments may be dissolved ly a judge of the eourt, or by a circuit court commissioner, upon application of the defendant, if ho shall be satisfled that the plaintiff had not a good and legal canse for suing out the writ.

Assignments of bonds, notes, and other choses in action not negotiable under existing laws, are valid, and the assignee may sue for and recover the same in his own name.

A writ of garnishment may issue in a personal action arising upon contract.
As to notes and bills, no person in this State can be charged as an acceptor on a bill of exchange, unless his acceptance is in writing, signed by himsel : : his lawful agent. Bills of exchange, duly protested for non-acceptance or nonpayment, if drawn or endorsed within this State, payablo at any place without the Stato but in the United States, entitle the holder to rccover damages in addition to the contents of sucl. bill, with interest and costs, as follows: When payable within either of the States of Wisconsin, Illinois, Indiana, Pennsylvania, Ohio and New York, three per cent. on the contents of the bill: when payable within either of the States of Missouri, Kentucky, Maine, New Hampshirc. Vermont, Massachusetts, Rhode Island, Connecticut, New Jersey, Delaware, Maryland, Virginia or the District of Columbia, fivo per cent., and if payabic else. where within any of the United States or territorics thereof, ten per cent. No danages aro allowed, if payable within this State. If payable outside of the United States, five per cent. is allowed, besides the current rato of exchange at time of demand. All parties to notes or bills, whether drawers, makers, guarantors of payment, endorsers or acceptors, may be sued in one action, nind judp. ment may bo rendered and execution issued in the same manner as thoughall were joint contractors. Any bill of exchange, note, or draft payable on demand, and any check, bill of exchange, or draft drawn upon any bank or banking institution, is deemed to be due on the day mentioned for the payment of the same, without any days of grace being allowed. Guarantees of payment or of the coll' lection are negotiable, and pass to the holder of the note. Notarial protest is evidence of non-acceptance or non-payment, at the time and in the mamer stated in the protest, unless the defendant shall annex to his plea an atidarit denying the fact of having received such notice.

Justices of the peace laive jurtsdiction in all civil actions wherein tho debter damages do not exceed $\$ 100$, and concurrent jurisdiction with the courts of record in all actions upon contract wherein tho debt or damages do not exceed $\$ 300$ except actions for a disturbanes of a right of way or other easement; actions for llbel, slander, or for malicious prosecutions, and actions against executors or administrators as such, except in cases specially provided by law. Circuit courts, in their respective countles, have and exercise original and exelusiro jurisdiction of all civil actions and remedies of whatever name and description, and of all prosecutions for crimes, misdemeanors, offences and penalties, excep in cases where exclusive or concurrent jurisdiction is piven to or possessel by some court or tribunal in virtue of some statutory provisions, or the principles and usages of law. Saill court has such appellate jurisdiction and powers as ase provided by law. Service of s'ummons may bo made at any time before retura day.

A judgment has no effect upon the property of a judgment debtor, either real
t any debtor haring eslde, subject to the e the debtor has no n an attachment may of the debior may bio

1. That the defend. : that he is conccalel int has assigned, dis: or conceal any of his Ic defendant has reState, with intent to acted the delt or in:
2. That he is a nonmonths immediately it the defendant is a
be defendant may re3 writ by delivering to ment or the return of ain in the lands of the court, or by a circuit if he shall be satisfied ; out the writ.
n not negotiable under d recover the same in
trising upon contract. charged as an acceptor g , signed by himself :-non-aceeptance or nonle at any place without recover damages in adosts, as follows : When , Indiana, Pennsylvania, the bill: when payable e, New Hanpshire. VerJersey, pelaware, Maryht., and if payable elsepayablo outside of the rent rate of exchango at rawers, makers, guaranit one action, nud jude e manner as thoughall raft payable on demand, y bank or banking instio payment of the same, f payment or of the col. ote. Notarial protest is mo and in the mannet
ions whercin the debter tion with the courts of damages do not exceed or other easement; acd actions against execu. y provided by law. Cir. se original and eyclusire or name and deseription, es and penaltles, excer Tiven to or possessed by isions, or the prlnciples letion and powers as ser tany time before retura
or personal, until the issue and levy of an execution. A certified transcript of the judgment of a justice of the peace for twenty dollars and over, exclusive of costs, on certaln condltions, may be filed in the ollee of the clerk of the elreult court of the county in which the judgment shall have been rendered, in which case the judgment shall be of the same effect as a judgment rendered in said clrcuit court. Judgments may be entered in any court upon confession.
Executions in courts of record may issuo upon the rendition of judgment to the proper offeer of any county in the State, and successive or alias executions may issue one after another upon the return of any exccution unsatisfied in whole or in part. They are not a lien upon property until a levy is made. Executions in justices' court, exeept in certain specilted cascs, may issue at the expiration of f. days from the rendition of judgment, unless the exccution be stayed. The defendant in the exceution in justices' court may stay the same, except in certain specifled cases, by filing proper security for the payment of the money, with interest and costs for four months from the commencement of sult, if the judgment shall not exceed fifty doilars, and for six months if tho judgment exceeds fifty dohlars.

Land sold under execution may bo redeemed within one year from the thme of sale. Every species of property, real or personal, and the interest of the defendant in any property, except such as is exempt from exceution by statute, is subject to exccution and sale.

Deeds, Rights of Marmied Wonen, Wifls, \&c-Deeds must be under nal, with two witnesses ; a scrawl is regarded as a seal. The execution of deeds must be acknowledged before any judge or commissioner of a court of record, or before any notary public or justice of the peace withln the State. The deed must bo recorded in the county where tho land lies. Deeds executed in any other State must be executed according to the laws of such State, and the exceution thereof may be acknowledged before any onlicer authorized by the laws of such State to take acknowledgments; or they may be acknowledged before any comasissioner appointed by the Governor of this State for such purpose.

If made beforo sny other officer than a commissioner of thls State, the deed must have attacheu thereto a certificate of the elerk of a court of record of the county or district within which such aeknowledgment was taken under his seal of oflice; that the person whose name is subscribed to the certifleate of acknowldgment was, at the date thereof, such officer as ho is therein represented to be, that ho believes the signature of such person subscribed thereto be genuine, and that the deod is executed and acknowledged according to the laws of sueh state.
The acknowledgment of a deed by a married woman, when she joins with her busband in a deed of conveyanec, must be taken separately mud apart from her husband, and she must acknowledge that she executes the same freely and without any fear or compulsion frow: any one.
A husband is not required to join in a deed by the wife conveying her property. No particular form of certifleate of acknowledgment is required, but it should appear from such certificate that the person making the same was legally authorized to tako such acknowledgment; that the grantor or grantors were personally known to him, and that they appeared beforo him and acknowledged the deel to be his or thelr free act. When executed by a married womani, it should show that she exceuted the same freely and without fear or compulsion from cany one.
Married women may hold real and personal estate to their separate use, and may contract in reference to the same, and in the same mamer, and with the like effect, as if they wero unmarried. And they may sue and be sued in relation to their sole property in the same manner as if they wero unmarried. Jealings directly between lusband and wife are permilted. Tho husband has no interest In the property of the wife as tenant by the courtesy, Separate property acquired by females before or after marriage is not liable for the husband's debt. Tho wife is entitled to dower in all lands owned by her husband during coverture.
Wills inust be in writing, subseribed by the testator or by somo person in his presence and by his express direction, attested and subscribed in the presence of the testator by two or more comvetent witnesses.

SPECIAL LAWS OF MINNESOTA.

Exemptions from Forced Sale,- Home of Eighty Acres in Farm Lands, and Lot in Village or City, with Personal Property. Eighty acres of land and dwell. ing house thereon, or instead thereof, one town or city lot and the dwelling houses thereon, regardless of value. Famiiy Bible, books, pictures and musical instruments ; church pew and cemetery lot; wearing apparel of debtor and family, also beds, bedsteads and bedding; stoves and appendages, cooking utensils, and furniture not enumerated not exceeding $\$ 500$ in value; 3 cows, 10 swine, 1 yoke of oxen, and a horse (or a span of horses or mules), 20 sheep ; necessary food for stock for one year; 1 wagon, cart or dray, 1 sleigh, 2 ploughs, 1 drag, and other farming utensils not exceeding $\$ 300$ in value ; one sewing machine ; seed grain for one year ; one year's provisions for debtor and family; one year's fuel; tools or instruments used for carrying on trade, and stock in trado not exceeding $\$ 400$; library and implements of any professional man; 80 acres of land and dwelling house thereon, or instead thereof, one town or city lot, and the dwelling houses thereon, regardless of value. Also the wages of any laboring man or woman or their minor children, not exceeding $\$ 50$, due for services rendered during the ninety days preceding the issue of the process.
Mecifanics' Lien.-Mechanics and material men have a lien for labor done of material furnished on land and improvements. Such lien is subject to the rights of prior bona fide lien holders. The claim must be filed within one year, and this gives a lien for two years. Sub-contractors, laborers and persons furnishing materials to the contractors, may aequire a lien on the payments due to the orig. inal contractor by serving an attested account on the owner.

Collection or Dedts.-Arrest in civil action is unknown here.
Writs of attaehment may issue on the following grounds : Defendant being a non-resident or a foreign eorperation, or has departed from the State with intent to delay or defraud his creditors, or keeps himself concealed with like intent: that the debt was fraudulently contracted; or that defendant has assimed, secreted or disposed of his property with intent to delay or defraud his creditors; or that he is about to do so. Attaehments are levied on bulky articles of personal property without removal, by filing a copy of the writ with the town or city clerk, and on real estate by recording the writ in the office of the register of decds.

Assiguments for tho benofit of creditors are not governed by statute and fol low conmon law rules. No filing or reeord is necessary.

Garnishment may issue at the time of filing the complaint, or issuing summons, or at any time thereafter. Tho indebtedness of the garnishee, or the value of property in his hands, as well as the indebtedness of the defendant, must not be less than $\$ 25$, besides costs, to entitle the plaintiff to judgment in the district court, and not less than $\$ 10$ in the justlec's court.

On notes and bills grace is allowed, muless the contrary is expressed, on all time paper, and on that payable at sight, but not on that payable on demand. Liability of indorsers is ixed by protest and notice, same as at common lam. Demand paper must be presented within sixty days from its date to charge the indorser. Acceptances must be in writing, and signed by the acceptor or his duly authorized agent.
Distrlet Courts and Courts of Common Pleas have original Jurisdiction in all equitable actions where a justice of the peace has not jurisdietion, regardless of amount ; and in all civil actions where the amount exceeds $\$ 100$, and below that sum, with certain provisions as to eosts. Justices of the peace lave juris diction of all amounts under $\$ 100$ in civil actions, exeept cases involving titfe to real estate, false imprisonment, hbel slander, malicions prosecution, crim. con., seduction, or promise to marry ; or for an action against an administrator or executor.
Judgments mpon being docketed in the office of the court of record, become ${ }^{3}$ lien on all real property of the judgment debtor in tho county where docketed, for ten years. No lifn on personal property is created by a julgment. Justices judgnents become liens when a transeript is filed in the district court.
Executions issue from district courts when demanded, or any time within ten years after judgment is rendered. They are returnable in distri- t courts withir: sixty days ; personal property is itrst levied upon, and is sold at ten days' uotice; real estate is sold on a notice of six weeks, published in a newspaper of the county, and notices posted in three public plaees for the came time. Real estaia sold on exeention may be redeemed within one year

ESOTA.

-es in Farm Lands, and res of land and dwell. lot and the dwelling , pictures and musical ipparel of debtor and appendages, cooking 00 in value ; 3 cows, 10 nules), 20 sheep; neeesy, 1 sleigh, 2 ploughs, in value ; one sewing for debtor and family; ag on trade, and stocli any professional man; ereof, one town er city de. Also the wages of exceeding $\$ 50$, due for sue of the process. a lien for labor done or is subject to the rights ithin one year, and this and persons furnishing cyments due to the orig. ier.
nown here.
ids: Defendant being a a the State with intent to 1 with like intent ; that fendant has assigned, delay or defraud his levied on bulky articles the writ with the town ine oflice of the registe:
crncd by statute and fol
complaint, or issuing of the garnishee, or the ness of the defendant, intiff to judgment in the
ntrary is expressed, on rat payable on demand. no as at common laf. a its date to charge the dd by the acceptor or
origlnal jurisdiction in jurisdietion, regardess xeceds $\$ 100$, and below f the peace have juris t cases involving title ious prosecution, crim. ainst an administrator
urt of record, hecomes county where docketed a judgment. Justices' istrict court. or any tlme within ten 1 distri-t courts within old at ten days' notice in a newspaper of the ame time. leal estate

Deeds, Rigitts of Marmed Women, \&c.-Deeds must be signed, sealed (a (crawl nuswering for a seal) and neknowledged by the grantor, attested by two ritnesses, and recorded in the county where the lands are situated. Acknowiedgments in this State may be made before a judge of the supreme, clistrict or probate court, or a clerk of said courts, notary public, justice of the peace, or court commissioner. Ont of this State, aeknowledgments of decds to lands in this State may be made before a judge of a United States court, judges or justices of aly State or territorial court of record, elerks of any of said courts, justices of the peace. notaries public, or comraissioners appointed by the Governor of this state for that purpose. Justices of the peace or other ofleers not uslng a seal, must have their official charactar certified to by the clerk of a court of record. No separate acknowledgment to a deed is required by a wife, but she must join in her husband's acknowledgment.
The following form of acknowledgment is used indifferently for single persons and for husband and wife :
state of Miniesota, $\}$ ss
Courry or
Be it known that on thls day of , A. D. 187 , personally appeared before me deseribed in , to me porsonally knowin to be the same person , and who executed tho foregoing instrument and acknowledged that exccuted the same freely and voluntarily, without any fear or compulsion from any one, for tho uses and purposes therein expressed.

Married women may hold property, real or personal, in their own name and for their own use, whether aequired beforo or after marriage. She may make contracts, and her property is liable for her debts; but no conveyance of her separato real estate is valid unless her husband join therein.

Clattel mortgages aro void as against creditors and subsequent mortgagees and purchasers in good faith, when the mortgagor retains possession of the property, unless duly aeknowledged and filed in the oflice of the town or clty clerk, bout where the mortgagor resides and where the property is located. They cease to be notice after two years from the date of filing.

SPECIAL LAWS OF MISSISSIPPI.

Exmptions from Fonced Sale.-Hnme vorth $\$ 2,000$ and Personal Property ondebts contracted after Sept. 1,1870 , only 80 aeres of land to the head of each family, being a housekeeper, to a resident of any incorporated town, being the head of a family, and a housckeeper, $\$ 2,000$ worth of real property, comprising the proper homestead. The exempt personality is, 1 . The tools of a meehanio mecessary for carrying on his trade. 2. The agricnltural implements of a farmer necessary for two male laborers. 3. The implements of a laborcr. 4. The books of a student required for the completion of his education. 5. The wearing apparel of every person. 6. The libra:ies of licensed attorneys-at-law, practicing physicians and ministers of the gospel, not exceeding in value $\$ 250$. T. The arms and accoutrements of every person enrolled in the militia of the State. 8. All books, globe and maps used by teachers of schools, academles and colleges; also, the following property of each head of a family or housekeeper: one work horse or mule, or 1 yoke of oxen, 2 cows and calyes, 5 head of stock hogs and 5 sheep, 50 bushels of corn, 10 bushels of wheat or rice, 200 lbs . of meat, 1 eart or wagon, not to exceed in value $\$ 100$, household and kitehen furniture not to exceed $\$ 100$ in value; and $\$ 100$ of the wages of laborers is exempt from garnishment, in the hands of their employers.
Liess.-Judgments, when enrolled, are liens on all property in tho county There rendered; may be made liens in any county by having abstract enrolled there. Mortgages and deeds in trust are also liens. They must be neknowledged and recorded in the sanne mamer as ordinary deeds of eonveyance. Mechanies have a lien for labor clone and materials frrmished in the erection and repair of buildings, but suits to enforce a mechanic's lien must be commenced in sis months.
Collection of Dents.-No person can be arrested for debt in this State. Trits of attachment may be issued on one or more of the following grounds: 1. That the defendant is a foreign corporation, or is a non-resident of this state; or, 2. That he has removed or is about to remove himself or property out of this State; or, 3. That he so absconds or conceals himself that lie camot bo served with a summons; or, 4. That he has property or rights in actions which he conceals, and unjustiy refuses to apply to the pryment of his debts ; or, 5 . That he
has assigned or disposed of, or is about to assign or dispose of his property or rights in action, or some part thereof, with intent to defraud his creditors, or give an unfair preference to some of them ; or, 6. That he has converted of is about to convert his property into money, or evidences of debt, with intent to place it beyond the reach of his creditors; or. 7 . That he has fraudulently contracted the debt, or incurred the obligation for which the suit has been, or is about to be brought.

IBefore any writ of attachment shall issue, the ereditor, his agent or attorner, must make an altidavit as to the amount and character of his debt or claim, and the existence of one or more of sad grounds of attachment, and give bond in double the amount of the principal of the claim, conditioned to pay all damages which the defendant may sustain ly reason of the wrongful suing out of the attachment.

Writs of garnishment may issue on suggestion that any party is indebted to or has property of the defendant in his hands.

The assignment of notes, bills, accounts, and other legal or equitable demands is valit, and when the assigmment is in writing, the assignee may sne in his owa name. No particular form of worls is necessary to constitute a valid assignment. The maker of any bill, note, etc., may pleal any payment, off-set or other equity In defense of the same against the assignee, had or possessed by him against the assignor previous to notice of the assigmment.

Justices' courts have jurisdiction up to $\$ 150$; Circuit courts over that amount. Chancery courts have jurisdiction in the administration of estates, all probate matters over minors and lumaties, in matters of dower and divorce, and the fore closure of mortgages, and they have nearly all the jurisdietion of English chancery courts.

Fxecutions are required to be issued, unless otherwiso ordered by the plaintif, within 20 days after the adjournment of the term of court at whieh the judgment is rendered. No stay law for staying execntions except in justices' ecurts, and only then upon giving bond. Parties may, by consent, however, have julgment entered up, with stay of execution for any specified time.

Clams against deceased persons must be probated in the offlee of the elerk of the chancery court having eharge of the estate, within one yenr from the date of the flrst notice to creditors to piesent their claims, otherwise they are barcel. If the evidence of debt is a bond, note or bill, it must be flled, with the aflidavit of the creditor attached, that no portion of the money intended to be secured by it has been received, and no security or satisfaction glven for the same except the amount credited, if any. If it is an open account, the affidavit mist set out that the amount stated is just and true, and that no part of the money stated to be due, nor any security or satisfaction for the same has been recelved cxcept what is credited, if any. If it is a judgment, a certitied transcript must be filed, accompanied with a similar oath.

The above aftdavits may be made by non-residents before a commissioner for the State of Mississippi, a judge or clerk of any court of recerd. ת notary public, or justice of the peace, with the certificate of a judge or clerk of some court of record as to his otficial character.

Deens, Rights of Marrien Women, Wills, \&C.-Deeds to lands must be recorded in the office of the chancery clerk, in the comnty where the lamis lie. Before being recorded they must bo acknowledged. The acknowiedgment must be substantially as follows :
$\left.\begin{array}{l}\text { STATE OF Mississiper, } \\ \text { County of Maimon. }\end{array}\right\}$ ss.
Personally appeared before the undersigned (here follows the name and title of the officer), John Leslie, who ncknowledged thai he signed, sealed and delirered the foregoing deed of conveyance as his own act and deed, on the day and year and for the purposes therein mentioned.
day of
A. D., 187
(Signature'and titie of officer.)
If a married woman is a party to the deed, the following should be added to the foregoing form of acknowiedgment, immediately after the word "mentioned:" Also personaliy apperred before me, Mary Leslie, wile of the said Johm Leslic, whe on a private examination before me, separate and apart from her said husband acknowledged that she signed, sealed and delivered the foregoing deed of con veyance, as her own voluntary act and deed, freoly, without any fear, thrcats on compulsion of her said husband, on the day and ycar and for the purpose thereiz mentioned. Given under my hand, ete. (as above).

The foregoing aeknowledgments may be taken before any judge of th supreme court, or any judge of the circuit court, any chancellor, any clerk of
mpse of his property raul his creditors, or ho has converted or f debt, with intent to he has fraudulently he suit has beell, oris
his agent or attorner. lis debt or claim, ani ent, and give bond in ed to pay all damazes grul suing out of the
party is indebted toor
(or equitable demands tee may sue in lis own ute a valld assigument. , off-set or other equity sed by hifm against tho
jurts over that amount. of estates, all probate 1 wheree, and the fore ietion of 'English chan-
ordered by the plaiutitit, t at which the julyment in justices' courts, and ovever, have julgment
he office of the clerk of ae year from the date of wise they are barred. if led, with the aftidavit of uded to be seeured by it for the same except the Hidavit must set ont that of the money stated to is been received except transeript must be filed,
fore a commissiouer for record, a notary public, clerk of some court of
-Deeds to lands must to nty where the lands lie. e acknowledgment musi
llows the name and title igned, sealed and delirnid deed, on the day and
A. D., 187 ure and title of officer.) ng shonld be added to the he word "mentioned:" he said Johm Leslie, whe, from her said husband foregoing deed of con If for the purpose therefo fore any judge of th lancellor, any clerk of
court of record, or any justice of the peace or member of the board of supervi. sors, whether the land conveyed lie in or out of his county.
If the party conveying land in this State is a nou-resident, his acknowledg. ment may be made before any of the judges of the supreme court of the United States, or a judge of the district court of tho United States, or justlee of the supremo court or superior conrt of any State or territory of the Unlon, or any justice of the peace whose official character shall be certitled to under the seal of some court of record in his county, or before any commissioner residing in such state or territory who may be appointed by the Governor of this State to take acknowledgments and proof of deeds and other conveyauces. Every deed must be sealed. but a mere serawl answers for a seal.
Property acquired by married women cither befoye or after marriage, enures with the income solely to the wife's benefit. She may sell the same, provided her husband joins in the deed of conveyance ; and sho may dispose of it by last will and testament. She cannot bind her property for her husband's debts beyond its income.
All contracts made by the husband and wife or either of them, for supplies for the plantation of the wife, may be enforced and satisfaction had out of her separato estate. Ahl contracts made by the wife, or by the husband with her consent, for family supplies or neeessaries, wearing apparel of herself and children, or for their edueation, or for materials used or work done for the benefit of her separate estate, or for household furniture, are binding on her, and satisfaction may be had out of her separate estate.

A married woman may engago in trade as a femme sole. When she does, she is bound as though mmarried for all contracts made in the course of her trade. sho is liaide for debts contracted before marriage. The husband is not llable for aute-nup:al debts. All other contraets than those enumerated, made by a married woman, are absolntely void.

As to dower the widow is entitled to - thirl of all lands of whieh her husband died seized and possessed, or which he had conveyed during his lifetime oherwise than in good faith or for a valuable consideration, during her life. If there are no ehildren, she inherits all of her husband's estate.

The husband is entitled, in courtesy, to one-half of all his deceased wife's lands during his life, dependant, however, upon the common law prorequisites.

Wills should be in writing, subseribed by the testator, and attested by three credible witnesses. If the will is wholly written by the testator, and subscribed by him, it neod not be attested by any witnesses.

SPECIAL LAWS OF MISSOURI.

Exemptions from Forced Sale.-Homesteall \$1500 to \$3000, and Personat Property. Homestead, if in the country, not to exceed $\$ 1500$ in value, and in cities of over 40,000 inhabitants, not to exce $\$ 3000$ in value. Personal property is exempt as follows: For heads of famlies, all wearing apparel, usual household furniture not to exceed $\$ 100$ in value, provisions in the house and the usual tools of trade of a mechanie; for farmers, working and other kind of aulmals amounting in value to about $\$ 300$. Persons may claim, in place of the aforesaid animals, any kind of property, real or personal. Women, being abandoned by their husbands, and being heads of families, may claim the saine exemptions as the husbands. Persons, other than heads of families, are allowed, as exemptions, their wearing apparel and the necessary tools of a meehanieal trade. The last month's wages, regardless of amount, are exempt from execution and attachment.

Mechanics' Liev.-Material men and meehanics have lien for labor and material on the land and improvements to the extent of their claims. The original contractor must file his elaim within six months, laborers within thirty days, and all other persons claiming a lien within four months after the delt acerned. This lien has precedence over all other llens or eneumbrances placed on the property subsequent to the commencement of the building or improvements.

Collection of Debts.-Arrest for debt is unknown here. Writs of attachment may be obtained on the foliowing grounds:-Non-residence ; being about to remove from the State ; concealment with view to avold service; removal of property from State, or concealment of the same, with a view to hinder and delay creditors; where debt is contracted out of the State, and debtor absconds
from thero and socretly removes his property into this Stato ; for debt contracted fraudulently or from conmission of felony ; or whero goods were bought and payment is to be made in cash and the same is not dnne ; bond must be in double the debt claimed, with one or more suretics, who must be resident householders in tho county where suit is brought. Attachments should bo resorted to in this Stato with great caution, and only where the proof is strong and clear. Every species of projerty, whether it be legal or equitable, is sulject, to attacliment and executionat haw. When attachment is levied on real estate, notice is to be filed at tho recorder's office, and this fixes legal notico of the encumbrance.

Assignments, in trust for the benefit of ereditors, inure for the benefit of all creditors of the grantor, whether named in the deed of assigmment or not; the deed of assignment must bo acknowledged and recorded like other deeds. One partner cannot assign all the partnership assets for the payment of partnership debts, but only his own share of them. A creditor, if he attacks an assignment as fraudulent, and is defeated, cannot afterwards claim the benefit of the asignment and be allowed to prove his delt before the assignce. Assignments, made to secure sureties or endorsers, prior to nyy payment by then, aro valid here. Notes, bills, accounts and every species of contract or clain is assignable, and the assignee can sue on it in his own name.

Garnishment can be issued, either on execution or altachment, against any person owing the debtor or having his property in possession. The garnisheo is entitled to compensation for his trouble and expense, including attorney's fecs; this is payable out of tho fund, if any is found in his lands, or if nothing is due from tho garnishee, then the plaintiff is bound to pay this sum.

Acceptors of notes and bills are chargeable only when their acceptance is in writing on the bill ; or, if on separate picce of paper, when the party who gare the credit saw the separate paper ; or if a promise is made in writing to accept a draft before it is drawn, and the draft is in the hands of any person who gave credit on the strength of this writing.

Bills of exchango and notes drawn and negotiated in this State or on any person within the State, expressling on their face for " value received," and duly protested for non-payment or non-accerpance, entitle the holder to recover dam. ages as follows : If drawn on a person residing in this State, four per cent. if outside the State, ten per cent. : if ontside any of the United States or territo ries, twenty per cent. damages on the principal sum. These damages are not recoverable ff the bill is drawn by and on a person residing in this State, and payment of tho principal is made within twenty days after dishonor. All parties to notes or bills, whether endorsers, makers, or acceptors, or parties in any manner, can be sued jointly or separately in the same or in several actions. Drafts, orders or bills of exchange, payable at sight or on demand, aro deemed due the day they are presented for payment, and if unpaid, may bo protested. Notarial protest is evidence of demand and refusal of payment, at the time and in the manner stated in the protest.

Sheriffs aro liable, for failuro to pay over money, to pay five per cont. damages per month from the time demand is made of them, in addition to legal interest. They are also liable for the full walne of property in replevin or attachment suits, when they have taken insufficient bond.

The jurisdiction of justices' courts, in counties having over 50,000 inlabitants, on bonds and notes for the payment of money up to $\$ 300$, on other contracts up to $\$ 200$, on actions for torts up to $\$ 100$. In comnties having under 50,000 inhalitants, on notes and bonds for payment of money up to $\$ 150$, on other contracts up to $\$ 90$, and in torts up to $\$ 50$. In actions for recovery of specific personal property, up to $\$ 200$, in the former, and up to $\$ 100$ in tho latter class of counties. All these amounts are exclusive of interest. Circuit courts havo concurrent jurisdiction with justices' courts as follows, in countics irrespective of popula. tion: On written or verbal contracts, insums over $\$ 50$, and in the former class of counties for torts, in sums over $\$ 2 \pi$, and for recovery of specific personal property up to $\$ 200$; in the latter class of counties for torts, in sums over $\$ 25$, and for recovery of personal property in sums not exceeding $\$ 100$.

Servico of summons must be made in circuit courts 15 days before return day, and all actions are triable, in countios having over 40,000 inhabitants, at the return term ; in other counties, actions on notes and bonds are triable at the return term, and other actions at the next term.

Before justices, service must be made 15 days before trial, in cases where they have concurrent jurisdiction with circuit courts; in other cases 6 days is sufficient ; but in St. Louis connty 15 days is required in all cases.

Judgments, in courts of record aro a lien from their rendition, and for thee years thereafter, on all real estate owned by the defendant, or sabsequently ac*
fordebt eontracted is were bought and id must be in double sldent liouseholders o resorted to in this gand clear. Every bject to altachment state, notice is to bo encumbrance. for the benefit of all ignment or not; the :o other deeds. One ment of partnership tacks an assigniment ho bencfit of the asgnee. Assignments, it by thern, are valid r claim is assignable,
chment, against any m. The garnishee is iding attorney's fees; , or if nothing is due sum.
their acceptance is in 1 the party who gave in writling to accept a any person who gave
this State or on any ie received," and duly nolder to recover damate, four per cent.; if ited States or territohese damages are not ing in thls State, and cidishonor. All parties or parties in any manveral actions. Drafts, l, are deemed due the o protested. Notarial the time and in the
hy five per cont. damn addition to legal inin replevin or attach-
prer 50,000 inhabitauth, on other contracts up ong under 50,000 inhat150 , on other contracts ry of specific personal atter class of countics. burts have concurrent respectivo of popula. nd in the former class specific personal prop in sums over $\$ 25$, and 100.
lays before return day, inhabitants, at the reare triable at the re-
al, in cases where ther r cases 6 days is sulfises.
endition, and for three it, or subsequently ac
quired by him, and situated in the county where the judgment is rendered. The judgment can be revived so that the lien can bo kept up for ten years after its rendition. No execution can issue on a judgment in a court of record older than ten years, new sult has to be brought on the same. Judgments in courts of reeord ereate no lien on personal property. No excention can issue on a justice's judgment three years after its rendition, withont revivor. Jndgnents before justice can be made to create llen on real estate by thling a tramseript of the judgment in the circuit court.

Exceution issnes the day judgment is rendered, and are a llen on personal property, when issuing out of a justice's court from the time they aro delivered to the officer; when issuing from conrts of record, only from the the they aro actually levied. Executions from a justlce camnot be lovied on real estate. Every specics of property, real or personal, books of account, debts and judgments, whether tho interest in real estate be a legal or equitable title, is subjeet to execution and salo at law. Redemption, after exceution sale, is unknown here. If an execution from a court of record is returned unsatistied, the debtors can be summoned and required to state under oath what property or interests they have or own, which may be reached by exeention.

Deeds, Rights of Mahried Wumen, Wills, \&c.-Deeds must be under seal, a scratwl is regarded as a scal. Tho acknowledgment, if made in this State, may be made before a justice of the peace of the county where the land lles, before a court or judge, the court having a seal, or before a notary publie; if out of this State, before a commissloner of this State, notary publlc, or before a court or judge or clerk of a court having a seal, or before the chicf officer or mayor of a town or city who has a seal, or before a consul orminister of the United State who has a seal. Tho seal must be attached, and the deed recorded in the county where tho land lies.

The following is the form of certificate where the grantor is ummarriod :
[Form of Acknowledgment.]
$\left.\begin{array}{l}\text { STATE OF Missouri, } \\ \text { CocNT of Pike. }\end{array}\right\}$ ss.
Be it remembered, that on this day of A. D. 18 , before the undersigned, a , within and for the county of, and State of Missouri, personally came , who are personally known to me to bo the same persons whose names are subscribed to the foregoing and anmexed instrument of writing as parties thereto, and acknowledged the same to be their act and deed for the purposes thereln mentioned.

In testimony whereof, I have heremito sat my hand, and afined my official seal, at my office in , the day and year first above written.
[1. S.]
(Signature and title.)
The following is the form where husband and wife join in the deeds, the latter releasing dower. Husband and wife always must join in deeds, whether her or his real estate are to be conveyed:
[Form of Acknowledgment:]
$\left.\begin{array}{l}\text { State of Missouri, } \\ \text { County of Pike. }\end{array}\right\}$ ss.
Be it remembered, that on this day of A.D. 18 , before the undersigned, a , within and for the county of , and State of Missouri, personally came , who aro personally known to me to be the same persons whose names are subseribed to the foregoing and amexed instrument of writing as partles thereto, and acknowledged the same to be their act and deed for tho purposes therein mentioned. And the said , behng by me first made acquainted with the contents of sald instrument, upon an examination separate and apart from linsband, acknowledged that executed the same, and relinguishes dower in the real estate thereh mentioned, freely and without fear, compalsion or malue influence of said husband.

In testimony whereof, I have hereunto set my hand, and anfixed my offcial seal, at my othce in
the day and year first above written.

[SEAL.]

(Signature and title.)
Married women can hold real or personal property to their separate use, throngh a trustee. A note or endorsement made by a inerried woman will bind her separate estate; it will not, however, bind her general estate, and will be a nullity unless she has a separate estate to be bound by the paper. If, however, her note is for purehase money of property, then it will bind even her general estate.

The wife's separate property, whether acquired before or previous to mar. riage, is not liable for her husband's debts. The wife is cndowed of one-third of all the lands of which her husband, or any one to his use, was seized of an estate of inheritance, at any time during the marriage; also, of leasehold estate for the term of 20 years or more.

A chattel mortgage of perishable articles, which are left in the hands of the grantor, with right to use the same, is vold; so is mortgage of stock of goode, the grantor having right to sell; so is any mortgage, if unregistered and the chattel left with the grantor; so is also a registered mortgage, if the goods are left unreasonably long with grantor, after default is made in payment.

Wills must be in writing, signed by the testater, or by some person in his presence, and at his request, and attested by two competent witnesses, who shall subscribe their names as witnesses in the presence of the testator. Wills must be recorded 30 days after probate; if lands in different counties are devised a copy of the will will be recorded in the recorder's office in each county, withiu six months after probate.

SPECIAL LAWS OF MONTANA.

Exemptions from Forced Saxe.-Home worth \$2500, and Personal Property. A homestedd not exceeding in value $\$ 2500$; in a city or village not to exceed one quarter acre, or farm land not exceeding 80 acres, the debtor taking his choice selecting either, with all improvements thereon included in the valuation. The lien of a mechanic, laborer, or mortgage lawfully obtained upon the same is not affected by such exemption. In addition to the homestead, personal property to the value of $\$ 1400$, and more, according to value of articles enumerated ly statute, is allowed to the Louseholder occupying the same.

SPECIAL LAWS OF NEBRASKA.

Exemptions from Forced Sale.-Home icorth 5500, and Personal Property. A homestead containing any quantity of land not exceeding 160 acres, and the dwelling house thereon, and its appurtenances, to be selected by the owner thereof, and not incladed in any incorporated city or village ; or instead thereof, at the option of the owner, a quantity of contiguous land, not excecding two lots in any incorporated town, city, or village, and according to the recorded plat of said incorporated town, city, or village; or, in lieu of the above, a lot or parcel of contiguous land, not exceeding 20 acres, being within the limits of an incorporated town, city, or village, the said parcel or lot of land not being laid off into streets, blocks, and lots, owned and occupied by any resldent of the State, being the head of a family, shall not be subject to attachment, levy or sale uponex. ecution, or other process issuing out of any court in this State, so long as the same shall be occupled by the debtor as a humestead. All heads of families, whe have nelther lands, town lots, nor houses entitled to exemption as a homestead, under the laws of this State, shall have exemption from forced sale on execution the sum of $\$ 500$ personal property.

Mechanics' Lien.-Any person who shall have performed any laber, or furnished any material or machinery for the erection, reparation or removal of any house or other building or purtenances, by virtue of a contract, expressed or implied, with the owner thereof, or his agent, shall have a lien thereon to secure the payment for such labor performed or materials furnished. Said lien shall be obtained by filing, in the effice of the county clerk for record, an account, in writing, of the items, and making oath thereto, within four months after furnishing such materials, or work and laber. The lien shall operate from tho date of the first item till two years from the date of the last item.

Collection of Derts.-An order for the arrest of the defendant may be obtained on aftidavit by the plaintiff, his agent, or attorney, that the claim is just, and that one or more of the following particulars aro true : that the defendant has begun to remove any part of his property out of the jurisdiction of the court with intent to defraud; that he has begun to convert the same into mency to place it beyond the reach of his creditors; that ho has property of rights of acion which he fraudulently conceals; that he has assigned, remored or disposell of his property or any part thereof with intent to defraud; that he has fraudulently contracted the debt or incurred the obligation on which the action is based. The
previous to mar. wed of ole-third of seized of an estate zasehold estato for
n the hands of the of stock of gooils, registered and the e, if the goods are payment.
some person in his ent witnesses, who the testator. Wills zounties are devised each county, within

ANA.

and Personal Propity or village not to the debtor taking bis ded in the valuation. ied upon the same is ad, personal property icies enumerated ly

ASKA.

and Personal Prop. ceeding 160 acres, and elected by the owner θ; or instead thereef, pot exceeding two lets the recorded plat of bove, a lot or parcel e limits of an incor not being laid off into nt of the State, being evy or sale upon exState, so long as the 11 heads of families, exemption as a home from foreed salc on
ormed any labor, or ration or removal of ontract, expressed or ien thereon to secure d. Said lien shallbe cord, an account, in months afterfurnish ate from the date of
efendant may be ob at the claim is just, that the defendant sdiction of the court same into moncy to ty of rights of action hoved or disposed of he has fraudulently action is based. The
smdavit must further contain a statement of the facts claimed to justify a belief In one or more of the above particulars. A bond must be executed lilie that in cases of attachment.
The plaintiff in a civil action may obtain a writ of attachment against all the lands, tenements, goods, shattels, stocks, or interest in stocks, rights, credits, moneys and effects of the defendant in his county, not exempt by law, upon the following grounds, in addition to those enumerated in the last above section : when the defendant, or one of several, is a non-resident or foreign corporation when he absconds with intent to defraud ; when he has left the county to avold service, or so conceals himself that sumumons cannot be served upon him. When the ground of attachment is that the defendant is a non-resident or foreign cor poration, the claim must be a debt or demand arising on contract, judgment or decrec. A bond, in not more than double the amount claimed, with one or more lureties to be approved by the clerk, is required, except when the defendant is a non-resident or foreign corporation.
In cases of attachment, "when the plaintiff, his agent or attorney, shall make outh in writing that ho has good reason to, and does believe, that any person or corporation, to be named and within the county where the action is brought, has property of the defendant (describing the same) in his possession," the said propeity, whether debts, choses in action, chattels or other property, may be garnished and held the same as property otherwise attached. In all cases whicre an execution shall be returned unsatistied, and the judgment creditor, his agent or attomey, shall file an affdavit, that any pezson or corporation (naming the same) has property of, and are indebted to the judgment debtor, such person or corpontion may be summoned as garnishee.
All bonds, promissory notes, bills of exchange, forcign and inland, drawn for uys sum or sums of money, certain and made payable to any person or order, or seigns, shall be negotiable by endorsement ; made payable to bearer, shall bo transferable by delivery without endorsement. All such negotiable paper shall beentitled to three dayg' grace. January 1st, February 22d, July 4th, December Eth, and any day appointed or recommended by the governor of this State, or the President of the United States, as a day of fast or thanksgiving, are legal holidarsifor commercial purposes; when sưch day comes on Monday, then the day titer is when the act is to be performed. When any bill of exchango shall be trawn for the payment of any such sum of money, and such bill shall be legally protested for non-acceptance or non-payment, the drawer or drawers, endorser or endorsers, shall be subject to payment of twelve per cent. damages thereon, if drawn on any person or persons, or body-corporate, without the jurisdiction of the Tnited States, and six per cent. damages thercon if drawn upon persons or bodyorporate within the jurisdiction of the United Statcs, and without the jurisdicfon of this State.
The supreme court has appellate jurisdiction only except in cases relating to remue, mandamus, quo warranto, habeas corpus, and such cases of impeachment smay be required to be tried before it; and both the supreme and district courts ball have both chancery and conmon law jurisdiction. The district court has Figinal and exclusive jurisdiction over all matters and suits at law and in hancery arising in each county in their respective districts, except when justices Ithe peace have jurisdiction, and concurrent jurisdiction with said justices of be peace, in cases where the cause of action excecds fifty dollars, and not exceedIn one hundred dollars, and has jurisdiction in all cases of appeals from a esife of the peace or judge of probate. Justices of the peace have jurisdicon co-extensive with their counties, and extends to all cases wherein the sum crolved does not exceed $\$ 100$. When action is rightly brought in any county, summons may issue to any other couriy, and, miless otherwise provided for, ball be returnable on second Monday from its date, but when issued to another unty. it may be made returnable, at the option of the party liaving it issued, on le third or fourth Monday after its date. Personal service before justices of e peace, three days before tria! ; constructive servico may also be made in tain cases by publication.
Judments in district court, are liens upon the lands of the judgment dobtor, tuated in the same county, frum the first day of the term at which judgment is mdered; but judgments by coniession, and thoso rendered at the same term in pich the action is commenced, are liens only from the day on which such judgenta are rendered. To create a judgment licn in other counties, a transeript ust be filed or lery mado.
Judgments in probate and justices' courta, operate as a lien upon the realty of edebtor when a transcript thereof is flled and docketed in the office of the fik of the district court.

Lands, tenements, goods and chattels, not exempt by law, are subject to lers. Executions, unless stayed, issue at any time after judgment on order therefor. May issue to any county in the State, and simultaneously to any other counties; must first exhaust goods and chattels, and afterwards realty. Are not liens on personality or realty in counties other than the one in which judgment is obtain. ed, until levy has been maile or transcript flled. No redemption of propertysoid on execution or order of sale on foreclosure of mortgage; titie becomes absolute on confirmation of sale. Judgments become dormant and cease to be a lifen on debtors' property if execution is not issued within five years from rendition of judgment, or if Hive years intervene between the lssuing of two executions. Judgments cease to operate as a lien on the debtor's cstate to the prejudice of any subsequent bona file judgment creditors, unless execution is issued within cho year from date of said judgment ; but when the issuing of an execution is pre vented by stay, appeal, proceedings in error, etc., such, aar does not begin to run until after the removal of said disability. If an execution be returnel unsatistled, the debtor can be summoned, and be required to state under oath what property or interests he has or owns, which may be reached by execution.

Chattel mortgages are valid against bona ficle purchasers and creditors, if the Instrument shall be tiled and recorded in the office of the county clerk; but ceas to be valid against creditors, purchasers and subsequent mortgagees in good fath after the expiration of one year from the tiling thercof, unless within thirty dare next preceding the termination of said year a true copy of the mortgage, togethe with a statement exhibiting the interest of the mortgagee in the mortgaged prop erty, shall again bo filed and recorded. Sale or mortgage of chattels, unless ac e mmpanied by immediate, actual delivery and continued change of possession are prima facie fraudulent and void as against creditors and subsequent bon fide purchasers, unless the instrument has been duly filed and recorded in th othce of the county clerk.

Deeds, Rights of Married Woaren, \&e.-All deeds affecting the titlet real property, or any interest therein, in this State, except leases for one year d for a less time, must be signed by the grantor, of lavful age, in the presence of least one conpetent witness, whio shall subscribe his name as a witness thereto and be duly acknowledged or proved and recorded. Acknowledgments or proof may be taken in the State, before a judge or clerk of any court, justice of th peace, or notary public; no officer can take any such acknowledgment or prow out of his State jurisdiction.

The certficate of acknowledgment must be indorsed on the instrument, an show that the grantor acknowledged the same to be his voluntary act and deed and that the ofticer before whom the samo was taken knew him to be the ded ical person whose name was affixed as grantor, or had satisfactory eridence ofte faet. If, after the instrument is executed but not acknowledged, the grantori or if, from any cause, his attendance cannot bo procured in order to make th same, or, having appeared, he refuses to acknowledge it, proof of the executio and delivery of the deed may be made by any competent subseribing witue thereto, before any officer authorized to take the acknowledgment; such witme must be personally known to the officer, or such officer must have satisfacto evidence that the witness is the person who subscribed the instrument as a $\mathrm{m}:$ ness. If all the subscribing witnesses are dead, or out of the State, the executio of the deed may be proved by proving the handwriting of the grantor and of \& subseribing witness thereto. All deeds, duly executed and acknowledged, ma be recorded in the ottice of the clerk of the county in which the land lies ; ince the land is situated in an unorganized district, the deed is to be recorded in otfice of the clerk of that county to which said district is attached for judig purposes. All deeds, mortrages and other writton instruments take effect, 4 are in force as to third parties, from and after the time they are delivered to clerk for record. No separate examination is required in taking a wife's knowledgment; to convey her right of dower she must execute a deed with without her husband. All deeds should have at least one subscribing witue Private seals are abolished, not even scrawls are required.
[Form of Certiticate of Acknowledgment of Husband and Wife. 1
State of County of

On this and title of offlicer), duly appointed, commissloned (or elected) and quailifid and residing in said county, personally appeared and his wife, to me personally known (or by the oaths of one or more witnes whose names are hereto subscribed, satisfactorily proved) to be the ident persons described in, and whose names are aflixed to, the foregoing instrum

[^6]

號

aw, are subject to lers. ant on order therefo: to any other countles; alty. Are not liens on ich judgment is obtain. mption of property sold ; title becomes absolute id cease to be a lien on ears from rendition of ing of two execution. te to the prejudice of any on is issued within cue of an execution is prezar does not begin to execution be returnel ired to state under oath o reached by exceution. sers and creditors, if tho o county clerk ; bit cease mortgagees in good faith unless within thirty day of the mortgage, togethe ee in the mortgaged prop ge of cbattels, unless ac ed change of possession ors and subsequent bon filed and recorded in th
eds affecting the title t cpt leases for one year 1 age, in the prescnee of ame as a witness theret cknowledgments or proch f nuy court, justice of the acknowledgment or prod
ed on the instrument, any is voluntary act and dee nnew him to be the den patisfactory evidence of 4 nowledged, the grantor red in it, proof of the executio otent subscribing witue owledgment; such witne er must have satisfacto 1 the instrument as a of the State, the executio of the grantor and of 19 and acknowledged, ma vhich the land lies ;inc: d is to be recorded in ct is attached for jutuid struments take effect, ${ }^{2}$ e they are delivered to ced in taking a wife's ist execute a deed with one subscribing witue red.
tsband and Wife. 1
ore me (here insert ns elected) and qualified 1 and
of one or more wines oroved) to be the ldenty the foregoing instrum
ugrantors, and they severally acknowledged the same to bo their voluntary act nod deed.
In testimony whereof, I have hereunto set my hand and official seal, at in sald county, the day and year last above written.
[sE.AL.] (Signature and title.)
The property, real and persorial, which any woman in this State may own at the time of her marriage, the rents, issues, profits or proceeds thereof, and any nas, personal or mixed property which sliall come to her by descent, devise or knuest, or the gift of any person except her husband, shall remain her sole and eparate property, and not be subject to the disposal of her husband, or liable thils debts. Sho may bargain, sell and convey her real and personal property, Islenter into any contract in reference thereto, in the same mamer, to the ane extent, and with like cffect as a married man. She may sue and be sued yif unmarricd, and carry on trade or business on her separato account. Her arnings are her sole property. If married out of the State, she may here enjoy urights to property thero acquired.

SPECIAL LAWS OF NEVADA.

Exemptions From Forced Sale.-A Homestead worth \$5000, and Personal Prperty. A homestead owned by a head of the family, worth $\$ 5000$, and the bllowing personal property : household furniture to the value of 8100 ; provispas and fire-wood for ono month; farming utensils of a farmor not exceeding in Hue $\$ 200$; two horses, two oxen or two mules, and two cows, one cart or wagon, echanics' tools; n miner's dwelling, in vaho $\$ 500$, nud his mining tools; a firary of a dentist, physician, lawyer or surgeon; one sewing machine worth iv. A mortgage or other security on tho homestead is void, unless fer purchase poney or mechanics' lien.
Mecianics' Lien.-Persons who perform labor or furnish materials for the fection or improvement of any building has a lien on the same for such work ed materials for all amounts over $\$ 25$. And so have all laborers on ali work me by them on any railroad, toll-road, canal, water-titeh, mine or mining-sluft, tunnel, or building lot in a city or town; provided, the original contractor whll file hifs lien in sixty days, and the sub-contractor or laborer in thirty daje fer the work is completed, and suit commenced in six months.
Collegtion of Debts.-A debtor may be arrested and held in custody or reased on bail, upon an allidavit being made by the plaintiff, or lis agent or attorrf, that the defendant is fraudulently disposing of his property, or is absconding im the State, or where the debt was contracted in some nduciary capacity, or here tho action is for libel or slander, or where the debtor is concealing his propto to defraud lis creditors.
Writ of attachment may issue against any property, whether real or personal. the debtor may be attached upon the plaintiff entering into a bond, as required the statute, not to bo less than $\$ 200$ in gold coin, with sufficient suretics. and aking an atficlavit that the dobt claimed is an actual bona file debt due to plainFfrom the defendant; that the attaclimentis not asked to hinder, delay or deand the defendant or his creditors; that the action brought is on a contract rithe direct payment of money, and which is not sceured by a mortgage or her lien, or upon a contract executed by a party not in this State. Aud tho soperty so attached will bo held to ablde the judgment the plaintiff may recover. A debtor may prefer one or more of his creditors, by assigning his property for eir benefit; provided, the assignment is bona fide, und bankruptey does not inrrene.
Notes and bills for the payment of money are negotiable like bills of exchange. ceptance must be in writing, on the bill or on separate paper ; it shall nol nd the acceptor, except in favor of the person to whom such acceptance was own, and who gave value for the same on the strength of the acceptance. tes of damages for non-payment or non-acceptance are as follows: On bills awn on persons in the United States, east of the Rocky Mountains, $\$ 15$ on the m; if drawn on Furope or other foreign country, $\$ 20$ on the $\$ 100$; these dama. fare in lieu of protest fees. Paper mituring on any legal holiday must be protel the day previous. Legal holldays are: Sumdays, January 1st, February i, July 4th, Christmas and Thanksgiving Days. Sight bills or drafts are not litied to grace.
The jurisdiction of justices' courts extends to $\$ 300$, except when suits concern fd or mining claims.- District courts have general jurisdiction"of all matters.
either of n legal or equitable naturo, when the amount exceeds $\$ 300$, and appeliath jurisiletion lin all cases which originates before a justice of the peace. The supreme han appellate jurisdiction from district courts.

Judgments from courts of record, are liens on the debtor's lands in the county whete obtained, and upon his land in any other connty whero transeripe of same is thed and judgments before justice of the peace become liens on the debtor's land, where a transeript of the samo is flled with the clerk of the distrie court of the county.

Execution may bo stayed by the court in which the judgment was obtained reasonable timo; and, unless same is thus stayed, it can issuo at any time wibhid the limitation, fivo years, and may be levied on any of the property of the de fendint not exempt by law. It is not a llen on personalty intil an accual lery As the judgment is a lien on the debtor's land, it can bo enforced by the execition.
idezds, Rights of Married Women, \&c.-Dceds must be in writing, a scam will answer for a seal. Wituesses are not necessary to its validity.

If proven or acknowledged in this State, it must lo before a judge, or cletho a court having a seal, a notary publle, or a justice of the peaec. If without the State, beforo any judge, clerk of a court laving a scal, notary publle or justice the peace, or a commissioner of this State. If before a justice of the peace, must be accompanied by a certificato of the elerk of a court of record, certify to the official capacity and signature of the justice. If taken without the linter States, before some judge or clerk of a court or a State, Kingdom or Empire ha ing a seal, a notary publie, or by a minister, commissioner or consul of the Unith States. If the grantor does not acknowledge the execution of the deed, the if ness may prove his signature; but if the witnesses are dead, or cannot be hed proof lyy competent parties, under oath, of the signature of the grantor ands least one witness.

The wife must join the husband in the execution of a deed, and this form ea be used for the certilicate of acknowledgment by husband and wife, or without wife, and can be changed to suit the circumstances:
State of New York,
County of Orange. $\}$ ss.
Be it remembered, that on this day of
A. D. 187 , person ally appeared before me, J. Gordon, a notary public in and for said countr ar State, duly appointed and qualified to take acknowledgments of deeds, etc., A. and C. D., his wife, whose names are subscribed to the conveyed instrument? parties thereto, personally known to me to be the individuals described in ar who executed the said annexed instrument as partles thereto, who each acknow edged to mo that they each of them respectively executed the same, freely, rf untarily and for the uses and purposes therein mentloned. And the said i. I wife of the sald A. B., having been by me first made acquainted with the conted of said instrument, acknowledged to me, on examination apart from and withe the hearing of her said husband, that she executed the same freely and voluntarll without fear or compulsion or undue influence of her said husband, and that does not wish to retract tho execution of the same.

In witness whereof, I have hereunto set my hand and affixed my official sec the day and year first above written.
J. Gordon, Notary Publle.

All the property owned by the wife 2, tho time of her marriage, or to whi she acquires after mariage by inheritance, devise, gift or bequest, belong and remains her senarnte estate whirtx alio cant sell and convey wi hout the sent of her husband. And all propert, acquired by purchaso by husband an wife during the coverture belongs io them in common; and upon the death the husband, one-half goes to the wife; but during coverture, is under the ek lute control of the husband. Ho can convey the same without the joining of wifo in the execution of the deed. A married woman has no dower in the 1 estate of her husbaud, neither has he any courtesy in hers.

SPECIAL LAWS OF NEW HAMPSHIRE.

Exemptions From Forded Sale.-Home worth $\$ 500$, and Personal Propd Homestead to the value of $\$ 500$, for the benefit of wife, widow or chility Household furniture to value of $\$ 100$; books and library in use by the debtort his family to value of $\$ 200$; necessary wearing apparel of debtor and fami
ceeds 8300 , and appeliate ice of the peace. The - dehtor'n lands in the county whers transcrif ace beconse licus onth 1 the clerk of the distriet
judgment was obtaineds issue at any time within the property of the de alty unth an actual lery e cuforced by the execi-
ast be in writing, a scraw its validity. jefore a judge, or clerko to peace. If without th notary public or justiced a justice of the peace, ourt of record, certitying taken without the Unite Klugdom or Emplife has ner or consul of the Cnite ation of the deed, the wif e deail, or cannot be hid cure of the grantor and
a deed, and this form eat and and wife, or without
A. D. 187
, perso n and for said countrail gments of deeds, etc., A. ho conveyed instrument lividuals described in a thereto, who each acknow uted the same, frecls, rg onet? And the said ci. rquinted with the conten lon apart from and wilthe ame freely and voluntaril said husband, and thats
nd affixed my official ere
Gordon, Notary Publice her marriage, or to wh gift or bequest, belong id convey wi hout the of purchase by husband a n ; and upon the deald verture, is under the of without the joining of it has no dower in the ers.

HAMPSHIRE.

o, and Personal Prope wife, wldow or chilidr y in use by the debtor rel of debtor and famis
necessary bed, bedsteals and bed-clothing; 1 cooking stove and its furniture; tools of his oecupation, $\$ 100$; provisions and \{uel, $\$ 50$; beasts of the plow, not exceeding 1 yoke of oxentor 1 horso ; sewing machine, 1 cow, 6 sheep, 1 pig or ling.
sibenfinics' Lase--Laborers and persons furnishing materials have a lien on the building and the imil on which it is put, to the amount of \$15, and for the ppace of sixty days after the labor was performed or materials furnished.

Colesction of Deirs.-Arrest for debt can be made upon aflidavit of the plaintif, or his agent, that defendant owes moro than $\$ 13.33$. and conceals his property so that no attachment or levy can bu rade, or is about to leave the state warold the payment of his debts.
Writs of attachment may issue for the following causes: Non-resldence; Deing about to romove from the State ; concealment with view to avold serviee; removal of property from State, or coucealment of the same, with a view to hinder ind delay creditors; where debt is contracted ont of the State and debtor abkonds from there and secretly removes his property into this State; for debt contrated frandulently or from commisslon of felony; or where goods were bought mulpayment is to be mado in casha and the same is not done; bond must be in donble the debt claimed, with one or more sureties, who must he resident househollers of the county where sult is brought. Every species of property, whether tite legal or equitable, is subjeet to attichment, and constitutes a valid lien on the property for thirty days after judgment, within which period the execution must bo levied to preserve and protect the lien.
Assignments in trust, for the benefit of creditors, inure for the beneflt of all meditors of the grantor, whether named in the deed of asslgnment or not; the deed of assignment must be neknowledged and recorded like other deeils. One partuce cannot assign all the partnership assets for the payment of parinership debts, but only his own share of them. Assignments made to secure sureties or endorscrs, prior to any payment by them, are vaill here. Notes, bllls, aecounts, and every species of contract or claim is assignable, and the assignee can sue on tin his own name.
Garnishment can be issued on attachment, against any person owing the debtor or having his property in possesslon. The carnishee is entitled to compensnfion for his trouble and expense; this is payable out of the fund, if any is found whis liands, or if nothing is due from the garnisheo, then the plaintiff is bomal ppay this sum.
All notes and bills, payable in eash to order or bearer, are negotiable; on demand, are dishonored and overdue 60 days from their date. Grace is allowed on In notes, drafts and bills payable on time, unless expressly excluded by terms of be contract.
The jurisdiction of justice and police courts, extend only to $\$ 13,33$. The cirgit court has jurisdetion beyond that sum, and of all appeals from the justice yil police courts. Superior court of judicature has only appellate jurlsdiction, nid may issue writs of error.
Julgments may bo obtained at the first term, unless defonilant make afflavit defcuse, in which case he is entitled to continuance unless the plaintiff has fren him 30 days previous notice to be prepared for trial.
Executions may issue the day judgment is rendered, and are a Hen on personal roperty, when issuing out of a justice's court from the time they are delivered the oiticer; when issuing from ecurts of record, only from the timo they are ctually levied. Executions from a justice cannot be levied on real estate. rery speeles of property, real or personal, books of account, debts and judg. ents, whether the interest in real estate be a legal or equitable title, is subject esecution and sale at law. Redemption after excention sale can bo had for ne year. Stay of execution is only had when plaintiff is insolvent and defendant mishes bond to pay the amount of judgment in review.
Deeds, Rights of Married Women, Wills, \&c.-Deeds must be under seal dattested by two witnesses. The acknowledgment, if made in this State, may made before a justice of the peace of the county whero the land lies, before a purt or judge, the court having a seal, or before a notary public; if out of the ate, before a commissioner of this State, notary public, or before a court or tge or clerk of a court having a seal, or before the chlef offeer or mayor of town or city who has a seal, or before a consul or minister of the hited States who has a seal, or a justice of the peace, his official character duly tifled by the clerk. The seal must be attached, and the deed recorded in the unty where the land lies. No separate acknowledgment is required to be made the wife, nor need she be examined separato and apart from her husband, but must join in the deed to bar her dower or homestead.

The foilowing is tine form to be used of certifleate of acknowledgment of hus band and wife :
State of New Hampsifire, County of Carroll.
ss.
Personally appeared the above-named, A. I. and C. D., his wlfe, and acknomb. edged the foregoing instamment to be thoir voluntary act and deed. Before me, this
day of
, 187 .
John Gardner, Commissioner.
No necessity for the certificate to state the wife releases her dover. The above is sufficient. Proof of subscribing witnesses must be made by depositions, and upon due notice to the parties interested. And if the identity of the grantor: is denied, it must be proven by deposition.

Married women hold all property owned by them before marriage, or acquired after in any way, except through property of the husband, to their sole and separate use as if sole. All their acts in reference to such property aro valid and binding upon them and their property. All other contracts void. The wifeis entitled to homestead and dower in all the property of ber husband, unless she release the same by joining her husband in its conveyance. In most respects the wife is equal to tho husbaid before the law. The husband cannot convey real estate to the wife.

A chattel mortgage of perishable articles which aro left in tho hands of the grantor, with right to use the same, is void; so is mortgage of stoek of goods, the grantor having right to sell; so is any mortgage if unregistered and tho cbattela left with the grantor, save as between the parties thereto, unless the above provisions are complied with and an oath taken by both parties mado on the mor: gage, to the effect that the debt accrued therein is just, honestly dne and owing.

Wills should be in writing, signed and sealed by the testator, or by some pe: son in his presence, and by his express direction, and attested and subscribed in his presence by three or more credible witnesses.

SPECIAL LAWS OF NEW JERSEY.

Eximptions from Fonced Sale.- Mome worth $\$ 1,500$ and Personal Prep crty. Lot and buildings thereon, oceupied as a residence and owned by the clebtor, being a householder and having a fanily, to tho value of $\$ 1,500$. Per. sonal property to the anount of $\$ 200$, owned by a resident head of a famils appraised by three persons :ppointed by the sheriff ; and the widow or admins trator of a deceased person may claim the same exemption of $\$ 200$ as agains creditors.

Meciranics' Liens.-Persons who perform labor or furnish materials for the erection and construction of buildings, have a lien on the same for such labe: and materials, including the lot on which such buildings are crected; provided the lien is filed in cue year after the labor is performed or materials furnished and the summons issued in the year.

COLLETTION OF DEnTs.--A defendant may be arrested for debt, on afldarit bcing miale that he is either, 1. About to remove his property out of the juristic tion of the court, for the purpose of defrauding his creditors; or, 2. Fraudulenty conccals his property or rights of action; or, 3. Ho has assigned, removed of concealed, or is about to assign, remove or conceal his property, with intent th defraud his creditors; or, 4. That he has fraudulently contracter. t to debt of incurred the obligation about which the suit is to be commenced.

Writ of attachment by the creditor or his agent making aflidavit, to be fifd with the clerk of the court out of which tho writ is to issue, stating that the debtor, according to his knowledge and belief, is not a resident of this State that ho owes the plaintiff (specifying the amount), or that tle debtor abscons from his creditors. All property of the defendant may be seized under attad ment, and his debtors garnishecd, but tho real estato seized under attachmes cannot be sold for twelve months after scizure.

Every assignment for tho benetit of the ereditors of the assignor, whither real, personal, or mixed property, must inure to their mutual benefit withouta preference or priority, and all preferences by which one or more creditors any be first paid, or any other preferences, aro fraudulent and void, excepting on creditors holding mortgages and judgment creditors. The debtor naking th assignment must attach to the deed of assignment an inventory of all his estav and a full list of ereditors, theso to be verified by the aftidavit of the debit
, his wife, and acknowl. act and deed. Before
oner, Commissioner. eases her dower. The be made by depositions, o identity of the grantof
re marriage, or acquired d, to their sole and sepaproperty are valld and racts void. The wifeio ber lusband, unless she ce. In most respects the oand camot convey ral
left in the hands of the age of stock of goods, the gistered and tho chattels to, unless the above pro arties made on the mor. honestly due and owing. testator, or by some per. ttested and subscribed in

JERSEY.

1,500 and Personal Prop idence and owned by the tho value of $\$ 1,500$. Per ssident head of a famils, mit the widow or adminif mption of $\$ 200$ as agauis
furuish materials for the the same for such labe: gs are crected ; provided d or materials furuilied
sted for debt, on antidaria operty out of the jurisuly itors ; or, 2. Fraudulentif has assigned, remordo 4 property, with intent y contracter. the debt o mimenced.
king anldavit, to be flld to Issuc, stating that the a resident of this staie that the debtor alscons y be seized under attaly seized under attachnes
the assignor, whither nutual benefit withouta e or more creditors are and void, excepting on The debtor making aventory of all his estar - affldarit of the detat

The said inventory is not conclusive upon credltors or their assignee; the latter can recover any other property belonging to the assignor and not embraced in the schedule.
Notes for the payment of money, payable to the order of any person or corpomation, are negotiable and assignable by endorsement, like inland bils of exchange; bills of exchange, for the sum of etght dollars and upwards, drawn upon any person in this Stute, can be protested for non-acceptance or non-payment, and be governed in every respect by the law governing forelgn bills of exchange.
All checks, drafts or bills of exchange (other than those drawn upon banks or banking houses) whether drawn on demand or otherwise, are entitled to threo days' grace. Biils of exchange, taken for a pre-existing debt, will exthinguish the debt, if such person accepting such bill for his debt doth not tako due courso to obtain payment thereof, by condeavoring to get tho same accepted and paid, sud make his protest thereof in case of non-acceptance and non-payment. Xotaries public are authorized to make protest of negotiable paper; but for want or in default of a notary, a justice of the peace may make lawful protest. The following are legal liolitays, for purposes of protest; Christmas day, first day of January, fourth of July, and any day specially apnointed by the Gorenior for a day of fasting or thanksglving, and paper falling due on such legal nollday shall become due and may be protested on the day preceding the holiday ; potice of protest need not be sent till following such hollday.
Jurisdletion of justices' courts in civil actlons, on anounts, or debt claimed or matters in dispute, which does not exceed $\$ 100$, cxcept in actions of replevin, slander, trespass, for assault, battery or imprisonment, and actions wherein tho title to lands come into question. Justices' courts aro courts of yecord. Court of Common Pleas.-Concurrent with circuit. Appellate from justice of the peace. Circuit Courts.-Hare concurrent, civil, original jurisdictlon with supremo court, and appellate from tho common pleas court. Court of ChanceryExclusive jurisdiction in all equity and divorce cases. Supreme Court.-Has original and appellate jurisdiction of all civil suits at law. (cort of Errors ame Appeals.-Has only appellato jurisdiction, and is the court of last resort.
Julgments constitutes liens on all the lands of the defendant in the comnty Fhere obtained, if obtained in the circuit or chancery courts; but, if obtained in the supreme court, or dooketed there from the cirenit or chancery courts, a lien on all the lands of tho defendant everywhere in the State. The liens conthue during the period of limitatlon.
Executions may issue immediately after judgment, and at any timo within the period of limitations, agalnst the body of the defendant, or against his property, any kind of which can le levied upon. There is no stay of execution, except for a short period on judgments obtained before a justlee of the peace, where good security is given, unless an appeal or writ of error is taken. There is no redemption after silio minder execution.
Dedds, Rights of Mamied Women, Wills, \&c.-All deeds must be written in the common law form, under seal ; an inpression on wafer or wax ls sufficient, attested by at least one withess, and have the word heirs incorporated to conrey a fee. Both husband and wife must join in a deed conveying tho estato of either, the wife to relinquish her dower in her husband's estate, and tho husbend to gire his assent to the wife's conveyance. 12 the deed is acknowledged in this State, it must be done before the chancellor or justice of the supreme court, a master in chancery, a judge of the court of common pleas, or a coinmissioner of deels.
If out of the State, before a judge of the supreme, superior, clrcuit or distrlet conrt of the Stato or United States without any seal of such court or judge ; before a mayor or other chief magistrato of a city, under the seal of such city ; before a master in chancery of New Jersey, or a commlssloner of deeds for New Jersey, muder his seal; before a judge of the court of common pleas, or any eflicer authorized by the laws of the State where taken, to take the acknowledgmonts of deeds, and in the latter cases there shall be annexed a certificate under he great seal of such State or territory, or under the seal of the county court There the same is taken that such officer is such as he claims to be, and as such hifer authorized to take the acknowledgments of deeds in such State or terri. bry, and that his slgnature is genuino.
The following is the form of certificate to be used :
tate of New York,
busty cf Orange.
38.

Be it remembered, that on this day of , 187, before me, the ubscriber, John Curric, a notary public, personally appeared A. B. and C. D., is wife, who, I am satisfic, are the grantors named hn, nmi who executed the
within instrument of conveyance, and I having first made known to them the contents thereof, they did therefore severally acknowledge before me that they signed, sealed and delivered the same as their voluntary act and deed, for the uses and purposes therein expressed.

And the said C. D., wife of the said A. B., being by me privately examined separate and apart from her said husband, did further acknowledge that bhe signed, sealed and delivered the same as her voluntary act and deed, freely, without anv fear, threat or compulsion of or from her said husband.

In witness whereof, I have hereunto set my hand and aftixed my offlicial seal the day and year aforesaid. John Curbie, Notary Pablic.
A married woman can hold, to her sole and separate use, all property, both real and personal, which she owned at the time of her marriage, or which sho acquired during marriage by gift, grant, descent, devise or bequest, and the rents, profits and issues thereof shall not be subject to the disposal of her husband, hor liable for his debts. She can be sucd with her husband for debts contracted for her own bencfit, and which cannot be enforced against her in equity. Widow is entitled to dowerin one-third of all the real estate of which the husband alied scized, and to the mansion house until dower is assigned her.

All chattel mortgages to be valid as to creditors and subsequent bona fide purchasers, must be filed with the clerk or register where the mortgagor resides, and if a non-resident, where the property is situated, or the possession of the property mortgaged must be immediately delivered to the mortgagee, and this possession bo continued. And thirty dqys before the expiration of one year from the first filing of such mortgage, a true copy of same must be again fled with the clerk or register, accompanied with a statement showing the interest of the mortgagee in the property. The same becom as void as to creditors.

All wills shall be in writing, and shall be signed, or zcknowledged to hare been signed, by the testator, and declared to be his or her last will, in the pretence of at least two credible witnesses present at the same time, wh shall subscribe their names as witnesses in the presence of the testator.

SPECIAL LAWS OF NEW YORK.

Exemptions from Forced Sale.-IIome werth \$1000, and Personal Property. Homestead to the value of $\$ 1000$; but not as against an execution upon 8 judgment recovered for fraud. Burial plat not to exceed one-fourth of an acre. Personal property, when owned by a householder, is exempt as follows : Spinning wheels, looms and stoves in use in dwelling house, pictures and books in use to the value of $\$ 50$; a pew in a church, 10 sheep, 1 cow, 2 swines and their neces sary food, necessary household furniture and library to value of $\$ 250$; working tools, professional instruments, i team and necessary food therefor for ninety days, and a sewing machine, except on exccution for purchase money for such things.

Mechanics' Lien.-The laws on this subject are not uniform throughout the State. Material men and mechanies have lien for labor and materials on land inprovements to the extent of their elains. T'he claim must be filed within thirty days after completion of labor and furnishing of materials; and in the county of New York, and some other countles, within three months. The lien continues for one year.

Colleetion of Debts.-The defendant is liable to be arrested and held to bail, at any time before judgment, in an action for injury to person or charscter or wrongfully taking, detaining or converting personal property; in an action for money received or property embezzled or fraudulently misapplied by a publi otlicer or attorney, or by an officer or agent of a corporation or banking associr tion in the course of his employment as such, or by any other person in flduciary capacity; in an action to recover the possession of personal propert unjnstly detained. where the property has been concealed or disposed of so that it cannot be found by the sheriff; when the defendant has been guilty of a frasf in contracting the debt or incurring the obligation for which the action brought, or in concealing or disposing of the property for the taking of which the action is bronght; or when the action is brought to recover danages for fras or decelt, and when the defendant has removed or disposed of his property, of is about to do so with intent to defrand his creditors.

The plaintiff is required to give a bond in at least 8100 , with one or mor reaident sureties, householders. The aftidavit to obtain arrest may be med
nown to them the efore me that they et and deed, for the
privately examined knowledge that sho ct and deed, freely, usband. ixed my offlial seal E, Notary l'ablic. 3 , all property, both rriage, or which she or bequest, and the disposal of her lususband for debts congainst her in equity. ite of which the hu: assigned her. subsequent bona fide he mortgagor resides, he possession of the mortgagee, and this ation of one year from again flled with the g the interest of the reditors.
cknowledged to hare - Jast will, in the pres time, w shall subtor.

YORK.

0 , and Personal Prop. tt an execution upon? one-fourth of an acre. mpt as follows: Spintures and books in uso wines and their necealue of $\$ 250$; working d therefor for ninety rehase money for sucd
hiform throughout tiog nd materials on land must be flled withia materials; and in the ee months. The liem
arrested and held to o person or character roperty; in an action nisapplied by a pubiid a or banking associ4 ny other person in of personal propent or disposed of so they been guilty of a fram which the action re taking of which thy er danages for frase ed of his property,
00 , with one or mot arrest may be mal
br any ono with knowledge of the facts. Arrest may be made by non-residents.
Writ of attachment may issue on account of non-residence; departure from the State with intent to defraud creditors, or to avoid service, or concealment with like intent ; removal or intended removal of properiy from this State with intent to defraud creditors, or the assignment, disposition or secretion, actual or jitended, of property with intent to defraud creditors. The plaintiff gives a bond inat least $\$ 220$, with one or more resident sureties, householders. Every species aproperty is subject to attachment and extcution at law. Attachment on real etate becomes a llen on filing of notice. Attachments may be made by nonrasidents.
Assignments for the benefit of ereditors must be acknowledged and recorded. me partner cannot assign the firm assets for the partnership. A debtor may prefer his surety or cudorse on an existing indebtedness, although not yet mitured. All claims on contract are assignable, and the assignee can sue in his orn uame. No particular form of assignment necessary.
Garnishment can be hati either on execution or attachment against any person aring the debtor or having property in his possession.
Acceptors of notes and bills are chargeable only when their acceptance is in riting on the bill; or if on separate piece of paper, winen the party who gave the credit saw the paper; or if a promise is maic in writing to accept a draft bebet it is drawn, and the draft is in the hands of any person who gave credit on de strength of the writing.
Justices' Courts have furisdiction in actions on contract and for damages for fraui in sale of property up to $\$ 200$, and for recovery of personal property to frline of $\$ 200$. Process returnable in from 6 to 12 days.
The supreme court is a court of general jurisdiction in every county having mpizanee of ail actions. Process returnable in 20 days.
Ticre are various local courts in the cities with general concurrent jurisilicin with the supreme court. The marine court of the city of New York has fisidiction in aetions on contract where the recovery songhit is not moro than Mav. Process returnabic in six days, and in case of nen-resident, plaintiff or kiendiant, may be in 2 days.
dudgments are licus for 10 years on all real estate owned by the judgment editor, or subsequently acquired ioy him, in the county where the judgment is laketed. At the expiration of the ten years, the judgment can be revived by tion. Judgments of inferior courts are made liens on real estate, by filing a mascript in county clerk's offlee.
Execition issues the day judgment is rendered. Personal property is bound mon the time of the delivery of the execution to the sheriff, except in thi hands of mafide purchasers. All personal property, except such as is exempt by statuto exe Exmptions), may be levied upon and sold. All interests in real estate, except mere cquitable interest, is subject to execution and sale. And within one year mu the sale thereof, the property may be redeemed on payment of the bid, th interest, at ten per cent. If an execution is returned unsatisfied, the debtor mbe examined under oath to discover property liable to execution. And any reowing the debtor, or having property of the debtor in hls possission, may be terise examined for the same purpose.
Defds, Rights of Married Womes; Wilis, \&c.-Deeds must be under sea! ; grawl is not suffieient. There nust be a subscribing witness, unless the deed aknowledged by the grantor. Within the State the acknowledgment must made by judleial officers generally, by notaries public and commissioners of elds. Without the State the acknowledgment may bo taken before any New ork commissioner, or before any officer of the state or territory where made, thorizeci by the laws thereof to take acknowledgments.
The officer must be authenticated by the certificate of the county cierk under soficial seal.
The following is the form of acknowledgment, where the grantor is unmard:
$\left.\begin{array}{l}\text { ate of Indiana, } \\ \text { enty of Jackson. }\end{array}\right\}$ ss.
On this day of , in the year , before me personally came B., to me known to be the individual described in and who executed the bin (or annexed, or above) conveyance, and acknowledged that he executed same for the purposes therein mentioned.

Peter Wilson, Notary Public.

The following is the form where husband and wifo join in the deed.

State of Impiana, COUNTY OF JACKSÓ, $\}$ ss.

On this day of , in the year before me personally came A. B. and C. B., his wife, to me known to bo the individuals deseribed in and who executed the within (or above, or annexed) conveyance, and severalls acknowledged that they executed the same for the purposes therein mentioned. And the said C. B., on a private examination by me made, apart from her husband, aeknowledged that she executed the same freely, and without any fear or compulsion of her said husband.

Peter Wilson, Nota $\%$ Public.
Married women can hold real and personal property to their sole and scparate use. A wife's obligation may be recovered out of her separate property when given with intent to elarge it. Property acquired before or subsequent to marriage is in no cases liable for her husband's debts, but for her own debts onls, A widow shall be endowed with one-third of all the lands owned by her hushand during his lifetime.

To render a chattel mortgage valid as against creditors and purchasers, there must be actual possession by the mortgagee, or the mortgage or copy must be filed in the town or city where the mortgagor resides. The mortgage must be refled every year.

Every will must be subscribed by the testator, and shall be acknowledged by him to be his will to each of at least two attesting witnesses, each of whom shall sign his name at the end of the will, at the request of the testator. The witnessed to any will shall write opposite to their names their respective places of residence; if residing in a city the street and number of the house should also be given.

SPECIAL LAWS OF NEW MEXICO.

Exemirtions fron Fonced Sale.-Home worth \$1000; Provisions, \$23 Furnilure, $\$ 10$; Tools, $\$ 20$, Leal estate to the ralue of $\$ 1,000$ is exempt in farm if the heads of the famtlics reside on the same; also the clothing, beds and bed clothing required for the use of the family, and firewood requisite for 30 dass when actually provided and intended for use. All Bibles, Testaments, hym books, and school books used by the famlly, and family and religious pictures provisions on hand to the amount of $\$ 25$, and kitchen furniture to the value 0 $\$ 10$, both to be selected by the debtor; also tools and implements belonging to the debtor that may be necessary to enable him to carry on his trade or business whether agrieultural or mechanical, to be selected by him, and not to exceed \&: in value. Real estato when solit mnst be first appraised by two freeholderso the vicinity and must bring t wo-thirds of the appraised value.

SPECIAL LAWS OF NORTH CAROLINA.

EXEMPTIONS FROM FORCED SALE.-Home worth \$1000, and Personal Propert, 20rth \$500. Every homestead, and dwellings and buildings connected there with, not exceeding in value $\$ 1000$, to be selected by the owner thereof, or in lie thereof, at the optlon of the owner, any lotin a clty, town, or village, with th dwellings used thercon, owned and ocenpied by any resident of the State, and not exceeding $\$ 1000$ in value. Personal property to the extent of $\$ 500$ in valuc.

Mecicanics' Liex.-All laborers, material men and meehanies havelienso the houses built, improved or repaired by them, and on the lots on which the are built, to the extent of the interest of the party whe liad the improvements? repairs done. But they mist take the necessary steps to enforee this lien, b filing same and bringing suit within ninety days after the work is finislied.

Collection of Debrs.-The defendant may be arrested and lrelit to bailo the following grounds: Where, as an attorncy, sollcitor or agent of any king he has collected money and falled to account for it, or professional miscondod or neglect in oftice; where he has linjustly detained personal property, or whef he conceals or disposes of his property with intent to deprive the plaintiff of th beneft of the same; where he has been guilty of fratudin contracting the dey for which the action is brought; where he has removed or disposed of his pre
n in the deed.
ore me personally came iduals described in and veyance, and screralls oses therein mentioned de, apart from her husand without any fear or ilson, Nota / P'ublic. to their sole and separato separate property when :e or subscquent to marfor her own debts onis. ds owned by her husband
ors and purchasers, there ortgage or copy nust be Tlio mortgage must bo
hall be acknowledged by esses, each of whom shail e testator. The witnesed ective places of resideuce; should also be given.

MEXICO.

$\$ 1000$; Provisions, $823 ;$ o $\$ 1,000$ is exempt in farm ho clothing, beds and bed od requisito for 30 days Bibles, Testaments, hriut ly and religious pietures furniture to the value of plements belonging to the on his trade or businese iim, and not to exceed 8 . sed by two freeholders value.

CAROLINA.

000 and Personal Propert uildings connected there 6 owner thereof, or in lie town, or village, with th esident of the state, and e extent of $\$ 500$ in raiue mechanics have liens ol a the lots on which the had the improvements s to enforco this lien, he work is finlshed. ested and hreld to bail, or or agent of any king professional miscondug sonal property, or when prive the plaintiff of ty in contracting the dey or disposed of his prot
ert. or is about to do so, with intent to defraud his creditors; where he is a nonresdent of the Stato, or is abont to removo therefrom, or where the action is for breach of promlso to marry. The court, or judge of the court in which the action Wbrought, must order the arrest of the defendant. No female can be arrested in any action, except for a wilful injury to person, character or property.
Writs of attachment may issuo on making affilavit to one or more of the folInring reasons: 1. Where tho defendant or corporation is a non-resldent. 2. There the defendant has absconded, or conceals himsclf. 3. Whero any person or corporation is about to remove any of his or its property from the State. 4. Where any person or corporation has assigned, disposed of or concealed, or is about to dispose of or conceal, any of his orits property, with intent to defraud bis or its creditors. 5. Where the defendant has wrongfully converted property thins own use.
Garnishment in this Stato is not regulated by statute, but is governed by the ries of common law.
Bills and notes for the payment of money are negotiable, like inland bills of exchange, whether expressed to be payable to the order of a person or not. Bills dexchange payable at sight are entitled to grace; but bills and notes payable ondemand are not entitled to grace.
Damages on protested bills a as follows : When drawn or endorsed in this State, and on a person outside the State but within the United States, three per cent.; rhere it is drawn on persons in any other place in North Anerica, or in the West Dadia or Bahana Islands, ten per cent.; when drawn on persons in the Madeira, (anaries, Azores or Cape de Verde Islands, or in Europe or South America, fifken per cent. ; and any other place, twenty per cent. In default of a notary, a jastice of the peace or a clerk of a court of record may protest paper. When any (heck, negotiable or promissory note, is endorsed, the endorser, unless ho in tho endorsement stipulates to the contrary, becomes surety on the paper, and liable th the holder without any demand on the maker; this rule, however, does not unfy to bills of exchange, either inland or foreign.
Assignments for the benefit of creditors, are governed by the rules of common lis. The debtor has the right, therefore, to prefer one or more of his creditors, povided it is a bona fide transaction.
The jurisdiction of the justices' courts extends to $\$ 200$, the probate court has withority over probate of deeds and general probate business, the superior cort has exclusive jurisdiction of all demands over $\$ 200$, and the supreme court mas oniy appellato jurisdiction.
Judgments are liens on the innd of the debtor from the time they are docketed Whe clerk's othice when the same are obtained in tho superior court, and from the time a transcript from the justices of the peace is filed with the clerk of the wperior court. Transcripts of julgment thus docketed may be filed in any wunty whero the defendant has land; and from the time the same is so filed with the clerk of tho court, it operates as a licn on defendants lands.
Executions may bo levicd on real as well as personal property, whether the anty is simply an equity of redemption, or whether it is in tho namo of a fraudLent rendee; leaseholds of three years, or more duration are treated as real roperty. Executions from a justice of the peace are a lien on personal property bom the time of the actual levy. Executions from courts of record issue in six reeks from the rendition of the jndgment.
deeds, Rigits of Maried Women, Wills, \&c.--Deeds must be acknowlHged by the grantor, or proved by the subscribing witness, before clerks of the yperior courts, or judges of the supreme court, or notaries public, within the the where the grantor or witnesses resido ; beyond the State, their handwriting ma be proven in this state before either of the above oflicers, or, where they wide beyond tho State, the acknowledgement of tho grantor can be taken, or roof by subscribing witnesses can be made, before a special commissioner ap. pinted under the seal of the probate judge having jurisdiction, authorizing such ymissioner to take the acknowledgment of the grantor, or examination on oath the witnesses to tho deed, and the proceedings of such commissioner shall be furned to the probate judge issuing the commission, who may adjudge the deed山y acknowledged or proven, and order it registered. Or, the deed may be dinowledged or proven by witnesses before any regular commissioner of this iste resident in the State or territory where the grantor or withesses reside.
Where the grantor and witnesses reside beyond the limits of the United States, le acknowledgment or proof may be taken or made before tire chief magistrate any city where they reside or any minister, ambassador or consul of the nited States, under the official seal of such magistrate or other oflicer, and then certiflcate so made must be exhibited to the probate judge baving jurisdic.
tion, who will adjudge the same duly acknowledged or proven, and order the same to be recorded in the proper piace in this State.

The wife must join the husband in the execution of all deeds concerning real estate, to bar her dower, and her signature cannot be proven, but her separate acknowiedgment must be taken; she must be examined orivily and apart from her husband, and must show she does it to relinquish her dower. Where the grantor and subscribing witnesses are dead, the proof of the deed may be mado by proving the handwriting of the grantor or the witnesses.

Use this form in taking the acknowledgement of husband and wife : State of COUNTY OF ;\}ss.
Before me (here insert name and title of officer), this day, pasonaliy appeared A. B, and C. D., his wife, grantors named in the foregoing deed of conveyance, and the said deed being also produced and exhibited before me, the sald A.B. and C.D. acknowledged the execution thercuf by them as their act and deed for the purposes therein expressed; and the said C.D. being by me privily examined separate and apart from her said lusband; touching lier free consent in the execution of the said deed of conveyance, in her examination deciared to me that she executed the same freely, voluntarily and without compulsion or restraint upon the part of her said husband, or any person whatsoever, and did still voluntariy assent thereto; and this she does in relinquishment of her dower in the land mentioned in said deed.

In witness whereof, I havo set my hand and affixed my official seal this day of , 187 .
Thera i. . nccessity of a seal to a deed, a scrawl is sufficient.
Tis3. 'y acquired by the wife either before or after marriage, eitherby Inherit: . \quad, gift or otherwise, sliail be and remain her soie and separato proper y, win the debts or control of her husband, and she can conver the same with the written consent of her husband. She has dower in all the resil estate of her husbanci, owned or acquired during the coverture, and join in conveyarce nado by litm to relense the same.

Nu chatie. ortg. of personal property is valid unless the same is dulyre corded in the county whero then grantor resides, or the pussession of the propertyis removed from the grantor, and is only authorized on property to the value of $\$ 300$.

The will must be signed by the testator, or by some other person in his presence and by his expross direction, and subscribed in his presence by two witnesses, no one of whom shail be interested in the devise. Or, if found among his paper must be in his own handwriting, and his name subscribed thereto, inseribed in some part thereof, and the handwriting generally known to his acquaintances and proved by three witnesses to be every part in the testator's own hand writing.

SPECIAL LAWS OF OHIO.

Exemptions from Forged Sale.-Home Worth $\$ 1,000$, and Personal Pro perty.-Every head of a family, resident in Ohio, shali hold exempt from exe cution, his homestead, not to exceed $\$ 1,000$. If the homestead exceed $\$ 1,00 \mathrm{~m}$ the property will be partitioned and a iomestead of $\$ 1,000$ set off to the debtor. I ho have no homentead, he shall hold exempt real or personal property not to ex ceea $\$ 500$, exciusive of generai exemptions, which are: Beds and bedstead; stove; 1 cooking stove ; fuel for 60 days ; $\$ 100$ of wearing apparel; 1 cow, insteail $\$ 35$ of household furniture : 2 hogs, or instead $\$ 15$ of household furn ture; 6 sheep, or instead $\$ 15$ of household furniture; ali Bibles and hym books; family pictures; provisions not excecding $\$ 50$, and such other articles househoid or kitchen furniture as may be needed, not exceeding $\$ 50$; i seкin machine; a knitting machine: tools of his trade, not exceeding $\$ 100$; his pe sonal earnings, and his minor children's, for not more than three months befor judgment ; all specimens of naturai history, if not kept for pecuniary exhb tion; a doctor shall hold his horse, saddle, instruments and books, the two latte not to exseed $\$ 100$, exernpt; a drayman, his horse and dray; a farmer, his hon wagon, and yoke of oxen. Widowers having unmarried minor children widows and married people having no ehildren, may have the benefit of this af The wife may ciaim exemption when the husband wili or cannot, but the tr
proven, and order the
deeds concerning real oven, but her separate orivily and apart from nier dower. Where the the deed may be mado es. and and wife :
lay, peasonally appeared ug deed of conveyance, fore me, the said A. B. ss their act and deed ior by me privily examined free consent in the ex. tion declared to me that apulsion or restraint upon and did still voluntarily her dower in the land

y official seal this

Jignature and tille.) sufticient.
after marriage, eitherby tain her sole and separatia l, and she can convey the has dower in all the rea overture, and join in con-
nless the same is duly reussession of the propertyis property to the value
ther person in his presenco resence by two witnesses, if found among his paper ibed thereto, inscribed in wn to his acquaintance: the testator's own hand

OHIO.

\$1,000, and Personal Pr 11 hold exempt from exo homestead exceed $\$ 1,00$ 000 set off to the debtor, rsonal property not toex : Beds and bedstead; earing apparel; 1 cow, d $\$ 15$ of household furm re; all Bibles and lịm and such other articles 9 exceeding $\$ 50$; a serin exceeding $\$ 100$; hls pel han three months beton pt for pecuniary exhib 3 and books, the two latio married miner, his hom Bve the beneft of this ac 11 or eannot, but the tric
may not clain exemption at the same time. Unmarried women may hold \$1co of wearing apparel, $\$ 25$ of books, a sewing and a knitting machine, exempt.

Mecilanics' Lien.-Material men and mechanics, whether they be contractors, sub-contractors or laborers, may have a lien upon the buildings erected, and the land on which the buildings are erected, if within four months of the completion of the labor or furnishing of the materials they file an account, under oath, of their claim, in the county recorder's offee. This account must be itemized. If the work be done or materials furnished under a written contract, rach contract, or a copy thereof, must be filed with the account. The lien thus whaned dates back to the commencement of the labor or the furnishing of materials, and extends to two years after the completion of the labor or the furnishing of materials.

Collection of Dents.-Arrest in civil actions cail only be mado in cases of frand. The plaintiff may set forth, by affidavit, frand in the removal or concealmint of property, in the contracting of the debt, or of the conversion of the proprty into money. Escape of the prisoner, without the consent of the creditor, whot satisfaction of the debt, but non-payment of jail fces, which jailer may dcmand weekly in advance, at the rate of forty cents a day, is constructive consent. This remedy is rarely, if ever, resorted to.
Writs of attachment may be obtained on one or more of tho following moninds : 1. When the defendant, or one of several defendants, is a non-resident craforeign corporation ; or, 2. Has absconded with intent to defraull creditors; or, 3 . has left the county of his residence to avoid service; or, 4. So conceals bimself that service cannot be made; or, 5 . Is about to remove his property out af the jurisdiction with intent to defraud his creditors; or, 6. Is abont to confert his property into money with like intent : or, 7. Fraudulently or criminally fontracted the debt or incurred the obligation.
An attachment on the first ground is only granted on claims founded on judgment, contract or decrec. The affidavit inattachment may be made at or after wamencement of any suit by plaintiff, his agent or attorney. $130 n d$ in attachment is in double the amount of the debt (except when obtained on the first found, when no bond is required), executed by one or more sureties-it is the practice to have two sureties-need not be householders. There is no duty mposed upon the creditor to publish any notice of attacliment on real estate; hatis the sheriff's duty. Attachment may be had before the debt is due, when bedefendant has disposed, or is about to dispose, of his property with intent to ffaud or delay his creditors. Same law as above.
Asslgnments in trust, for the benefit of creditors, inure to the benefit of all meditors; the deed of assignment, or a copy thereof, must be filed within ten hrs of its execution, in the probate court of the assignor's county of reNence, by the assignee. After all liens and mortgages, the wages of laborers wd operatives, performed within six months, and not exceeding one hundred Whars, are to be first paid. Assignment made to secure sureties or endorsers are Hid in any case, if for vaine. Every species of contract or claim is assignable; te holder of it must suc in his own name.
Garuishment can be issued on attachment, and a process anslogous to it on pecution, against any person or corporation owing the debtor any moneys, or aring his property in possession. In no case is the garnishee aliowed anything this costs in the case.
Allbills, lotes, or other instruments payable to order, bearer, or assignor are ne-
 mages or attorney's fees can he recovered in an action, save when there is an press and written clause in the noto or lill, allowing the recovery of such mages or fees, in case it shall have to bo sued upon. Notarial protest ls evimee of demand and non-payment, in the manner and at the time stated in the otest.
Justices of the peace have exclusive jurisdiction up to $\$ 100$, and concurrent risdiction with common pleas and superior courts up to $\$ 300$. They lave jurdiction in actions for trespass on real estate where the damages do not exceed m, and in actions for forcible entry and detention of real estate. Summons ved by justices of the peace must be returned within twelve days of their we, and must be served on the defendant at least three days lefore trial.
Courts of common pleas have original jurisdiction in all civil suits where the count exceeds the jurisdiction of justices, in sults affecting real estate, in orce and criminal prosecution, and appeilate jurisdiction of cases before *ices of the peace and probate judges. The superior courts of Cincinnati, reland and Dayton have the sanie jurisdiction as courts of common pleas, ex: tindivorce, criminal law, and justices' appeals. The diatrict courts have
appellate jurisdiction of common pleas courts. The superior courts in gene rai term review the superior courts' decisions in special term. The supieme court has appeliate jurisdiction of district court and gencral term of superior court decisions, and original jürisdiction in mandamus, quo warranto, habeas or pus and procedendo.

Service of summons must be made and returned, in common pleas courts, on or before the second Monday after their date. Actions are triable the term after the issues are made up, or if they be made up during a term, at that term.

Judgments of courts of record, execution having issued on them within ong year of their rendition, are a lien upon all real estate of the judgment debtor's situate in the county where tha the judgment is rendered, and owned by him a that time, from the first day of the term at which such judgment is obtalned, and for five years thereafter. Eve:y issue of execution extends the lien for five years and ajudgment lien may be extended indefinitely. Judgments by confession and judgments obtained during the same term at which the action is commencel date from their rendition only. If execution bo not issued in ono year, the judg ment, though still a lien, dates only from actual levy of execution. Judgmeni aro no lien on personal property and on real estate acquired subsequent to th date of judginent. Dormant judgments may be revived by new actions founde on them. Judgments obtained bcfore justices of the peace may be mad liens, by filing a transcript of same in the court of common pleas.

In order to prevent the priority of a judgment lien on lands, execution mas bo issued withir one year after the rendering of jndgment. Actual levy must made on personal property to ereate a lien. Executions from justices of th peace canmot be levicd on real estate.

All property, legal and equitable, is subject to execution, except as qualife by the exemption laws. Proceedings in aid of execution may be instituted any time after judgment and execution by which the debtor, and any one hat ing property of the debtor's, may be compellied to disclose its nature an amount.

Before the return of an execution issued, an order may bo granced by th court upon proper affidavit, which will havo the force of an attachment, and copy served on any third party is analagous to the proceedings in garnishment.

Deeds, Rigits of Married Womes, Wills, \&e.-Deeds must be und seal, a scrawl is a seal, and must be signed and sealed in presence of two wi nesses, who sign also as attesting the execution of the instrument, and acknog ledged in presence of any officer empowered to take depositions. If the granto be non-residents, their deed, ${ }^{t+}$... may be executed according to the laws of the State, or according to the laws of the State where it is executed and ackno ledged. Mortgages in this State date and become liens only from the time their entry for record. All other deeds are to be recorded within six months their execution, in order to become notice as to subsequent purchasers witbo notice.

This is the form where the grantor is unmarried: State of Indiana, County of Stark. $\}$ ss.

Bo it remembered that on (the date) before me, the subscriber (titie of offc personaliy came (the name of grantor) the grantor named in the foregoing strument, and acknowledged the signing and sealing threof to be his voluntary and deed for the uses and purposes therein mentioned. Witness my hand and the officer have a seal of oftice he will here state : official) seal, on the day a year first above written.
[seal.]
John IIArper, Notary Public
The wife must join her husband in a decd or power of attorney, whether land be in her own right, or she have but a dower interest therein.

This is the form when the grantor is married : State of indiana, County of Stark.

Be it remembered that on notary public) personally came , before me, the subscriber (John Harp in the foregoing instrument, and aeknowledged the signing and sealing ther to be their voluntary act and deed for the uses and purposes therein mention And the said , wife of the said, being by me examined separs and apart from her said husband, and the contents of said instrument by me plained and made known to her, as the statute directs, declared that she id untarily sign, seal and acknowledge the same, nud that slie is still satisfied the
superior courts in gere ial term. The supieme zeneral term of supericer "uo warranto, habeas cormmon pleas courts, on of e triable the term after icrm, at that term. ueil on them within ond it the judgment debters d and owned by him a udgment is obtained, and nds the lien for five years adgments by confession the action is commencen ued in one year, the jud i execution. Judgment iuired subsequent to th 1 by new actions founted the peace may be mad mon pleas. ou lands, execution mas ent. Actual levy must ons from justices of b
ition, except as qualise ion may be instituted debtor, and any one has disclose its nature an
r may be granced by th of an attachment, and ceedings in garnlshment. c.-Deeds must be und 1 in presence of two wi instrument, and ackno epositions. If the grantol ccording to the laws of th is executed and ackno s only from the time ded within six monthe quent purchasers witho
sulscriber (title of offic ned in the foregoing reof to be his voluntary Witness my hand and cial) seal, on the day 4
Arper, Notary Public
of attorney, whether est therein.
subscriber (John Harp the grantors mention ling and sealing ther poses therefin mention me examined separ said instrument by me leclared that sle ? 1 d shee is atill satistied the
with as her aet and deed for the use and purposes therein mentioned. AttestaHon same as in unmarried form.
A married woman may own property, real or personal, in her own right, without the intervention of a trustee. She may manage it herself, but cannot dispose of it for any term longer than three years, without her husband joining her. She may be sued or sue alone, in actions concerning her seperato property, or upon a written obligation, contract or agreement signed by her, or if she bo engaged in any business, and the cause of action grows out of such business, and lis all such cases a nersonal judgment can be had against her, and her separate property will be liable. In no case shall she be required to prosecute or defend by her next friend. If her husband has abandoned her, slie will bo confidered as femme sole. The widow slall be endowed with one-third part of all the lands owned by her husband during coverture.
Chattel mortgages of every kind are valid, if the instrument itself, or a true copy thereof, be deposited with the clerk of township where the mortgager refides; or if he be a non-resident, where the property is situate at the time of tho erecution of the mortgage.
On every mortgage. so filed the mortgagee shall make the following statement:

[Form.]

state of
COENTY OF ! \}ss.
mortgagee, named in this mortyage, being duly sworn, makes onth nil says that his clain against
hereto annexed, amounts to the sum of
mortgager, of which a true statement is
, and that sald clainn is just and nnd says that his clain against
hereto annexed, amounts to the sum of $\begin{array}{r}\text { mortgager, of which a true statement is } \\ \text {, and that sald clainn is just and }\end{array}$ anpaicl.
Sworn to before me and subscribed in my presonce this day of , A.D.
Every mortgage so filed shall be valid one year, and may be renowed within Hirty days of the expiration of the year, by refiling the original mortgage, or a copy of it, with the statement as above. Each renewal is valid one year, ndit the mortgage may be so renewed indefinitely.
Wills must be in writing and signed by the testator, or by some person in his presence and by his express direction, and attested and subscribed in the presence of the testator by two or more competent wituesses. See form No. 45 on page 815.

SPECIAL LAWS OF OREGON.

Exemptions from Forced Sale.-Personal Property. The following are erenpted : Books, pictures, and inusical instruments to the value of $\$ 75$; necesary wearing apparel owned by any person to the value of $\$ 100$, and if such person be a householder, for each member of his family to the value of $\$ 50$; the hols, implements, apparatus, team, velicle, harncss or library necessary to enabie any person to carry on the trade, occupation or profession by which such person habitually earns his living, to the value of $\$ 400$; also sufficient quantity of food to support such team, if any, for sixty days. The word team includes only one yoke of oxen, or a pair of mules or horses, as the case may be The following property if owned by a householder and in actual use, or kept for use ly and for his family, or when being removed from one habitation to another on a change of residence : 10 sheep, with one year's fleece or the yarn or cloth manufactured thercfrom; 2 cows and 5 swine; household goods, furniture and utensils to the value of $\$ 300$; also sufficient food to support such animals, if any, for three months, and provislons actually provided for family use, and necessary for the support of such household and fanily for six months; the seat or pew occupicd by a householder or his family in a place of public worship ; all property of the State, or any county, incorporated city, town or village therein, or of any other public or municipal corporation of like character. No article of property, or if the same has been sold or exchanged, then neither the proceeds of such sale or the article received in exchango therefor, shall be exempt from execution bsued on a judgment recovered for its prize.
Mecilanics ${ }^{\text {' LIEN.--Contractors for materlal or labor on any building have, }}$ from the time work is commenced thereon, a lien on the building and the ground on which it is situated, prior to all other liens on the same premises placed thereco after the commencement of work on the building. Suits must be brought
within six months after payments are due under the contract, but no credis given on payments can extend the lien beyond two years from the completion of the work. The hen extends in favor of the workmen to the extent of the contract price ; if before payments are due, they give written notice of their intenHon to hold the owner. And no payments made to the contractor before they are due, under the contraet, can defeat this lien.

Coliection of Dents.-Arrest in civil actions is unknown here, except in cases of fraud or of absconding debtors.

In actions for debt or tort, the goods of defendant may bo attached, whenerer the plaintiff, or his agent, shali make and file an aftldavit that n canse of action exists against the defendant, and the grounds thereof, and that the defendant is either a foreign corporation or a non-resident of this state, or has departed therefrom with intent to delay or defraud his creditors or to avoid service of summons or keep himself concealed therein with like intent, or has removed or is about to remove his property from the State with intent to delay or defraud his creditors; that he has assigned, secreted or disposed of or is about to assign, secrete or dib pose of any of his property with intent to delay or defraud his creditors, or that the defendant has been guilty of fraud in contracting the debt or incurring the obilgation for which the action is brought. The aftidavit may be in the alternative as to any of these canses, and may be either positive or upon information and belief. But upon information and belicf, the nature and sources of the information upon which the belief is founded must be stated. All property, or right or intercst therein, not exempt from exccution, may be attached.

The assignuent of notes, bilis, accounts, and every kind of contract or claim arising out of contract, is valld, and action thereon must be brought in the name of the real party in interest; but the action by the assignce, except in case of negotiable promissory note or bill of exchange, transferred in good faith for a valuable consideration before due, shall bo without prejudice to any set-of or other defense existing at the time of or before notice of the assignment.

Garnishment can be issued, either on execntion or attachment, against any person owing the debtor or having his property in possession.

As to bills and notes, no person is chargeable as an acceptor of a bill of exchange uniess his acceptance is in writing, signed by himself or his lawful agent. Grace is allowed on all bills and notes, niless they contain an express stipulation to the contrary. On bills of exchange drawn or endorsed within this State and payable without the limits of the United States, duly protested for non-acceptance or non-payment, on due notice and demand thereof, the party liable for the contents of such bill shail pay the same at the current rate of exchange at the time of the demand, and damages at the rate of ten per centum upon the coutents thereof, together with interest on such contents, to be computed from the date of protest; said auount of contents, damages and interest to be in full of all damages, charges and expenses. On bills of exchange drawn within this State, payable without this State, but within the United States, and protested for non-acceptance or non-payment, the drawer or cndorser thereof, due notice being given of such non-acceptance or non-payment, shall pay said bill with legat interest, according to its tenor, and five per centum damages, together with costs and charges of protest.

The jurisuliction of justices of the peace, in actions for the recovery of noney or damages only, extends to $\$ 250 ;$ for the recovery of specific personal property, when the value thereof and the damages for the detention do not exceed s 250 ; for the recovery of any penalty or forfciture, whether given by statute or arising out of contract, not exceeding $\$ 250$.

The county court has exclusive jurisdiction in the first instance of probate matters, and has jurisdiction, but not exclusive, of actions at law, and all proceedings therein and connected therewith, when the claim or subject of controversy does not exceed the value of $\$ 500$, and exclusive jurisdiction of actions of forcible entry and detainer, without reference to the value of the property.

The circuit court is clothed with all the judicial power, jurisdiction and authority not vested exclusively in some other court.

Service of the summons in county and circuit courts, if made within the county where action is brought, must be made ten days before judgment can be obtained; or, if served within any other county in the State, twenty days. Before justices, service must be made not less than five, nor more than twenty days before day set for trial.

Judgments in courts of record are a lien from their rendition, and for ten years thereafter, on all real estate owned by the defendant, or subsequently acquired by him, and situated in the county where the judgnent is rendered. Wo execution cau issue on a judgment older than ten years, unless on cause shown
ontract, but no credit rom the eompletion of the extent of the connotice of their intencontractor before they
known here, except in
bo attached, whenerer that a cause of action i that the defendant is , or has departed thereofd service of summons removed or is about to c defraud his ereditors; o assign, secreto or dis dis ereditors, or that - debt or incurring the t may be in the alterve or upon information and sources of the intated. All property, or be attached.
ad of contract or claim be bronght in the name ruce, except in caso of ed in good faith for a ejudice to any set-off of the assignment.
uttaelinent, against any sion.
acceptor of a bill of ex1self or his lawful agent. in an express stipuiation d within this State and rotested for non-accept. the party liable for the rate of exchange at the centum upon the conbe computed from the interest to be in full of nge drawn within this states, and protested for ser thereof, due notice all pay said bill with damages, together with
the recovery of money cific personal property, on do not exceed S200; en by statute or arising
st instance of probate ns at law, and all proaim or subject of coll-- jurisdiction of actions alue of the property. ower, jurisdiction and
ts, if made within the fore judginent can be late, twenty days. Bemore than twenty days
rendition, and for ten lant, or subsequently gment is rendered. Nu iless on cause shown

Judiments creato no lien on personal property. Juigments beforo juatice cen be made to create llen on real estate by flling a transcript of the judgment in the circult court.

Executions may issue tho day judgment is rendered. They are a lien only from the time actualiy levied. Executions from justices' courts cannot he levied oureal estate. Every species of property, or right or interest therein, is subject twexecution, except the exemption. Redemption of real estate sold under execution may be madent any time within sixty diays after the contirmation of the ale, but the redemptioner, in addition to the price paid by the purchaser, must pay interest thereon, at the rate of two per cent. per month, from the date of wle to the date of redemption.
Deeis, Rights of Marmen Womes, ic.-Deeds must be under seal, but a wrawl with the pen, a wafer, or other alhesive substance, is regarded as a seal. They must inave two witnesses; and, to be entitied to record, must be duly acknowiedgerl.
Acknowledginent, if made in thla State, may be made 'ofore any judge of the upreme court, county court, justice of the peace or notary public if out of the State, before any judge of a court of record, notary public, justice of the peace, of any other othcer authorized by the laws of such State or territory, or country, totake ack nowledgment of deeds therein, or before a commissioner of this State. linless the acknowledgment be before a commissioner, when taken out of this State, there must be a certificate of the clerk or other proper certifying officer of icourt of record, under the seal of his offec, the the person whose name is subkribed to the certificate of acknowledgment was, at the date thereof, such officer whe is therein represented to be; that he believes the signature of such person mbscribed thereunto to ve genuine, and that the deed is executed and acknowlriged necording to the laws of such State, territory or distriet.
The following is the form of certiticate of acknowledgment when the grantor bumarried:
$\left.\begin{array}{ll}\text { STATE OF } & \\ \text { COLNTY OF } & ,\end{array}\right\}$ ss.
Be it remembered that on this
andersigned, a within and for
day of
, 18 , before me, the personally known to be the identleal person described iny appeared A. B., to me bregoing deed, and to no ncknowledged that ho executed the same for the uses and purposes therein expressed.
The following is the form where husband and wife join, the wifereleasing hwer or conveying her own lands:
thte of Oilio,
cucsty of Butleer, \}ss.
Be it remembered that on this day of , 18 , before me, the underigned, a motary public within and for said county and State, personally appeared A. B. and his wife, C. D., to me personally known to be the identical persons alerribed in and who execited the foregoing deed, and to me acknowledged tiat bey excented the same for the uses and purposes therein expressed, and the saill D., wife of the said A.B., on a separate examination by me made, separato nd apart from and without the hearing of her said husband, to me acknowledged hat she executed the same freely and voluntarily and without fear or compulon from any one.
[SEAL.]

Join Mongan, Notary Public.

In this State married women can hold real or personal property in their own mes, and free from control of or liability for the debts of theirlusbands, but in ecase of personal property a sehedule must be filed with tho county cierk.
Chat tel mortgages, to be a lawfullien, must be filed in the county clerk's oflice, ad are in force for one year only from the date when so filed. They may be remed for a further period of one year by the mortgagee, within thirty days at preceling the expiration of the year, making and annexing to tho instruent on fle an affidavit setting forth the interest which the mortgagee has by thue of such mortgage in the property thorein mentioned. Within thirty days the expiration of the second year, another aftidavit may be made in like anner and with like effect.

SPECIAL LAWS OF PENNSYLVANIA.

Exemptions from Forced Sale.-Real or Personal Property, s.mo. leâl or personal property to the extent of $\$ 300$, besides wearing apparel, bibles and school books and sewing machines in the use of the family, aud the arms, no. coutrements, and uniform of a soldier. The excmption may be waived in note or contract.

Mecilanics' Tien.-These bind houses and lands from the date of the commencement of work on the building (usually the cellar digging); for all work done and materiais furnished toward the crection and construction of the bul? ing ; provided, a lien for the same be filed within six months after the work becu done or the materials furnished. Liens may also bs filed for alterations repairs; they bind the property from the date of flling.

The debts of a deceased person are a lien on his real estate for 5 years after his death; the lien may bo continued by suit brought within that time. The lien of judgments operates for 5 years from date of entry, when they must be revived by scire facias.' The lien of a mortgage for purchase money is goml from date of mortgage if rendered within 60 days ; other mortgages from date of record.

Collection of Debts.-Arrest and imprisonment for clebt is abolished in all actions founded on contract, except where such actions arise from breach of a flduciary relation, and in cases of fraud. In cases where imprisonment still exists, the debtor may bo committed to prison until he pays the debt, or gira bond to take the benefit of the insolvent laws.

The property of a non-resident debtor, who is not within the county at the time the writ is issued, may be attached in civil actions. The property of a resl. dent debtor may be attached upon affdavit, that the defendant is justly indebted to him in a sum exceeding $\$ 100$, and setting forth the nature of indebtednes. and that the defendant is about to remove his property out of the jurisdiction of the court withintent to defraud his creditors, or that the defendant has trans. ferred, assigned or removed, or is about to transfer, assign or remove his proper ty with intent to defraud his creditors, or that he has property, rights in action, interest in any public or corporate stock, or evidences of debt whifeh he fraudr lently conceals and refuses to apply to the payinent of his debts. Plaintiff n give bond of indemnity in double the amount claimed, with sufficient sureties be approved by the coirt beforo the attachment issues. Attachments may bels sued in the nature of an execntion, after final judgment, which is a means of reaching the property of the defendant in the hands or custody of another.

Assiguments for the benefit of creditors, muss be recorded within 30 days after dato, or they become void as to creditors. Preference in assignments aro rold and fall into the general fund, except as to wages due laborers, miners and operatives, who are preferred to the extent of $\$ 100$. One parther may make gen eral assignment of partnership property for benefit of creditors.

A judgment is a lien on all the real estate of the defendant within the couni In which it is obtained. Its lien continues 5 years, after which it must be revire or continucd by scire facias. Does not bind after-acquired property uules levied thereon or revived. An execution binds personal property of the defend ant from the timo it is placed in the hands of the sheriff. but executions issuf by a justice of the peace only bind from thme of actual levy. When person, property or any leased premises is taken in execution, the landlord is entitled: one year's rent out of the procceds of sale.

To stay execution defendant may plead his freehold, that is, allege his orrnes ship of minincumbered real estate, or put in special bail, and thereupon shall entitled to stay of cxecution as follows: If under $\$ 200$, six months; if over and less than $\$ 500$, nino months; if over $\$ 500$, twelve months. This does ng apply to actions on judgments, mortgages or bail for stay of exocution on form juilgments.

In tax sales, unseated lands may be sold after one year's taxes are due, by may be redeemed by owner within 2 years on payment of amount of sale, cost interest, and 25 per cent. penalty. Improved lands may be sold for non-paymer of 2 years' taxes, but must be redeemed within one year after notice of sale. Philadelphia, 2 years are allowed to redeem debts, not of record on a lien on th estate of the deceased person for five years, and may be continued for fire reas lorger by suit commenced within that time. In case the personal estate of a d cedent is not sufficient for the payment of his debts, the orplans' court if direct the sale of the realty. The widow and children of a deccased persons entitled to $\$ 300$ out of his real or personal estate.

LVANIA.

l Property, simn. lheal ig apparel, bibles and mily, and the arms, are may be waived in lute
n the date of the com. digging); for all work nstruction of the bui' the after the work fled for alterations
estate for 5 years after within that time. The try, when they must be hase moncy is gool from nortgages from date of
for debt is abolished in lons arise from breach chere imprisoument stili pays the debt, or giret
rithin the county at the The property of a resitendant is justly indebtel nature of indebtednes out of the jurisdietion of the defendant las trans. sign or remove his propet property, rights in action, of debt which he fraudr his debts. Plaintiff n with sufficient surcties
Attachments may be by ent, which is a means of - custody of another. rorded within 30 dars atee in assigments are rodd duo laborers, miners and no partner may make gen reditors. fendant within the count r which it must be revire accuired property unlea ai pronerty of the deteng iff. but executions issum aial levy. When pertorm the landlord is entited ti
that is, allego his ownes 1 , and thereupon shall six months ; if over 8. months. This does ma py of execution on formo
cear's taxes aro due, be of amount of sale, cote y be sold for non-payme of r ter notice of sale. of record on a lien on 4 continued for five yer the ponal estate of an of a deccased person 4

Delds. Rights of Marmed Women, Wills, sc.-Deeds must be under seap, a serawl is not sufficient, and shonld be attested by two witnesses. Acknowledgment of deeds may be taken in the State, by justices of the Supremo court of Peunsylvania, judges of the courts of common pleas, mayor, vecorder, and aiderman of Philadelphia, Pittsburg, Alleghany and Carbondaie, the recorders of deeds, the notaries pubilc, and ail justices of the peaco.
ont of the State acknowledgment may be taken by the mayor or chief magistrate of the city, town, or place where the deed is executed (under tha public seal) ; any justice or juige of the supreme or superior court, or court of common pleas. or of any court of probate, or court of record, or any State or territoy in the United Staics (certified mader the hand of the judge and the seal of tho sonrt); by any judge of the United States supreme court, or of any United Statea district court ; by an oflicer or magistrate of any State or territory in the United States who is authorized by the laws of his own Stato or territory to take acknowledgments therein. The proof of such authority is the certificate of the cletk or prothonotary of any court of record in such State, under seal of the court, that the officer taking such acknowledgment is duly qualified to take the same ; by ambassadors and other publie ministers of tho United States (under oticial seal) ; consuls and vice-consuls of the United States (under consular seal) ; by any notary public in any State or territory in the United States, or in any foreign country ; by commissioners appointed by the Governor in any State, territory or forelgn country, whose commlssions last fivo years unless sooner repoked. And, where the person making the acknowledgment is in the military service of the United states, before any person holding the rank of major, or any higher rank, in said military service. Proof of the execution of a deed may bo made by the alldavit of a subseribing witness. Powers of attorncy relating to feal estate must ho acknowledged the same as deeds. Acknowledgments caken by notaries public or commissioners of deeds need not be certifled.
No deed or contract relating to the real estate by a wife is binding upon her, unless acknowledged substantially as below :
[Certificato of Acknowledginent by IIusband and Wife.]

State of Penisilyania, Covisty of lenigh.

Be it remembered that, on the
e (here insert name and title of offcial duly commissionci in and for sare mitr, came and onis wife, and acknowled ged indenture to be aeir act and deed, and desired the same to be recorded as such. She, the said , being of lawful age, and by me examined separato and apart from her said husband, and the contents of said deed being first fully made known to her, did thereupon declaro that she did, voluntarily and of her own free will and necord, sign and seal, and as her act and deed deliver tho same, without any coercion or compulsion of her sadd husband.

Witness my hand and seal, the day and ycar aforesaid.
[sEAL.]
(Signature and tillo.)

[Proof by Subscribing Witness.]

$\left.\begin{array}{l}\text { State of Penngyluania, } \\ \text { Couxty of Leaigif. }\end{array}\right\}$ ss.

Bo it remembered that, on the day of , A. D. 187 , be sidde (here insert hame and title of oflicial), (duly commissioned in and for said county, personally appenred , one of the subscribing witnesses to the cxecution of the above indenture, who being duly sworn (or aftirmed) according to law, doth depose and say that he dill see , the grantor above named, sign and scal, and as his act and deed deliver the above indeuture (deed or conreyance) for the uso and purposes therein mentioned, and that he did also see
subscribe his name thereto as the other witness of such sealing and delisery, and that the name of this deponent, thereunto set and subscribed as a witness, is of this deponent's own proper hand-writing.

Sworn (or affirmed) to and subscribed before me the day and year aforesaid.
Witness my hand and official seal.
[seal.]
(Signature and title.)
A married woman may hold and enjoy as her own separate property all such as she owned at the time of her marriage, and all such as may descend to or vest in ber during her coverture, and such is not liable for any debts or engagements of her husband. A married woman may petition the court for leave to enjoy her own earnings, which will be allowed ; lier separate estate is, howover, liable for necessarics purchased by herself for the use of her family. She cannot make a ralid contract except for the improvement of her sonarate estate and for neces
saries. She may make a will of her separate eatate, subject to her husband's rights as tenant by the courtesy.

Wills must in writing : and, unless the person making the same shall be prevented by the extremity of his last sickness, shall be signed by him at the end thereof, or by some person in his presence and by his express direction, ani in all cases shall be proved by the oaths or affirmation of two or more competent witnesses.

SPECIAL LAWS OF RHOME ISLAND.

Exemptions From F orced Sale.-No Home Exempted, but Personal Prop-erty.-Householders are e:.titled to hold the following exempt from exccution: The necessary wearing apparel of the debtor and his family; his necessary working tools, to value of $\$ 200$; his household furniture and family stores, to the vaine of $\$ 300$; ono cow ; one hog and one pig, and the pork of the same; debts secured by bills of exchange on negotiable promissory notes.

Mechanics' Lien.-Mcehanics have a lien for labor, or labor comblned with materials furnlshed, which, in the case of an original contractor, must be prosecutod within six months, and in case of a sub-contractor or day laborer, within thirty days after commencing the work; but no landlord is bound for the improvements made ky the tenant, nor a married woman, under any circumstances, unless the contract is in writing, assented to by them, and is clearly intended to blud them.

Collection of Debts.-Tho defendant may be arrested in all cases of toits, Where the form of the actions, as trover or trespass, or the nccessary allegations of tive writ, make a prima facie case of tort; in actions of debt, convenant and assumpsit, which cover alnost all collections. No arrest of females can be hal, on original writs, but males may be arrested on original writ in the following cases : 1. In case of claims originating before July 1,1870. 2. Where the plaintiff, his agent or attorney, makes aflidavit, on the back of the writ, "that the plaintif has a just claim against the defendant, upon which the plaintiff expects to recover, in the action commenced by such writ, a sum sufficicnt to give Jurisdiction to the court to which such writ is returnable; and also", either "that the defendant, or some one of the defendants, is about to leave the State, without learing therein personal or real estate upon which an exccution, that may be obtained In such action, can be seryed;" or, "that the defendant, or some one of the defendants, has committed fraud in contracting the debt upon which the action is founded, or in the concealment of his property, or in the disposition of the tame."

To obtain a writ of attachment, the plaintiff must make affidavit that the defendant owes him justly the claim set forth, and which must be a sum sufficient to give the court jurisdiction; that defendant resides out of the State, or has jeft the State, and is not expected to return in season to be served with process before, the next term of the court, or that he isas committed fraud in contracting the debt sued on, or in concealing his property, or in disposing of the same fraudulently, and ail the legal interest of the defendant in property can be attached, except what is exempt from execution.

Absignments inade for the benefit of creditors are valid whether a preference is shown or not, except where the grantor is imprisoned on execution. Assignments or other conveyances, given as security for past, present or future endorsements, if made in gend faith, are valid, subject, of course, to the provisions of the bankrupt act.

Assignees of contracts or claims, other than bills of exchange or negotiable promissory notes, must sue in the name of tho assignor, unless they can prove a special promise by the defendant to pay to them.

The usages relating to notes and bills are governed by the common law. Forelgn bills drawn or endorsed within this State and returned protested from without the United States, are subject to 10 per cent. damages and interest. The bolder of such protested blll may sue the drawers and endorsers jointly. Foreigi bills of exchange drawn or endorsed in this State and returned to this State protested for non-acceptance or non-payment, from any place without the linits of the United States, are subject to payment of 10 per cent. damages, besides protest fees. Inland bills drawn or endorsed in this State are subject to 5 per cent. damages, bes:.ies protest fees. Bills drawn at sight, payable in this State, aro due oll presentation, without grace. Notes, for the payment of money, only art
ct to her husband's
he sameshall be preed by him at the end ress direction, and in 0 or more competent

SLAND.

ed, but Personal Propempt from execution: y_{i} his necessary workally stores, to the value e samo; debts secured
c labor combined with ractor, must be proseor day laborer, within dis bound for the imder any circumstances, is clearly intended to
ed in all cases of torts, e nccessary allegations of debt, convenant and ; females can be had, 1 writ in the following 2. Where the plaintiff, writ, "that the plaintif plaintiff expects to repent to give jurisdiction \because either "that the dethe State, without learpn, that may be obtained or some one of tho depon which the action is the disposition of the
ke affldavit that the dehust be a sum sufitcient of the State, or has left rved with process before raud in contracting the ng of the same fraudu. perty can be attached,
d whether a preference on execution. Assignesent or future endorse. to the provisions of the
exchange or negotiable unless they can prove a
the common law. For. od protested from with. es and interest. The orsers jointly. Foreign urned to this Stato pro9 without the limits of annages, bestdee protent subject to ${ }^{5}$ per cent. yable in this state, aro pent of money, only aro
asoignable and negotiable like bills of exchange. Legal holidays are 4th of July, Christnias day and February 22nd; also, any days appointed by the Governor, Legislature or President of the United States as days of thanksgiving or holldays, Paper maturing on any of those days must be protested the day preceding those holldays, severally, at his election. Foreign bills drawn or endorsed in this State and returned protested from without the State and within the United States, are subject to five per cent. uamages and interest. Sight bills are wlthout grace. other bills and notes have three days' grace, except the last day be Sunday or a holiday they are payable the last secular day preceding. Holidays are July 4, Christmas, February 22, and all duly appointed thankgiving and fast days. Corporations are auiniorized to issue promissory notes signed by their proper officers.

The jurisdlction of justlce courts extend to $\$ 100$; the court of common pleas has original jurisdiction in actions for $\$ 100$ and upwards, and has exclusive jurisdiction on appeals from justice's courts. The supreme court has exclusive jurisdiction in equity causes appellate from the court of common pleas.

Judgments are not a lien on real estate, and only binds the property seized by tho attachment.
Execution issues after the rising of the court or, in the county of Providence, five days after judgment, except on motion, when they may be granted immediately. They are to be levied on property previously attached, before the return day (the first day of the next term), or the attachments are released. But where the property is replevied, and, by the filal judgment in replevin, is restored to the officer, it must be levied on within 20 days after it is returned and hecomes subject to levy. Executions bind nothing except what they are levied upon. They may be levied upon anything that may be attached on original writ, and executions of justices' courts may be levied on real estate, but no execution can be served by garnishment or trustee process. In such cases, where there has been no previous attachment, the only available mode of procedure is by a new suit on the judgment. Executions may also be served by arrest of the body of a defendant, not exempt from arrest, in actions for tort, or for the recovery of debts incurred before March 31, 1870, or where the defendant was arrested on the original writ or on a writ of mesne process, or where proof is made showfing, to the satisfaction of the court or some justice thereof, facts which would have authorized an arrest in the first instance, but no female can be inprisoned on a debt less than $\$ 50$, not under seal. There is no redemption for execution sales.

Deeds, Rights of Married Women, Wilis, \&c.-Every deed of real estate requires a seal (not a scrawl) but not witnesses are essentially necessary to their validity. Within the State, they may be acknowledged before a senator, judge, justice of the peace, notary public or town clerk. Without the State, and within the United States, acknowledgments may be taken by any judge, justice of the peace, mayor or notary public, or any commissioner appointed by the Governor of the State and duly qualifled. As it has never been determined how long such an appointment as commissioner, and as some presume to act by virtue of old or uncertain appointment, it is bettor to resort to some one of the local officials named above-of course, selecting one whose offlelal character conld be easily proved. Without the United States, deeds may be acknowledged before any minister or consul of the United States, or any commissioner appointed by the Governor and duly qualified.
The following form is used in taking the acknowledgment of a deed where it is necessary for husband and wife to acknowledge the same, and can easily be used where a single man or woman makes the acknowledgment:
$\left.\begin{array}{l}\text { State of Rhode Island, } \\ \text { County of Providence. }\end{array}\right\}$ ss.
Beit remembered that, on thls day of , A.D. 187 , before me, Joseph Perkins, a notary publle duly qualified, etc., personally appeared A. B. and C. D., his wife, and the sald A. B. acknowledged the foregolng inatrument, by him signed, to be his free and voluntary act and deed; and the sald C. D., being by me examined privily and apart from her said husband, and having said histrument shown and explained to her by me, declared to me that it is her voluntary act, and that she does not wish to retract the same.

In witness whereof, I have set my hand und seal at Providence, R. I., the day and year above writtell.

Josepir Perkins, Notary Public.
The wife must join in the execution of a deed made by the husband, to relin quish dower; yet the husband alone is required to acknowledge it.

Married women hoid real and personal estate, not coming from the husband free from all interference of the husband's creditors, and free from the husband's interference by zeans of trustees appointed in the ordinary manner, or by the supreme court on petition. They are not authorized to do business as traders. They may sell their personal estate in the same manner as their real estate, and certain unimportant kinds, such as clothing, books and similar personal articles, except jewels, they may sell as if single. Their other contracts, cxcept their warranties in conveyauces of real estate, are utterly void and do not bind their separate estate.

Wills must be in wriling, signed by the testator, or by some one in his presence, and by his express direction, and attested and subscribed in the presence of the testator, by twe or three competent witnesses.

SPECIAL LAWS OF SOUTH CAROLINA.

Exemptions from Forced Sale.-Home worth \$1000, Personal Property \$500. A homestead to the head of each family, his widow or the orphan minors, not to exceed $\$ 1000$. Also, personal property, as follows: "Househoid furniture, beds and bedding, family library, arms, carts, wagons, farming implements, tools, neat cattle, work animals, swine, goats and sheep, not to exceed in value in the aggregate $\$ 500$, -except the homestead cannot be held exempt from execution issued on a judgment obtained for the purchase money of the same, or for improvements made thereon, or taxes due thereon." One-third of yeariy proceeds of persons not the head of family is exempt, except as against taxes.

MECHANICB' LIEN.-All persorss who furnish materials or perform labor in the orection, improvement or repailing of buildings, have a statutory lien on the same, to the extent of the interest of the party who had the bnildings erected or improvements done; provided, that witisin ninety days after he ceases to labor a proper account be filed with the clerk of the court and suit thereon be begun in six months.

Collection of Derts.-A debtor may be arrested npon an order from the court where the action is pending, upon an afidavit that he has removed or disposed of his property, or is abont to do so with intent to defraud his creditors, or has been guilty of a fraud in contracting the debt sued for, or is concesling or disposing of the property, for the taking, detention or conversion of which the action is brought; or where the action is brought for damages for fraud or deceit, or for money received and embezzled or fraudulently misapplied by a pubilic officer, agent or officer of a corporation, factor, agent, broker, attorner-at-law, or one acting in any fiduciary capacity, or for'misconduct or neglect in office or profeasionsi employment, or where he is a non-resident of this State, or is about to remove therefrom; or when the action is for injury to person or character; or for injaring or for wrongful taking, detaining or converting property. No female can be arrested, except for wilful injury to property, person or character.

A writ of attachment may issue for the following esuses: 1. When the defendant is a non-resident, or a foreign corporation. 2. Or where he has absconded or concealed himself to avoid service of summons. 3. Or is about to remove his property from the State with intent to defraud creditors. 4. Or has assigned, or disposed of, or secreted, or is about to assign, dispose of or secrete his property, for the purpose of defrauding his creditors.

Debtors, in making assignments, can prefer any, or any class of creditors, anu make any provisions for the administration of the property, only cannot retain any advantage or benefit to himself. The assignee must, within ten days, call a meeting of creditors, to appoint an agent of creditors to act with him, who has joint control of the property. If no agent is clected, the assignee is both assiguee and agent. Assignments to secure sureties or endorsers, prior to any payment by them, are valid. In fact, assignments, free from fraud, for any purpose, are valid, and can be set aside only in bankruptcy, according to the rules of the bankrupt act. Notes, bills, accounts and all choses in action aro nssignsble. The assignee should sue in his own name.

As to notes and bilis, the principles of the common law apply to notes and bills of exchange, and negotiable papers of all kinds, as to endorsement, presentation and protest. No protest is necessary on a bili for less than $\$ 100$, and all bills, foreign and domestic, payabie at sight, are entitled to days of grace. Endorser or acceptor not liable, unless the endoreement or acceptance be in
ng from the husband, ee from the husband's ry manner, or by tho business as traders. heir real estate, and llar personal articles, intracts, cxcept their and do not bind their
come one in his pressed in the presence of

AROLINA.

D, Personal Property or the orplan minors, "Household furnifarming implements, ot to exceed in value teld exempt from exeley of the same, or for e-third of yearly pros against taxes.
8 or perform labor in statutory lien on the e bnildings erected or ter he ceases to labor it thereon be begun in
on an order from the ie has removed or disfraud his creditors, or r, or is concealing or version of which the ages for fraud or deitly misapplied by a ent, broker, attorneysconduet or neglect in lent of this State, or is ry to person or charconverting property. erty, person or char-
s : 1. When the derhere he has abscondr is about to remove 4. Or has assigned, secrete his property,
lase of creditors, and , only cannot retain ithin ten days, calla t with him, who has gnee is both assiguee fior to any payment for any purpose, aro to the rules of the ion are nssignable.
apply to notes and adorsement, presenthan \$100, and all days of grace. r acceptance be in

Writing on the note or draft, or protest be made for noll-acceptance. Drawers and endorsers may be sued jointly and severally. All bills or promissory notes payable to order or bearer under \$1, are void.

Justices' courts have jurisdiction to the extent of $\$ 100$, and have concurrent jurisdiction with the court of common pleas. The court of common pleas inas exclusive jurisdiction in all cases appeaied from justices of the peace, and original and exclusive jurisdiction in all actions at law or equity where the amount sued for exceeds $\$ 100$. If the debt recovered in the common pleas court is less ihan $\$ 50$, the plaintiff must pay costs. The Supreme Court lias appellate jurisdiction of all cases in equity from court of common pleas ; corrects errors of law incases at law from such courts, and has original power to issue writs of hinjunction, mandamus, quo voarranto, habeas corpus, and such other remedial writs as are nccessary to give it a general smpervisory control over all the courts in the State.

Judgment, as soon as entered, binds all real estate in that county, and can be entered at same time in scveral counties, but binds personal property ouly on levy, constructive or actual.

Execution may issue at once after judgment, unless the court open a special day for the entry of judgments, or unless a notice of an appeal is given, and then it can issue, if plaintiff will executo to the defendant a bond, with goorl sureties in double the value of judgment, to pay all damages sustained by the defendant in case the judgment is reversed. Even then the defendant can still secure the stay of the execution until the appeal is disposed of, if ho will execute a comnter bond to plaintiff to pay him the debt, costs and damages, if tho judgment be sustaincd. There is no redemption of property sold unler execution.

Deeds, Rights uf Married Women, Wills, \&c.-1)eeds of conveyance of real estate must be in writing, and signed in the presence of at least two witnesses, and must be recorded in the county where the land lies in thirty-three days after same is acknowledged. If acknowledged in this State, it must be dono before a notary public or trial justice; without the State. before a commissioner of this State onfy. Before the deed can be properly admitted to probate, one of the subscribing witnesses must go before a notary public or trial justice, if he is in this State, or before a commissioner for this State if he is without the State, and make affidavit that ho saw the grantor sign, seal and, as his act and deed, deliver that deed, and that he, with the other subscribing witness, naming him, did wituess the execution thereof. And the officer before whom such affidavit is made must add this certificate, which must be signed by the withess :
$\left.\begin{array}{l}\text { State of Soutil Carolina, } \\ \text { Cousty of Cifarleston. }\end{array}\right\}$ ss.
Personally appeared before me A. B., and made oath that he saw C. I. sign, seal and deliver the within conveyance, for the uses and purposes therein mentioned. and that he, with E. F., in the presence of each other, witnessed the due execution thereof.
A. B.

Sworn to lefore me this
day of
A. D. 187
(Signaturn and title of officer.)
If the grantor has a wife, she should renounce her dower before a notary public or trial justice, if within the State, or before a commissioner of deeds for the Stato if outside of it, and the officer will use this form :
State of Sovtil Carolina,
Conve of Cifarleston.
Cocity of Cifarleston. $\}^{s i}$.
I (here insert name and title of officer), do hereby certify unto all whom it may concern, that G. H., the wife of the within-named C. D., ilid this day appear before me, and upon being privately and separately examined by me, did declare that she does freely, voluntary, release and forever relinquish unto the withinnamed John Smith, his heirs and assigns, all her interest and estate, and aiso all her right and claim of dower, of, in, or to all and siugular the premises within mentioned and released.

Giren under my hand and seal this [SEAL.]
day of (Signed by wife.) A.D. 187
(Signature and titie of officer.)
All the property, both real and personal, belonging to a woman at the time of her marriage, and all which she acquires during coverture by gift, grant, inheritance or devise, shall remain her sole and separate property free from the debts of her husband, and may be disposed of by her, by deed, vill or otherwise, in the same manner as if she were unmarried ; provided, no gift from husband shall injure the just claims of her creditors. She must, as previously stated, relinquish her dower.

Chattel mortgages of perishable goods, of goods, wares, and merchandise, in fact, of any personal property, are valid, if recorded within sixty days in the office of the registrar of mesne conveyances in the connty wherein the property is situated. In all countles, except Charieston, the clerk of the court of conmon plens is ex oficio registrar.

Wills must be in writing, kigned by the testator, or some person in his presence and by his express direction, and attested and subseribed in the presence of the testator by three or more competent witnesses. Şe Busincss Form, No. 45, p. 815:

SPECIAL LAWS OF TENNESSEE.

Exemptions From Forced Sale.-Home worth $\$ 1000$, and Personal Prop erty. The following property is exempt for garnishment, execution, or attachment : Thirty dollars of the wages of neechanics or other laboring men in the hands of heads of families, two beds, bedsteads and necessary clothing for each and for each three children of one family, one additional bed, bedstead and clothing, the value of such bedsteads in no case to exceed $\$ 25 ; 2$ cows snd calves, and if the fanily consist of 6 or more persons, 3 cows and calves, etc. ; 2 horses or 2 mules, or 1 horso and 1 mule, and 1 yoke of oxen; 1 wagon or cart, ete., not to exceed in vaiuo $\$ 750$; 25 lbs. corn ; 20 bushels wheat; 500 bundles oats, ctc.; $1,000 \mathrm{lbs}$. pork, or 600 ibs . bacon ; a homestead carpet, manufactured by the wifo for family uso; 6 cords wool, or 100 bushels coal ; 1 sewing machine, if used for Hivelihood, etc.; in the hands of mechanic, who is engaged in the pursuit of his trade, one set of mechanics' tools; a homestead in thie possession of each head of the family and the improvements thereon to the value of, in all, $\$ 1000$. Pergons who are not the heads of families are not entitied to the benefit of exemp. tions.

MredinNics' Lien:-Material men, contractors and mechanics who furnish work or materials to aid in the construction or repair of any building or buildinge, shall havo a lien on the same for 1 year after the work is done, provided notice in writing of said lien be first given to the owner, or his agent at the time said work is begun, or materials furnished. All debts incurred for repairing, fitting, building, havigating, or furnishing steam or keel boats, shali be a lien on zuch yessels provided suit bo commenced within three inonths from the time the debt is incurred.

Collection of Debts.-Arrest in civil actions is unknown in this State. Writs of attachment on atidavit being made to either of the following causes. 1. Where the deltor rosides out of tho State. 2. Where he is about to remove, or has removed himself or property from the State. 3. Where he has removed, of is removing himseif out of the county privately. 4. Where he conceals himself, so that the ordinary process of law cannut be scrved upon him. 5. Where ho absconds, or is absconding or concealing himself or property. 6. Where he has fraudulently disposed of, or is about to fraudulentiy dispose of his property. 7. Where any person, liable for any debt or demand, residing out of the State, diles, leaving property in this State. (Code, $\$ 3455$.)

Bond, with goon security, must be given in all cases beforean attachment can issue. And all property, both real and personal, legal and equitable, of tho debtor, can be seized.

All assignments for the beneflt of creditors inure for the benefit of only those creditors of the grantor named in the deed of assignment; the acceptance of the creditor is presumed, unless proof to the contrary is made. Assignments can lic made to socure endorsers or sureties. Assignments, like other deeds, must be acknowledged and recorded.

Garnishment can issue on executions or attachments, and holds all the property of the defendant in the hands of the garnishee from the date of the service of garnishment to his answer. The garnishee is entitied to the payment and privileges of a witness and his costs.

Every bill, note, or bond, whether sealcll or not, whether payable to order for value received or not, shall be negotiable as inland bills of exchange by the custom of merchants. And the holder of any such instrument may maintain s joint action against the maker and any one or more of the endorsers, or a joint nind several action against any one or more of the endorsers. The holder of a bill of exchange, drawn or endorsed in this State upon any person or corporation of or in any other State, territory or place, and which is protested for non-payment, may recover froi., the drawer or endorser, besides the principal and interest,
and merchandise, in in sixty days in the hereh the property the court of common
rerson in his presence the presence of the less Form, No. 45, p.

ESSEE.

, and Personal Prop execution, or attach. - laboring men in the ary clothing for each, al bed, bedstead and $25 ; 2$ cows rnd calves, lives, etc. ; 2 horses or on or cart, eto., not to 0 bundles oats, etc.; ufactured by the wifo machine, if used for In the pursuit of his ssession of each head of, in all, $\$ 1000$. Perthe benefit of exemp.
echanics who furnish y building or buildings, one, provided notice in agent at the time sall 1 for repairing, fitting, pall be a lien on zuch from the time the debt
nk nown in this State. le following eauses. 1. is about to remove, or ere he has removed, or re ho conceals himself, him. 5. Where ho ty. 6. Where he hins pse of his property. 7 . out of the State, dles,
crean attachment can and equitable, of tho

- benefit of only thoso the acceptance of tho Assigninents can lic other deeds, must be
nd holds all the propto date of the service to the payment and
payable to order for of exchange by the hent may maintain s endorsers, or a joint
The holder of a bill on or corporation of ted for non-payment, incipal and interest,

SPECIAL LAWS OF TENNESSEE
damages as follows: Three per cent., if drawn on any person or corporation in the United States or territorles; fifteen per cent., if in nuy other place in North America ; and twenty per cent. on any person in any other part of the world. Days of graee are not allowed on bills payable at sight. The certificate of a notary public in or on his protest is prima facie evidence of therein.
The jurisdiction of justico conrts, extends, ngainst makers Hwwh accep ors of drafts, to the extent of $\$ 500$. On accounts, obligntion. Facts, and other evidences of debt, $\$ 250$. Damages and replevin suits, 8250 . The circnit and equity courts have gencral jurisdiction, and circuit courts have jurisdiction appellate from justices of tho peace on all cases before them. The supreme court has appellate jurisdiction only.
Executions may issue from a justice after two days, and from a court of record after 30 days from date of judgment. An execution from a justice is a lle: only ou personal property from the day of its teste, and it becomes a lien ou real estate only from the day of its levy thereon. The lien on real estate, under an execttion from a justice, can be enforced only by an order of sale from the circuit court, whith is made upon the return of the execntion, with the levy thereon, and all the papers into the circuit court. The legal interest of the defendant in all kinds of personal or real property, also in stuck of Ω corporation, can be levied on under an execution. All judgments before a jnstice of the peace can bo stayed for eight months, upon entering good and snficient security on the justice's docket for debt, interestand costs, if same is done in two days after judgment. No stay allowed on judgment obtalned in court of recoril. Real property sold mider exeeution can be redeemed in two years by the debtor, or by a judgment creditor of the debtor. In case the debtor does not redeem untll other judgment creditors redeem, he shall pay all the judgments which havo secured alicn by redemption. The legal titfo only can be subjected to an execution at law. An oquitable interest in lands can only be reached by bill in chancery.

Deeds, Rigits of Mamied Women, Wills, \&e.-Deeds are valid without being under seal. Not good as to strangers, unless duly acknowledged by the grantor, proved by two witnesses under oath and recorded. Decds must be acmnowledged, if the grantor is in the State, before the clerk or legally appointed deputy clerk of the county court, or before a notary public. If before a notary public, the clerk of the county court where be recelved his appointment shail certify as to his official capactty.
If the grantor is without the State, but in the United States or territories- 1 . Before any court of recorl, or before the clerk of any court of record in any of the States of the Union; or, 2. Before a commlssioner for Tennessee, appointed by tho Governor, in any State or territory; or, 3. Before a notary public of such siate or territory.
If the grantor is beyond the limits of the Union and its territorics-1. Before a commissloner for Tennessee appointed in the country where the acknowlelgment is made. 2. Defore a notary public of such country. 3. Before a consul, minister or ambassador of the United States in the country where tho acnowledgment is made.
The certificate of the officer before whom the deed is acknowledged must be ander seal, unless acknowledgment is made in the State before a justico or judge dome court, and then the certiticate of the clerk of the county court, certifyling othe signature, etc., of the justice, or of the clerk of the court certifying to the igmature of the judge, must be under scal.
The following is the form of the certiticate necessary where the grantor makes he acknowledgnent in person and in this State:
rite of Tennessel,
finty of Hardin.
88.
"Personally appeared before me, elerk (or deputy clerk) of the county court of dideounty, the withln-named bargainer, with whom I am personally acquainted, nd who acknowledged that he executed the within instrmment for the purbese therein contained.
"Wltness my hand, at office this
day of
, A. D. 187 ."
[seal.]
As the wife has no dower in land granted in fee by (ignature and tule.)
ceessary for her to join in the deed, but if a trust deed is given, then the wife ust relinquish dower by joining in the deed. When the land conveyed is the parate estate of the wife, the husband must always join her in the deed. In is deed where the wife has to ncknowledge the same, the certlicate of the omcer court before whom it is tnken must contain this additional clause: "Aud C. ., wife of the sald A. B., having appeared before me, privately and apart from
her husband, the said A. B., acknowledged the execution of the said deed to have been done by her freely, voluntarily, and understandingly, without compuision or constraint from her said husband, for the purposes therein expressed.'

It is not necessary, to the validity of a deed, that it should be signed in presenco of where ilie grantor makes the acknowledgment in person. But unless ginc. acknowledge, it must be signed in presence of witnesses-two are sultte may probate the same before either of the above-named officers, af whe case the following form must be used :
State of Milne, ss.
Cointy of Waldo. $\}^{s}$
Personally appeared before me, John Campbell, commissioner for Tennessee, ete., C. and D., subscribing witnesses to the within deed, who being just swom, deposed and said, that they are acquainted with A. B., tho bargainer (or as the case may be), and that he acknowledged the samo in their presence, to be hisact and deed upon the day it bears dato (or stating the time as proved by the witnesses). Witness my hand, at office, this day of , A. D. 187°

John Campbell, Commissioner for I'ennessec.
A married woman can hold real and personal property to lier solo and separato uss, without or through a trustec. She can, if over twenty-one years of age, and own the land in fee, or equitably, convey same without her husband joining with her by deed or will. And if setlled upon her after marriage for her sole and separate use, at any age. A note or any other obligation, made by a married woman, will not bthd her separate estate, unless it was executed with the express intentlon to bind the same ; or unless it was given for necessaries for herself or her minor children.

Wills must be in writing, signed by the testator, or some other person in his presence and by his express direction, and subseribed in the presence of the tetator by two witnesses, no one of whon is interested in the will.

SPECIAL LAWS OF TEXAS.

Exemptions from Forced Sale.-ITome worth \$5000, and Personal Property. To every citizen, householder, and head of a family, not to exceed 20 acres of land (not included in a city, town or village), or any city, town or vil lago lot or lots, not to excoed $\$ 5000$ in value at the time of their designation ss a homestead, and without reference to the value of any improvements thereon. Also, all household and kitchen furniture, all implements of husbandry, all tools and apparatus belonging to any trade or profession, and all books belong ing to privato or public libraries ; five milch cows and calves; 2 yoke of work oxen; 2 horses and 1 wagon, 1 carriage or buggy; 1 gun; 20 liogs; 20 headof sheep; all provisions and forago on hand for liome consumption; all saddés bridles and harness nocessary for the use of the family; and to every citizen, not a head of a family, one horse, bricle and saddle, all wearing apparel, all tools, apparatus and books belonging to his or her private library.

MECHANICs' LIEN.-Any person or firm who may labor, furnish material machincry, fixtures and tools to erect any house, improvement, or any improie ment whatever, shall have a lien on such article, olouse, building, fixtures or im provement, and also on the lot or lots or land necessarily connected therewith to secure payment for labor done, material and inxtures furnished for construs tion or repairs. Such person or ilrm shall, withinh six months after such def become due, file hits conitract in the offico of the district clerk of the country whtch tho property is situatel, nud liave the samo recorded in a book kept ta that purpose by tho clerk. If tho contract, order or agreement bo verbal, ady plicate cony of the bill of particulars must be mado unler oath, one to be filf and recorded by tho clerk as provided for written contracts, the other to sorved on tho party owing the debt. When the contract or account is filei ad recordel, they must bo accompanted by a description of tho property againg which the lien is claimed. The filling and recording ilxes the lien from the dis it is filed. Tho lien, if against land in the country upon which satd impron ments have been made, shalt extend to and include fifty acres; if in acin town or village, it extonds to nnd includes such lot or lots upon which said it provements aro situated. The lien may be enforced against the land aud in provements, or the improventents alone. The purchaser having a reasonaty IIme to remore the same. The sale to bo upon juilgment and order of esy This lien extends as well to homesteads as to other property ; also, to all lood
the said deed to have without compulsion in expressed.' uld be signed in presgment in person. But ence of withesses-two
issioner for Temessee, who being just sworn, 10 bargainer (or as the presence, to be hisact as proved by the wit-
A. D. 187 issioner for Tennessec. to her sole and sepa wenty-one years of age, out her husiband joining r marriage for her sole ation, made by a married xecuted with the exprest ome other person in his othe presence of the tet he will.

EXAS.

5000, and Personal Prop. family, not to exceed 20 , or aly city, town or vile of their designation s ements of husbanery. lon, and all husbandry, all d calves; 2 yoks beleng gun ; 20 hogs ; 20 heado ousumption; nll saddlen, ly ; and to every citizen, a, all wearing apparel, all ate library.
labor, furnish material ovement, or any improin , building, fixtures or in es furnished for construs months after such det ct clerk of the countrin corded in a book keption greement be verbal, a de nder oath, one to be files ontracts, the other 10 of the property araling xes the lien from the d pon which sald impront tifty acres; if in a ciry gainst the land aid in aser liaviug a reasonaly ment and order of pperty ; also, to all woud
navigating the waters of this State. All actions to enforeoli ms must be brought within two years.
COLLECTION OF DEBTS.-Arrest for debt is unknown here. Writ of attachment may issue for the following causes, viz. : When the defendant is not a resident of the State, or is about to removo himself or property out of the State. or las abandoned the country, or secretes himself so that the ordinary process of law cannot be served on him, or is about to reniove his property beyond tho county in which suit has been or is to be instituted, or is about to transier or sccrete, or has transferred or secreted his property, for the purpose of defrauding his ereditors, so that the plaintiff. will probably lose his debt. Attachment boid must be double the amount claimed, with two or more approved securitles. Aflldavit made to facts claimed as ground of attachment. Fverything, exceps choses in action and property excmpted by law, belonging to the defendant in execution, may be levied upon and sold as his goods and chattels. An attuchment levied upon real estate is a lien thereon from date of levy.

An assigument in trust, for the beneft of creditors gencrally, inure for the benefit of all the creditors of the grantor, whether named in the deed of assignment or not ; but a falling debtor may prefer his creditors. Assignments cau be made in this State to secure sureties or endorsers prior to any payment by them.
Notes, bills, accounts and every specles of contract or claim are assignable here, and the assignee can sue in his own name. An assignment proves itself in Texas, and can only be put in issue by a plea of non est factum. A parol assignment is good here, but must be proven.
Garnishment may be lssued upon attachment, judgment, or upon original sult, upon filing proper bond and aftidavit. May be issued elther by district or justice court. Defendant may replery property seized in hands of garnishee by filing proper bonds. Garnishee is entitled to his reasonable costs.
As to notes and bllis, acceptors are chargeable, elther upon written or verbal aceeptance. A holder of a bill of exchange drawn by merchants, rosident in this State, upon their agents or factors out of the State, having fixed the llability upon the drawer or endorser, are entitled to recover and receive tell per cent. damages, and all costs of suit thereon accruing. An assignee can sue any assignor of any bill or note, but cannot sue any two or more of them in the same suit, unless they are joint assignees. When suit is brought against a remote asfignor by an assignee, he cannot only set up any defense he may have agalnst the plaintiff, but any he may have against any of the intermediate assignors. Three days of grace are allowed here upon all bills of exehange and promissory notes a ssignable by law. A notarial protest or copy of record, certified to under the liard and seal of the notary public, is admitted in all the courts of this State as eridence of the faets therein set forth.
The jurisdiction of justice courts, extends, against makers of notes and acceptors of drafts, to $\$ 500$. On accounts, obligations, contracts and other evidences of debt, $\$ 250$. Damages and replevin suits, $\$ 250$. The circuit and cquity courts have general jurisdiction, and circult courts have jurisdiction appellate from justices of the peace on all cases before them. The supreme court lias appellate jurisdiction only.
Judgments and deerees in any court of record shall be n lien on the debtor's land from the time the same is rendered in the county where the debtor resides; if rendered in any other county than where debtor resides, from tho tims when a certifled copy of the same is registered in the county where the land lies. But this lien only exists for twelve months. Such judgment or deerce does not give alien on the debtor's equitable interest in land, unless within slxty days after rendition of same a memorandum of the samo is registered in the county where the land lies. A llen on the legal titlo of the debtor in real estate can also bo ixed under an execution from a justlee of the peace, by fillng the exeeution, with the levy of the same, anl all the papers in the case bofore the justice, with the circuit court from which an order of sale issues.
Executions in district court issuo immediately upon the aljournment of gurt, unless court is in session twenty days after rendition of judgment, or the lefendant is about to remove his property out of the county when they can issue boner. In justice court ten days after rendition of judgment. Executions are et llens on any property in thls State until levied. No stay laws here, except a justice court for three months' time. Everything except choses in action and roperty exempted by law belonging to the defendant in execntion, may be ried on and sold as his goods and chattels. No redemption laws here.
Deeds, Rights of Married Women, Wills, \&c.-Deeds, mortgages and keds of trust are not requirel to be under seal. Proof or acknowledgment of rery instrument of writing for record may be taken before some one of the fot-
lowing ofleers: When acknowledged or proven within this State, before some notary public, district clerk or deputy clerk, or judge of tho supreme or district crurt in this State; when acknowledged or proven without this State, and within the United States or their territories, before some notary public, commissioner of deeds for this State or before some judge or clerk of a court of record having a seal ; when acknowledged or proven without the United States, before some public minister, charge d'affaires, consul or conaular agent of the United Stutes, or notary public ; in all cases the certificato of such acknowledgment or proof shall be attested under the official seal of the officer taking the same, and the deed recorded in the county where the land lies.

The foliowing is the form of the certilicate where the husband and wife join in the deed :
State of Texas,
Before me personally appeared and , his wife, partios to the foregoing attached bearing date the day of , A.D. 187, both of whom are known to me, who acknowledged severally that they had signed, sealed and delivered the same for the purposes and consideration therein stated. And the said having been examined by me privily and apart from her husband, and having had the name fully explained to her, she, the said , acknowledged the same to be her act and deed, and declared to me that she had willingly signed, sealed and delivered the same of hor own free will and accord, withoutfear or' compuision on the part of her said hasband, and that she wished not to retract it.

Witness my official seal and signature at my office, this day of A. D. 187 -

[Certificate when the Grantor is Cumarricd.]

State of Texas,
County of Travis. $\}$ ss.
Before me, Joins Smiti, clerk of the district court in and for maid country, personally appeared
who is to me
known, and acknowledged that signed, executed and delivered the foregoing deed for the purposes therein specified.

Witness my official seal and signature, at my office, in the city of Austin, this day of , A. D. 187 .

(Signature of officer.)

Deeds may be authenticated for racord by affldavit of one or two attesting witnesses. Two witnesses required to every deed unless acknowledged.

Married women can hold real estate or personal property to their separate use. A married woman can bind herself on a note, draft or endorsement, when for necessaries for herself or children, or for the benefit of her separate property. All property acquired by husband and wife during marriage is their common property, except that acquired by gift, devise or descent, which is his or her separate property. The husband's consent is necessary to the alienation of the wife's separate property. The husband camnot alienate the homestead without the consent of the wife. The widow is entiticd to the use of onc-third of the real estate for her life.

A chattel mortgage is valid here between the parties thereto, but vold as against creditors and bonc ficle purchascrs without notice, unless recorded in the county where the mortgagor resides.

Wills must be in writing, signed by the testator or by some other persoin in his presence and by his direction; and, moreover, if not wholly written by himr self, be attested by two or more credible witnesses above the age of fourtell , ycars, subscribing iheir names in his presence.

SPECIAL LAWS OF UTAH.

Ixemptions from Forced Sale.-Home worth \$1000, and Personal Property To each member of the family $\$ 250$. To the head of the fainily is nllowed a hom stead not exceeding in value $\$ 1000$, to be selected by the debtor, and persons property to the value of $\$ 700$ or more, according to the value of articles exemp by statute; asido from the homestead each member of the family is allowed spal No property fliall be exempt from sale on a judgment received for its price, on a mechanic's lien, or a moltgage thereon.
is State, before somo to supreme or district ithis State, and within public, conmissioner purt of record having d States, before some of the United States, owledgment or proof ing the same, and the
usband and wifo join
is wife, partios to the of A. D. 187 , zed severally that they ses and consideration ined by me privily and explained to her, she, d deod, and declared to 3 same of her own free of her said husband, and
s
day of Signature and title.) rried.]
in and for sald counts, own, and acknowledged g deed for the purposet
n the city of Austin, this
(Stgnature of offlcer.)
of one or two attesting 3 acknowledged. operty to their separato ft or endorsement, when efit of her separate prop. ig marriage is their com. scent, which is his or her to the alienation of the te the homesteal without use of onc-third of the
ties thereto, but void as e, unless recorded in the
by some other persoin in t wholly written by himpove the age of fourteel

TAH.

0, and Personal Properis, family is allowed a home the debtor, and persons value of articles exemp the family is allowed seza recelved for its price, on

SPECIAL LAWS OF VERMONT.

Exemptions from Fonced Sale.-IIome tcorth \$500, and Personal Property, Homestead to the value of $\$ 500$, and products, such sultablo apparel, bedding, tools, arms and articies of furniture as may be necessary for upholding lifo ; t sewing machine kept for use, 1 cow, the best swine, or the ment of 1 swinc, 10 sheep, and one year's product of said sheep in wool, yarn or cioth; forage sutil. cient for keeping not excecding 10 sheep and one cow through one winter; lin corits of firewood, or 5 tons of conl; 20 bushels of polatoes, such military arms and accoutrements as the debtor is required by law to furnish; all growing erops. 10 bushels of grain, 1 barrel of flour, 3 swarms of bees and hives, together with their produce in honey; 200 lbs . of sugar, and all lettered gravestones ; the billes and other books used in a famity; one pew or slip in a meeting-house or place of religious worship; live poultry not excecding in amount or value the sum of Sio; the professional books and inetruments of physicians, and the professional books of clergymen and attorncys-at-law, to the valuo of \$200, and also 1 yoke of oxen or steers as the debtor may select, with sumcient forage for the keeping of the samo through the winter ; or in lien thercof, 2 horses kept and used for team work not to exceed in value $\$ 200$, with sufficient forago for keeping same; also pistols, side-arms and equipments personally used by any soldier of the United states and kept by him or his heirs as mementoes.

MECIANICS' LIEN.-Material men and mechanics have a lien for labor and material in building, repairing, fitting or furnishing any vessel until eight months after such veesel is completed. It may bo sceured by attachment, and has precedence of all otier claims. They also have a lien upon a building, and the lot on which it stands, for erecting or repairing such buiding. The lien continues three months after payment comes due, but does not attach until the person claiming it has filed and cansed to be recorded, in the town clerk's office, a written memorandum, by him vignel, asserting such claim.

Collection of Debts.-No female can be arrested on any process in an action founded on contract. No resident citizen of this State, or any of the Uuited States, can be arrested on any process issued on any contract, unless tho plaintiff, his agent or attorney tile, with the authority signtng the writ, an affidarit, stating that he has good reason to believe, and does beliove, that the defendant is about to abscond or remove from the State, and has property secreted about his person or clsewhere to the amount of $\$ 20$, or sufficient to satisfy the demand in suit ; or file an affluavit stating that tho defendant neglects or refuses to pay over on demand money which he holds for the piaintiff in a fiduciary capacity.

In actions of contract, writs of attachment may issue against the goods, chattels or estate of the defenilant; and in actions founded on tort, for want thereof, against the defendant's body.

Assignments, for the benefit of creditors, aro regulated by statute. To protect the property in tho hands of the assignec, it must be for the benefits of all the creditors. Choses in action may be assigned, but the assignee cannot sue in his own name, unless there has been a special promise to pay him, or the demand is what is known as " negotiable paper."

In actions on contract a person having goods, effects or credits of the defendant in his hands, may be summoned as trustee in the suit, and he is required to attend and disclose. Judgment is rendered against him in favor of the plaintiti for the amount of his indebtedness or liability to the defendant, to the extent of the judgment against the defendant. This process cannot be sustained unless the debt due the piaintiff from the defendant, as well as that from the trustee to the defendant, exceed $\$ 10$. It does not reach debts due on a contingency, or dno on a judgment where tho judgment debtor is liable to an execution on the judyment.

As to notes and bills, \&c., a promissory note payable on demand is considered orerdue at the expiration of sixty days from date, and presentment and demand of nayment must bo made within that time to charge the endorser. All negotiable paper, except that payable on demand or at sight, is entitled to three days of grace. Negotiable paper may be endorsed for collectlon and sued in the name of the agent or attorney, though he is not the real party in interest, and holds it for collection merely.

Judgments are not a lien. Real estate and certain articles difficult of removal are attached by leaving a copy of the original writ in the clerk's office. Execution may issue from county court twenty-four hours after the rising of the court, and by a justice of the peace two hours after judgmentis rendered. They are re-
turnable in sixty days, and must bo issued and placed in the hanas of the officep within thirty days after judgment, to hold personal property attached on mesne process, and within five months to hold real estate so attached. Ieal estate set off on execntion (there is no power to sell real estate on execution) may heredeemed within six months, otherwiso it passes to the creditor. Personal proporty taken on execution is sold to tho highest bidder.

A justice of the peace has jurisdiction in all actions of a civil nature where the matter in demand does not exceed $\$ 200$, except actions for slander, false inprisonment, and replevin for goods and chattels where the value thereof cxceeds $\$ 20$, and where the title to land is concerned. A justice also has jurisdiction in actions of trespass on the freehold whero the sum demanded does not exeed $\$ 20$. The county collrts have jurisdiction of cases appealed from the justices' courts and of all actlons where the jnstices have not jurisdiction. The munleipal courts of Burlington, Rutland and St. Albans have concurrent jurisdiction with the county courts, to the extent of $\$ 500$. Snit may bo brought in the town where either party resides, and if neither party resides in the State, in any town in the State.

Process, returnable before supreme or connty court, must be served at least twelve days before the session of court to which it is returnable.

Writs, returnable before a justico, mnst be served at least six days before, and not over sixty days from, the return day; if against a party in mother county, twelve days mustintervene between day of service and return day; and in any case, if the defendant is a corporation, thirty days must intervene.

Deeds, Rigitts of Married Womes, Wiles, \&e.-Deeds must be under seal (not a scrawl), signed in tho presence of two subscribing witnesses, acknowledged before a proper officer, and recorded th the clerk's office of the town where the land lies. In this State, doeds may be acknowledged before a justice of the peace, n notary public, or a master in chancery. Acknowledgments out of this State, may bo taken before a justice of the peace, notary public, commissinner from Vermont, or such offcer as is authorized to take acknowledginent of deeds in that place.
[Form of Certlficate of Acknowledgment.]
State of
COUNTY OF , \} ss.
At $\underset{\text { his wife), the signer and sealer of the above-written instrument, and ac- }}{\text { the }}$ knowledged the same to be his (or their) free act and deed.

Before me.
(Signature and title.)
Marricd women cannot make contracts. They may in somo instances change their separate property so that it may bo reached in equity. Her real estate, and the rents and proflts thereof, are exempt from attachment for the husband's debts; and also the husband's interest in the samo during coverture, except for debts for necessaries for wifo and family, or for labor or materials furnished upon such reai estate. A married woman may dispose of her property by will. The widow is entitled to dower, cluring her natural life, of oue-third of tho real cstate of which ber husband died seized, during his natural life unless she shall be barred. Chattel mortgages do not protect the mortgagee against bona fide purchasers or attaching creditors if the property is allowed to remain in the possession of the mortgagor.

Wills must be in writing, and signed by the testator or by some other person in his presence and by his express direction, and attested and subscribed hy thres or more credible witnesses in the presence of the testator, and of each other.

SPECIAL LAWS OF VIRGINIA.

Exemptions from Forced Sale.-Homestead and Personal Property to the Value of $\$ 2000$. In case of a husband, parent, or other person who is a householder and head of a family, the law exempts from distress or levy divers enumerated articles of household and personal use, furniture, bedding, etc., ranging in value from fifty to five hundred dollars, according to the condition and size of the family.

Besides the foregoing, every householder or hend of a family is entitled to a homestead exemptiou of two thousand dollars, to be set apart out of any property which he may select.

Mechanics' Lien.-All artibans, builders, mechanies, lumber dealers and
ine lianas of the officer rty attachedi on mesne ched. 1keal estate set execution) may he te. ditor. Personal prop-
: a civil nature where for slander, false linvalue there of cxceeds lso has jurisdletion in ed does not exced $\$ 20$. in the justices' courts, tion. The municipal rrent jurisdiction with aght in the town where ate, in any town in the
nust be served at least rnable.
ast six days before, nud rty in mother county, eturu day; and in any itervene.
-Deeds must be under ing witnesses, acknowl. office of the town where before a justice of the vledgments out of this 7 public, commissioner nowledgment of deeds

```
ent.]
```

ly appeared
(and en instrument, and acd.
(Signature and titlc.) some instances cliange y. Her real estate, and for the husband's debts; ure, except for debts for urnished upon such real will. The widow is enreal estato of which ber hall be barred. Cliattel purchasers or attachossession of the mort-
by some other person and subscribed by thres , and of each other.

GINIA.

Personal Property to the person who is a housedistress or levy divers rniture, bedding, etc., ruling to the condition
family is entitled to a part out of any property
s, lumber dealers and
others performing labor or furnishing materials for the construction, repair or improvoment of any building or otler property, are allowed a lien upon such prop-' erty for the work done and materials furished. It must be asserted by sult within six months from the time the lien is secured.

Collection of Dents.-Arrest, in civil actions, is permitted, when the plaintiff, by affidavit, shows to tho court in which the suit is pending, or to any judge or justice of the peace, that he has cause of action or sult against the defendant, and that there is probable cause for belleving that the defendant is about to quit the State, unless forthwith apprehended.

The defendant may be diseharged from arrest by giving good ball, the condition of the bail bond belng, in substance, that in case judginent is rendered for the plaintiff, the defendant will, if thereto required, wlthin four months after the judgment, discover and surrender whatever estate ho may then liave, for the satisfaction thereof.

Writs of attachment may be issued: 1. Against the estate of a non-resldent defendant. 2. Against tho estate of any defendant who is removing or intends to remove tho speeifle property sued for, " or his own estate or the proceeds of the sale of his property, or a material part of such estate or preceeds, out of the State, so that process of execution on a judgment," when obtained, will be unavailing. 3. Against the estate of a debtor, whether the clain be payable or not, when the debtor intends to remove or is removing, or has removed his effects out of the State so that there will probably not be thereln sufficient effects of the debtor to satisfy the clalm, should only tho ordinary process of law be used to obtain such judgment. 4. Against the estate of a tenant liable for rent, who intends to remove or is removing, or has, within thirty days, removed his effects from the leased premises, so that there will not be left on such premises property liable to distress, suffelent to satisfy the rent to becomo payable-not exceeding one year's rent in all. 5. Agalnst steamboats and other vessels, for materials, supplies, work, ete., furnished and done, and damages for certain torts and breaches of contract.

The foundation of the attachment in each ease is the affdavit of the plaintiff or of liss agent, setting forth not only the particular ground of the attaehment, as above given, but also divers particulars as to the amount of the elalm, whether due or not, etc. If tho plaintiff desires that the property to be attached shall bo taken into the possession of the ofhcer, the plaintiff, or some one for him, must give bond, with good securlty, in a penalty equal to, at least. double the amount sued for, conditioned to pay all costs and danages occasioned by the suing out of the attachment. The sureties must either reside, or must have estate equal to the penalty of the bond, within the jurisdiction of the court. No bond is necessary, except in the case abovo specified. Every specles of property, legal or equitable, is liablo to seizure and sale, under nttachment.

Assignments, for the benefit of ereditors, with preferences, are allowed by the law of this State. Bonds and notes, not negotiable, are assignable, and the assignee may sue upon them in his own name. Open acconnts may also be assigned; but suit must be brought upon them in the name of the original credlitor.

Process of garnishment may issue, either on execution or attachment, so as to reach debts due to the clefendant.

Every promissory note or cheek for money payable in this State, at a particular bank, or at a particular office thereof, for discount and deposit, or at the place of busincss of a savings institution or savings bank, or at the place of business of a licensed broker, and every inland bill of exehange payable in this State, is deemed negotlable, and may, upon being dishonored for non-acceptanco or non-payment, bo protesten, and the protest bo in such case ovidence of dishonor, in like manner us in ease of a foreign bill of exchange. The protest, both in the case of a foreign bill and in the other cases abore mentioned, is mado prima facia evidence of whatis stated therein, or at the foot or on the back thereof, in relation to presentment, dishonor and notice thereof. Danages are recoverable on bills of exehange-three per cent. if the bill be payable out of Virginia and within the United States, and ten per cent. if payable without tho United States.

The jurisdiction of justice courts extends to \$50. Clvil jurisdiction of the county courts is confined clicily to maiters of provato and guardianship; with perhaps a few unimportant exceptions they lave no jurisdiction of suits for the collection of debts. Circuit and corporation courts hare general jurisdiction in all civil actions. Process in these courts is commonly male returmuble to rules -held on the tirst Monday in cach month-and two rule days, at least, wust intervene between service and trial.

Judgments are a lien on all the real estate of, or to, which the defendant is of shall be possessed or entitled at or after the date of the juriginent, or the commencement of the term at which it is rendered. They create no lien on jervonal estate.

Executions may issue within a ycar, and a scire facias or action may be brought within tell years after the date of tle judgment. Executions create a lien upou the personai property of the debtor from the dato of tife delivery of the writ to tho officer, whether the property consists of chustels or of choses in action. As to the latter, however, the llendoes not take effect against an assiguee for valuable consideration without notice, hor against a person making payment to the judgment debtor without notice. lieal estate cannot be soid or levied on under execut n. An execution debtor may be required to discover, under oath, his whole estate, real and personal, and to convey and trasfer, for tho satisfnetion of the execution, his personalty and any realty which he may have out of the State.

If execution be issued within the yeur, other exccutions may be issued, or a scire facias or action may be brought within ten years from the return day of an oxecution on which there is no recurn by an oflicer, or within twenty years from the return day of an execution on whieli there is such returi.

Imedd, ligits of Marmed Women, Wihls, \&c.-Deets may be admitted to record as to any party thereto, when proved, as to such party, by two witnesses, or acknowledged by him, before the court of the county or corporation In which it is to be recorded, or before the clerk of such court, ith his oflice. Also, upon a certiflcato of his acknowledgment within the United States, before a justice of the peace, a commissioner in chancery of a court of record, a notary publle or any commissioner appointed by the Governor; or, upon the certificate of the clerk of any county or corporation court in this State, or of the clerk of any court out of this State and within the Uinited States, thint the deed was acknowledged by such person or proved as to him by two witnesses, before such clerk or before the court of which he is clerk, or upon certiticate, under the othclal seal of any minister plenipotenttary, charge d'affairs, consul general, consul, vice-consul, or commercial agent, appointed by the Government of the United States to any foreign country, or of the proper ofticer of any court of such country, or of the mayor or other chief magistrate of any city, town or corporation therein, that the suid writing was acknowledged by such porson or proved as to hlin by two witnesses, before any person having such appointnent, or beforesuch court, mayor or chief magistrate.

[Form of Certificate of Acknowledgment in case of a party other than a Married Woman.]

State of

County (ur Corporation) of
I, , a justice of the peace (or commissioner in chancery of the court, or notary public), for the county (or corporation) aforesaid, In the State (or territory, or district) of , do cortity, that L. F. (or F. F', and (i. H., etc.), whose nanio (or names) is (or are) signed to the writing above (or hereto aunexed), bearing date on the day of , has (or have) acknowledged the same before me, in my county (or corporation) aforesall.

Given uuder my hand, this
day of
The acknowledgment of a married woman must be certifled by two justices of the peace or by some one of the othor functionaries authorized to certify the acknowledginent of other persons.

The certificate must be to the effect following :

State of

COUNTX (or Comporation) of

$$
\text { ! \}ss. }
$$

I' \quad a commissioner appointed by the Governor of the iVirginia for the sald State (or territory, or district) of of court (or notary public) for the county (or corporarion) of , or and the State (or territory, or district) of G. IH., whose names are signed to the writing, do certify that E. F., the wife date on the
day of
writing above (or hereto alnexed), beanh the county (or corporation) aforesaid (or, if it be a commissioner, in the State,
the defendant is of Igment, or the com. no lien on pertional
tion may be brought 8 create a lien yion livery of the writ to hoses in action. A1 n assignee for raluIng payment to the ior levied on under ver, under oath, hils for the satisfacion hay have out of the
may be fssued, or a the return day of an in twenty years from ells may be admitted such party, by two :ounty or corporation 1 coutt, in his olifec. United'states, before t of record, a notary , upon the certificate to, or of the clerk of $: 8$, thent the deed was Itnesses, beforo such Iticate, under the oftlmsul general, consul, ment of the United y court of such coun, town or corporation erson or proved as to itnent, or before such

arty other than a

$r \ln$ chancery of the rporation) aforesaid $\%$ that E. F. (or E. F: to the writing aboro of , has or rporation) aforesail. A. D. 187. gnature and title.)
ed by two justices of orlzed to certify the
of the
or
or
ond issioner hancery (lon) of at E. F., the wife o ammexcd), bearing pefore me (or us), in ioner, in the State,
foritory or district aforesaicl), and boing examined by me (or ne), privily and apart from her husband, and hinving the writing aforesald fully explained to her, the, the said E. F., acknowledged the sald writhing to be her aet, and declared that she had willingly executed the same and does not wish to retract it.
aiven under:my hand (or our hands) this
day of Donini.

Married women can hold real or personnl property to their (gnature.) trough a trustee. To blad the separate ostate of a drough a trustee. To bind the separate ostate of a married woman by her contract, the intention so to blind it should be expressed on the face of the contract. The widow is entitled to ono-thirl part of all the real estate owned by her hue band during coverture, unless sho has barred or reliuquished the same.
chattel mortgages are unknown in this state, though their equipalent is fund in deeds of frust of personal properity, by which personal property of any deseription may be conveyed for the benetit, and thus made avallable for the keurity of creditors. Such deeds are not effective, as to other creditorn and subajuent purchasers for value withcut notice, except from the time of their alminfiven to record in the proper clerk's oflice.
Wills should be in writing, and signed by the testator, or by some one in his presence and by his express direction, in such manner ns to make it manlfest that the name is intended as a slgnature, and, moreover, unless it be wholly milten by the testator, the signature shall be made, or the will ncknowledged by bin in the presence of at least two competent witnesses, present at the same time, rud such witnesses shall subscribe the will in the presence of the testator, but no form of attestalion shall be necessary.

SPECIAL LAWS OF WASHINGTON TERRITORY.

Exemptions from Forced SAle.-Home worth $\$ 1000$ and Personal Property. To each householder behng the heal of a family, a homestead worth $\$ 1000$, whilo weupied by such fainlly. All wearing apparel, private libraries, family pletures and keepsakes; to cach houscholder, 1 bed and bedding, and 1 additional bed rad bedding for every two additional members of the family, and other housebold goods of the coln vaiue of $\$ 1500$; 2 cows and their calves, 5 swine, 2 hives obees, 25 domestic fowls, and provisions and fucl for 6 months. To a farmer, 1 pan of horses and harness, or 2 yoke of oxen, nud 1 wagon, with farming utenins not exceeding $\$ 200$ coln value. To attorneys and clergymen, their librartes ralued at not to exceed $\$ 500$, with office furniture and fuel. Small boaty and trearms kept for use, not exceeding $\$ 50 \mathrm{in}$ coln value; parties engaged In lightring, 2 lighters and 1 small boat valued at $\$ 250$; the team of a drayman.

SPECIAL LAWS OF WEST VIRGINIA.

Exemptions from Forced Sale.-Home worth $\$ 1000$, and Persmal Property. Homestead to the value of $\$ 1000$, is exempt, where the property of that value is demised or granted by debtor, belng a husband or parent, and resident in tho ate, as a homestead; and where he, prevlously to contractling the delt or liability bas placed a declaration of his intention to keep the property as a homestead on the land records of the county in which the real estate is situate. Personal property to the value of $\$ 300$ is also exempted, provided debtor is a resident and a parcut.
Mechanics' Lien.-A mechanic or workman, or any person who shall perlabor upon or furnish material to erect. repair, aller or improve any ma..., has a lien on the same, which can be enforced by suit in chancery th six mouth.; provided, he filed his account under oath with ihe clerk of the county court i: thirty days after the work was done or material furnished.
Con 1 Tion of Debts.-The debtor may be arrested in an netion pending against $\ldots \mathrm{m}$, until he givo security that ho shall answer such fiterrogntories as ball bo propounded to lim, or fled within four months after judgment and perform the requirements of the judgment or decree. But before the order for rrest will be made, the plaintifif must make affidavit-1. That the claim is mot and that the defendant is about to leave the State, to reside permanently panother State, witl ut paying the debt for whlect the action was brought. 2 . Tr that he fraudulenuly contracted the debt for which the action was brought Orthat he frandulently conceals his property or rights of action. 4. Or that
he has removed or is about to romore his property leyond the State with intent to defraud his creditors. 5. Or that he has converted or is abont to convert his property into money or sccuritics, or that he has assigned or removed his propn erty with like intent. And the piaintiff will also be required to give bond and good security, to indemiify the defendant in case the order of arrest was maliciously made.

Writ of attachment may issuo upon tho plaintiff giving bond, for the same causes that an order of arrest will be made, and the following additional canses: 1. That the defondant is a non-resident, or a foreign corporation. 2. Or that iue defendant has left or is nbout to leave the State with intent to defrand his creditors. 3. Or thet he conceals himself, so that a summons cannot be servei.

Assignments, for the beneflt of creditors, are not regulated by statute; the debtor can prefor une or more of lis creditors, if the transaction be not tainted with fraud.

As to motes and bills, every note or check made payable at a particular bank of discount and deposit, or at any savings bnik, andevery inland bill of exchange, is negotiable, and may be protested, and the protest is evidence of the same facts as in case of foreign bills of exehange. J3ills of exchange, drawn or negotiated III this State, duly protested, entitle the holder, in addifion to tho usual proteft fees, to the following damages: Three per cent. if payable ont of this Stute and within the United States, and ten per cent. if payable out of the United States. Paper payable on Sunday, Christmas day, 1st oí January or 4th of Juis nust be protested on the day previous and notice of dishonor given on the day following such holiday. Any paper not negotiable as above stated, is subject, in the hands of the holder, to all equities existing against the assignor ; the equities, however, must have existed before the defendant had notice of the assignment of the papers.

The jurisdletion of justice courts extends in civil actions to $\$ 100$, exclusire of interest. The circuit courts, is appellate from inferior conrts, and has original and gensral jurisdiction of all matters at law where the amount exceeds sto The supreme court of appeals has appellute jurisdiction from inferior coutt where the amount exceeds $\$ 100$.

Judgments are n lien on the real estate of the defendant from the first day of the term, if rendered in acourt, of record ; but to make this lien available ngam a purchaser for value, aml without actual notice, an abstract of the judgmen must be filed in the recorder's office of the comity where the lnud lies nimety days after the rondicion of the judgment or before the deed to the real estate delivered to the purchaser. Judgments of justico's courts also give a lien on real estate if an abstract of the same is recorded in the proper connty.

Fxecutions are a lien on personal property from the date the same is places in the hands of the officer, and may be leviel on any property of the defendz: not exempt by law. Executions cannot be stayed, except when obtained befor a justice, and only then for a limited time, not more than four months, upon de fendant giving security, No redemption of property sold under execution.

Deeds, Rights of Married Women, Wills, \&c.-Deeds must be in writh and under seal ; a scrawi will answer for a seal if deed be made ly an indi viclual, but not if by a corporation. They must bo acknowledged before are corder, prothonotary, elol k of any court, a justice of the peace, notary public commissioner of deeds, or roved by two witnesses before the recorder of the cour in the county where the same is to be renorded. If acknowledged ont of th United States, before aminister plenipoteliary, charge'd affaires consul-general consul, vice-consul or comme win agent, or before the proper officer of any court or before the mayor of ciny city or town, inder the oftcial seal of such oftheen Tho wife must join with the hinsbend in the deed to relinquish her dower.

The following is the preseribed form of certificnte of ncknowledgment:
State of West Vinginia, Country of Wood.

I fy that A.B. and C. (sing the namo and offcial character of the offcer), d certify that A. B. and C. D., his wife, whose mames are signea to the writing aloor bearing dato on the day of $A, I, 187$, liave this day acknowled.: the same before me ; al C. D., the wife of the said A. B., personally app onf before me, in the county aforesald, and being exasined by me, privately an apart from her husband, and having the nid writling fuly explained to her, ibs the sald C. D., acknowledged the said writing to be her net, and deelared the she had willingly executed the sar. 3 and does not wish to retract it.

Given: under nuy hasia, thia
day of
A. D. 18%
(Signature and t!!lo.)
nd the State with intent - is abont to convert hid ed or removed his prop. quired to give bond and rder of arrest was ma-
ing bond, for the same wing additionnl causes: oratlon. 2. Or thes we intent to defrand lis imons cannot he served. gulated by statute ; the usaction bo not tainted
blo at a particular bank inland bll of exchange, idence of the same ficter ge, drawn or negotiated fion to the usual protest lle out of this State and ut ef the United States. ry or 4th of Juny nust bo ren on the day following , is subject, in the hande ; the equities, howerer, the assignment of the ctions to $\$ 100$, exclustre courts, and has orlginal he amount exceeds $\$$ so. ton from inferior couth
lant from the first day of this lien available agalm nbstract of the judgmen here the land lies nimety deed to the real estate if ourts also give a lien ouf proper county. - date the samo is placel roperty of the defender pt when obtained befors in four months, uponde ll under execution. Deeds must be in writint ed be mado by an ind? knowledged before a re lie peace, notary putlic the recorder of ine cour cknowledged out of th (affaires consul-genen) roper otticer of any court - al seal of such otticen nquish her dower. acknowledgment :
racter of the oflecr), d ued to the writing alord thits day acknowleds: B. personally appar d by inc, privately an ly explained to her, bly act, and deelared the retract it.
A. D. 187

Aignature and t:tle.)

A married woman has dower in all the real estate her husband is seized of daring coverture, and she must join her husbnnd in the execution of all deeds to the sarae. She may hold her separate property free from the controi and debts ot her husbnid, and may convey the same as if she were unvarried; provided, ber lusband joins in the deed with her. Her separate property is bound for her debts contracted lefore marriage, and her husband is not liable for such debts. Ghe may leposit her separate funds in bank, and withdraw the same on her owy hheck. Where the husband acquires niny of the wife's separate property, by unte-nuptial contraet or otherwise, he becomes tiable for her debts contracted before marriage to the extent of the property so acquired by him, but no further.
Chattel mortgages are governed by the common law ; and the mortgage will be wid unless possession of the mortgage chattels is delivered to and continuousb remains with the mortgagee.
Wills should be drawn and attested according to form No. 45, p. 815.

SPECIAL LAWS OF WISCONSIN.

Exemptions from Forced Sale.-Farm of Forty Acres, or House and Lot in rilage or City, and Personal Property. A himestead, consisting of land not ereeding 40 acres, used for farming purposes; or in lien of the above, at the obthon of the debtor, a lot in any townor city not to exceed one-fourth of an acre. Family Bible, pictures, school books and privato library; church pew; all wearmapparcl; usual household furniture, not to excced $\$ 200$; gun or riffe, not to areed $\$ 50$ in value; 2 cows, 10 hogs , yoke of oxen and horse or mule; 10 sheep and wool therefrom, and necessary fool for said animals and for the debtor's lamily for one year ; wagon and other farming utensils not to exceed 850 ; nlso, dil insurance money arising from the destrection of property exempt from exeetion ; also, the earnings for the past sixty days of persons who have families wapport.
The tools, implements, and stock in trado of a mechanic or miner, or other person, not excoeding $\$ 200$ in value ; library or implements of any professlonal man not exceeding $\$ 200$ in value. All sewing nachineskept for use ; any swords, plate, books, or other article presented by Congress or the inembers thereof.
Mechanics' Lies.-All persons who perform labor upon or furnish materials for the building, improving er repairing of buildings, have a llen thereon for the we, which must bo enforced by filing a petition for the iten in six months in the drenit court and an action to foreclose in one year.
Collection of Dents.-In civil actions a defendant is liable to arrest in the following cases: 1. In an action for the recovery of damages, on a cnuse of acfina not arising out of contract, where the defendant is not a resident of the State, or is about to remove therefrom, or where the action is for injury to person or charaeter, or for injuring, or for wrongfully taking or converting property, and thactlons to recover damages for the value of property obtained by the defendwit under falso pretences. 2. In an aetion for a fine or penally, or for money or pmperty embezzled or fraudulently misnpplied by a public nflicer or an attoriey, orby an agent of any corporation in the course of his employment as such, or by afactor or agent, or any other person in a flduciary capacity, or for any miscondnct in office or professional employment. 3. In an action to recover possession of personal property unjustly detained, where the property, or part thereof, has been concealed, so that it cannot bo taken by the sheriff ; but no female can be arested, except for wilful injury to person, character or property. 4. When the defendant has been guilty of fraud in contracting the obligation for which the nait is brought.
Writ of nittachment may issue on the plaintiff giving bond, and making affidavit that his debt is jnst, nud that one or more of the following reasons for attachWit exlsts : 1. That the defendant has absconded or is about to abscond from we State, or is concealed therein, to the tnjury of his creditors. 2. That he has usigned, disposed of, or concealed, or is abont to assign, dlispose of, or conceal his property, with intent to defrauld his creditors. 3. That he has removed or babout to romove his property from 'he State with the same intent. 4. That he fraudulently contracted the debt upon hieh the netion is brought. 5 . That he is anol-resident. 6. That the defendant is a foreign corporation; or, 7 . That he has fraudulently disposed of his property witi. intent to defraud his creditors. Athachment cannot issue unless debt exceeds 350 .
All assignments for the benefit of creditors are void, as against creditors, un-
less the assignee is a resident of the State and gives bond, to the value of ta property assignsd, for the faithful performance of his trust.

All notes or certiticates of deposit, payable to any person or his order, are nego tiable. Bills of exchange, payablo at sight, are entilled to grace, but when pas able on demand they are not entitled to grace. Protested bilis of exchange drawn or negotiated in this state, entitlo tho holder to the following damages: drawn on any person residing out of tho United States, or in some one of in United States which adjoins this State, ive per cent. ; if drawn on a personi some one of the United States, but which is not adjoining this State, ten per cenf Legal holidays are January 1st, February 22d, July 4th and December 25th. Ps per maturing thoso days, or on Sunday, must be protested the day previon And when any of those days fall on Sunday, then tho Monday following is a leag holiday, and paper maturing on that Monday must be protested the Saturdo preceding.

Judgments are a lien on all real estato in tho county where ohtained, and it the county where a transeript is filed and docketed in the circuit court clerk office, and the lien remains on sueh real estate for ten years.

A transeript from a judgment before a justice may be also docketed and file in tho circuit eourt clerk's oftice, and likewise becomes a lien, same as a circti court judgment.

Exccution may issue at any timo within five years after renditlon of judg ment as of course, and where an execution was soissued within that period, the an alias may be issued at any time within twenty years from the date of th judgment ; but when no original execution within the first ilve years, then a alias will only be granted on affidavit that the judgment is unsatisfied. Exxced tions aro of three kinds-against the property, against tho person of the debto and for the delivery of personal or real property detained by the defcudail Execution gives a lien on personal property only from the time of aetual lerg Real estato sold under exocution can be redeemed by the debtor in two yair from the date of sale, or by his creditors in two years and three mouths from the time.

Deeds, Rigits of Married Womey, Wills, sec.-Deeds must be in writing and it is only neeessary that they be in the form of a quit claim, as no covenant absolutely necessary or implied; not necessary to be under seal, a scrawl wil answer, and must bo executed in the presence of at least two witnesses, and mus be aeknowledged in the State before any judge or court commissioner, elerk of ci cuit or county court, justice of the peace or notary public. But if acknowledge out of the State, may be acknowledged before any person authorized to take ib acknowledgment of deeds under the laws of the State where taken, or before commissioner of decds. But unless the aeknowledgment is taken before a com missioner of deeds, or a notary public, there must bo attached to the deed a certif cate of the clerk of a coust of record, under seal of his office, that the persen $\begin{aligned} & \text { bl }\end{aligned}$ took the acknowledgment was at the date thereof such officer as he represent himself to be, that he believes the signature of such offlicer to bo genuine, and the acknowledgnient is according to the laws of the State where taken.

A married woman must join in the execution of a deed to her lusband's prog. erty to bar her dower. She can do this by an attorney duly appointed.

The form of certificato of acknowledgment may be the one in use in th State where takell.

All the wifo's separate real and personal property whether owned by her at th time of her marriage or acquired by her after in huy way, remains the sole andserg rate extate of tho wife, free from the control and debts of her husband. She ca convey the same as if sole, and withont tho written consent of her lushand She is liable for all debts contracted by her before marriage, and after account of her separate property, and can bo sued for the same. She canse without joining her husband, but if sued he must also be sued.

She has dower in all the real estate of her husband, owned by him durin coverture, unless she relinquishes the same.

A ehattel mortgage is not valid as to third parties, unless the property bed Wvered to the mortgagee and remain in his possession, or the mortgage be flef with the clerk of tho town where the mortgagor resides, or where tho property situated, if tho mortgagor is a non-resident.

No will made within this State, except such non-cupative wills as are men tioned in section number six, of ehapter sixty-six of the Rovised Stalutes, shat be effeetual to pass any estate, whether real or persoual, nor to change or in ay way affect the same, unless it be in writing, and winced by the testator, or b some per 30 in his presence, and by his express direction, and attested and nit scribed in the presence of the testator by two or more competant witnesses, and
bond, to the value of th trust. rson or his order, sre nege ad to gruce; but when pay tested bills of exchang the following damages: es, or in some one of the ; if drawn on a person ing this State, ten per cen and December 25th. Pa rotested the day prevlou Monday following is a lega pe protested the Saturds
ity whers obtained, and the circuit court clerk ycars.
be also docketed and file 8 a lien, same as a circui
after rendition of judg ed within that period, the ars from the clate of th he first dive years, then int is unsatisficel. Exec the person of the debto letaincd by the defeudan 1 tho time of actual lers y the debtor in two year ind three months from the
-Deeds must be in writing uit claim, as no covenant under seal, a serawl wil st two witnesses, and nur commissioner, clerk of di olic. But if acknowledge wn authorized to take if o where taken, or before ent is takell before a com lached to the deed a certif office, that the person $\sqrt{2}$ lh officer as he represent cer to be genuine, and th there taken.
ed to her husband's pro duly appointed. be the one in use in th
ether owned by her at th remains the sole and sep of her husband. She ra consent of her lusbaild marriage, and after the eame. She can an e sued.
d, owned by him durim
inless tho property bed or the mortgage be tile or where the property
pative wills as are men (Rovised Stalutes, shat - nor to change or in any (l) by the testator, or b nil, and attested and and competant witmesses, an

H the witnesses are competent at the time of attesting the execution of the will, thelr subsequent incompetency, from whatever cause it may ariso, shall not prerent the probate and allowance of the will, if it be otherwise eatisfactorily prosed.

SPECIAL LAWS OF WYOMING.

ExEmptions from Forcen Sale. - ITome vorth \$1500, and Personal Proprety. A homestead consisting of a house and lot in a viliage or city, or land not areeding 160 acres, the value not in either case exceeding $\$ 1500$, is nllowed to a bouseholder occupying the same. Also the following property of a houselolder, Wing the hesd of a family, is exempt. Wearing apparei, family Bibles, pictures, chiol books, cemetery lots, bedding, furniture, provisions, and such other artidies as the debtor may selcet, not excecding in value $\$ 500$. Tools, team, or stock In trado of a mechanic, miner, or other person, kept and used for the purpose of carying o.s his business or trade, not exceeding $\$ 300$, are cxempt. Library, infruments, wnd implements of any professional nian, worth not more thran $\$ 300$. The person c'aiming exemption nust be a bona fille resident of the teritory.

SPECIAL LAWS OF ONTARIO, CANADA.

Exemptions from Forcen Sale.-The bed, bedding ami bedsteads in ordiary use by the debtor and his family. Tho nccessary nid ordinary wearing spparei. One store and pipes, 1 crane and its appendages, 1 pair of andirons, 1 et of cooking uitensils, 1 pair tongs, 1 shovel, 1 table, 6 chairs, 6 knives, 6 forks, 6plates, 6 teacups, 6 sancers, 1 sugar basin, 1 milk jug, 1 tea pot, 6 spoons, 15 hives of bees, all tpinning whecls nad weaving loom in domestic use, 10 volumes ot books, 1 saw, 1 gun, 6 traps, and such lishing nets and seines as nre in common se. All nceessaiv fuel, ment, tish, flour and vegetables netually provided for hamily use, not more than suflicient for the ordinary consumption of the delitor and his family for ${ }^{3}$) days, and not exceeding in value the sum of $\$ 40$. Ono cow, 4 sheep, 2 hogs and food therco: for 30 days. The tools and implements or chattels ordinarily usieil in the debto-'s oceupation to the valne of \&u0.

Exemptions frone Forced Sales.-On Free Grants and Homestetds in the possession of Actuul Selilers, in the Algoma and Nippissing Districts. and certain lands between the liver Ottawa and the Georgian Bay, nre exempt from seizure, while in personal property, beds, bedsteads, bedding, and wearing apparel of the debtor and his family, househoh furniture, provisions, farm stock, tools, and implements to the value of $\$ 60$, aro exempt from seizure.
Mechanics' Lien.-Mechanics, laborers and material men have a lien on bulldings and on the land on which said bulldings wre situate, for work or naterials furnished for erecting or repairing same. Jlen can be secured by filing astatement of the claim int the registrar's oftice within 30 days ofter the completion of the work. It will cease to hold good after the explrailion of 90 daye.

The Colelection of Debrs.-Defendant i, liable to arrest on athiarit by the plaintiff that he is a concealed debtor, or $i=$ about to abscond from the prorinco with tho design and intent to defraud him out of his just debt.

Writ of attachment may issue for any debt or damages arising upon any contract, express orimplied, or upon any juigment where aftidavit or aftirmation is made before the judge of the ccunty court, a justice of tho peace, or the clerk of adivision court, whero the debtor absconds, or is about to abscond from the prorhce, leaving property liable to seizure under execution for debt in any connty of Ontario, or shall attempt to remove his, her, or their property, elther out of the province, or from one county to another thercin, or from Ontario to Queber, or shall keep concealed in any county of Ontario to nvold service of process. Such judge, clerk or justice of the peace, shall, on such aftidarit being nuide, forthwith issue a warrant under his hand and seal, directed to any constable of the county, or directed to the ballifi of a Division Court, within which the same was issued, ompowering said constable or bailiff to attach, sefze, take and safely keep all such effects and estate of said abseonding or concealed debtor, wherever found within said county, and shall within twenty-four hours after said seizure, call to his aid two freeliolders, who shall, after being sworn, value and appraiso the said effects so seized, when the saill bailiff or constable shall forthwith return cald inventory with the property, to the clerk of the Divieion Couri within
which such warrant was issued. Proceedings may be conducted to judgment and execution in any case commenced by attachment. Defendants, agains whose effects, \&c., a warrant is issued, may tender a bond to their creditcrs, with surcties (in double the amount of the sum claimed) prior to judgment and obiain a release of the goods. No real estate is liable to seizure under Division Cour writs of attachment.

The jurisdiction of Division Courts (of which it is provided that there shall a no time be less tban three, nor more than twelve, inia county, each to be lield once every two months, or oftener at the discretion of the judge) extends claims of debt, account or breach of contract, or covenant, or money demand whither payable in money or otherwise, where the amount or balance claimed does not exceed $\$ 100$, and in all toris to personal chattels, to and including the sum of \$40. Sumnions to wo served 10 days before sitting of court. Personal service of summons necessary where claim exceeds $\$ 8$. No unsetticd accomit to a greater amount than $\$ 200$ shali bo sued for in any Dirision Court, in whic case judgment shall be in full discharge of all demands. No debt due fo liqunrs, drunk in a tavern or ale-house or nny gambling debt, or any claim touching the title to real estate, or involving any riglit to custoni or toll, orte seduction, or breach of promise of marria, e, is sunblo in a Division Conrt. Tria by jury is accorded in cases of tort or trespass where claim exceeds $\$ 10$, and all other cases where amount excceds $\$ 20$. De btor removing to another count may be served with summons from the Division Court where the debt was (cmp tracted, summons in this case to bo mailed to the Clerk of the Dirision Cour where the debtor may reside to be served by the bailiff of said Court, who wiil through the Clerk of his Division, return the original of said summons duly en ciorsod with affidavit of service to the issuing clerk. Writ of execution may be issued and Judgment debtor's goods bo levied on by the same means. Exeen tions are returnable within 30 days from date of issue, and affect personal prop erty only; if returned nutla bona, a transcript of the judgment, if for 840 or up wards, from the clerk of the Division Court, attested by the seal of said court may be filed in the office of the clerk of the County Court where such judgnen was obtained, or in the county where the judgment clebtor's lands may by situate, and when thas nied shall become a judgment of the said County Court and issue execution on said lands. Division Court judgments aro made payabld in ten, fifteen, or twenty days, moro or less, at the discretion of the judge (un not for more than 50 days from the service of summons, unless plaintiff con sents), but excention may igsue forthwith on sufficient ovidence, adduced by plaintiff, to satisfy the judge that the said plaintiff will be in danger of losing the amount of said judgment by delay till the day of paymont before issuine oxecution.

On return of execution endorsed nulla bona, judgment summons may jesug cliting judgment debtor to appear in court for cxamination under oalh ly the judge touching his ways and means of payment, what disposition ho may lard made of his property, the circumstances under which he contracted the debt \&c., on which the judge may order defendant to pay a stated sum per month out said judgment until the same be paid, and in default of such payments, oril guilty of fraud in contracting the debt, may commit said defendant to the common jail of the county for a period not exceeding forty days. Such innprison ment shall not, in any case, operate as a satisfaction or extinguishment of the debt, but the party imprisoned may be released forthwith on payment of the debt and costs. The judge in his discrotion may suspend any judgment, order. or execution given, on being satisfled that any defendant is unable, from sicknens or other sufficient cause, to pay or discharge the debt and damages recors ered against hinj, or any instalment thereof, until it shall appear by the lik proof that such temporary disability has ceased.

Wherever any goods, chattels, deeds, bonds, pro. notes, books of account valuable securities, or other personal property, shall be wrongfully taken or urlawfully detained, the owner, person, or corporation, who by law can now bring an action of trover or trespass for personal property, shall have and may brind an action of replevin for the recovery of asld goods, with accrued damages fod uniawful caption and detention. Judgment holds good for 10 vears.

The jurisdiction of County Court extends, in cases of debt contract, to $\$ 200$ where the amount is ascertained by the siguature of the defendant, to $\$ 460 ;$ in al matters of tort relating to personal chattels, where the sum does not exceed ssued The Superior Law Courts have concurrent jurisdiction with the County Court The above amounts may be sued for in the Superior Courts, but all concerned will oniy bo liable to pay and receive County Court costs and fees. County cour writ of summous may be served on defeudant in any county in the province, bui

- conducted to judgmen ont. Defeudants, ugaius nd to their creditcrs, with or to judgment and obain zure under Division Cour
covided that there shall a county, each to be heed of the judge) extends it enant, or money demand count or balance claimed tels, to and includling the itting of court. Tersona 8. No unsettied accoum yirision Court, in which dands. No debt due fo abling debt, or any claim t to custom or toll, or to in a Division Court. Tria laim exceeds \$10, aud hit noving to another coulit where the debt was con erk of tho Division Cour I of said Court, who will of said summons duly enf Writ of execution mayb tho same means. Exeen and affect personal prop udgment, if for $\$ 40$ or up by the scal of said cout urt where such judgnen t debtor's lands may of the said County Cour lgments aro made payali scretion of the judge (but cons, unless plaintiff cenf int ovidence, adduced by ill be in danger of losing payment beforo issuing
ment summors may lsuc nation under oath by the disposition he may hare Ihe contracted the dett stated sum per mouth on of such payments, oril d defendant to the crm ty days. Such imprison or extinguishment of the with on payment of the nd any judgment, order. ant is unable, from sick lelht and damages recor shall appear by the lith
rotes, books of account wrongfully taken or with ho by law can now bring all have and may bring th acerued damages fou for 10 years.
f debt centract, to $\$ 200$ lefendant, to $\$ 460$; in al am doez not exceer sout with the County court (ts, but all concerned will and fees. County Court inty in the province, bul
rait nust bo brought in the county where the defendant, or one or moro of them rosides, or where the contract was made payable. The County Court jurisdiction also extends to tho relief of persons entitled to minaccount of the dealings and trasactions of a partnership (the joint stock or capital not having been over 8000) dissolved or expired, seeking such aceount, or to a ereditor upon the estate of any deceased person, such creditor seeking payment of his debt, not exceeding Bion, out of the deceased's assets not exceeding $\$ 800$; or to a legatoe under tho will of any deceased person, such legatee seeking payment or delivery of his legacy, not exceeding $\$ 200$ in value, out of such deceased persin's assets, not aseeding $\$ 800$; or to a residuary legatee, or one of the residuary legatees of ans deceased person secking on account of the residue ant payment, or appropriation of his sharo therein, the estate not exceeding $\$ 800$; or to an exccutor or fiministrator of any such deceased person seeking to have the personal estate, pot exceeding ${ }^{8800}$, of suel deceased persnn administered under the direction of the Judge of tho County Court for tho County within which such executor or uministrator resides; or to a legai or equitable mortgagee whose mortgage is created by some instrument in writing, or judgment creditor having only registered his judgment; or person cutitled to in lien for security for a debt, seeking liseclosuro or saic, or otherwise to enforco his security, when the sum claimed does not exceed $\$ 200$; or to any person entitled to redeem any legal or equitable portgage, or any charge or lien, seeking to redeem the same, where the sum utually remaining duo does not exceed $\$ 200$. Injunctions to restrain the committing of waste or trespass to property by unlawfully cutting, destroying, or removing trees or timber, may be granted ly the Judge of any Connty Court, ohel injunction shall remain in force one month, unless sooner dissolved on in application to the Court of Chancery. Judgment in Ω County Court is not a lien on roal estate owned by defendant.
Jurlsdiction of Superior Court extends to claims of over $\$ 200$ damages, and orer $\$ 400$ (secured claim) to any amount. Judgments in the County Court do not bold real or personal estate until the execution is in sherifis hands.
The jurisdiction of a justice of tho peace is limited to $\$ 40$, in actions for mages between masters and servants. Garnishment may issue to recover money due debtor.
derds, Montanges, Cfiattel Mortgages, \&o.-Conveyances of real estate must be in writing, sealed by the grantor, and subseribed by him or his attorney daly authorized, and attested by two witnesses. Deeds must bo under scal, a merawl will not answer. Deeds and mortgages of real estate are proved by aftidarit of one of the witnesses to said deed or mortgage, sald athduvit being ongrossed on what is called a memoriai, setting forth a digest of the principal detalls of the deed; this memorial shall be under the hand and seal of tho grantee or the grantor, and is left for permanent record with the registrar of tho county in which tho property conveyed is situate. Jo illustrate: John Smith, and Nary bis wife, convey property to hobert Bell; each will sign the leed in the order named, and John Gordon and Peter Ross will witness deed. In this caso tho affilaition the memorial will read as follows :
County of York. $\}$ John Gerdon, of Toronto, in the said county of York, gentio-
To wit: $\}_{\text {man, in the within Memorial named, maketh oath and salth, }}^{\text {, }}$ that he was present and did see the Indenture to which the sald Memorial relates, drij executed, signed, sealed and delivered, by the therein named John Smith and Mary his wife, and that he is a subseribing witness to the execution of the mid Indenture, and that he, this deponent, also saw the said Memorial duly ilgel and sealed by the therelnnamed Robert Bell, for registry thereof. Which said Memorial was attested by him this deponent, and another subseribing witness, and that both said instruments were executed at the city of Toronto, in the mili county of York.
Shorn be ore mo at Toronto, in the said County of York, this ninth day of November, A. D. 1878.

Samuel Mill,

A Commissioner for taking afllanits in the Quecn's Bench,
in and for the cald County of Youth.
Within the provinco the affidarit to cxeculloa of deed may be taken on sald memorial before the registrar of thu cumty cr his deputy, or before any judge of the court of Queen's Bench of Ontar:o, ric any juige of a connty cou + , or any conmissioner of the eald Court of Quee.'is Bench, In Ontari'. Out of the Provinee, profof of deeda, conveyances, or wilis, may be made by aftidavit (or declar
ation when said declaration is by law permisenble) sworn before the mayor or chtef magistrate of any city, Dorongh, or town corporate in Great Britain or Ite land, under the common seal of such city. borough or town corporate, or bifors the chlef justiee or julge of any court of Queen's Bench in Quebec, or of the supreme court of any British colony, or before the mayor of any city, borough or town corporate in any forelgn country, or any consul or vice-consul of her Majesty resident therein. Deeds, conveyances, judgnents, \&c., must be recorded in the county where property is situate, and bind lands according to priorty of registration. A wifo must joth in a deed witht the liusband, in selling his reale tate, to rellnquish dower, and he must join with her in selling her scparate rea cstate, acquired provious to, or subsequent to marriage.

No chattel mortgage is valid as against the rights of ihird parties (if the grods remain with the grantor) unless sald instrument is duly illed in the office of tho clerk of the county, in which the property so mortyaged is situate, and it shatl cease to be valid as agaisst creditors, if not refiled before the expiration of tho first year, together with a statement exhibiting the interest of the mortgagee in the property thereby claimed. Every chattel mortgage is void as against creditors, unless aceompanted with an afthdavit of the mortgagee, sworn before a commissioner of the court of Queen's Bench or common pleas, that the mortgagor is justly and truly indebted to the mortgageo in the sum mentioned in said mortgage, and that it was executed in gool falth and for the express purpose of securing the payment of the money so justly due, and not for the purpose of potect. ing the goods and chattels mentioned therein aganist the creditors of the mort-gagor-and in case of an absolute sale, that the sale is bma tide and for good conslderation (naming the sum) and not for the purpose of holding the goods agninst the creditors of the bargainor.

The husband's property is not liable for debts contraeted by his wife prevous to her marriage, free from all liability for her husband's debts.

For form of wille and mode of attestation, see Form No. 45, p. 815.

RULLE FOR COMPUTING PERCENTAGES, PROFITS, \&c.

Rate rer Cent.-To find the Gain or Loss when the Cost and Rate per Cent. lis given.-Rule. Multiply the cost by the rato per cent. and point off two places to the right as cents. Example.- Bought flour for $\$ \mathbf{0} 00.00$, and sold it at an advance of 12 per cent. How much did I gain? 500 multiplied by 12 per cent. equals $\$ 60$.

To Find the Ratf peir Cent. wifen the Cost and Selling Pucz are KNown-Rule. Find the difference between the cost and selling price, the difference will be the gain or loss ; then nmex two clphers to the gain or loss so found and divide by the cost, the result will be the rate per cent. Example.-Sold a drove of cattle for $\$ 10,000$, which cost me $\$ 8,500$. What per cent. did I gain? Ans.- $\$ 10,000-8,500$ equals $\$ 1,500 ; 150,000$ divided by 8,500 equals 17 11-17 per cent.

To Determine the Cost when tife Sellina Price and time Ratr per Cent. of the Gain on Loss ane Given.-Riule. Anmex two diphers to the selling price and divide by $\$ 1.00$ increased by the rate per cent. of gain or loss. Example.-A cargo of coffee was sold for $\$ 25,000$ realizing a gain of 25 per ceut. What was the cost ? Ans. -1 plus 24 equals 1.25. 2500.00 dirided by $\$ 1.25$ equals $20,0 c 0$.

To Find the Cost when the Loss on Gain and the Rate pee Clint. Ane Given.- Rule. Annex two ciphers to the galn or loss and divide by the rate per cent. Example.-A lot of ice was sold at a profit of $\$ 3,000$, the percentage of the profit being 15 . What was the cost? Ans.- $: 000$ divided by 15, equals $\$ 2,000$.

To Find the Rate when the Cost and Gain or Loss are Given. -Rule. Annex two ciphers to the gain or loss and divide by the cost. Example.- A wime merchant sold n lot of wine which cost him sefo, and gained $\$ 130$. What was the galn per cent.? Ans. -13000.00 divided ly $\$ 50$ equals 20 per cent.

GES, ETC.
rn before the mayor or in Great Britain or Ired wn corporate, or lifines in Quebec, or of the r of any city, borough, or vice-consul of her , \&c., must be recorded according to priorty of di, in scling his realeselling her separate real
ird parties (If the goods lled in the office of tho is situate, and it sliail the expiration of tho est of the mortgagee in s void as against creditec, sworn before s coms, that the mortgagor is nentioned in said mortरpress purpose of securthe purpose of protectcreditors of the morh la ficle and for good conolding the goods against
ted by hils wifo previous debts. ©. 45, p. 815.

PROFITS, \&c.
en the Cost and Rate ho rate per cent. and ple.- lBought flour for How much did I gain?
and Selling Puca the cost and selling ammex two clphers to lie result will be the \% $\$ 10,000$, which cost $\$ 10,000-8,500$ equals ent.
Price and the Ratr bule. Annex two ciased by the rate per was sold for $\$ 25,000$ t? Ans. -1 plus 2
and the Rate per he gain or loss and was sold at a profit Flat was the cost?
or Loss ame Given. divide by tho cost. cost him sciso, and -13000.00 divided 1 Is

SPECIAL LAWS OF NEW BRUNSWICK.

Exemptions from Forced Sale,-There is no homestead law in this provlice. The wearing apparel, bedding, kitchen utensils, and tools of his trade or alling, to the value of $\$ 100$, of any debtor, are exempt from levy or sale under aseution.
Mecilanics' Lifx.-No house or other property in the province can be held bisle for debts due parties for furnishing materials for constructing or repairing ame.
Collection of Debts.-A person not having privilege may bo arrested and ped to bail or committed to prison on mesno process, in any cause of action within te jurisdiction of the Supreme or any County Court, if an aftidavit be first made the plaintiff or his agent of the plaintif's cause of action, and that the amount Sereof not being less than $\$ 20$ is justly due to the plaintiff, and that such arrest not made for the purpose of vexing or harassing the debtor. When the cause Iaction is net a debt certain a judge's order must bo obtained.
in actions in justices' Civil Courts and Parish Courts, a person may be arated on the plathitiff's making an aflidavit of his cause of action, and that after fring fuli credit for all payments and offsets tho defendant is lndebted to him in sam not exceeding $\$ 20$ nor less than $\$ 2$, as tho case may bo, and that ho is afraid losing his debt, and that he, the defendant, is of tho age of twenty-one years. Members of the legislature, juiges, and witnesses attending trial, aro exempt pon arrest, and in actions brought in justices' Civii Courts. Females also are rempt from arrest. No person can be arrested under an execution issued on a Figment in tho Supremo or County Courts, but arrest may bo made on a judg. sent obtaincd in Justices' Civil Courts, the City Court of St. John, the town of priand Civil Court, the city of Fredericton Civil Court, and In Civil Courts ld by Police or Stipendiary Magistrates, and in Parish Courts, to the amounts Which such courts respectively have jurisdiction.
Arrest and Imprisonment may be had and allowed for: 1. Default in the payent of a penalty or sum in the nature of a penalty other than a penalty in the wure of a contract. 2. Default in payment of any sum recoverable on summary mriction. 3. Default in payment of Connty, City, Town, Parish or District tes. 4. Default by an attorney or sollcitorin payment of a sum of money, when fierd to pay the samo in his character of an officer of tho Court making the der. 6. Default by a trustee or person acting in the fiduclary character, and dered to pay by the Court of Equity any sum in his possession or under his mitrol.
Decrees of the Court of Equity may bo enforced by exccution either against e goods or body. A debtor in custody may on notico apply, and on making guisite disclosure be discliarged, but if any property appears on disclosure it ybe attached.
The real or personal property within the province of any defendant, which by Ts liable to be taken in exccution, may in respect of any cause of action upon contract be attached and held as securlty to satisfy the judgment to the amount the attachment. A person at the time of entoring into a contract, may (exptin the case of a negotiable ins' ument) agree and stipulata as part of such htract, that in respect theroof the property of tho contracting party shall be subject to attrehment. Before any writ of attachment can issuc the platinfor some one on his behalf must make aflidavit of his cause of action, ainl of damount due, and (except in case of uegotiable instrmment, or when the caure uction arose prior to A pril 8th, 1874) that no agreement was made that an atchment should not issue, and also that the demand is not secured by mortgage Oherwise, and that the attachment is not sued out to vex, or to harass, or to der, delay, or defraud any creditor, and either: 1. That tho defendnit is a resicient of the province, and tho contract was made or is payable in the prov, or that the plaintiff is a resident of the province, or, 2 . That the defendant aresicient of the province, and that plaintift is apprehensive that unless attachat is issued that he may lose his demand. In cases of a contract other than a pract for the payment of money, no attachment shall issuo unless upon an fr of the Court or a judgo thereof.
Garnishment may issue to arrest money duo the debtor from third partios. eheriff having an execution may selze and take any money, or bank or Doplon notes, bonds. specialties or other securities for money belonging to the son against whom the execution is issued.
A justice of the peace has jurisdiction in actions of debt when the sum de-
manded docs not exceed the sum of $\$ 20$, and in actions of tort to real or personal property where damages claimed do not excecd 88, but they have not jurisdiction over civil actions where the Queen is a party, or where the title to land comes in question.

There is a Court in each parish (except when there is a resident Police or St pendiary Magistrate) called "The parish of (name of parish) Civil Court," wher the jurisuiction goes as high as 840 in actions of debt, and $\$ 16$ in actions of tort but has no jurisdiction over civil actions when the Queen is a party, or where the title to land comes in question.

There is also "The City Court of St. John"" and "The Town of Portland Ciri Court," having jurisdiction in actions of clebt to the amount of $\$ 80$, and $\$ 20$ in actions of tort. There is also the City of Fredericton Civil Court, having juris diction in actions of debt to the amount of $\$ 80$, and in actions of tort to th amount of $\$ 32$, but no jurisdiction over civil actions where the Queen is a party or the title to land comes in question.

The names of the several Courts are : Supreme Court, Circuit Court, Equin Court, Divorce and Matrimonial Court, County Courts, Probate Courts, St. Joh City Court, City of Fredericton Civil Court, Small Debt Court of Fredericto Town of Portland Civil Courts, Parish Courts, Justices' Civil Courts.

Judgments obtained in the Supreme and County Courts bind the lands of th debtor, on the party obtaining itfiling a memorial of the judgment in the offeed the Registrar of Deeds for the County in which the lands lie. Memorial must renewed every five years. Execution placed in the sheriff's hands for the pha pose of being executed will also bind the lands.

A debtor may obtain o full clisclarge from his debts by making an assignmen of his property and complying with the other stipulations required by the b minion Insolvent Act which is in force in this Province.

On Ieeds, Rigifts of Married Women, Wilis, \&c.-Deeds must be und seal; a scrawl is not sufficient, and one witness only is required by law. Befe the registry of any conveyance the execution of the same shall either be acknoy edged by the person executing the same, or be proved by the oath of a subscrif ing witness in the manner following, that is to eay :-If the execution of suf conveyance be acknowledged in the province, then such acknowledgment mar taken before a judge of the Supreme or any County Court, or a meniber of Executive or Legislative Council, or before any Registrar or Deputy Regisirat Deeds, or any Notary Public appointed, and resident in the province, and certif under his hand and ofllcial seal, or before any justice of the peace of the Cons in which the conveyance is to be registered. If the execution of such conre ance be proved in the province, such proof nay be taken by and before any of officials hercinbefore in this section mentioned, except a justice of tho peso provided always, that in cases where tho subscribing witness or witnesses to 2 such conveyance is dead or without the province, then the execution thereof be proved before the Supreme Court, or some Circuit or County Court, by the dinary legal proof. If such acknowledgment or proof be taken out of the provin the same slaall be taken by or before some one of the officials following, that is say :-Any commissioner for taking aftidavits and administering oaths ung Chapter 36 ; or before any commissioner authorized by the Lord Chancellorto minister oaths in Chancery in England; or before any Notary Public certio under his hand and ofticial seal ; or before the Mayor or Chief Magistrate of: city, borough, or municipality or town corporate, or the seal of such Mayor Chief Magistrate, or before any Judge of the Court of Queen's Bench, or ch -mon Pleas, or Baron of the Exchequer in Great Britain or Ireland, or Masted Chancery in Eugland or Ireland, or any judge or Lord of Session in Scotland, handwriting of any such judge baron, or Lord of Session being authentice under the seal of a Notary Public, or beforo a judge of any Court of Supry jurisdiction in any colony belonging to the Crown of Great Britain and Irels or any Dependancy thereof; or before any British Minister, Ambassador, Cong Vice-Consul, Acting Consul, pro-Consul, or Consular Agent of Her Majestr, ercising his functions in any forelgn place; or before the Governor of a sud and certified under the hand and Seal of office of such Minister, Ambassa Consul, Vice-Consul, Acting Consul, pro-Consul, Consular Agent or Goven If the conveyance be by a corporation, proof of the Corporate Seal shall is cases be sufficient.

A conveyance, or power of attorney for the same, by a married woman, d her right and interest in land jointly with her husband, shall be valid if exect without compulsion from him, and the person authorized by law to vake ackn edgments of conveyances in other cases certifying thereon that he has exam her apart from her husband, and that sho acknowledged that sho exccutal conveyance freely.

NICK.

tort to real or persona y have not jurisdietion - titio to land comes in

- resident Police or Stish) Civil Court," wher 1816 in actions of tort is a party, or where the
Town of Portland Cms count of $\$ 80$, and $\$ 20$ ir ivil Court, having juris n actions of tort toth are the Queen is a party
${ }^{\mathrm{rt}}$, Circuit Court, Equify Probate Courts, St. Joh bt Court of Fredericton Civil Courts.
rits bind the lands of to judgment in the office is lie. Memorial must
eriff's hands for the eriff's hands for the pul
by making an assignmed tions required by the 1
sc.-Deeds must be und required by law. Betoe ne shall either be acknow by the oath of a subscril -If the execution of sug h acknowledgment mar surt, or a member of trar or Deputy Registrat the province, and certife of the peace of the Cons execution of such conm en by and before any of pt a justice of the pead witness or witnerses to the execution thereof or County Court, by the o taken out of the provin fficials following, that is hdministering oaths una the Lord Chancellor to ny Notary Public ceriis or Chief Maglstrate of the seal of such Mayor if Queen's Bench. or Cy in or Ireland, or Master of Session in Scolland, ession being authenticy Great Britain of sury nister, Ambassador, Com Agent of Her Majestr, the Governor of a su uch Minister, Ambarss isular Agent or Goren Corporate Seal shall in
by a married woman, of l, ghall be valld if exect zed by law to lake ackn reon that he has exam ged that alhe excculal

A wife's property acquired before marriage is in no case liable for her hut mad's debts. The husband's property is liable for the wife's ante-nuptial debts jjudgment belng obtained against him.
Yortgages on chattol property are valid, and require to be registered, but not pery year. Billis of sale require to be rogistered in the Record Oftice. For iiib, consult Form No. 45, page 815.

SPECIAL LAWS OF QUEBEC.

[xemptions from Fonced Sale.-Personal property exempt from foreed 4 being used and owned by the debtor: Bed, bedding and bedstead; necessary parel for himself and fainily ; set of tablo and stovo furniture ; all spinning yeels and weaver's looms in use in the family ; 1 axe, 1 gun, 1 saw, 6 traps, fishin common use, and 10 volumes of books ; fuel and food for 30 days, worth ; 1 cow, 4 sheep, 2 hogs, with necessary fond for 30 days ; tools and instruyits used in his trade to tho valiae of $\$ 20$; 15 hives of bees, and wages and saline not jet due; besides certain other properties granted by the courts.

SPECIAL LAWS OF NOVA SCOTIA.

Expmptions from Forced Sale.-There is no homestead exemption law in Province. Nothing is exempt from forced sale oxcept personal property to mount of $\$ 40$.
Mecinnics' Lien.-No law exists to enforce a mechanics' lien in the Prov2. Creditor to secure himself on property must get a bill of salo on chattels, and have it recorded in County Registrar's oftice.
fur Collection of Debts.-Defendant is liable to arrest under execution beamount is $\$ 1$ or upwards ; and on affldavit by plaintiff that defendant is a kealed debtor, or is about to abscond from the Province with the intent and ign to def raud him out of his just debt, capias may issue and arrest ensue for sof $\$ 4$ and upward.
Writ and attachment may issue under the Absconding Debtor's Aet ngalnst ndant's property for sums of $\$ 20$ and upwards. A book account is outlawed years; a bond in 6 years; a noto in 6 years, and a judgment in 4 years. Juriscon of a justice of the peace is limited to $\$ 20$; two justices may render judgIfor 380 . The largest judgment obtainable \ln the County Court is $\$ 500$; the pont of judgment obtainable in the Superior Court is unlimited. Money canbe seized under execution. Judgments bind defendant's real and personal te as soon as obtained.
be husband's property is liable for debts contracted by his wife previous te riage, and as to his wife's estato acquired previous to marriage, the husband full control except over entailed property.

Miscellaneous Facts and Processes relating to Met allurgy, Gold and Silver Mining, Treatment d Ores, \&c.

In mining operations a knowledge of the following facts, calculation \&c., is of great utility.

In Measures of Eartif, Rock, \&c.
25 cub. ft. of sand $=1$ ton. 13 cub . ft. of quartz, unbroken in lode $=1 \mathrm{to}$ 17 cub. ft . of clay $=1$ ton. 20 cub. ft., broken from lode $=1$ ton cont. mea 18 cuble ft. solid earth $=1$ ton. 27 cubic ft. of loose earth $=1$ ton.

Table for the Conversion of English and Metrio Units.

1 Meter $=3.2807$ feet.
1 Foot $=0.3048 \mathrm{~m}$.
1 Liter (vol. of 1 kilog. water) = $0 \cdot 2202 \mathrm{gal}$.
1 Gallon (vol. of 10 lbs water) $=$ 4:541 liters.
1 Kilog. per sq. metcr $=0.2048 \mathrm{lbs}$. per sq. ft.
1 Kílog. per sq. mm. $=1422 \cdot 28 \mathrm{lbs}$. per sq. in.
1 Lb. per sq. in. $=703.0958$ kilogs. per sq. in .
1 Gram $=15 \cdot 4323 \mathrm{grs}$.
1 Grain $=0.0648$ gram.
1 Kilogrameter $=7 \cdot 2331 \mathrm{ft} .-\mathrm{lbg}$.

1 Foot-pound $=0.1383 \mathrm{kgm}$.
1 Atmosphere $=14.7 \mathrm{lbs}$. per sq. $=10 \cdot 333$ kilogs. per sq. meter 29.922 in . or 760 mm . of merea $=33.9 \mathrm{ft}$. or $10 \frac{1}{3}$ meters water.
1 Kllogram $=2.2046 \mathrm{lbs}$ ar.
1 Pound av. $=0.4536$ kilog.
1 Deg. Centigrade $=5-9 \mathrm{deg}$. F. -3
1 Deg. Fahrenheit $=9-5$ leg. C. 32°
1 Calorie (lilog. water raised 1° $=494$ kilogrameters $=30$ heat-units.
1 Heat-unit (lb. water raised 1° $=772 \mathrm{ft} .-\mathrm{lbs}=0.252 \mathrm{cal}$.

For additional items consult pp. 126 and 576.
Chapman's Tests for tife Hardness of Gold on Silyer Ores.
Hardness $=1.5$ yields with difficulty to the nail.
Hardness $=2.5$ does not yfeld to the nail, does not scratch a coin, is easily scratched by it.
Hardness $=3.5$ scratches a copper coin easily, but is scratched by itn difficulty.

For Table showing quantity of Gold to the ton of Ore, \&c., see page 6
There are in minerals cight shades of white, nine of grey, six of bla five of blue, tucelve of green and yellow, ffteen of red, and eight of bro besides clear, dark, light, or pale in these shades.
Metals have five degrees of lustre, splendent, shining, glistening, gllmu ing, dull.

Mardness of Minerals, beginning withe tike softest.

1. Talc ; common laminated, light 6. Feldspar ; white cleaveable green variety.
2. Gypsum, a crystallized varlety.
3. Calcareous spar ; a transparent
variety.
4. Fluor-Spar ; crystalline variety.
5. Apatite ; transparent variety.

6, 8. Scapolite : crystalline variety.
ety.
7. Quartz ; transparent.
8. Topaz ; trausparent.
9. Sapphire ; cleaveable varietice
10. Corundum.
11. Diamoud.

s relating to Met

 ing, Treatment olowing facts, calculation

K, \&c.
unbroken in lode $=1$ to n lode $=1$ ton cout. mea of loose earth $=1$ ton
and Metric Units.
md $=0.1383 \mathrm{kgm}$.
lere $=14.7$ lbs. per sq.
33 kilogs. per sq. meter
in. or 760 mm . of merca ft . or $10 \frac{1}{3}$ meters water. $\mathrm{a}=2 \cdot 2046 \mathrm{lbs} . \mathrm{av}$. $v_{0}=0.4536 \mathrm{kilog}$.
tigrade $=5-9$ deg. F. -3 hrenheit $=9-5$ leg. C.
lihog. water raised 1° kilogrameters $=3 n$ its.
${ }^{t}$ (lb. water ralsed 1^{0} $\mathrm{ct} .-\mathrm{lbs}=0.252 \mathrm{cal}$.
did or Silver Ores

il.

s not scratch a coin, ut is scratched by it

1 Ore, \&c., see page 68 ne of grey, six of bla red, and eight of bro
ing, glistening, gllma
'h THE softest.
; white cleaveable
transparent.
ransparent. ; cleaveable varietie m.

Diamond.
Ruby.
Sapphire. Topaz。

GINNING WITH THE HARDEST OWING ORDER, BEO
5. Myacinth.
6. Einerald.
7. Girmet.
8. Amethyst.
9. Agate.
10. Torquoise.
11. Opal.

In the Scoun of water-course Beds.

2 ft . per second will scour round fine gravel.
3 ft ." "، angular st shiugle, size of an diam.
Palce of Gold accordi" conglomeratu, size of an egg.
prth $\$ 20.67$ per AcCording to FINENE
pe, $\$ 14.49$; 800 fine, $\$ 16.50$ fine, is worth $\$ 10.33 ; 600$ fine 1000 fine, is *o, the charge for meltis3; 900 fine, $\$ 18.60$. At the fine, $\$ 12.40$; 700 arge for coining is tolting, assaying and refining is 14 ccuts in San Franms than $\$ 100$. The value of a ton of pure gold is $\$ 602700$. 21 . ra is $\$ 37,704.84$. The weight of $\$ 1,000,000$ in . The valne of a ton of silkpols. The weight of $\$ 1,000,000$ in silver coin gold coin is $3,685.8$ Jbs. avoirrother facts relating to the weight of the coin is $58,929.9$ libs. avoirdupois. rocint of Metallic Supe precious metals consult pp. 127Milorid ple substances : dide of silver, threequarters, ors, or nearly seventy-five per cent. Sult, ole-half, or fifty per cent., or seventy-five per cent. Bromide of silpeeseventis, or forty-three per cent a little more. Iodide of silver, eety per cent., generally more. cent. Oxide of silver, nine-tenths, or renty-five per cent. generally more. Nitrate of of silver iver, three-fourths or or ty jer cent. generally more. Nitrate of silver, two-thirds, ornearly

Table of some of the Properties of Various Metals. lames arranged in the order of their

intr.-To find the specific gravity of gold in a mixture of Gold and
quartz, divide the weight of the lump in air by gold, quartz or auriferreight water. To find the weight of an equal by the welght of an equal weight of the lump in water from the an equal amount of water, deduct lump is to be weighed in water, it should bht of the lump in air. When to hang into the water; keeping of be suspended by a horse-hair ts clear of the water. water ; keeping, of course, all other parts of the

Phillips gives the following rule for ascertaining the amount of gold ins lump of aurlferous quartz :
"The speclfic gravity of the gold- 10,000 .
"The specific gravity of the quartz- 2,600 .
"These numbers are given here merely for convenlence in explaining the rule; they do sot accurately represent the specific gravities of all quarta and quartz gold. (The quartz gold of California has not, on an average, specific gravity of more than 18,600 .)
"1. Ascertain the specitic gravity of the lump. Suppose it to be 8,067 .
"2. Deduct the specific gravity of the lump from the specific gravity the gold ; the difference is the ratio of the quartz by volume : 19,000-8,00 $=10,033$.
"3. Dednct the apecific gravity of the quartz from the apecific pravity the lump; the difference is the ratio of the gold by volume: 8,06i-2,000 $=5,467$.
"4. Add these ratlos together, and proceed by the rule of proportion The product is the percentage of gold by bulk : $10,933+5,467=16,400$. The as 16,400 is to 5,467 , so is 100 to 33,35 .
"5. Multiply the porcentage of gold by bulk ly its specific gravity. Th product is the ratio of the gold in the lump by welght: $33,35 \times 19,00=$ 643,65.
"6. Multiply the percentage of quartz by bulk (whlch must he ce, 6 since that of the gold is 33,35) by its specific gravity. Thie product is th ratio of the quartz in tho lump by weight: $66,65 \times 2,60=173,29$.
"7. To flud the percentage, add these two ratios together, and procee by the rule of proportion : $633,65+173,20=800,94$ Then, as 806,94 is G33,65, so is 100 to 78,53 . Hence, a lump of auriferons quartz, haviug specific gravity of 8,067 , contains 78,73 per cent. of gold, by weight.

Gold-bearing quartz is always found near granite and slate, so that it labor lost to search for gold where the primary grunite is covered, thousand of feet deep, with stratified rocks, as in the coal beds of Penusylyania, orth blue limestone of south-western Ohio. The probabilities are that gold wi be found whero granite, slate, and quartz are found togethcr. It is welle tablished that all native gold either is or was at one time embedded quartz, hence the common saying, "quartz is the mother of gold." Place gold appears to have been liberated by the crumbling of quartz; and wherever gold is found in granite, or other rocks, the theory is that it h been communicated from neighboring quartz while all were in a conditid of fusion.
Tho poorest quartz that is worked ylelds $\$ 10$ per ton, some yiclds $\$+0$ per ton, but the richest yein, on an average, will possibly not be over $\$ 100$

Gold is usually found in metallic condition, but never free from silre The proportion of silver in the gold of the Comstock lode is from 30 to per cent., in that of the Gold Hill lode, N. T., 47 to 50 per cent. Gila Rir and Anstralian gold contains from 3 to 5 per cent. Up to July 2, 1si8, entlre product of the two mines known as the California and Consolidat Virginia may be divided as $\$ 45,000,000$ gold, and $\$ 55,000,000$ silver. T color of gold varies according to the proportion of silver it contains, CO cent. of silver imparts a white color to the alloy.

In gold mining, the precious metal not being found in ore, is eliminnt from the containing quartz or alluvium by very simple mechanical chemical processes; in silver mining, the metal is found in many varief of ore, each of which must be reduced by intricate chemical proces varied by the character of the mineral under treatment.

The busiuess of mining resembles a lottery ; in Mexico, the Count Re obtained for many years $\$ 5,000,000$ per annum from them; Count Valenciy $\$ 1,250,000$, and the Marquis del Apardado got $\$ 4,000,000$ in six months fry a minc. In the United States, among those who have been lifted into no ble !rominence hysuccessful mining operations may he mentinied in

QUAI'TZ.
Yackey, chicf owner of the Consolidated Virginia mine, whose realth is estimated at about $\$ 80,000,000$; Hon. William Sharon, of Nevada, supposed to be worth about $\$ 90,000,000$; James G. Fuir, supt. of the Consolidated Virginia and Callfornia mines, estimated wealth about $\$ 50,000,000$; Hon. I. 1 . Jones of Nevada, worth about $\$ 70,000,000$, and many others. All are highly gifted with practical sagacity in minlng matters, and as a general rule workef their way upwards through many reverses. The miner who would atthin success inust qualify himself by toiling to obtain tho knowledgo necesary for his guidance in emergencies. Let him not dispense with it after the fashion of the miner who once brought a specimen of a aupposed very rleh pold ore to a San Francisco assayer for examination. On being informed that it was nothing but iron pyrites, and not worth a cent a ton, the aswunded miner exclaimed in thie direst dismay : "Great Creation! there is an old woman up our way who owns a hill of it, and I married her !"
The sllver mines of Potosi are so notably rich that $\$ 47,000,000$ have been mined there since 1845 . On the opposite side of the chain are the celebrated diver mines of Guantajaya, onco famons for the large lumps of silver formtely found there, one of which weighed 800 lbs .
A l'eruvian legend of questionable veracity narrates the finding of a large lanp or nugget of native gold welghing 400 lbs. at the mine of San Juan de (rin), on the headwaters of the Amazon river, during the reign of Charles the Fifth.
From time immemorial the mines of Peru have been fabulously rich in silver products. This was the inciting cause of the barbarous enormities add rapacity of the Spaniards at the time of their conquest of the country, in murdering the inhabitants and plundering the tombs of the Inca kings, the royal repositories, and ancient temples. From one temple, that of Cusco, the robbers obtained $\$ 11,000,000$.
by a parity of what we must regard as retributivo justice, much of the rast wealth obtained by these enormities from the helpless natives in Spanish Sonth America and tho West Indies, was in turn pillaged from the Ireebooters by armed vessels under the English flag. These mutual plunderings extended over a long succession of years, and during the reign of rndious monarchs.
In Peru, the immense silver-bearing deposits of the Cerro de Pasco mines have been worked since 1630. They are situated on the castern slde of the western Cordillera of the Andes, at an elevation of $14,000 \mathrm{ft}$ above tide level, and in consequence have hitherto been difficult of access, but under the new muditions created by the construction of tho Trans-Andean railway (one of the ronders of Sontli America), an outpot of 20,000 tous of ore per day is spoken of as a possible amount. At present there are 80 stamps at work, each with au estimated capacity of crushing 5 tons of ore per day, but 200 or 300 head are looked forward to as a small number at an early day. The oro will aserage abont $\$ 30$ per ton, and the anticipated ammmal production of the mines is $\$ 100,000,000$. From $\$ 250,000,000$ to $\$ 500,000,000$ of free milling ores wid he left above drainago level by tho new tumnel lately constructed; thesc ores it is proposed to excavate hy means of steam shovels, and load directly into railway trucks, which deliver them at the top of the mill. Tho witer power is supplied from a stream issuing from a lake near the mines, and is utilized by six double turbine water wheels, manufactured by James Leffel \& Co., Springfield, Ohio. Four of these turbines are of 30 ins. diam., cach developing 200 horse-power, and two of 23 ins. diam., developing 100 horse-power each. The mineral railway, undonbtedly the highest in the morld, is 7 miles long, and cost $\$ 1,200,000$, the object of the ruad being to transport ores from the mines to water-power for milling purposes. The folling stock, bridges, rails, \&c., of the road, were transported from tho coast, nearly 200 miles distant, on the backs of mules, over alınost impassible roads. Nothing weighing over 300 lbs. could be carried; even the plinders of the locomotives were brought in sections.

The silver mine of Potosi is sugar-loal in form, 9 miles round, $\mathbf{1 6 , 0 0 0}$ it above the level of the sea, and 2700 above the plain. The upper part has 5000 adits for mines. South America, per Humboldt, yields per amum $\$ 43,000,000$ worth of silver ; at the prescut time the yield is much wreater. One mine is a third of a mile deep, and 8 miles in length, employing 3000 miserables. In Pcru over 40 districts are famous for their vast mineral wealth in gold and silver.

In Russia, the immense mines of Siberia are government property, and are worked by miserable unfortureses who have been banislied by a cruel despotism for crimes which are in many casen merely imaginary ; the wretelied exiles, when once consigned to their gloony depths, aro never permittel to emerge into the light of day, but death, more merciful than the tyrunt, soon ends the strife, for fow survive the ordeal nore than 9 yearn.

The "wealth of the Indies" is no poet's dream ; there the mines are indigenous, and the accumulation of the preclous metals has been such that it is usually estimated that Nadir Shah, in 1740, carried away not less than 1600 or $\$ 2,000,000,000$. In Jahomqueir's anto-biograply, lio relates that a golden plistform around his throne weighed 40 tons. His throne and crown were worth $\$ 20,000,000$. On hils marriago ho presented his queen with as many lacs of rupees as amounted to $\$ 44,000,000$, and with 11 necklace of 40 beads which cost him $\$ 10,000$ per bead. Ho spent besides $\$ 10,000,000$ on the tomb of his father Akbar, one of tho wonders of India. Tho province of Berar, on one occasion, furnished above $\$ 20,000,000 \mathrm{in}$ gold.

The celling of tho pavilion of tho l'eacock Hall in Delht was orginally corered with silver filigree work, but in $\mathbf{1 7 9 9}$ the Muhratt:ss, after the capture of the city, took the silver down and melted it, the valne of the same being estimated at $\$ 1,000,000$. Ilere was the famous peacock throne, so called from its having tho figures of two peacocks standing belhind it, their tails being expanded, and the whole no inlaid with sapphires, rubies, cmeralds, and other precions stones of appropriate colors, as to represent lifo. The throne itself is 6 ft . long ly 4 ft . broad ; it stood on six massive fect, which, with the body, trere of solid gold, Inlaid with rubies, emeralds and dinmonds. It was surrounded with a canopy of gold supported iny 12 pillars, emblazoned with costly gems, and a frluge of pearls around the borders of the canopy. Between the peacocks stood the figure of a parrot, life size, carved from a sillgle emerald. On elther side of the throne stood a chatta, or umbrellia (one of the Oriental embleas of royalty) made of crinnoli velvet, embroidered and fringed with pearls. The handles were 8 ft . long, of solid gold, and studded with dianonds. The cost of this superb work of art was estimatel at $\$ 25,000,000$.

The Melbourro Herald thus describes the "Welcome nugget," weighing $18 t$ lbs. Troy, and worth $\$ 42,000$, found at Ballarat, Australia, on the $9 t h$ Jume, 1858, at a depth of 190 ft . below the surface of the earth: "A large, mitshapen, irregular lump of gold, water-worn and rounded upon each of the numernus edges presented by a surface completely and moro or less houe. combed. Its total length is about 20 inches, its greatest breadth about i: inches, and its greatest depth abont 8 inches." Other murgets varying ia welght from 10 to 45 ozs . had previously been taken from th e same claim.

Another nugget welghing 145 lbs. was found at Korong, Australia, during the summer of 1857, in the form of a solid mass of virgin gold, 2 ft . 4 ims long., 10 ins broad, and from 1 to 2 ins. thiek, estlmated value $\$ 35,000$.

Vietorin, in Anstralin, is world renowned from tho discovery of its inmense gold fields in 1851, which in 1852 produced the enormons amount of $\$ 70,000,000$.

A nugget weighing 161 llos. avoirdupois (ineluding about 20 lbs. of quarts) of an estimated valuc of $\$ 29,000$, was found in Calaveras Co., California, ion November, 18 H 4.
l'erhaps not less thun from 1800 to 2000 nuggets, weighing 1 lb . or more each, have beenfond from time to time in Californin. Of these probaid.
ilen round, 16,000 it The upper part has It, yields per annum ield is much reater: rgth, employing 3000 or their vast mineral
rent property, and are tislied by a cruel dee. ginary ; the wretched re never pormitted to :Ifnt than the tymut, han 9 yeami. re the mines are indi. as been such thatitiss ay not less than 1000 o relates that a golden rone and crown were queen with as many thecklace of 40 beade $10,000,000$ on the tomb e province of Berar,
elhi was orglnally corttas, after the capture line of the same being :ock throne, so called g brolind it , their tailh 4 , rubies, elueralds, and escut life. The throne vo feet, which, with the and diamonds. It was lars, emblazoned with 3 of the canopy. Beize, carved from a siluatta, or umbrella (ome fi. velvet, embroidered ng, of solid gold, and sof art was estinuted
mugget," weighing 1 |st ralia, on the Thih June, hith: "A large, milded upon each of the (d moro or less home. est breadth about i: r nur'sets varying in ron the same clain. ong, Australla, during irgin gold, 2 ft. 4 ins. ed value $\$ 35,000$.
odiscovery of its ingenorrious amount of
rout 20 libe. of quarte: ras Co., California, in eighling 1 lb or more of these probatr
pesthan 140 weigh over 20 lbs . each. Nuggets weighing from 1 to 7 ozs. barn been found in immense numbers.
Colorado presents a confuence of wouders in the form of mineral deposits, rhich it would require a volune to describe.
In tho Silver Clifs, near Rosita, in what is knownas the Hardscrahble district, the newly discovered mine, worked by lowell, Edwards and Hafford (named the "Racine lloy"), yields a return of 875 ozs. of silver to tho an. The low grade pans out 100 oza. and npward. The mine is att present (Sor. 1878) not over 10 ft . deep and almost 25 ft . wide, but yields, with a bery small forec of men, between $\$ 2000$ and $\$ 3000$ pier day. So far the mine has yielded nothing but horn silver, a chloride carried in decompored xpphyry full of seams; the ore is found in deposits without any crevico teins or distinct walls. Voleanie upheavals seen to havo burst the prinary maite, and to have forced througli chimueyed passages masses of eruptien sariug molten precions metals. The silver hris been cooled anid a mixmeo of porphyry, manganits, feldspar, gypsum, and other mineral substauces ore or less decomposed and unstratifiecl. Four miles sonth-enst of the Mrer Cliffs is the great "Maine mine," which made a very poor man a milbanaire in one jenr.
In Leacicille, a notable mining region, high up in the Colorado mountains, Sc minemi is found in layers, one above another, with a regular and conmons dip into the gronid. Some of the mine lave disclosed the existence Dtwo or tiree deposity י"Ilerlying the first mineral vein struck by a shaft, mamy singular variato ns fron the nsual form of mineral deposits have ken olserved here, presenting a notable contrast to the prevailing type in haliornia and the other parts of Colorado. The mineral carries 100 ozs . of hirer per ton and upwards, in high grade or s , and from 25 to 60 ozs. In ungrade ores, while the jercentage of lead varies from 00 to 70 . The orfa zina sand or soft rock and are easily dug' out with piek and drill, tho mality improving with the increase of depth.
on September 3, 1878, a miner, while prospecting abme half a mile in toguleh on Bald Momitain, discovered a mine of marvellons richness. The mis of similar character, but of a much higher grade, than the ore nbove ved, much of it ruming as high as 3000 ozs. per ton. A mining expert esmated the value of the mine at $\$ 1,000,000$; the owner asserted that ho dised \$250,000 for it, yet six weeks previously he had not money enongh bury a pair of boots!
Bention is made of a prospector who. 'ylite recently exploring on the ext side of Bodie Bluff, laid liare with 1 trokes of his pick inn 8 inel fin ef white quartz, ultmost filled with soh , and that the samples asvel $\$ 40,000$ per ton lin gold and $\$ 1500$ in silver !
Recent examimations of tho Arizonia mining region by Prof. Cox of Ind., an demonstrated that the mining property of Sonth Arizonia, once develace, would supply the world with precious metals. Three shafts in tho emfh Nat Mine, in the Tombstone io trict, averaging 10 ft . deep, shor: a Nid hody of ore, which, at the low nuerage of \$ico to the ton, will yield 2400,00i). He was present when assays were made of ore from this inine fing from $\$ 1,000$ to $\$ 27,000$ pe: ton. The comditions as regards timber:and ater are vastly silferior to similar surromings in the mining regions of ploralo and Nevala.
For several years, mining under the most mifarorable conditions las en progressiuk on silver 1slet, at storm-benten ledge, sithate about / mila min the main land, and exposed to the full sweep of gor miles of latie perion tempests. The locality is on the Canadian shore, 17 miles north Cape Royale, and millea ensi of Thunder Cape. The cre, when first disyercil, appeared as streaks of shining white, from 3 to 10 ft. under water, dproved to be worth from $\$ 1400$ to 87000 pier tom, the general avernge fing $\$ 1500$, of the kind kuown as "packing ore," beting sufficiently rich
to be shipped in barrels and smelted without further treatment. The work. ings, which penetrato 1000 ft . under water, are protected by means of a system of breakwaters, eribs, coffer dams, \&c., ballisted with rocks and chay, erected at Immense cost and with much difflenliy. On many oceasions furious storms liave utterly wrecked the works, swoeping away cribs, rocke, buildings, \&e., leaving aothing but ruin and desolation behind, causiug incredible expense to reclaim and maintain the mine. The richest deposit was found March 20, 1878. For the week ending September 28, 1878, the yield was $\$ 43,000 ;$ Oct. $5, \$ 73,000$; Oct. $12, \$ 69,000$; Oct. $19, \$ 103,000$; Oct. 29 , $\$ 80,000$. The richness of ore increases with the deptli: 50 head of stimp crush 60 tons daily.

The Homestako Mine, Black Hills, has an 80 stamp mill, crushing 1 io tons of ore per day, yielding $\$ 900$ per ton; another 80 stamp mill is to be finished by spring. The cost of mining and milling varies from $\$ 2.50$ th $\$ \$ 3.50$ per ton ; daily profit $\$ 1000$. It is estimated that 10 years' supply of oro is in sight, and that 500 stamps could be supplied.
'lhe mines on the Comstock lode yielded, during the $\mathbf{2 3}$ years following their discovery, $\$ 500,000,000$ in gold and silver bullion, and have wastef $\$ 250,000,0<0$ more.

In North America, the mineral wealth of the Uuited States, Mexico, and the British possesisions, is absolutely incalculable. Notwithstanding the enormons yield of the mines during lite years, the discovery of new fields of astonishing richmess is at the present time(1878) a matter of almost deily occurrence. It is asserted, on good authority, that during 60 years prior to 5 mi., 1878, there have been created in the countries west of the Missoun River, and mostly on United States territory, bullion yalues to the amoung of $\$ 1,943,000,000$. Of this sum abont $\$ 1,586,000,000$ has been composed of gold, very little silver laving been produced prior to 1861 , when the Come stock deposits, discovered 3 years before, began first to turn out this meth In notable quintity. Of the $\$ 36,000,000$ turned ont by the Comstoek lode in 1877, 43 per cent. has beengold. Of the hase bullion made in Eureka dis. trict last year (1877), valued at $\$ 12,000,000$, over 16 per cent. was gold. Thi bullion from Nevada is nearly 40 per cent. gold. Since the beginning of 1861, the production of gold for the entire Pacific coast has heen $\$ 876,000$, 000 ; of silver, $\$ 372,000,000$. During 1877, the bullion values consistedo abont $\$ 51,000,000$ gold, and $\$ 49,000,000$ silver.

The following tabulated statement is interesting, as showing the graded ally inereasing product of the mines on the Pacific coast diaring the 4 year noted in the table:

1873.	1874.	1875.	${ }^{18} 76$
Californi.ı. $\$ 18,025,722$	\$20,300,531	\$ $17,753,15^{\circ}$	\$19,000,00
Nevadit. $35,251,507$	35,452,233	40,478,3r	49,300, M6
Orcaron. 1,376,389	(60), 070	1,165, ${ }^{\text {c46 }}$	1,200,001
W:shington 200,345	155,535	1,81,932	100.0
Irliho. $2,343,654$	1.880,004	1,5ib4, $\mathbf{N O S}^{2}$	1,700,0
Moutaun. $3,892,810$	6,4339,498	3,573,600)	2,800, 0
litalı 4,9010337	6,011,278	5,687,494	5, 000000
Arizona. 47,778	26,016	109, 0, \% 3	1,400, 01
Colorado. 4,083, 268	4,191,405	6,2¢,, 817	7,000,00
Mexico. 80 \% ${ }^{\text {, } 798}$	798,878	2,408,671	S,200, 0
Britislı Columbia. . . . 1,230,035	1,636,057	1,776,953	1, ive, 0
	\$74,401, 0 \%	\$80,889,037	\$91,800.00

The product of 1876 will be swelled to $\$ 93,000,000$ by adding the sum $\$ 1,200,000$ to represent the yleld of W yoming, Dakota and New Mexico.

As illustratice of the fluetuating valne of mining property, it may
atment. The workcted by means of a with rocks and clar, On many occasione ag away cribs, rocks, a behind, causiug in-- richest deposit was er 28,1878 , the yicld 19, \$103,000; Oct. 2 $\$$ 1: 50 head of stamy
ip mill, crushing 10 so stanmp mill is tu le varies from $\$ 2.50$ to at 10 years' supply ut
the 23 years following lon, and have wastel
al States, Mexico, aud Notwithstanding the covery of new ficlds of aatter of almost deils uring 50 years prior to s west of the Missoun values to the amomy has been composed on - 1861, when the Com to turn out this metha of the Comstock lode in er cent. was gold Since the beginniug ist has been \$876,000 ion values consisted
as showing the gradu oast during the 4 year

by adding the sum a and New Mexico. lg property, it may 1878, the stoct: of

Sierra Nerada and Union Consolidated Mines, which had been selling at 4 per share, took n sudden leap to $\$ 190$, being equivalent to the fabulous amount of $\$ 30,000,000$ additional capital, each mine having 108,000 shares. So ore had previonsly been found below the 1.800 foot level, but an incalcuhable quantity of rich ore had been found by still deeper penetration. Some specimens are reported to have assayed thousands of dollars to a ton, and are notatble specimen not less than $\$ 10,000$.

The Gwin Mine in Calaveras Co.,Cal., is 1400 ft . deep, runs 80 stamps, and yields 860,000 to $\$ 70,000$ per month, of which amount one-half is clear profit.

Of the quartz mines in Soulnmme Co. one, the Confidence, from a gross product of $\$ 611,853$, paid to the owners $\$ 195,000$ in dividends, besides payhg in full for equipment.
The yield of the Gilpin Co. (Colorado) mines, for the year 1876, was 8,105, 037 , and tho product of the Boston and Colomdo Smelting Works at black Hawk, Col., derived from Gilpin Co. ores, was $\$ 2,061,244$, coin value.
le evidence of the absorbing interest pervadiug the publle mind regard-
We vast mining industries of the comntry, it may be noted that churing at last two weeks of $18^{-7} 8$ no less than 20 mining companies were incorpi:Fited in S:n Francisco, with an aggregate capital of over $\$ 200,000,000$.
On the lacific coast the productive eapacity of the mines is greatly virwiled by dry seasons and a short water supply, as a full allowance of this dement is ic ispensable in hydranlic mining, and for the operation of the are-crus? 1 ug mills wherever steam power is not available.
Among the serions obstacles in mining at profomd depths may be menjoned tho influx of water and tho high temperature of the mine. In cases there the workings are kept above the adit level the wate! will pass away bracia this channel by its own gravity, and no pumps will be required; when the excavations penerrate decper than this the water nust be elehava hymps or other machinery up to that point. In cansing the water make its exit through the adit level an enormons saving is effected, for kierwise the water would have to bo pumped 'o the summit of the shaft, requently at a vast expense. It sometimes liappens that a single adit is made to drain a chain of mines, as in the west of Comwall the "great dit." as it is called, which extends, including its bramehes to various mines, rer 30 miles, and conveys away a torrent of water resembling a small river: paddition to datining off the water, the adit smbserves the important use Ireutilating the mine by causing a cireulation of air, and the puskage may evill further nitized as a tran-way for the conveyance of ore and rubbisil Fom the interior excasations, tho outflow of the water being effected frongh a chamel beneath the tran-way. The water is ralsed by the pumpgg machi ery froms the "Sump," or bottom of the engine shaft, which is enerally sunk below the deapest level oi the mine, so as to form a pit into finch the water may flow before being pmoped up,
In refer ire to the temperature of mines, the solar heat, as a general le, exerts at influence at a greater depth than from 50 to 100 ft . At l'anis, determined by Doisson, a thermometer placed at a depth of 76 ft . remains ationars all the year ronnd. By penetrating into the earth beneath the nut uffected by the solar lieat, we find a regnlar and rapid increase of mperature. In Coruwali, with a surface temperature of 50°, the tompersare of the rock in the Dalcontl mine, at at deptil of $1: 381 \mathrm{ft}$., is 75.6°; the auperature of springs at a depth of 1410 ft . is soo ; in tho linited CopIf Nines, Cornwall, the temperathre of the rock at 1201 ft . is 88°; in the maxato Silver Mine, Mexico, with a surface temperatuo of 68.8°, the paperature of springs at a depth of 1713 ft . was 98.2°. The last noted inyne indicutes 1° of heat for every 45.8 ft . : observations recorded in Engad give 44 ft . for a change of 1 degree ; in Saxony it is considerably preat-- belug nearly 65 ft . to a degree ; and a fer observations in the Unitad

States indicate 54 ft . to a degrer. According to Kuptier, the average for the various countries whero observations have been made, is 36.81 ft . to a degree, but this rate of increase is manifestly too rapid; for assuming it io be true, a heat sufficient to boil water would be found at a depth of $5!62 \mathrm{ft}$, or slightly more than a mile, at 48 miies a temperature of 7000°, sufficient to melt all known rocks, and at the centre of the earth it wuld amount to $577,000^{\circ}$.

The deepest artesian well in the world is at Pesth, Hungary, being 3900 ft. deep, or about twice the depth of that in Paris. It sends up a jet of boilling water 42 ft . high.

Of the rocks encountered by miners, it may be noted that the crystalline rocks are tho granitic series of quartz, feldspar, mien, gneiss, syenite, porphyry, green-stone, basalt, and compact lavas, ail in varieties.

Quertz is the base of all the silicious compounds in nature, and is dicthiguished by the hardness of the bodies, as crystals, gritty sand, \&c. It camot be cut with a knife, and strikes fire with steel. It in 96 or 97 parts, silica in 100, and 2 or 3 of clay and lime.

Syenite is a middle rock between granite and porphyry, composed of feldspar and hornblende, or quartz and mica.

Feldspar is composed of lamina or plates. Its constituents aro silica and almmina, with some potnsh. Abounds in granite, syenite, gnelss, and pors phyry. When large crystals of feldspar nppear in granites they we called porphyritic. Feldspar, next to quartz, is the most abminat stone, being, constituent of granite and other rocks; it scratches glass, gives out spark with steel, is of a vitrified nature, and when crumbled forms the basis of clay. Feldspar is white, red, or gray, and consists of 64 in 100 darts 0 silex, 19 of clay, 2 of lime, 13 of potash, and 1 of oxide of iron.

Mica, the cther equal part of granite, is 47 sillen, 22 clay, 14.5 potash.! oxide of iron, and 1.75 oxide of manganese. Mica is occasionally foundis large plates, is tough, flexible, elastio, semi-transpurent, and sometimes use as at substitute iur glass. When decom;osed by the atmosphero or won down, it mixes with the clay of the feldspar or the sand of the quartz.

Porphyry is stone, with a compast base, intermixed with crystals. baso is trap, and the cryatals feldspar or quartz.

Serpentine is so called from its variegnted colors, usunlly groen; compose of 32 sillca, $37 \frac{1}{2}$ magnesia, half aluminn, $10 \frac{1}{2}$ lime, with fron and catromi acid 15.

Curved anciss proves that it was once flnid; it is in slaty hyers or plate formed of feldspar, quartz and mica, separated by thin layers of mica. contains la its veins all the metals, and follows the sinuosities of the gramite

Hornblende is 42 silica, 20 oxide of iron, 12 clay, and 11 lime.
Augitc is 54 silica. 22 lime, 12 magnesia, and 10 oxlde of iron.
The Schistose strata are inclined from 52 to 70 degrees in mountains.
Maynesian Limestone contains about 20 magnesia, 30 lime, 48 carbon acid, clay and oxide of iron. It renders dilnte nitric acid milky, and effe vesces little lin acids.

Mica slate is mingled with quartz in masses ; clay slate has quarts layers.

C'ribonate of lime, forming one-eighth of the crust of the giobe, contail 56 purts in 100 of oxygen.
portlund stone is coarse grit, cemented with eaitioy spar.
Fomery is a minern containing 86 alumina, 3 silica, atid 4 iron.
Corundum is a stone, which in crystals is a six-sided prism, called ad mantine spar.

The hardness of rocks is a surprise to many, int all wonder will cee when we consider the effects of heat, combined with the pressure of surf incumbent rocks during millions of years, in forming rocks of primag graywacke from sand, and primary slates from clay. In exploring or pa pecting for minernl veins, it is well to remember that gold is not contiv
cks.
cr, the average for the de , is 36.81 ft . to a defor assuming it to be π depth of 5962 ft, or of 7000°, sufficient to this it wuld amount to

1, Hungary, being 3300 sends up a jet of boil-
ited that the erystalline ca, gneiss, syenite, porvaricties.
s in nature, and is dian als, gritty sand, \&c. If eel. It in 96 or 97 parts.
porphyry, composed of mstitnents are silica and yenite, gnelss, and pors granites they are calle abundant stone, being 3 glass, gives out spark bled forms the basis of is of 64 in 1 con parts of side of iron.
, 22 clay, 14.5 potash, 15 is occusionally found is rent, and sometimes use the atmosphere or wor sand of the quartz. pixed with crystals. 'Tlu
usually green; compore , with iron and carbou
a in slaty luyers or plate by thin layers of mien. inuosities of the gramir
and 11 lime.
oxide of iron. egrees in monntains. sia, 30 lime, 48 carbon ric acid milky, and effe
clay slate has quarts
ust of the globe, contail
fity spar.
ica, aid 4 iron.
-sided prism, called ad
but all wonder will cey In the pressure of sury rming rocks of prima y. In exploring or ${ }^{n}$ that gold is not contiv
to one class of rocks. In Mariposa, Cal., some gold-bearing quartz veins arc in granite, but tho largest and richest are in slato ; the noted Oneida, Keystome, Eureka and Springhill veins are also in slate, together with the most valuable veins in Amador. The vein of the Eureka had a thickness of fift. at its "outerop" on the surface of the ground; and down to a depth of 1300 ft., to which it has been worked, the thickness and value has constantly increased with the sinking. In the Calaveras district, rich gold-bearing quartz veins are found both in limestono and granite; In Tuolumne the richest veins occur in granite; in the Alta district the "wall-rock" is serpenfine, with white talc in the richest deposits.

Fig. 1.
Ground plan of the intersiction of lodes in the Vimurelfalirt mine.
The engraving, sketched hy Welssenbach, shows the ab;ensinhe presented the intersection of two veins in the IImmelfahrt mine, near frelburg, Permany.
Metallic ores exist in four ways: 1. In irregular masses. 2. In. fissures. reins crossing the stratil and filled with the ore, combined with some ntrix. 3. In regular interstratified layers or beds, and 4. lutermixed in mall fragments among the ricks.
A howledge of geology and geometry is of the ntmost value to the antical miner to aid him in ascertaining the location of mineal deposits, Wto operate to the best advantagn in obtaining possession of them. The strments used are : 1. The magnetic compass ; it is used to determine edirection of a metallic deposit in places where the influence of iron is went. 2. The graduated semi-circle or clinometer, which is used to easure the dip or angle of the lode. 3. The chain or cord, to measure stances between two points. 4. A plane table or phate whenever tho orimity of iron nullifies the action of the compass.
In exploring for mheral veins, abundant experience has shown the priry importance of the following suggestions: 1. That they are more meruns in mountainous and litly districts than in the level territory. 2.

Thut the richest lodes occur about the junction of the crystalline and stratilied rocks, and are more abmondant in the former than in the latter. 3 . That their situation is frequently determined by the color of the land, which is often influenced by the decomposition of part of the mineral components, and scattered fragments of the vein intermingled with the soil. 4. In eases where the location of the bearing is partially ascertained, the lodo may frequently be fousd by sinking a shaft throurh strata into the underlying roek, and thence driving adrift or tunnel at right angles to the bearing of the lode. 5. The best proof of the existence of a lode is the discovery of its outcrops ; this sets every doubt at rest. For further information, see I'rospectin! for Quartz, page 45 s.

Gold-bearing quartz veins, in California, gencrally run from noth north-west to south south-east, with Ω steep dip to the eastward. The diffusion of gold through the quartz is very megual, and the lodes vary from a line to 50 ft . Two onnces of gold to 1 lb . of rock is a rarity greatly admired by quartz miners, for that proportion is held to be exceedingly rieh in the precions metal.

Mineral veins are usually graded into apecies, of which the prevailing forms are: 1. Tho Rake vein, which extends downwards to unknoma depths, is frequently many miles in length, and is the prevailing type of the mineral veins most highly valued by miners. Beginuing at the "ontcrop " it perforates the strata downwards almost to their plane of stratifiention. It also intersects or penctrutes the granite rocks. The inclination or "dip" of these veins varies from Ω few degrees to n vertical direction. ". The Interlaced vein, which is composed of many small veins grouped together like irregular net work, is frequently surrounded by granito roeks, and more usanlly bear the ores of than any others. 3. The Pipe vein, which appears like an irregular slanft filled with ore, is usually found be tucen the stratal. This class of veins present a grent variety of sizes, and the angle of inclination is generally less than the dip of the rake rein. 4 , The Dilated or Flat vein, which in its extension is subject to varying contractions and expansions, is fomid in flattened masses in horizontal posi tions like seams of coal, but differs from Ω coal bed by great variation is thlekness withi: the distance of a few feet wherever breaks or interrup tions occur. Tho best mimeral deposits are often found at these fanlts. 3 The Accumulated vein, usually found filling large vacancies in the earth, is a great irregular mass of ore, apparently isolated from all other minera daposits. Veins of thls elass occur interposed between the stratified roek and also in the granite.

As to the nature and origin of the spaces oceupied by metallic veins they are : 1. The cracks and fissures made in rocks. i. Openings be tween their layers, especially in Schistose or slaty kinds. These crevices of flssures are produced in great numbers where a region of rock is under Going uplift or where a folding of the strata is in progress, owing to eant quakes or other movements of the earth's depths. The mineral contentso these crevices may have been charged: 1. When the fissures or cresim were filled from either side or below, and did not descend to regions liquid rock, being not eomected with igneous ejectlons. These include: manded mineral veins, and nearly all those filled with quartz or granity The intense heat, acting on the moisture present, wonld hevitably decom pose the rekes ; then their miacral matt remer or later would be swey into the creviees, and, in combination vith emanations from the depe parts, form metallic lodes. Also, 2. Whene the rents or fissures descend wregions of lignid rock and were filled from bolow. In this case the mind eral contents of the veln have been bronght up in come state of combirg tion as solutions or vapons. The velus of silver ores in Nevada and mas others thus originated in comection with subterranean disturbmees.

Werner's theory is that open fissures in the eart!'s ernst were filla with crystalliue aud metallic matter by aqueons infiltrations from abore
crystalline and strati1an in the latter. 3. lor of the land, which mineral components, the soil. 4. In cases ed, the lodo may freo the underlying rook, to the bearing of the is the discovery of its information, seo Pros-
fally run from nooth eastward. The difd the lodes vary from is a rarity greatly adto be exceedingly rich
f which the prevailiur whwards to unknown the prevailing type of Beginning at the"onttheir plane of stratificicks. The inclination on a vertical direction. mall reins grouped to unded by granite rocko, hers. 3. The Pipe tein re, is usually found be eat variety of sizes, and lip of the rake vein. subject to varying conprses in horizontal posi. ped by great variation iu ver breaks or interrup ound at these fults. acancies in the earth, i, from all other minera veen the stratified rock
upied by metallic veime rocks. 2. Openings le inds. These crevices a egion of rock is under ogress, owing to carth The mineral contentso the fissures or crevion t descend to reglons ons. These include a with quartz or granith onld inevitaily decoll r later would be swe ations from the deefo ts or tissures descend In this case the nind conle state of combing - ill Nevada and mas enn disturbmaces. irt!!'s crnst were fill ufiltrations from abore
and that the substances of mineral veins have been precipitated from a chaotic inenstruum into fissures in the carth while it was in some nascent mandition.
Dr. Hutton contends that the contents of mineral veins, like those of dikes, were formerly molten, and while in this condition were injected from helow by mechanical force.
Dr. Buckland and M. Neckar propound the theory that the contents of jome metallic lodes were deposited in crevices and fissures in the earth's Fnst by the condensation of mineral celialations fron immense subtermenn fountalns of intensely heated matter.
Sir IR. Phillips contends that metals are generated ly long continued wanic action between mixed rocks, and are the Au'co of rocks, comblned fith oxygen, nitrogen and hydrogen, whose actions and reactions are clecficty. The results are a matrix, a cempound of some of the peculiar anria fith oxygen mad hydrogen ; exhalations from the lower parts of tho vein fe also to be considered. Ores and crystallizations aro therefore direct polnets of the oxygen and hydrogen rendered active in electricity, and of e exudations and aura of the rocks and strata. Proximity is not essential electrical influences; the walls of fissures may be affected by exciteents from a distance.
It is asserted that a hole drilled into anriferous quartz in the Urals, and teniled to bo used for blasting, but never so used, was examined 40 years fier it was made, and found to be full of fine crystals of gold.
From the present known existence of electro-currents in many Comish fins, and the analogy between voltaic combinations and the arrangement Imatter In mineral veins, Mr. Fox and M. Becquerel reason that the foration of many metallic lodes aro due to electro-chemical ngencies.
When veide fissures or fractures of strata are filled with stones or canth, ey are called faults or dikes, but when charged with mineral contents ec are called veins. The tests of a probable mine are metallic ores or Iill at the onterop, mineral waters, trees or grass discolored, and tho proyets of boring.
The best systems of minerals are those of Berzilius, and the chemical mugement of Molis; Naumann unites them. As a writer on the minAl kingdom, mines, furnaces, tho treatment of ores, \&c., Emannel Swemhorg occupies a liggla rank.
Of late years among works of notable ntility to miners may be menned, l'hillips' Elements of Mctallurgy; Duna's Manual of Mineralogy; padell's Quertz Operator's Mand-Book; Siluersmith's Practicel Ilandth for Miners; Kustcl's Processes of Siluer and Golel Extraction. Most the engravings of furnaces and some of the amalgmaiting pans deibed in this liook are taken from the last noted work, which maly le remed as absolutely indispensable to every progressive miner. Due acowledgments are also rendered to other standard authors. :necessful ners and experienced mill-men, for much of the valuable information sented in these pages.
The superficial appearance of the outcrop of veins often indicate the thls they contuin. The presence of finorspire indicates metallic associama wherever fomm. A brown powder at the surface indicates iron, and atin ; a palo yellow powder, lead, and green, copper. Gold and silver found in primary and transition rocks, porphyry, yuartz, syenite, and lowest sandstone, oceasionally in coals, and abindantly in the sands friers. llatinn, palladium, rhedium, (sminm, and iridinm are found lost wholly in the sands of rivers. Mercury is found in slate, limestone, coal strata. Copper in primary and transition rocks, syenite (sometimes dstone), coal strata, and alluvial ground. Iron is found in every kind of b, tin in granite. gneiss, mica-slate, and slate, lead and zine in primary transition rocks (except tran and serpentine), porphyry, sycnite, the
lowost sandstone, and occasionally in coal strata. Gold is yellow, coppet red, iron, grey, lead, blue, cobalt and manganese, grey ; all the others an white.

Fig. 2 represents the transverso section of a minoral vein, in which, it mining nomenclature, A A represents the "country," or rock composing th
 mugh, F, korse. Waste rock or rubbish is termed deads or attle ; workings in a inine by persons of whom no record remains are termed old men; as opening left for letting down ore is called a pass; tho place at which a liwe divides in two is named point of horse; the lowest workinge in a mincer level are called bottoms; the appearance of a mineral lode at the surfaci called an outcrop; the amount of slope of a mineral vein mensured from? horizontal lino is termed a dip; a horizontal or nearly horizontal workingi a mine is called a drift, gallery, level, or gunny; the substance in which or

Fig. 2.-Transverse Section of a Vitn.
is found embedded is termed the matrix ; a cavern or fissure in which mat falls and disappears is called a swallow; the ascending air-current from mine is termed an upcast, the downward current is called a downcast, \& \&c. Most of these terms, together with a yocabulary of similar technim ties, derive their origin from the Cornish miners.

Metals are always found as alloys, sulphurets, oxides, or salts. Gir platinum, and columbinm, are found only as alloys. Silver, mercury, m per, iron, antimony, arsenic, and cobalt, in the four states. Lead andz: In the three last. Tungsten, uranium, litanium, chromium, and tantalin only as oxides. In density, the order of metals is platina, gold, silver, m cury, lead, copper, tin, iron, zinc.

Few metals are found purc or native, but in ores, gangues or compoun combined with oxygen or acids; often two or more resulting metals, π sulphur, arsenic, \&c., in veins of rocks, the foreign bodies being call mineralizers, as sulphur is to lead, forming sulphuret of lead, called gale

The age of metals is estimated by that of the containing rocks; the: of the latter it is not possible to determine even approximately. In treati
old is yellow, coppee ey ; all the othery ant
toral vein, in which, in or rock composing the ot-roall, D D, selvage, 6 ds or attle ; working is o terined old men; e place at which a lued workings in a mine al lode at the surface ivein mensured from ly horizontal working substance in which on

1 goological epochs, Dama remarks : "If time, from the commencement of io Silurinn formations (thoso resting on the granite) included 48 millions of pars, which some geologists would pronounce much too low an estimate, the deozoic part, according to the above ratio, would comprise 36 millions, fe Mesozic, 9 millions, and Cenzoic, 3 millions. It shonld be noted, howker, that as rocks are formed of earth, and as metals aro found mainly in fins and crevices of rocks, that they must be of more recent origin than ehitter.
The nibove noted estimate of geological time will doubtess astonish many th have been led, by a mistaken appreliension of the true meaning of fnesis, to suppose that only alont covo years lave elapsed since the cren\#n. For further evideneo on this sulbject, see Gicological Fucls; A/fe, figin, and Ultimate Duration of the Eurih, on page 728. The adamantine yts of geology render very slight homage to the cherished errors of the ford, and have struck fenrful blows at the old explanations of Generis, at time is a powerful remodeller. Already nearly 300 centuries attest the enal verity of the grand truths for the propagation of which Bruno suffrel denth and Galileo endured impriso ument, for their alleged inconsistkry with the Jewish cosmogony, which, in describing an apparent truth, eiks of "the rising of the sun and the going down of the same" accordto appearances as presented to the senses.
The world has withessed with astonishment the disgraceful treatment acrded to Sir James Y. Simplson, by infamons bigots, who lusisted that his emane nse of aniestlietics to mitigate the pains of women in labor wns ither more nor less than a direct contravention of the primeval curse, fich afllrmed that "in sorrow she shonld bring forth cliildren." It is safe sy that the blgots did not belong to the female sex. At this day suela abmility would not be tolerated a single hour.
The popular outcry which at one time denounced the use of the lightuing adictor as a flagrant defiance of heaven is also silenced forever. Railroads Itelegraphas have been similarly denounced. These insanities are now mbered with the things of the jast.
If is notorionsly true that in Scotland the faming mill was fiercely asled as un ungodly machine, and tho inventor was subjected to persecution arrogant lumatics who asserted that nothing could be either good or usofnl fich contruvened the passage which rends:-" The wind bloweth where it feth." Now millions uso fanuing mills during their lifetine without ever inkligg of such an objection.
Thie science of zeology is as yet in its infancy, but its teachings liave met a very general aceeptime among intelligent observers. It is rophistry affirm that what is new, must, for that reason, necessarily be false, for of disclosures unfolded by the stony facts of geology we are compelled to m that they must be true, though at variance with the beliefs of a thoudgenerations.
A high authority has classified the placers of California as follows :-

1. A coarse, boulder-like drift, the result of abrasion and powerful curis in a great body of water.
2. A river drift or coarso alluvium, ancient and modern.
3. Alluvial deposits ou flats and broad surfaces, not confined to river muels.
4. Lacustrine deposits made at the bottoms of former lakes and ponds. *y are found in extensive, basin-sliaped depressions in the surface of amorphic rocks. These depressions have evidently been tilled with deep ot water, from which thick strata of elay, fine sand, and volcanic ashes ebeen deposited upon the anriferous layer at the bottom.
In the gullies and ravines the auriferous dirt is generally a very stiff Fabounding in coarse gravel and stones, and is usually as wide as the man of water during the wet season. In a ravine where the extreme th of the stream does not exceed sf ft, as a general rulo the pay-dirt will
not be more than a foot deop, with a bed of barren dirt on top. Where the chamel of a stream in a smatl ravino has slightly changed, the pay-dirt may be butied under 6 or 8 ft . of alluvial soil. The gold will not lodge on the smooth or steep bed rock of n gully ; the richests spots will be found where tho bed is level, and whero the stratib of the rock are almost vertical and pro sent many jagged points to detain tho gold, the largest pieces Leing usually found near the bed roek in the deepest part of the stream.

In alluvial workings, near rivers and streams, the various companies whe work nelyhtoring claims often elab together and construet a large flum futo which the stream is conducted by means of a strong barrieado or wing dam of rocks timber, mud, \&c., which canses a diversion of the curred leaving tho led of the river nearly dry, thas affording access for working it to good advantago. The strean affords plenty of water.for mining purg

Fig. 3.-Flume Minina.
poses, together with ample power for operating under shot wheels for wo Ing pumps to rid the elaims of the surplas water which accumulates in workings. See Fig. 3, representing flume mining.

For Placer Mining, lSocr'l S'luice Process, seo page 453 ; for Iyydras Minine!, Lony Tom Process, \&c., see page 454; for Gold Assay by smelli Process; Goll Assay with a IIorn Spoon; Assay of Rock containing Pyrit Silver Assay b!! Smeltiny; Assay of Argentiferous Galena; Silver Ase with Testing Tube ; Test for Iron or Copper Pyrites, see puge 451; for Pr pecting for Quartz; l'rospecting a Rieer Bar ; Prospecting in a Gu Prospecting in Flats; Prospectiny with a Knife, \&e., see prge 452.

In order to thoroughly dispel the common illusion that a mino is me a vast excivation in the earth, exposed to the open ahr, yain, storms. like a quarry, it may be well to enlighten tho reader by presenting a ficts relating to sonic of tho silver mines on the Comstock lode in Neva At the main shaft and hoisting works of the Consolidated Virginia Miod Company, wo find a great mass of buildings, resembling in rast mang tory, contitining engine and boiler houses, mnehine shop, blackemith st carpenter shop, sand numerous offices comected with the works. aro
rt on top. Where vire nged, the pay-dirt mand will not lodge on the ts will be found wherd dmost yertical and prod st pieces Leing uswalls, enil.
varions companles whi onstruct π liarge ilum rong barricado or win version of the current ig access for worliling water for mining pur

der shot whecls for was hish nceumulates in
pago 453; for Hydras Gold Assay by smelty Rock containing Pyrita us Galena; Silver 4 s, seo page 451; for Prospecting in " Cula c., see page 452.
ion that a mino is me yeln air, railu, storms.
fder omstock presenting ${ }^{2}$ olidated Virginia Miid enbling a vast mania e ehop, blackemith is rith the works. Arod
the buildings aro cnormous piles of timber and lumbor, resembiling the surroundings of an immense saw-mill with its accumulated stock. This thanber is used for supports, \&c., in the mino, and it is safe to say that more timber has been absorbed by theso mines than there is in all the louses in San Francisco.
The main slaft appears as an opening in the floor, about 5 ft . in width, and 20 ft . in length, with a depth of 2000 ft ., and is securely cribbed by means of substantial timbers. This opening is divided into four compartments by means of partitions rumning from the top to the bottom of the haft ; three of these four compartments are used for hoisting purposes, and in these the hoisting cages pass up and down to and frons the various keres, after the manmer of an elevator through tho various stories of a high building. Tho fourth compartment is oceupied by the tanks and pump wiamn ; an iron pipe from 12 to 16 ins. diam., through which the water is fored from the lower levels of the mine to the surface by menns of tho massive pumping machluory. The cages in the different divisions work idependent of each other; one may bo golng down while the other in ping up, or one may bo at rest while the others are in motion.
The motive power for hoisting is supplied by powerful engines at the mposite end of the building, abont 50 or 60 ft . distant from the shaft, and th hoisting is offocted by means of a flat cablo, some 5 or 6 ins. wido, a ins. thitck, and braided of the best quality of steel wire. This cablo is round and univound on an enormous reel situated noar the engine, and tho geat iron wheels and pulleys which sastain the cables are supported on What is termed the gallows frame, a huge structure composed of massive wright and cross timbers constrincted directly orer the mouth of the shaft. The positions of the cages in the shafts are indicated to tho engineer by reans of a hand moving orer a dial in the engine room, and the signals for torating and lowering the cages aro struck on bells near the engincer by urties in the cages or lovels below.
The entire machinery of the works is driven by a compound condensing gino of 600 horso-power ; the engine lias two cylinders, tho first 24×48 x, and the second 48×48 ins. in size. Tho manin shaft of cugino is 14 ins. pm., and woighs 15,000 lbs. On this shaft is a fly wheel (which is also a Ted wheol, carrying a belt by which the batteries are driven) 18 ft . in am., and woighing $16 \frac{1}{f}$ tons. On the oxtromo end of the main driving Tht is conpled a shaft 11 ins. diam., extending into the amalganating wom, and driving the pans, agitators, \&c. Engino weighs about 50 tons; pero are 8 boilers, ench 54 ins. diam. and 16 ft . in leugth. The smoke acks are 4 in number, 42 ins. diam. and 90 ft. high.
In tho now stamp mill of this company (100 ft . long and 68 ft wide) ere are 60 stamps, each weighing 800 lbs., the whole requiring one car $2 d(1800 \mathrm{lbs}$.) of ore to be sent ont from tho shaft every 5 ininutes during oday and night. Tho stamps aro driven by a belt from tho main band 41 lly whecl ; the belt is 24 ins. in width, and 160 ft . in length ; speed 0 ft . per minute. This runs the conuter-shaft in front of the batterics, 1 from the pullies on this counter-shaft there are belts 14 ins. wide and 60 loug, which run each battery of 10 stamps. The batteries are fed by the allocll self-feeders, ono feeder being required for every 5 stamps, and two en only aro required to oversee the whole, without any handing of the Thero aro 32 analganating pans, each pan holding about 2000 lhs. of Hy from tho batteries, and thero are 8 settlers to each pair of pans. Tha puthly loss of quicksilver alono in the mills of the company is estimated from $\$ 60,000$ to $\$ 80,000$. The owners have to-day 11 mills, ranging from to 80 stamps, making altogether a battery force of 375 stamps, the gest stamp capable of pulverizing 5 tons of ore every 24 hours. The ole human forco employed in these mills numbers 622 men, when the ils are ruming to their fill capacity.
From 500 to 700 men are cmployed and divided into three shifts, each

IMAGE EVALUATION TEST TARGET (MT-3)

shift working 8 hours. One shift goes on at 7 a.m., one at 3 p.m., and anotherat $11 \mathrm{p} . \mathrm{m}$. Order is respected in every thing ; there are superintendents, foremen, engineers, miners, timbermen, watchmen, pumpmen, pickboys, \&ec. Each employee in the mine has his duties assigned him, which must be performed, and each is confined to his own level, and there only.

Fig. 4.-Diagram Illustrating Height of Mines.
To describe the mine, we will in imagination compare it to a house enormous altitude and vast dimensions on the earth ; this house won require to be 2000 ft . high, with 20 storles or floors, each 100 ft . apart. is safe to say that such ab building was never constructed, and never will in this worid. To an observer in Wall strcet, or on Broadway, New Yot
one at 3 p.m., and lere are superintenden, pumpmen, pichassigned him, which el, and there only.

Trinity Church presents an imposing spectacle, but our imaginary building, representing the Consolidated Virginia mino, would be nearly 7 times higher! In the mines on the Comstock lode there are 20 miles of difts, gallerien, cross-cuts, slafts, winzes, \&c., and as one mine co mects with another, thero are what might be called strects, 3 miles long. The main workings are all lighted with lamps and condles which are always liept burning. Quite a number of engines are in operation in the lower levels hoisting timber to the miners, elevating ore at tho winzes, operating Burleigh drills, and driving fans or blowers (like those used in a foundry) to supply fresh air to the workmen Tho are panting, with the heat in distant parts of the miue. These engines are run by compressed air, furnished by powerful compressors at the kurhace, as owing to the high temperature at these profound depths steam

Fig. b.-Miners fainting from Heat in the Lower Leveis of the Comstock.
engines conld not bo tolerated a single hour. When at work tho miners are naked to the waist, and some from the middle of tho thigins to their feet. The only garments worn are a pair of thin pantaloons or overalls, fitotit shoes, and a light hat or small felt cap to protect the head from the falling sand. Notwithstanding all this many faint outright from the effects of the heat.

One month's supplies for this mine may be estimated as follows, viz. : $500,000 \mathrm{ft}$. of timber, 550 cords of wood, 350 boxes of candles, 2 tons of giant-powder, 100 gals. of coal-nil, 200 do. of lard oil, 800 lbs . of tallow, $20,000 \mathrm{ft}$. of fuse, 37 tons of ice, 3000 bush. charcoal, $1 \frac{1}{2}$ tons of stcel, 5 tims of round and square iron, 4 tons of liard coal, 50 leegs of mails, \&ec. Monthly wages, $\$ 90,000$. Miners receive $\$ 4$ per day, englneers, carpenters, machinists, blacksmiths, \&cc., from $\$ 5$ to $\$ 7$ per day.

The Savage and Hale and Norcross mines on the Comstock lodo l:ave
shafts $6 \times 20 \mathrm{ft}$., and 2500 ft . decp. The Sarage Company intend to sink their present shaft to a depth of 4000 ft . Their great hoisting cable of steel wire is 4000 ft . long, weighs 25,190 lbs., and is wound and unwound on a cone-shaped reel 15 ft . long, with a diam. of 22 ft . at the large end and 13 ft . at the small one. The reel is suspended on a cast-iron shaft 16 ins , in diam., the ends of which revolve in ponderons bearings sustained by foundations of cutstone resting on the solid rock. The engines for driving the huge reel aro two in mumber, of 200 horse-power each, and are capable of hoisting from 480 to 500 tons of ore every 24 hours. The hoisting car used on the lower incline is made wholly of iron and steel, runs on an iron track, and holds abont 5 tons of rock. The incline begins at the foot of the vertical shaft, 1300 ft . below the surface, and runs to tho lower levels of the mine. The hoisting cages on tho mines of the Comstock are all supplied with safety appliances, which operate instantanconsly in arresting the descent of the cage in the event of the eable breaking.

Fig. 6.-Sutho Tunnel.
As showing the vast sums of money disbursed by capitalists wheu full confideuce oxists of obtaining remuncrative returns from mining operations, it may be interesting to note the following items regarding the ontfit of a mine which has not as yet produced a cent's worth of ore. The works will be, when finished, a boiler house 102 ft . long, 50 ft . wide, containing 10 boilcrs, 54 ins. diam., 16 ft . long ; one main lioisting room, 151 ft . long, 40 ft . wide, 48 ft . hight ; a carpenter shop, 50 ft . wido by 100 ft . long, for framing tho timbers for the shaft, a machine shop, $50 \times 100 \mathrm{ft}$., and a blacksmith's shop, $40 \times 60 \mathrm{ft}$.

At tho shift is a donble cylinder, high pressure, direct-acting engine, both cylinders being comected with ono shaft carrying two reels for winding the ropes. It is of 1200 horse-power, and capaile of hoisting 10 tons of ore from a depth of nearly, if not quite, one mile. The crank shaft weighs nearly 40 tons, and is ono piece of wrought iron. The intended piston speed
apany intend to sink oisting cable of steel and unwound on a the large end and 13 -iron shaft 16 ins. in rs sustained by foungines for driving the , and are capablo of ohoisting car used on on an iron track, and foot of the vertical levels of the mine. supplied with safety tho descent of the

pitalists when full mining operations, ling the outfit of a c. The works will vide, containing 10 om, 151 ft . long, 40 ft. long, for fram0 ft ., and a black-
acting engine, both pls for winding the ing 10 tons of ore rank slaft wcighs mded piston speed
is 960 ft . per minute, which will tako a " cage" through the shaft at railray speed. The cables used in the shaft aro made of anmealed steel wire, 7 inches wide and $\frac{3}{4}$ ins. thick, and are wonnd on the reels like a ribbon on a spool. The reels aro 15 ft diam., will hold 4000 ft . of cable, and each is fitted with powerful brakes and safety appliances to regulate the movements of the cages. The engine fommdations are solid masonry, 56 ft . long, 38 ft . wide, and 22 ft . deep, to which tho engines aro bolted with 803 -in. and 3 -in. bolts, reaching the bottom of the stone work. The piston rods and all the valve rods are of steel, and the valves of hard brass.

The pumping engine is a horizontal compond condensing engine, direct acting. The cylinders are of the following dimensions : The initial cylinder is 33 ins diam. and 12 ft stroke. The expansion cylinder is 66 ins. diam. and 12 ft . stroke ; engine shait 20 ins . in diam., about 18 ft . long, and has a fly-wheel on each end 30 ft . in diam., and each wheel weighs 20 tons. The cugine and line of pumps for 1200 ft . weigh 749 tons. The cost price of cngine and pumps before erection was $\$ 200,000$. It is to drive two lines of 14 iuch pumps of 10 ft . stroke. Its web of cams, rods, cut-off gear, aircushions, drop-weights, \&c., display the highest skill in workmanship.

Fig. 7.-Longitudinal Seotron of the Comstock Lode, showing thr different Mining Clams located therfon, the ore dodieb extracted, and tie intersection of the Sutro Tunnel with the Lode at b., exc.

The Sutro tumnel, a work withont a compeer in mining enterprises on this continent, was begun October 19, 1869 ; the object being to penetrate the mines on the Comstock lode at a point nearly 2000 ft . below the surfaco of the earth, and thos form an ontlet for the drainage and rapid transit for the miners and their supplies, together with quick transportation for the ore and mineral matter taken from the mines. It enters the mountains in tho valley of the Carson river, at the town of Sutro, $3 \frac{1}{2}$ miles below Dayton, $1 \frac{1}{2}$ miles from the river, 150 ft . above the river bed, and strikes the 1640 ft . level of the Savage mine at a point 20,018 ft. from the month of the tumel. The work was prosecuted day and night with a result of from 13 ft . to $16_{2}^{\mathrm{f}} \mathrm{ft}$. per day, until on July 8, 1878, a comection was made with the above noted shaft. A wire-tramway, rmming from the Carson river to the mines, will soon be in operation throngh tho whole length of the tmuncl, with an ontfit of rolling stock capable of transporting 1000 mincrs from the village of Sutro to the mines in 15 minutes. During the past years, nearly 2000 miners havo been employed in these mines, and hours have been consumed at each shift in sending down tho men in cages, a dozen or so at a time.

Tho mines on the Comstock lode, and all other mines in tho district, are compelled for all time, to pay tho Tumnel Company $\$ 2$ per ton for cvery ton of ore extracted and sent to the mills for reduction. The rates established for transportation is 25 cents per ton per mile over the 4 miles of
main tunnel, and 25 cents each way for persons. Ice, now sold to the mining companies at $\$ 20$ per ton, can be supplied in unlimited quantities by the Tumel Company from its ponds on the Carson river, at less than \&ै 1 per ton. Cordwood, now sold in Virginia city at $\$ 12$ per cord, ean be passed through the tumel, elevated nearly 2000 ft. through the main shaft, and laid down for $\$ 8$ per cord.

Fig. 8.-Geological Crose Section of the Coustry from tife enthance of the Sutro Tunnel to and beyond the Comstock Lode; also the Four Shafts on the Tunnel line.
The notable sanitary uses subserved by the tumnel has already dissipated the poisonous gases in the lower drifts of tho Savago mines, and lowered tho temperature of the 2000 ft level from 120° to 90° Falir. A covered steamtight drain is to be constructed the entire length of the tumel (under the railroad track) to form an outlet for the drainage of the mine. Much of tho water in the workings stands at a temperature of 160° Fahr., and if this was passed through the tammel in an open channel, no living thing could exist, owing to the hot, confine i vapor. It is further intended to utilize this water as a source of power for moving the long trains of cars used in trausporting tino miners, together with their necessury stores, timber, ore, \&c. The discharge of this water has heretofore been effected at un ammal cost of $\$ 3,000,000$. The drainage mnst pass through 10 pumps and tanks, through 2000 ft . of iron pipe, from 12 to 16 ins. diam., before reaching the surface. The great iron pump rod, 2000 ft . in length, and hung at several points with immense balance bobs to prevent it from being torm asmender by its own weight, is kept continually swaying up and down at its round of duty. Henceforward this drainage will only require to be elevated to the tumnel level in order to find an outlet. The Tunnel Company have so far expended on the tunnel, with the immense shafts, buildings, machino slops, engines, \&c., connected therewith, the vast sum of $\$ 3,200,000$, and the projected branches and extensions towards tho various mines will still absorb a large additional sum. In carrying out this wonderful enterprise the obstacles presented by nature were of the most formidable discription and well nigh insurmountable, but they were finally overcome by the untiring energy and indomitable perseverance of Mr. Sutro, who brought to the execution of this herculean task, an iron will, and \AA rarc combination of executive abilities.

Many rich deposits of marrelleus extent have been found on the Comstock lode, but on the 1500 foot level has been discovered what appears to be the central mass, a body of ore unparalleled in extent and valne by any thing hitherto known. This has enjoyed world-wide fame under the name of the "Big Bonanza" (a Mexican term denoting a large and rich body of ore-prosperity. Borrasca is the very opposite of bonanza, and signifies burren-rock -bad luck-adversity), and measures 900 ft . in length, 550 in depth, and from 30 to 203 ft thick.

W sold to the mining ed quantities by the , at less than \&1 per cord, can le passed the main shaft, and

FROM TIJF ENTIGANCE IMSTOCK LODE; ALSO
has already dissipated ines, and lowered the r. Λ covered steamthe tumnel (under the tho mine. Bruch of of 160° Fahr., and if mel, no living thing s further intended to e long trains of cars necessary stores, timfore been effected at ss through 10 pumps 16 ins. diam., before t. in length, and hung it it from being torn f up and down at its equire to be elevated nel Company have so , buildings, machine n of $\$ 3,200,000$, aud rious mines will still vonderful enterprise primidable discription prercome by the unitro, who brought to a rarc combination of
und on the Comstock at appears to be the valuo by any thing ider the name of the th body of ore-prossignifies burren-rock 1, 550 in depth, aud

The immense chasm, rent, or fissure in the rocks, which is filled by the "vein-matter," or gangue (pronounced yany) forming the Comstock lode, extends from the cast country rock (proplylite) to the west country rock (sycnite), a distance of from 1000 to 1200 ft . The gangue is composed of quartz, porphyry and clay, which incloses the ore. This chasm, known to be about 4 miles long and about 1200 ft . wide, was undonbtedly formed during ages inconceivably remote, by means of volcanic action, and immense fragments of rock appear to have broken away from the edges of the chasm, lallen into the crevice, and thus prevented its closing. In mining nomenclature these are termed "horses;" they still remain in the vein, and the ore, quartz, \&c., has filled up all the space around them. Some of the "horses" are of great extent, being from 50 to 100 ft in length, with proprtionate thickness, while others are at least 1000 ft . in length, and from 303 to 400 ft. thick. The fragments from the west side of the crevicc are syenite, thiose from the east side are prophylite, usually termed porphyry by the miners.

The charging of this enormous crevice with what now forms the mineral contents of the Constock lode, is manifestly the work of subterranean forces combiued with $1:$ is mineral water, stean, gases, \&c., from boiling springs bereath, which have filled up the vein with its rich sulphurets and other ores of silver. Traces of hot springs are everywhere visible on thie neighboring hills to the castward of the vein, und the noted steamboat springs, only a few miles distant, are eveu now in full blast, engaged in the formation of a metallic lode by the emission of hot mineral water, steam, and enormons rolumes of heated gas, through a crevice over a mile in length. Who will not say that here we fud one of the instrumentalities of creative power in the very act, as it were, of replenishing the earth with the gitts of a beneficent Providence ?

The action of boiling springs is due, 1. To the access of subterranem maters to heated rocks, producing steam, which seeks exit by upward vents: 2 To cooler superficial waters descending chamels to where the stean prevents further descent, and gradually accumulating until tho channel is filled to the top: 3. To the heating of these mper waters by the steam from below, to near the boiling point, when the lower portion of these upper waters becomes convorted into steam, and the eruption, or jet of water resilts.
The dynamics of volcanic force is an interesting study. The roar of Niagara is a gentle zephyr compared with the bellowing of a volcano. The power required to rupture a battery of steam boilers is as nothing compared with the inconceivablo energy necessary for the upheaval of monntains, tho rending of rocks, the raising of islands from the ocean's bed, and forcing ont the melted lava from bencath the gneiss and granite. Very frequently harge fragments of theso rocks are broken off and thrown out with the lava: Cotopaxi, nearly $20,000 \mathrm{ft}$. high, has projected a stone 109 cabic y ds. in volnme to the distance of 9 niles, and has thrown matter 6000 ft . above its summit. This of itself would require a force of nearly 1500 atmospheres, or 22,500 lbs. to the square inch! In 1660, the amonnt of lava ejected by Mount Etna was 20 times greater thun the whole mass of the mountain, and in 1669, when 77,000 persons were destroyed, the lava covered 84 square miles. In the eruption from Skaptar Jokul, in Iceland, during 1783, two gtreans of hava flowed in opposito directions, one of them 50 miles long and 12 broad, and the other 40 miles long and 7 broad; both laving an average thickness of 100 ft ., which was sometimes increased to 500 or 600 ft ; ; twenty rillages and 9000 inhabitants were destroyed. The seat of volcanic power must be deeply seated beneath the earth's crust, where the heat is extremely intense ; lava ejected over 100 years ago from Jorullo, in Mexico, 1600 ft . high, is not yet cool. The lava thrown out of Etna in 1819, was in motion 9 months later at tho rate of a yard a day, and lava from a previous eruption of the same mountain was in motion alter the lapse of 10 years.

Not only do very many monntains and mineral lodes owe their origin to volcanic action, but numerous islands as well. Tho Sandwich islands, of which Ilawaii, the largest, contains 4000 square miles of surface and rises $18,000 \mathrm{ft}$. above the ocean ; Tencriffe, $13,000 \mathrm{ft}$. high ; the Madeira, Iceland, Sicily, Bourbon, St. Helena, Java, Sumatra, Tristan d'Acmina, l'aroe and Azore islands, with much of Celebes, Japan, \&c., are mainly composed of lava and rocks, as sandstono and llmestone, upheaved by volcanic action. Such are somo of the effects of that tremendous power which in the hauds of Omnipotenco has played so impoztant a part in the formation of the labitalle globe.

During the most ancient times, and in the divinely framed languago of inspiration, silver is used as the primary symbol to denoto truth. Truth is as an ocean, vast and inexhaustible. Of a verity the symbolis in this instance true to its original, for such a thing as an exhausted silver mine has never been known within the memory of man. Pliny speaks of silver-mines being worked during his time to the depth of a mile and a half. The old Spanish mines, opened long before the time of IIamibal, are still worked with enormons profits ; the Hungarian hilnes, worked hy the Romans long prior to the Christian era, aro still productive; the South American silver mines have yielded great profits during 300 years. The silver mines in the Hartz mountains, and at Freiberg, Germany, discovered during the 11th century, and worked constantly ever since, yield a steady increase. The Mexican silver mines havo yielded, since tho Spanish Conquest up to 1860, \$2,039,100,000, and aro even now enormously rich. In Sweden and Norway, silver mines worked before the discovery of America are still yielding profitable returns. The Cerro de Paseo mines, Pern, discovered in 1630, from which 5,000,000 lbs. of silver havo been taken in 45 years, are still productive. The entiro silver vield of Spain is at present about $100,000 \mathrm{lbs}$. troy per ammm. In Bolivia, S. A., the ammal production of silver is at present about $450,000 \mathrm{lbs}$. ; here are situated the famous mines of Potosi, formerly belonging to Pern, which are said to lave yielded $\$ 1,200,000,000$. Of the silver lode mining districts of Mexico and South America, the Sierra Madre mines lavo yielded $\$ 800,000,000$; Veta Madre, $\$ 235,934,636$; Rio Grande, $8650,000,000$; Royas, $\$ 85,421,015$; Valencia, $\$ 31,813,486$; Santa Anna, $\$ 21,347,210$; Biscauin, $\$ 16,341,000$. The Russian mines in the Urals, according to Marshall, yielded in 10 late years, $65,330 \mathrm{lbs}$. of gold, $412,246 \mathrm{llss}$ of silver, and 6067 of platina, from the serpentine rocks.

According to approximate estimates by the best American and German authorities, the total product of all the gold and silver mines in the world, from the year 1500 to 1874, is as follows: Pounds of gold, $17,000,000$, valued at $\$ 6,450,000,000$. Pounds of silver, $364,000,000$, valued at $\$ 8,175,000,000$. Total pounds of gold and silver, $381,600,000,000$, valued at $\$ 14,625,000,000$. In 1810 the anmual supply of bullion to Europe was estimsted at $\$ 40,000,000$, of which one-third was used for manufactures ; at the present day the annual supply is much greater. The wealth of France is about $\$ 40,300,000, c 00$.

Among civilized nations the greater part of this enormons mineral wealth is absorbed by the coinage. Tho British mint has 8 melting furnaces, 2 cranes, and 2 pouring machines. The furnaces are used three times per day, and as each pot is about 420 lbs . they melt $10,080 \mathrm{lbs}$. in a day of 10 hours. The gold pots are about 100 llss. and melt it in an hour. Tho gold bars are rolled cold to the thickness of the coin, and the silver bars hot. The 8 presses in the mint strike 60 blows per minute, and produce 3600 coins per hour for 10 hours, or at least 30,000 per day, making 240,000 for the 8 presses. Good steel dies make 300,000 to 400,000 impressions before wearing out.

A lb. troy of gold yields $46_{2 \pi}^{2 \pi} 0$ sovereigns, $a \mathrm{lb}$. troy of silver yields 66 s , (the allov is extra), and there are 107,520 halfpence in a ton of copper, worth £224. Griffin estimates the wealth of the United Kingdom at $\$ 39,200,000,000$

The ores of silver, tin, copper. lead. \&c., are generally found in what aro called " lodes," which resemble deep fissures in the carth, filled up with ore

VORLD.

oxe their origh to Sind wich islands, of of surface and rises the Madeira, Ieclaud, l'Acmula, Faroe and mainly composed of 1 by volemic action. whith in the hauds ormation of the habit-
amed language of into truth. Truth is as nbol is in this instance ilver mine lats necer ; of silver-mines being ulf. The old Spanish ill worked with chorRomans long prior to ican silver mines have es in the Hartz mounthe 11th century, and
The Moxican silver 1860, \$2,039,100,000, Norway, silver mines ing profitable retmms. m which $5,000,000 \mathrm{lbs}$. ive. The entire silver ramum. In Bolivia, out 450,000 lbs. ; here onging to Pern, which lver lode mining disre mines have yielded , \$6j00,000,000 ; Ruyas, 821,347,210 ; Biscania, hig to Marslall, yielded ilver, and 6067 of pla-
merican and German er mines in the world. old, $17,000,000$, valued hed at $\$ 8,175,000,000$. ied at $\$ 14,625,000,000$. timsted at $\$ 40,000,000$, de present day the anaboutt $\$ 40,300,000,000$. rmons mineral wealth 8 melting frumaces, 2 ed threc times per day, in a day of 10 heurs. rr. The gold bars are ver bars loot. The 8 rodnce 3600 coins per 0,000 for the 8 presses. efore wearing out. by of silver yields 66 . a ton of copper, worth lom at $\$ 39,200,000,000$. hlly fomend in whet aro arth, filled up with ore
and vein stuff. There are no ores of gold, but it is found to pervade simliar lodes in quartz rock. These lodes are known to penetrate the earth to profound depths, and moss frequently assume the form of a wedge, with the thin

Fig. 9.
end uppermost, widening es it descends downward; to an mal:mown distance. In some cases these lodes enter the earth with a slight ineline, and they are known to extend to al distance of several miles in a liorizontel direc-

Fig. 10.
tion, with a width ranging from less than 1 inch to many feet. Fig. 9, reproduced from Weale's admirable series, represents two lodes, the first, a, b, to
the right, enters the earth at an angle ; c, d, represents a lode underlying to the left ; f, represents a cross-cut ; ggg, a shaft, at first perpeudicular, afterwards upon the lode.

Fig. 10 represents a longitudinal section of a mine in which the shaded part represents the excavations penetrated by two perpendicul shafts, $a b$, tho adit level, c d, c d, c d, other levels, usually 10 fathoms or 60 ft . below each other ; $e e$, winzes, or small shafts connecting two levels, and used for the purposes of ventilation and exploration.

A shaft may be vertical or inclined. It is styled a tumnel when it forms with the horizon an augle less than 45 degrees.

Fig. 11 represents the process of stoping or cxploitation in veins of the Rake species, by which the ore is extracted from the workings. Stoping may beclassitied under two lieads: 1st. Overhand stoping ; as shown on the right side of the figure, by which the ore is extracted by working from below upwards. Overhand stoping is the method in general use in this comptry; by this method of working in ascending steps, the ore, as detached, falls by its own gravity. 2nd. Underhand stoping ; as shown on the left of the cut, by which the mineral is taken from tho vein by working in descending steps from above downwards.

In the cut, B A is the hoisting shaft, C D and E F are air shafts, S is the sump or well at the bottom of the sliaft, and D F a tunnel, level, or gallery in the mine. Imagine the ore in the vein to be laid ont in rectangular masses as exhibited in the cut ; these steps or benches, generally 15 or 20 ft . long, 6 or 8 ft . high, and as wide as the vein, form in consecutive succession the ground from whence the ore is extracted by stoping or working in steps. The miners, in overhand stoping, use temporary stages from which they attack the vein by means of drills, picks, \&c. ; the ore and rubbish are blasted down and piled behind the miners on a strong scaffolding of timbers, from whence the ore is discharged through snitable apertures called mills or passes (located at proper distances apart) to the level below, to be conveyed by cars, \&c., to the mouth of the level, or to the hoisting shaft, for elevation to the surface. The worthless rubbish is sorted out and used for filling material to occupy the vacancies and to support the mine. When this material is de ficient it must be supplied from the surface, especially when the ore deposits are of great extent and the vacancles large. The filling should be tamped solid. In the vicinity of the working shaft and other suitable places, pillars of vein
ts a lode underlying to st perpendicular, after.

3 in which the shaded erpendicul shafts, $a b$, athoms or 60 ft . below vo levels, and used for
t tunnel when it forms

erhand Stoping.
oitation in veins of the he workings. Stoping pping ; as shown on the by working from below ral use in this country; e, as detached, falls by non the left of the cut, ling in descending steps
are air shafts, S is the unnel, level, or gallery it in rectangular masses erally 15 or 20 ft . long, secutive succession the working in steps. The rom which they attack ad rubbish are blasted olding of timbers, from es called mills or passes to be conveyed by cars, It, for elevation to the ed for filling material hen this material is de when the ore deposits should be tamped solid. places, pillars of rein
atone may be allowed to remain with good results. In Mexico, very extensive mines are wholly sustained by pillars of ore, the number, size, distanco apart, \&c., of which are clearly defined by law.

The first process in opening a mine is to find the lode, then a hole is usually driven straight down into the earth so as to strike the lode, as represented in Fig. 9. This is termed "sinking tho shaft," which is then carried down ypon it as shown in the eut, although it frequently happens that the shaft is carried down on the lode from the surface. As the shaft descends the adit level is driven; thls is merely a tumel dug from the nearest valley or water-course right into the momata or hill in which tho lode is located, so that all the water above the lovel will flow away of itself. In going deeper other levels are driven to the right and left, extending to great distances from the shaft, but always following the direction of the lode, and theso levels are interpenetrated at suitable distances by smaller shafts, called winzes, which are of great use in promoting proper ventilation in the mine. As the workings aro extended other shafts are dug from the surface as necessity may require, sut they should be at least 300 ft . apart ; and where a mine has more than one lode, a gallery or level, called a "crosscut," is driven to it as shown at f, in Fig. 9. The size of shafts vary according to the duty required. To accommodate punping and winding machinery for elevating the "kibbles," or buckets of ore, by stean power, it should be from 6 to 8 ft . in width and from 14 to 20 ft . in length. Squaro shafts are usually lined in whole or in part with timber, and circular shafts are generally built up with stone. For a depth of from 50 to 100 ft . the elevation

Fig. 12.-Windlass.
of the ore may be effected by means of a windlass, as shown in Fig. 12 ; in sinking a "winze" from level to level, but not penetrating to the surface, the same means are used, but in deeper excnvations it is usual to raise the ore lyy what is styled a "whim," worked by horse-porer, as shown in Fig. 13, in which the cable which elevates the ore is wound around a vertical drum.

Flg. 13.-Honse Whim.
The next illustration, Fig. 14, represents an ingenions miner's hoisting power constructed by Reynolds, Rix \& Co., of San Francisco, who claim that
it will do the work of a steam engine at one-tenth the expense, as oue hore can casily hoist by it 1000 lbs . at a depth of 500 ft .

Fig. 14.-Miner's Holsting power.
For deep mines the horse whim is generally superseded by reversible winding engines, Fig. 15, in which the chain or wire-rope passes around a horizontal drum, which is driven with great rapidity by steam-power, but this costly machinery is seldom applied to mines unless it is settled beyond a doubt that they will become of perminent value.

Fig. 15.-The Griffitif \& Wedge Winding Evgine.
Water-power, if available, can also be used to good adrantage for lowering into the mine timbers, tools, supplies, \&e., and for clevating ore, pumping, \&c.
erseded by reversible rope passes around a by steam-power, but ss it is settled bejond

Evgine.
hdvantage for lowerlevating ore, pump-

Fig. 16 represents a "kibble," or large iron bucket used in raising the ore ; it will hold a ton, more or less. Fig. 17, at a, represents a contrivance running. on wheels (on rails or guides of wood or metal) ealled a "skip," $b b$, represents the guide, ec, timbers of tho shaft, $d d$, rock through which

the shaft is sunk. The skip has the lower end of one side linged liko a door, and will hold 2 tons or more if required. Formerly these contrivances were elevated by means of hemp ropes or iron chanins, which in many cases caused dreadful accidents through frequent breakages. Of late years wire ropes lave displaced the ropes and chains of former times, the tensile strength of wire rope being much greater, and its tendency to rupture being much less than that of ropes or iron chains, which are liable to part quite suddenly without the slightest warning, often causing fearful loss of life. Wire ropes uever break without giving previous warning.

Fig. 18.

Fig. 19.

Fig. 18 represents the manuer of timbering tunnels when the rock is of a soft, crumbling nature, with a liability to cave inward, the cross pieces on
the tumel bed being placed against the vertical posts to enable them to withstand the inward pressure. Fig. 19 represents the method of timbering where the tumnel is composed of solid rock on the one side and loose material on the other.

Fig. 20.
Fig. 21.
Fig. 22.
Figs. 20, 21 and 22 represent the underground timbers of a miaie; the first two show the position of timbers to sustain a vertical pressul from above, the third figure represents an inclined timber to sustain both vertical and side pressure.

In the lofty excarations on the Comstock lode such supports as the above noted would ise utterly inadequate, hence the plan of timbering in square sets was contrived and adopted. This consists of square 14 -inch timbers framed and put together in the form of cribs, as shown in Fig. 23, four by five or six feet in size ; these cribs are piled one upon another to any desired height, and firmly framed together so as to fill up and support the roof and sides of any sized cavity or excavation, while the interior vacancies may be packed solid with waste rock. They also serve to sustain the stulls or tim. bers (frequently in veiy lofty positions) which are occupied by the miners while at work extracting the ore.

A tunnel is to be regarded as a shaft when it forms with the horizon an angle exceeding forty five degrecs (450). A common size for tumnels is 3 ft . wide at the top, $3 \frac{\mathrm{f}}{2}$ to 4 ft . wide at the bottom, and 6 ft . high, but the size is quite often determined by the size of the vein in which it is driven, the size of the one being generally made to conform to that of the other. As a rule, slafts and tunnels should be wrought in the lode.

The item of timbering the various shafts, tumels, excavations, \&c., of mines is one of immense cost, but it is of paramonnt importance that the work be efficiently performed by competent workmen, otherwise loss of life and serious danage to the works will certainly result. The timber should be left as round as possible, be stripped of its bark, and to ensure safety against rot, be kept well saturated with water by means of little sponts or pipes in convection with the cisterns.

In some mines the pillars of rock, ore, \&c., left standing at suitable distances for the protection of the mine, preclude the necessity for props of timber. In addition to the above, the refuse rubbish which accumulates in the mine alte: the extraction of the ore, is piled up against the supports to fill up the excavations so as to sustain the immense masses overhead.

In mining operations, penetration is effected by means of rock drills, manual tools, ginpowder, fire, nitro-glycerine, \&c.; the hand tools for drilling and blasting are, a sledge, borer, claying-bar, scraper, needle or nail, and a tamping-bar. The borer is of iron, tipped with stecl, shaped like a stout chisel, and well tempered. The hole being drilled, a cartridge is ineerted in it, or a quantity of gumpowder is rammed in and fired. To in-
crease the force of the powder, the upper part of the aperture above the powder is (after the fuse is properly inserted) filled with sand or clay, which is rammed down hard by means of a tamping bar, formed of hard wood, or of iron with a copper tip, which is struck with a heavy haminer. In many instances lamentable accidents have occurred by the use of iron or steel tamping bars cansint premature explosions by striking fire against the sides of the hole; hence the necessity for the use of wooden, or coppertipped tamping bars, which never, under any circumstances, strike fire by concussion against the rocks. The hole being tamped, the projecthing end of the safety-fuse is ignited, and while the combustible matter which fills the interior of the fuse is slowly burning towards the end inserted in the powder, the men withdraw to a sheltered place to aroid danger from the flying rocks projected by the explosion. As nearly as can be computed the amount of powder employed in blasting should bo just enongh to sulit the rock ; in some cases this is effected by the action of fire without blasting.

Fig. 22.-Timbering of Mines on the Comitock Lode.
In using nitro-glycerine for blasting in mines, the adrantages are, that it requires a smaller hole than gunpowder; it dispenses with tamping, as water only is used (to fill the holes), in which it is easily ignited ; it is much cheaper than gunpowder, and has, taken volume for volume, twelve times greater explosive force. Sce page 666. Lastly, it can, with proper precautions, be easily manufactured on or near the spot whe: it is required for use, the main conditions being, that syrup of glycerine shall be slowly
dropped in a compound formed of equal quantities of nitric and sulphuric acids contained in as strong vessel surrounded by ice, with it thoroughagitation of the mixture after each addition of the syrup. The nitro-glycerine, of an oily composition, is removed from the surface and repeatedly washed with clean water. It is liable to explosion during the process of manufacture, if not kept cold.

The disadvantages of nitro-glycerine are, that it is poisonons, and exhales poisonons vapors after being exploded, thus rendering its use impossible in confined workings under ground ; it explodes at a temperature of 300° Fahr. ; when pure it explodes by concussion alone, and when impure it is liable to spontaneous explosion.

In quartz mining the grand primary step in beginning should be to determine, byyond doubt, the valne of the vein or minc. In "prospecting" a veiu of the Rake species, a shaft should be sunk on it to a depth of at least 100 ft . and a tumnel driven to correspond. If the ore on being worked yields favorable results, the inference is that it is safe to invest money on a large scale in the erection of snitable machinery for extensive mining operations.

QUARTZ MACHINERY.

Anoug the appliances for this purpose may be mentioned ore-breakcrs, stamp batteries, grinders, amalgamators, concentrators, separators, crucibles, retorts, \&c. The ore-breaker is used for crushing mineral substances into fragments small enough to be passed into the stimp batteries.

The following cuts represent the Blake Ore Breaker, a machine widely known as having earned for itself the highest character for efficiency whereever it has been brought into use.

Fig. ?. 4 --Breaker at Work.

Its principal features are a heavy frame, in which are set two upright jaws, one of which is usually fixed, while the other has a slight vibratery movement imparted by a rotating slaft. These jaws are wide enough apart at the top to receive the ore to be broken, but converge towards each other below, so that at the bottom the opening is only wide enough to permit the fragments to pass when broken to the required size. The working parts are made enormonsly strong and massive to withstand the strain and wear to which they are subjected in crushing rocks and minerals, sone of which will yield ouly to a pressure of 131 tons (27,000 lbs.) to the square inch. One of these machines, weighing 11,660 lbs., and requiring 6 horse-power, with a feed opening of 15×9 ins. area, will reduce 100 to 150 tons of rock per day to a size suitable for the batteries. These machines are made of various sizes; some of them will take in a stone weighing half a ton and reduce it to fragments in 5 seconds. The crank should make about 180 revolntions per minute. For macadamizing purposes, a 15×9 machine will produce 100 cubic yds. of road metal pei day, the fragments being 14 ins. in diam. and less. The distance between the jaws at the bottom, which
nitric and sulphuric ith at thorough agitaThe nitro-glycerine, 1 repeatedly washed process of manufic-
isonons, and exhales its use inpossible in temperature of 300° 1 when impure it is
g shonld be to deterlis "prospecting" a o a depth of at least o being worked yields est money on a large re miuing operations.

Y.

tioned ore-breakers, ors, separators, cruciIg mineral substances np batteries.
er, a machine widely rior efficiency where-

L VIEW OF BREAKER.
are set two upright as a slight vibratery are wide enough apart o towards each other enough to permit the The working parts the strain and wear erals, some of which to the square inch. hiring 6 horse-power, to 150 tons of rock achines are made of fing half a ton and nld make about 180 1 15×9 machine will gments being $1 \frac{1}{4}$ ins. it the bottom, which
limits the size of the fragments, may be regulated at pleasure, and the raring parts, when worn ont, may be replaced by new plates at slight cost.

There are other ore breakers in the market, as Alden's, Bullock's, \&c., mish give very good results, mid are in every respect reliable machines.

THE STAMP BATTERY.

Fig. 26 presents a view of the method of wet-crushing by stamp batteries, with a row of Hepburn and Peterson's amalgamating pans in front. In the rear is the engine which supplies the motive power to operate the stamps, which are rised by cans secured to the herizontal shafting shown in front of the vertical stamp stems. The liquefied mass of ore passes from the batteries throngh the perforated sheet-iron, or wire screens, into the sluice boxes displayed in front of the batteries. The battery comprises the frame (ashially formed of strong timbers), stamps, mortars, stamp-stems, cans, cam-shaft, tappets, slioes, dies, gnides, and screens.
in operating on it large scale, mortars are usually arranged to accomodite three, four, five, or six stampseach, but mill men of long experience prefer the five-stamp mortar, and round instead of square stamps. The cmushift is at round bar of iron, usually about $4 \frac{1}{2}$ ins. diam., turned, finished, and with the cams secured on it lyy means of keys, is frequently used to operate from 5 to 60 or more stamps standing in line. The lift of the maups is effected by the cams operating on tappets which project from the stanps stems. The latter are of wrought iron, turned, finished, and fitted into the stamp, head, which is formed of the tonghest cast-iron, and armed with a "slfoc" formed of the best cast-steel or white iron, on tho lower part, next the mortar die. The shoes may be removed and replaced by new ones when they are wom ont. The mortar dies should be formed of the same material as the shoes, and well secured on solid timber foundations rith one die under each stimp. Tho stamp guides are usually formed of the hardest wood procurable, and are fastened by iron bolts to the cross ties of the battery timber frame.

The screen in geveral use for working ores by the wet process, is formed of the best Russia sheet-iron, perforated by punches ranging in size from the number nine to the number one sewing needle. In working ores by the dry process, the screon is generally made of wire, ranging in fineness from 100 to 10,000 meshes to the inch.

The capacity of a stanp weighing 650 lbs ., with $9012-\mathrm{in}$. drops in a minnte, is equivalent to the rednction of $2 \frac{1}{2}$ tons of hard, tough ore in 24 hours, and the power used is nearly $\frac{1}{2}$ horse-power per ton of ore. 'lo obtain the lest results in feeding the rock into the battery, the rule among practical mill men is to grade the supply of rock so that the blows of iron to iron will be heurd every 10 th or 15th stroke of the stamp, and the weight of water to rock required for the reduction of gold or silver ore is as $4 \frac{1}{2}$ to 1 .
In constructing a stamp-mill, the primary object should be to secure a site of at least 21 or 22 ft . elevation, in order to so arra. ge the different floors that the material moder manipulation shall pass ly its own gravity from one stage of the process to another, and the location should, if possible, be in close proximity to the mine from which the mineral products are obtinned. The foundations under all the machines must possess absolnte stability : If the bed-rock, owing to its depth, is not availablo for foundation purposes, brick or stone work, or timber mid-sills must be substituted. For stamp batteries, vertical timbers, strongly bound together, resting on the bed-rock, or otherwise properly secured, will be fonnd in every respect to form the best possible foundation for the mortars. The vertical position gives easier access for making repairs, the removal of defective timbers, sc., together with less concussion from the blows of the stamps than when the foundation timbers occupy a horizontal position.

The entire appliances of the mill, consisting of the batteries, rockbreaker, grinders, amalgamators, concentrators, \&c., are operated by means of shafting, which transmits the power to the various machines by means of pulleys, belts, or gearing, the prime mover being either water or steam power.

In the arrangement of a silver mile, the rock breaker, or ore crusher is the first in order, and the stamp batteries follow at a distance of 12 or more feet, the feed floor of the latter being 10 ft ., more or less, below the floor of the ore crusher. The rock fed into the batteries being triturated sufficiently fine to pass through No. 4 or No. 5 perforated Russia iron sercens, the fluid mass passes from the stamps into the settling tanks, which are generally placed so that their tops are level with the upper side of the battery frame sills.

Tho tanks should be arranged in successive series in order to accord ample space for the water to deposit the suspended ore before passing off. 1 good size for tanks is $5 \times 7 \mathrm{ft}$., with a depth of 3 ft ., which will :ifford appacity for between 4 and 5 tons of crushed ore.

Next in order, near the tanks, follow the grinders and amalgamators, rith their upper rims level with the tops of the tanks. After passing the tanks the ore is worked in charges, and reduced in these machines to a slimy mass, and one of these contrivances, with muller 4 ft diam., requiring about 5 ft. fall and 7 ft . run, the multer making 75 revolutions per minute, will reduce 5 tons of ore in 24 hours with 5 horse-power.

The separator follows in close proximity to the grinder and amalgamntor, its sides being frequently under the platform of the latter, and sometimes removed from under it and slightly elevated above it. Wheeler and Randall's Conoidal Separator, 7 ft diam., with a capacity for working 10 tons of ore per day with 1 horse-power, requires of itself 4 to 5 ft . fall and 9 ft . run, including platform.

The concentrator is the next in order, receiving the ore as it passes from the separator, the denser and richer portions flowing off at tho sulphuret pipe into the tink, and the less valuable part passing away at the discharge end. The Tabular Concentrator requires about 3 ft . fall and 10 ft . rmu, and is capable of working from 5 to 10 tons of ore per day with one-half of a liorse-power.

The appliances of a gold mill iuclude the rock breaker, stamps, grinder and amalgamator, separator, \&c., as noted above in the description of a siver mill, with the sole exception that they are subject to greater modification of arrangernent, which is determined in every case by the character of the gold and the rock to be operated upon.

The various machines, as arranged in the silver mill just described, may be rendered available for perations on gold where the latter is fine and equally diffused through the rock, only u larger number of concentrators and amalgamators should be used, the latter just after the stamp batteries, and as amalgamators oniy.

Amalganators, grinders and separators should not be employed where the gold is quite coarse and clean in the rock.

What is known as the "contimons process" is the one best adapted for working rock where the gold is coarse and coated.

Where the gold in the rock is largely combined with sulphurets, the best method is to use the concentrators and amalgamators immediately after the batteries, the approved way being to reduce the concentrated portions of the rock in the grinders and amalgamators, work in separators, and listly, treat by means of another series of concentrators.

The best authorities prefer amalgamating in the batteries, but this must be done with the utmost care, for if too little quicksilver be added the amalgam will become dry and granular, and flow array with the current of crushed ore ; if ton much be added the resultant amalgam will liquify and be carried off by the stream. The practical rule is to feed the quicksilver

Into tho batteries in small quantities, and feed frequentls, sprinkling or expressing it through buckskin or other porous materina, so that the amalgann, after emerging from the screcns, may bo indented by a slight pressure between the fingers; if the consistency is such that it will retain the finger marks it is just right. The quantity of quicksilver required varies with the amount of gold in the ore; 1 oz . of quicksilver to 1 oz . of gold is a common allowance; when the gold is very fine, $1 \frac{1}{4}$ to $1 \frac{1}{2}$, and even 2 ozs. to 1 of gold may be added.

In amalgamating in the battery, the sides of the cuclosure containing the stamps is fitted the entire length of the battery with amalgamated copper plates from 3 to 5 ins. wide, arranged with a pitch of 35° or 40° toward tho dies. Ono of the plates is placed at the feed side and the other at the disclarge side of the stamps, and the amalgamation is effected by rubbing quicksilver on the plates, as descrihed on page 454. With ore containing heavy gold, from 60 to 70 per cent. may be saved in the battery by the amalyam plates, but with ligit gold, from 300 to 400 fine, not so much, as It is liable to ?ecome cutangled with the light scum of foreign matters and pass away with the current.

Fig. 27.-Mexican Arastra.
Amalgamation of Gold in tue Airastra.-The arastra is composed of it circular granite-paved bottom, from 6 to 20 jt . in diam., surrounded by a wooden enclosure over 2 ft . high, with a vertical wooden shaft in the ceil. tre, provided with two or more projecting arms to which mullers (composed of large blocks of granite) are attached by means of chains, as shown in Fig. 27. This primitive, but effective machine is operated by mules when water-power is not available; the mullers making from 6 to 10 revolutions per minute, with a capacity of grinding from $1 \frac{1}{3}$ to 2 tons of rock (the fras. ments being broken as small as a hen's egg, or less) in 24 hours. Of the arastra, Mr. Kustel, a high anthority, writes as follows:
"When in motion, the arastra is charged with 200 lbs . of ore, with some water. One-guarter of an lionr afterward the balance of the whole charge, from 400 to 500 lbs., is introduced. As soon tis the ore is turned
uently, sprinkling or ial, so that the amalited by a slight presthat it will retain the silver required varies cr to 1 oz . of gold is a $1 \frac{1}{2}$, and even 2 ozs. to
closure containing the amalgamated copper 35° or 40° toward tho 1 the other at the diss effected by rubbing With ore containing in the battery by the fine, not so much, as foreign matters and

10 arastra is composed diam., surrounded by poden shaft in the ceiich mullers (composed chains, as shown in erated by mules when m 6 to 10 revolutions ons of rock (the fras. in 24 hours. Of the s: libs. of ore, with some balance of the whole as the ore is turned
into mud 1 or 2 ozs. of quicksilver are pressed through a dry cloth orer the thick pulp. A sample is taken from time to time with the horn spoon, mashed, and examined. When free gold is perceived, after the amalgamation has gone on for some time, some moro quicksilver may be added. Tho first charges require a little mole quicksilver. After 4 or 5 hours the pulp is diluted with water and discharged. The next charge is treated in the same way, and so on till 100 or 150 tons are worked through. The quicksilver must be nsed always in proportion with the gold -1 or $1 \frac{1}{2} \mathrm{ozs}$. to 1 oz . of gold. The amalgam inbeds in the crevices of the bottom, and must be always dry. The use of too much quicksilver makes tho amalgam thin, causes an imperfect amalgamation, and a loss in quicksilver, which is often found beneath the bottom rock." When the redncing and amalgamating process is finished the slime is washed off, and the anmalgam cleaned up, squeezed, and retorted.

Amalgamation of Gold by the Pan Process.-In this process the ore, as it comes from the stamps, is still further reduced by being thoroughly ground (with sufficient water to form a thin paste) in iron pans, in combination with quicksilver. Some maintain that the process is accelerated by means of lieat, applied by passing steam into chambers underneath the pulp, or into the charge in the pan, but extended experiments do not confirm this view. The quicksilver is generally added as the pans commence rumning, and, to avoid excessive trituration of the quicksilver, tho addition is often made with the muller slightly elevated, after the grinding of the ores. After the process is finished the charge is withdriwn and washed, leaving the amalgam in the separators. With the Wheeler \& Randall grinders and amalgamators (4 ft . muller), the proportions of the charge is, ore 2000 lbs ., quicksilver, 30 to 70 lbs ., revolutions of muller, 60 to 65 , time of reducing, generally about 3 hours.

The pan process, if well conducted, will secure as much as 95 per cent. of the gold detected by a fire assay, but it is anot well adapted for treating rav ores containing the compounds of sulphur, iron, bismuth, tellurium, antimony, arsenic, lead, or zinc, mutil such ores have heen roasted or smelted, and the pernicions substances thoronghly expelled.

Treatment of Gold Ores bx the Chlorination Process.-In this process the effective agent is chlorine gas, evolved by heating sulphuric acid, per-oxide of manganese, and salt in a leaden generator. The auriferous ore, after being well pulverized, roasted, cooled, and wet with water, is placed in wooden tubs about 7 ft . diam. and 25 or 30 ins. deep, provided with false bottoms. The chlorine gas is conveyed from the generator under the false bottom by lead pipes, and permeates the whole mass in a few hours, transforming the gold into a terchloride of gold. When the greenish tingo of the gas becomes visible on the surface of the mass, the tub is covared close by a wooden cover for the space of 10 or 15 hours, after which it is removed and clean water is poured on the ore, which leaches through it and carries off the dissolved gold through a dischargo pipe below into glass vessels. The addition of sulphate of iron, in solution, is used to precipitate the gold, which falls in the form of a black-brown powder, and may be collected, melted, and run into bars. Ores containing lime and tale should be roasted with salt before being treated by this process, and in every case the gas should be purified from muriatic acid by being forced through clean water before being used. Any silver in the metaliic state present in the ore treated by this process, is transformed into chloride of silver, which is soluble only in a loot solution of salt, but the chloride of gold is soluble in water, as described above.
Retorting of Gold Amalgan.-The retorts in common use are coneshaped cast-iron vessels with circular bottoms. The cone is attached to the upper part by a clamp and wedge (the joint between being luted with clay) and is provided with an exhaust pipe in syphon shape, the shorter arm of
which is screwed into the cover, while the longer ono passes through a vessel filled with cold water (or a wrapping of wet cloths may be used instead) during the time of operation. The interior of the retort should be dusted with whiting, meal, or any other suitable substance, to prevent the amalgam from adhering, and then filled not over two-thirds full, this precantion being necessary to prevent the apparatus from rupture by the choking of the exliaust pipe, or from any other cause. Apply the heat first of all to the upper part of the retort and the shortarm of the pipe, then to the lower part, increasing the heat gradually to all parts, but never going much higher than a bright cherry rod.

The quicksilver, volatilized by the heat, passes orer and down the long arm of the pipe, through the condenser, and into the receiver, which is usually a vessel filled with water.

Crucinles. - Crucibles aro used for melting metals, compounding alloys, reducing ores, assaying, \&c. For full directions for making crucibles, consult pp. 491 and 502.
ingot Moulds.- These are formed of cast-iron with a trough-shaped cavity, slightly wider and longer at the upper part than at the lower, so as to permit the easy dislodgement of the ingot. This is further promoted by oiling the interior of the mould previous to use.

In estimating the capacity of an ingot mould, it is usual to rate each cubic incl for gold at $\$ 125$, and for silver at $\$ 4.25$.

Flux.-In metallurgy or chemistry a flux is a substance or mixture used to promote the fusion of metals or minerals. Black flux is used by introducing slowly in small portions, into a crucible heated to a very dull red heat, a compound of either equal parts of cream of tartar and nitre, or two parts of cream of tarter and one of nitre. White fux is compounded of one part of cream of tartar and two parts of nitre.

METALLURGY OF SILVER.

The methods in common use for the extraction of silver from the ore may be classified as follows: 1. Amalgmatlon of umroasted ores in iron pans. 2. Amalgamation of roasted ores in barrels, iron paus, steam tubs, ©c. 3. Patio process of amalgamation in heaps. 4. Smelting with lead ores, or lead, and final separation of the silver hy cupellation.

Amalgamation of Unroasted Ores in Inon Pans.-This method, known among miners as the "wet process," is in quite extensive use for grinding the unroasted ore (after passing through the stamps and settling tanks) with water into an impalpablo slime. The limited capacity of the first pans proved a barrier to extensive operations by the wet process, the small quantity of ore operated on, and the long time required to work the charge, being serious drawbacks to rapid progress. Figures 28 and 29 present a view of tho common iron pan, in which a is a wooden cross in which wooden blocks, b, with iron shoes, c, are fastened by the bolts, $c l$; each shoe has a pin, e, fitting into the wooden block, in order to prevent its moving; on the shaft, $!/$, is the yoke, f; the tro ends of the yoke fit in the holes, h, of the cross, al but not too tightly, so that the muller can descend as the shoes wear away. Steam is passed into the slimy charge of ore through the pipe, $l ; k k$ aro dischargo pipes ; m is a false bottom of iron, formed in one piece, and 2 inches thick. In these pans the muller rerolves owith a grinding action, like a millstone, reducing tho previonsly pulverized ore to the finest slime, and intermixing the quicksilver with the mass.

Tho Wheeler \& Randall Excelsior Grinding and Amalgamating Pan, rejresented by Fig. 28, takes high rank as an efficient machine. It is of castiron, has the conoidal form, the centre rising as high as the rim, and monlded
passes through a vese may be used instead) tort should be dusted prevent the amalgam , this precaution being te choking of the exfirst of all to the upper to the lower part, ining much higher than
er and down the long he receiver, which is , compounding alloys, making crucibles, con-
with a trougl-shaped 11 at the lower, so as to rther promoted by oil-
isual to rate each cubic
substance or mixture ack flux is used by inated to a very duli red ntar and nitre, or two is compounded of one

VER.

ilver from the ore may ted ores in iron pans. pans, steam tubs, \mathbb{K}. ting with lead ores, or

Pans.-This method, uite cxtensive use for 0 stamps and settling mited capacity of the y the wet process, the required to works the Figures 28 and 20 prerooden cross in which he bolts, a; each sloo prevent its moving; oke fit in the holes, h, - can descend as the rge of ore through the of iron, formed in one olves with a grinding rized ore to the fincst
algamating Pan, repachine. It is of castthe rim, and moulded
so that its vertical section forms the tractory curve, or curre of equal wear, eccuring perfect uniformity in the wearing of the shoes on the muller and the dies. The muller is propelled by a centre shaft, the upper part of which is a screw to which tho muller is attached, and is propelled by gear

Fig. 28.-Comion Amalgamating Pans.

Fig. 29.
whecls on the under side of the pan. The muller is attached by a large nut and secured to its place by a key which enters a slot cut upon one side of the arew. The bottom is provided with a steam chamber or false bottom ; tho distance between the muller and the dies is regulated by a screw on the outside of the pan, which, by means of a bent lever at the bottom, raises the rertical shaft, lifting the muller from the surface when required.
In charging, the mnller is raised a little, so as to revolve freely, water in admitted through the hose or pipe, the ore, as it comes from the stamps and
settliug tanks (ores containing much antimony should bo roasted) is shovelled in, and steam is introduced through the steam chamber in the bottom, or directly into the pulp, the latter method giving the higher temperature. Keep the heat at or near 200° Fahr., turn off the steam if the pulp becomes too thin, and allow it to thicken by the evaporation of the water while the temperature is maintained by means of the steam chamber. Do not pass the exhanst steam, charged with oil from the engino, direct into the palp, fis

Fig. 30.-Wheeler and Randall's Amalgamating Pax.
it prevents amalgamation ; use live sterm from tho boiler for this purpose but the former may be used in the steam chamber if desired. The pulp, too thick, causes a waste of power, if tos thin it will not amalgamate well.

After commencing to grind, the muller should be gradually lowered ; 2 hours the ore should be reduced to a fine pulp; at this period quicksilve. is supplied by pressing it throligh canvas, so as to scatter it throngh the puh,
e roasted) is shovelled aber in the bottom, or , higher temperature. n if the pulp becomes of the water while the hamber. Dn not pass direct into the pulp, as

mating Pan.
boiler for this purpose desired. The pulp, i not amalgamate well. gradually lowered ;in this period quicksilve ter it through the puly

In a finely divided state ; the muller is then slightly raised from the bottom, wavoid grinding the quleksilver, which would flour it, and the action is continued for 2 hours louger.
The proportions used to charge one of these pans with 4 ft . muller, are : ore to the charge, 2000 lbs ., quicksilver, 30 to 70 lbs., varying with the quallty

Fig. 31.-Agitator.

Fig 32.-Wheeler's Agitator.
the ore ; revolutions of muller per minute, 60 to 65 . Many chemical compunds have been used in treating raw ores containing sulphide of silver, in der to promote the decomposition of the ores, but their use was more prevent of late years than at the present time. A number of practical recelpts rmaking them wi!l be found below.

The grinding and amalgamating boing completed, the pulp is diluted with water and discharged into the soparator, when it is thoroughly washed in plenty of clean water. During the first twenty minutes but little water should be added to the slime in the soparator; after that time it may be filled nearly to the brim by a small stream of pure water kept running for 30 minutes or more if necessary ; then one after another, begimning with tho highest, draw the plugs from the holes and allow the pulp to run of slowly, clean water being allowed to flow into the machine at the same thme. In the conoidal separator (capacity, 10 tons of ore in 24 hours) the amalgam is deposited with tho quicksilver fu tho bowl and spiral groovo at the circumference. The bulk of the quicksilver is withdrawn through a hole in tho bottom of tho bowl, and is treated by being washed, squeezed, and tetorted. In silver amalgam containing lead, squeezed at a temperature of $144^{\circ}-180^{\circ}$ Falir., tho load passes off with tho mercury, but if squeezed at a lower temperature, it will remain in the big. The pulp, is convoyed from tho separator into agitators, or other finventious used for the purpose of colleeting the stray amalgam or quicksilver which may be discharged aloug with the conrser sand from tho separator.

The agitator is usually a tuh, 2 or 3 ft . in diam. and about 12 ins. high, fitted with an upright, on which are arranged 4 projecting arms carrying stirrers. Seo fig. 31.

Wheeler's agitator, represented by fig. 32, is about 8 ft . in diam.; the sides are formed of wooden staves froin 25 to 30 ins. high, and tho bottom is composed of cast-iron, dipping towards the centre, ending in tho cavity h, for the accumulation of the quicksilver; this is always kept full, and when the pans are discharged tho surplus quicksilver passes away by the syphon shown in cut. The tailings pass away continnally througha pipe siths of an in. in diam. and 4 in . from the bottom, shown at k, and the lower pipe,, 1 in. in diam., is the discharge pipe when the agitator requires to bo cleaned another dischargo holo is represented at o.

Chemicals used in Vamious Mills in Treating Silver Ores by the Pan Process. -The following practical recejpts aro transcribed from Guido Kustel's valuable work, entitled, "Processes of Golel anel Silver Extraction." The allowance in each case is for 1 ton of ore. ". Chloride of copper, 13 lbs.; common salt, 60 lbs . b. Chlonide of iron, 13 lbs. c. Sulplante of iron, 1 lb. ; sulphate of copper, 8 lbs ; common salt, 60 lbs . d. Sulphuric acid, 3 lbs.; sulphato of copper, 2 lbs ; salt, 15 lbs . c. Sulphuric acid, 2 lbs . alum, 2 lbs ; sulplate of copper, $1 \frac{1}{2}$ lbs. f. Sulphate of copper, 18 ozs .; sulphate of iron, 16 ozs .; sal ammoniac, 8 ozs.; common salt, 2 lbs. g. Alum, $1 \frac{1}{2}$ lbs.; sulphate of copper, $1 \frac{1}{2}$ lbs.; salt, 40 lbs. h. Muriattc acid, 30 ozs . ; peroxido of manganese, 8 ozs . ; blue vitriol, 10 ozs . ; green vitriol, $10 \mathrm{ozs} . \quad$. Common stilt, 15 lbs.; nitric acid, 1 to 2 lbs.; sulplate of Iron, 1 to 2 lbs. k. Common salt, 25 lbs.; blue vitriol, 2 lbs.; catechu, 2 lbs.

Note.-a, b, c, are calculated for ore containing 250 to 500 ozz . of silver in sulphurets. All chemicals, except salt, are used in solntion. The salt is charged half an hour before the chemicals are put in. These chemicals are not well adapted for treating ores containing sulphur, arsenic, or antimony; they should be roasted.

Description of the Machine.-A, Driving shaft; B, Cylinder ; CC, Levers to stuffing boxes ; D, Lever for pressing upper shoes upon the cylinders ; E E, Upper shoes or dies ; F, Inside of cylinder ; G, Concave bottom of casing ; I I, Outside of casing.

Instructons for Using Beati's Amalgamator and Separaton.Two of the amalgamators being in operation with one separator, each amalgamator is to be charged with 800 or 1000 lbs . of ore as it is collected from the batteries; at tho same time add sufficient water to keep it at a thick, pulpy consistency; you then add fom 10 to 50 lbs. of quicksilver, according to the character and richness of the ore. The machines are kept in operatlon until the reduction and amalgamation are complete, which time will vary from 2 to 4 hours, according to the character of the ore being rednced.
d, the pulp is diluted t is thoroughly washed inutes but littlo water r that time it may be ater kept running for nother, beginning with ov the pulp to run off chine at the same time. 24 hours) tho nmalgam iral groove at the cirwn through a hole in hed, squeezed, and tedat a tomperature of y, but if squeezed at a pulp is conveyed from for the purpose of coly bo discharged aloug
nd nbont 12 ins. high, ojecting arms carrying
out 8 ft . in dilun.; the high, and the bottom is ding in the cavity h, for kept full, and when the s away by the syphon rougha pipo gthis of ans and the lower pipe,, , - requires to be cleaned
ang Siliver Ores bi ts are transcribed from of Gold and Siluer Ex. of ore. a. Chloride of of iron, 13 lbs. c. Sulmmon salt, 60 lbs . d. (1t, 15 libs. e. Sulphuric f. Sulphato of copc, 8 ozs. ; common salt, salt, 40 lbs. h. Murio vitriol, 10 ozs.; green 1 to 2 libs. ; sulphate of 1, 2 lbs. ; catechu, 2 lbs. o 500 ozs . of silver in suln. The salt is charged chemicals are not well antimony ; they should
aft ; B, Cylinder ; CC, r shoes upon the cyliner ; G, Concave botton
ir and Separatol.e separator, each analas it is collected from to keep it at a thick, quicksilver, according es are kept in opera. hplete, which time rill the ore being reduced.

After the ore is sufficiently reduced and amalgamated, the pulp is diselarged into tho separator, and the machine is immediately re-charged rithout stopping.

After tho pulp is received by the separator, it is to be thinned with rater ba conslstency that will allow tho quicksilver and amalgain to precipitato and stili retain suffetent body to kecp the coarser particles of the pulp suspended in the water winh the slum.

Roasting of Silver Ores.-Argentiferous ores are more productive Then roasted than when worked raw. The volatile components of the ores mast be expelled by heat, and this is effected in two ways, viz. : in heaps Ir in furnaces. By the former method the ore, generally as it comes from be mine, is piled in alternato layers with fuel, the bottom layer being of rood piled in angular form in order to permit free circulation of air. For he upper layers coal or wood may be used, the proportion of ore to fuel hrying from 1 to 6 , to 1 to 18 ; fine ores, or ores abounding in sulphur regairing less fuel than coarse ores, or ores poor in sulphur. Antimonial or Ir ersenical ores, with little or no sulphurets, should contaln an addition of

3 or 3 per cent. of calcined green vitriol before being roasted. The fire is ignited throngh vertical openings exteading downwards through the heap to the ground layer; these apertures are closed when the fire to thoroughly kindled, and the smouldering process is continued for weeks aud montis, the sulphur in the ore supplying fuel to the fire, while the intensity of the heat may be controlled to any extent by closing or opening the draft holes or chimueys. It sometimes occurs that ores similarly interstratified with fuel are roasted in inclosures resembling kilus, provided with side openings. Tho roasting process trausforms the silver into a chloride, easily decomposed by the quicksilver, and thereforo rapidly amalgamated.

The leading reactions which talso place in roasting silver ores with salt, are mainly as follows: In submitting iron pyrites and other sulphurets to a red heat in contact with air, they become, in a great measure, trausmuted -into sulphates, part of the sulphur becomes sulphuric acid, which combines with the metalic oxides, whilo snother portion disaypears as sulphurous 2cid. As this part of the process requircs a low degre of heat, $\mu 0$ decomposition of the salt will talse place, but on the formation of the sulphates and tho disappearance of all odor of sulphurous a id, the temperature must be increased and the decomposition of the salt wil. begin. This takes place in two ways:-

First.-In roasting, the sulphates of iron and other sulpiates give off vapors of sulphuric acid, which, in union with salt forms sulph te of soda, whilo the chlorine escapes in a gaseous form and combines with any native metals in the mass under treatment, decomposing the sulphurets in nuch a mamuer that one part of the chlorine gas combines with the sulphur as chloride of sulphur, which exhales, while the other part forms a coloride with the liberated metal.

Second-By the other method o: decomposition the salt and sulphate mutually decompose each other. The sulphate of silver, being compounded of sulphuric acid, oxygen, and silver, being heated in contact with common salt (which is composed of chlorine and sodium), the silver combines with the chlorine, the result being chloride of silver, while the oxygen and sudilum forming soria, is, with tho sulphuric acid, converted into sulphate of soda. When the vapor of water is present, during these various reactions, muriatic acid is formed in addition. The quantity of sulphurets and earthy matters present in ores should be deternined by inspection previous to roastfing them. A surplus of lime in the ore, will, by combluing with sulphuric acld, form sulphate of lime, which will remain unchanged throughout the process. To offect decomposition in such ores, sulphates or quartzose ores must bo added in quantity sufficient to change all the lime into sulphate Talcose ores must be treated in a similar way, the primary use of the sulphurets in the ore being to decompose the quautity of salt required for chlorination.

Guido Küstel, in his admirable work on the "Pracesses of Silver and Gold Extraction," writes ; "In Freiberg (Germany) it was the rule to subject only that ore to roasting which contained enough sulphnrets to giro 25 to 30 per cent. of matt (sulphide of iron) when assayed for that purpose. If less matt was oltalned, the ore had to be mixed with other ore, or co 'much irou pyrites was added that the reguired quantity of sulphurets was obtuined. The second class ore of the Ophir and Mexican claims in the Comstock lode, consisiing of pure decomposed quartz, contains silver sulohurets, with a small proportion of fron pyrites, ylelding from 6 to 8 pet ont. of matt. Tho roasting with salt, however, gives a satisfactory rosulth, which must be attributed chiefly to the pure quartzose condicion of the ore
"If the ore contains an abundance of sulphurets, the roasting must bo performed without salt, for about twi h hours, till tho groatest part of the sulphnr is driven off, otherwise it would bake, and cause an imperfect roasting.
roasted. The fire is iwards through tho od when the fire is continued for weeks o the fire, while the jy closing or openiug \pm ores similarly inter3 kilns, provided with silver into a chloride, pidly amalgamated. silver ores with salt, other sulphurets to a measure, transmuted acid, which combines t)pears as sulphurous :e of heat, no decom. tion of the sulphates aid, the temperature wil: begin. This taken
esulpiates give off vapsulphite of soda, while ith any native metals in ets in auch a mames sulphur as chloride of coloride with the liber-
the salt and sulphate Iver, being compounded n contact with common s!lver combines with the oxygen and sodilum d into sulplate of soda. fious reactions, muriatic hurets and earthy matetion previous to roast. mbining with sulphuric langed throughout the ates or quartzose ore the lime Into sulphate rimary uso of the sul. salt required for chlo-

Precesses of Silver and it was tho rule to subhgh sulphurets to giro sayed for that purpose. ed with other ore, or $\varepsilon 0$ ntity of sulphurets was Mexican claims in the tz, contains silver sulielding from 6 to 8 per es a satisfactory rosult, so condition of the ore the roasting must bo of groatest part of the id causo an imperfed
"Tho quantity of sulphurets has a great influence on tho result of roastlon. Oro liko that of the Ophir or Mexican mines, containing silverglance, polybasite, brittle silver ore, native silver and gold, some iron, and but little opper pyrites, will givo a good result by roasting, even when less attention 3 paid to the time and diligent stirring, than, for instance, with the soalled 'base-metal ore,' which abounds in copper pyrites, innc-blend, sulhhurct of lead, otc. The presence of base metals causes a higher loss in Wrer. The chloride of silver is not volatile, except at a ligh temperature. Bat it has been observed that, in the prosence of baso-metal chlorides, tho dilorido of silver volatures also. The increased heat increases the volatilmsiou, but decomposes the base-metal chlorides. By keeping a low heat, be loss of silver is less it tho zinc-blend is not argentiferons, the latter requiriug a higher lieat to effect decomposition. But in roasting at a low eat, the base-metal chlorides remain in the ore, and causo moro loss of packsilvor in tho subsequent amalgamation, and requiro moro metallic iron hthe barrels ; besides, tho bullion contains a great deal of base metals. In treating such ore in the roasting-fumace, the application of steam is drantageous, creating hydrochloric acid by the decomposition of chlorides, the samo time becoining a decomposing agent for the sulphurets. The rdrogen of the steam decomposes also the chloride of silver, which, upon king reduced to a metallic condition, by its affinity for chlorino, in turn komposes the hrdrochloric acid. Tho silver may thus chango repeatedly fom metallic condition to the chloride, while the base-metal chlorides are reaced to oxides, and in that stato do not interfero with the amalgamation." Runisiziú, Galcining, and Chloridizing Silver Ores in Furnaces. -of the many furnaces, and for this purpose, the reverbatory kind is by fnr te best. The interior surfaces should be constructad of the best fire brick, hced edgeways, the exterior walls may be of stone or common brick, and whole structure should be throughly braced with iron rods and wellasoned previous to being used. Tho reverberatory furnace is constructed ther vith one, or two hearths, as may be desired ; the calcining and Horidizing being effected on the lower learth, while the roasting and Hphatization is cive on the upper one. On tho upper hearth the pulverdo ore is placed to a depth of from 2 to 4 ins., the hent is maintained at a in temperature, not over a brown or dull red, with frequent stirring of eore, and the supply of air should be abundant. To promote oxidation d control the temperature, a jet of steam should bo used. When tho ores atain arsenic, powdered charcoal in small quantities may be used to good rautage, and if the ores are poor in sulphur, from 2 to 3 per cent. of the phate of iron may be added. The roasting and sulphatizing will be comted in from 4 to 5 hours, when the ore is permitted to drop through an erture in the upper hearth on to the lower one, where for some time it is pt at a temperaticro but slightly higher than that previonsly noted, but is erwards raised and maintained at a cherry red, nud should never exceed right red, the oro being stirred meanwhile, during the calcining and bridizing processes. When the calcination is effected, which will bo in m 4 to 5 hours, a melted and well pulverized mixture of common salt, 17 parts of cold calcincd oie, nre added to tho hot ore on the liearth leulated at 15 parts), and tho whole mass is completely intermixed by orons stirring. This latter, called tho chlorimation process, will usmally fupy about 15 or 20 minntes.
Amalgamation in Dr. Veitch's Steam Tens.-Tho primary difference ween this process and tho last noted consists in tho employment of tubs cad of barrels and the use of steam directly in tho pulp. Tho tubs are ut 4 ft . deep and 4 ft . diam. The bottom is made of cast-iron with threo mar apertires for the reception of cast-iron perforated plates; below the steam-chambers. The holes aro abont 2 ins. apart, and very small. the centre of the tub is a vertical shaft, suspended in a box outside of the
tub. There are threo arms attached to it, each having three arms of coppe or iron plates lianging perpendienlarly in concentric lines. The movali] cover has an orifice in comection with a flue by which the steam and som quicksilver are conveyed into cooling tanks.

In operating, the stean is projected through the perforated plates iutd the pulp, and impels the quicksilver in spray, or globules of every size, in stream through the entire mass, causing an intimato blending between th: ore and the mercury. The nino iron plates (or if there is much copper it the ore, copper plates should be used) pass through the ore edgeways, with a circular motlon, and agitate the pulp, the decomposition of the chloride meantime progressing very rapidly by means of the heat and impact agains the plates, which present a surface of nearly 3600 sq . ins. of surface to ch or 800 llbs . of ore. If the ore has been properly roasted amalgamation wil be effected in 5 hours. Argeutiferous ores, intended to bo treated cither b this, or the barrel amalgamation process, should be free from metallic goli or it must be extracted previous to roasting the ore, for subsequent to roast ing, the gold is not, like silver, in a soluble state, but in a metallic condition usually coated with an oxide (especially if in coatact with sulphuret o lead), which renders the amalgamation of the gold extremely diffenlt.

Fig. 3 .-Amalgamation dy Patio Process.
Amalgamation ry the Mexican on Patio Process.- The Spmin rord Patio denotes a yard. The ores best adapted to this treatment an ruby silver, brittle silver ore, polybasite, stromeyrlte, iodyrite, silverglang and chloride of silver. Silver ores containing gold are unfit for treatme unless that metul has been previously extracted by somo other proces Argentiferous zinc-blend, pyrites, and a few other combinations camot treuted unless perfectly roasted. Silver oro combined with antimony ay copper should be slightly ronsted previons to treatment. Argentifero lead ores and gold ores aro utterly unsuitable for treatment.

Tho amalgamating yard is levelled off, paved with granite blocky bricks, encompassed by high walls, and is generally left exposed to atmosphere. Over this parement, the silver ore (provionsly dissolved to impalpable slime, by means of arastras, stamps, or other machinery) deposited and spread to a depth of from 7 to 12 ins., and surrounded by lo close curbs. Next, salt, in quantity to conform with its quality aid richess of the ore, is added to the mass and thoroughly intermixed by beil turned with shorels and trodden by horses, mules, or oxen. See fig. The chemical actlon of tho salt produces chloride of silver and desnlphu izes the sulphides. The mass is then allowed to rest ono whole day.

Magistral, i. c., copper pyrites, roasted and pulverized, aro addc. to t mass one hour after the treading, turning, \&e., begins, tho quantity varyi with its quality, the temperature of the scason, and the richiness of the of the primary effect of the magistral being to revive the sllver by depriviag of chlorine.
ug three arms of copper ric lines. The movall deli the steam and som
c perforated plates int ibnles of every size, in te blending between t: tere is muels copper in the ore edgeways, with osition of the chloride leat and impact agains sq . ins. of surface to co sted amalgamation mil d to be treated either b free from metallic gold for subsequent to roart t in a metallic condition :itact with sulphurct extremely difficult.

Process.
Process.-The Spuis d to this treatment an te, iodyrite, silverglang aro unfit for treatinc by some other proees combinations cannot
ined with antimony an eatment. Argentifcro reatment.
with granito bloclis ally left exposed to t reviously dissolved to or other machincry) and surrounded by lo avith its quality and t flily intermixed by bei s, or oxen. Sec fig. filver and desulphat tone whole day. crized, are adde. to ins, the quantity varyi the richness of thoo the silver by depriving

The nexi addition is quicksilver, which is usually added in three charges othe are by being sprinkled through cloth, buckskin, canvas, \&e. ; atter the first charge the mass is thoroughly mixed, and formed into heaps of bbont one ton each, smoothed off, and let stand 24 hours. Then during the morning, every other day, the treading, turning, and heaping processes is mpeated for the space of 5 to 6 hours. The second charge of quicksilver is dded and the treatment repeated, and by washing a sample of the mixture Fis determined whether or not tho first chargo has been properly blended Fith the mass. The third charge is added after the duo incorporation of he second, in order to absorb any stray particles of silver, and to render the analgam more suitable for separation.
Lime is added to cool, and magistral to heat, as the temperature of the re may require. With too mueli lieat the quicksilver becomes pulverulent and of at dark slade, with seattered brown spots upon its surface ; with too pitte it retains its natural appearance and fluidity. With the proper temperature the amalgam will present a gruyish white tint, and yield casily to kentlo pressure. An excess of quicksilver, magistral, or lime, is inimical to the process ; an overplus of salt will canse a loss of quiclisilver but no further injury:
For ore valued at $\$ 50$ per ton, a proper proportion of the above noted maredients would be, to cach tou : salt, of primo quality, 80 lbs ; magistral containing 10 per cent. of the sulphate of copper), in summer, 20 lbs., in finter, 10 lbs. ; quichsilver, first clarge, 14 lbs. , seeond charge, 5 lbs., third tharge, 7 lus. ; lime, more or less, 15 lbs., as may be required. The time of meatment varies from 12 to 60 days, aecording to the state of the weather, ete.
The soparation is effected by washing the mass with plenty of water in in apacions, deep, circular vessel, essentially the same in prineiple as the mumon separator or settler, whereby the lighter portions are cansed to flow lowly a way, leaving the amalgam to be gathered last of all by itself, to be faoved and retorted at the refining works.
Shelining of Ohes.-This is effected by various contripances, shich as "Cupola " and "Reverberatory"' Furnaces, " Backwoods heartlis,"' "Scotel min Americin heartha," \&e., thie object being to reduce the ores to the metalliestate by means of fire, assisted by fluxes of limestone or lime, earbonate is soda, iron, and fluor spar. Lead ore, grannlated lead and lithargo aro used sfluxes for gold and silver. The size, form, eapacity, \&c., of the furnace may be made to conform to the requirements in eacli case ; the Castilian urnace is of an annular shape, while the MeKenzie Cupola is more of an Hiptical form. The fuel and ore aro lutermixed in proper proportions in lec cupola, being introduced through the eharging door, several feet above lie bottom of the cupola. The furnace is yertical in position, about 15 ft : Fheight, with an interior area through its largest forizontal seetion of bout 12 sq. ft., varying more or less according to size. See page 684 for dewils of firmaces, modes of operating, blast, \&e.
The fire, urged by the blast, consumes the fuel, and imparts its heat to he ore, whieh is arranged in alternate layers with the fuel. The thuxes, hich have an afflinity for some part of the mineral under treatment, either phnce its dissipation or form with it a fusible compound or slag, whel fing lighter than tho metal, is frequently separated from it, either by being frawn off from the surface, or permitted to rest until the metal is withtrawn from below. The kind of flux to be used depends largely upon the fariety at hand and the character of the ores and gangues to be treated. If De ganguc of the ore is composed of different earths, with the oxides of nse metals, litharge, quartz and carbonate of soda may be used as fluxes. Iquartz forms the ganguo of the ore, lime, the oxides of the base metals, od carbonate of soda may be used, while such fluxes as metallic iron and itharge, lime, and carbonate of soda are well adapted for the treatment of wes containing much sulphide.

A primary condition in almost every form of smelting silver ores is the use of lead in one or more of its various forms; if lead is not combined with the ore under treatment it must be added thereto. In smelting silpe ores the notable uses subserved by lead and its compounds, are these, viz. On the fusion of lead with the sulphate, oxide, or sulphide of silver, the latter is reduced to the metallic state, and forms an alloy with excess o lead ; in fusing sulphate of lead with sulphate of silver argentiferons lead is formed ; a blast of air directed upon a fused compound of silver and leng has an oxidizing effect on the lead, but effects no change on the silver; lead has a greater affinity for silver than for any of the inferlor metals; undes treatment in the furnace, the sulphide or sub-sulphate of lead and the sulphate of lead react upon each other, and absorb the silver, if any be present Further ; three parts of sulphate of lead and one part sulphide of lead react on each other and produce licharge. Again ; sulphide of lead and copper, antimony, zinc, or metallic iron in a fused state, react upon each other and produce, on the one basis, sulphide of iron, and on the other, metal lic lead, \&c. Similar results will take place if the sulphide of lead at the same time contain the sulphide of silver, and the lead and silver combino together in an alloy, while the fron or other metals noted is formed int.) a sulphide.

In smelting ores containing gold and silver it is not necessary to change or vary the process by reason of the presence of the former metal.

Treatment of Silver Ores by Silesian Phocess in a Cupol Funnace. - The raw argentiferous galena and the necessary iron-flux are first broken into small pieces and thoroughly mixed, when they are passed into the cupola so that they will occupy the rear of tho chamber, while the fuel is placed in the front part. The blast is applied so that a gradual fu sion results and the cupola hearth becomes overspread with molten lead and floating slags, owing to the reactions of the sulphur and iron combined with oxygen. At proper intervals, the lend, all ready for cupellation, is with drawn through an orifice in the bottom of the furnace and the floating slag through a higher aperture; the more valuable portion of the slags, of matt, being composed of the sulphide of iron and lend with silver in min ute quantity, aro put throngh an ndditional treatment of roasting and fusion. The proper proportions of a charge are : argentiferous galena, well broken, 100 parts ; broken slag from iron forge, 14 parts ; cast-iron, 12 parts coal, 126 parts.

In the Rammelsberg Process of Cupola treatment the ores of argen tiferous galena loaded with a large surplus of impurities and foreign matter are first treated either in Heaps in the open air or in Revembrratory Furnaces. In Heaps, ores rich in sulphides of zinc, copper, and fron ar thoroughly intermixed with galena, and graded accordiug to the dimension of the blocks, the largest below and the smallest at top, in a fabric erected to a height of several feet upon a thick substratum of wood. The whole is covered with a layer of granulated roasted ore, to exclude an excess of air The wood being kindled, Ignites the sulphides throughout the ore, which ing heap containing about 150 tons, will keep smouldering away for from 4 to months. This constitntes the first roasting, which is to be followed by series of roastings, to continue until the volatile components of the ore ar expelled.

In the Reverberatory Furnace the ore is first roasted in the usual manne to the proper degree of oxidation. The furnace dooi is then closed, th heat ralsed, and the charge fused. The silicates of lead, lime, \&c., ar generated, and with the sulphate, oxide, and sulphide of lead are sprean npon the floor of the furnace, cooled off, and broken into lumps about th size of oranges, the dimensions best adapted for treatment in a cupol furnace.

In charging the cupola the right proportions are : roasted ore, 140 parts
elting silver ores is the if lead is not combined cto. In smelting silive pounds, are these, viz. sulphide of silver, the in alloy with excess of ver argentiferous lead is und of silver and lena ange on the silver ; lead inferior metals; unde ate of lead and the sul? silver, if any be present. - part sulphide of lead ; sulphide of lead and 'state, renct upon ead and on the other, metal. sulphide of lend at the ead and silver combind noted is formed int) :
not necessary to change former metal. Process in a Cupola necessary iron-flux ar d, when they are passed the chamber, while the ed so that a gradual fuf ead with molten lead and and iron combined with for cupellation, is with ace and the floating slay, portion of the slags, 0 lead with silver in ming atment of roasting and rgentiferous galena, wel parts ; cast-iron, 12 parts
ment the ores of argen rities and foreign matter or in Reverberatory nc, copper, and iron ar ording to the dimension top, in a fabric erected of wood. The whole is xclude an excess of air ghout the ore, which in ing away for from 4 to is to be followed by mponents of the ore ar
sted in the usual manne dooi is theu closed, th of lead, lime, \&c., arf ide of lead are sprean in into lumps about th treatment in Ω cupoln
roasted ore, 140 parts
highly silicious slags, 40 parts ; litharge, 1 to 2 parts. The ore, intermixed with the slags, and pieces of old cupels, should be reduced to the size of ordinary potatoes, and well mixed. Apply a vigorous blast, fuse and treat the alags, matt, and lead as noted under the preceding process.

Cupola Treatment of Silver Ores.-Mexicar Process. The ore, uncontaminated with lead, and largely composed of sulphide of iron and quartz, sulphide of silver, \&c., is well mixed with half its weight of charcoal and roasted in kiln-like enclosures exposed to the atmosphere. Sometimes dry wood is substituted for charcoal, and the roasting is accomplished in circular structures with an interior diam. of $4 \frac{1}{2} \mathrm{ft}$. ; height the same, built of adobe, or sun-dried brick, with a capacity (including fuel) of 1 ton of ore each. The roasted ore (from these kilns), with the proper fluxes, being thoroughly mixed, the cupola is charged in the following ratio charcoal, 50 to 75 parts ; roasted ore, as abovo described, 75 parts ; litharge, 100 parts ; matt of former operations, 25 parts ; lead slags, 16 parts ; cupel bottoms, 16 parts ; native carbonate of soda, 16 parts. The blast being applied, fusion takes place, and the metal drawn off at stated periods is cost into ingots ready for cupellation, while the matt secured is finally returned to the furnace to aid in the fusion of future charges of ore.

Amalgamation by the Foster-Firmin Procegs.-In this process tho quicksilver is atomized by stenm, compressed air, water, or other equivalent nicdium, and forced, after the manner of the well-known sand blast, throngh a strean of falling ore which may be either wet or dry. While in the act of cntering the amalgamator the ore is impinged upon by a stream of mercury which escapes from a sinall receptacle at $\because \because$, rear of the hopper (containing the ore) throngli an iuner pipe. The fiow of ore and mercury is broken up and carried forward by steam or air pressure. The ore which flows into the amalgamator is discharged into the washer, where it is heated by steam and worked for a short time until it is mulched sufficiently to flow evenly. Water is then injected into the chamber at the bottom of tho washer, when the bulk of the mercury is withdrawn and the waste flows into the first settler of the series, and the water passes on until it finally escapes from the lower settler. The mercury is deposited in the central conical space in the vessels, from which it is removed occasionally through the discharge cocks. One of the settlers is provided with amalgamated copper plates, which are vibrated by the action of the water, than effecting the arrest of the fine particles of gold or mercury carried in the water as it passes betweeu them, while any gold leaf which may float on the surface is retained by partition.

The inventors claim that with their apparatur they have obtained the entire quantity of metal contained in the ore and have recovered from 98 to 100 per cent. of the mercury used, the whole operation from the commencement to the prodnction of the amalgam being completed within one liour, at a very low cost, thus rendering the working of poor ores profitable. During a recent public trial of this apparatus, silver ore was passed through a single amalgamator at the rate of 3000 lbs . per hour ; 99 per cent. of silver and $97 \frac{1}{2}$ per cent. of the mercury were recovered within an hour. During another bimilar trial ore was passed through at the rate of $3,600 \mathrm{lbs}$. per hour, 97.88 per cent. of mercury and silver together were recovered in 45 minutes, and within half an hour (1, hour from the start) 97 per cent. of the silver was crucibled; subsequently an additional quantity of amalgam was collected and treated, bringing up the result to fully 99 per cent. of silver and 942 per cert. of mercury recovered.

Barrel Amalgamation of Silyer Ore.-The following account of the freatment of silver ores by barrel amalgamation, at Halsbruecke, near Freiberg, is from Phillip's D/etallurgy, and closely resembles similar methods now used in Nevada :-The usual components of the ores there treated are nulphur, antimony, arsenic, silver, copper, lead, iron, and zinc, which are more or less mixcd with various earthy minerals, besides sometimes con-
taining small quantities of bismnth, gold, nickel, and cobalt. In the selec. tion of these ores, they are so assorted as not to contain above 7 per cent. of lead, or 1 per cent. of copper, as from combining with the mercury added these metals give the amalgam a pasty consistency, and thereby render the treatment extremely difficult and expensive. The mixture of the different ores obtained from the mines is so arranged that the charges of the furnaces shall contain 75 to 80 ounces of silver to the ton of mineral; it is also essential that they should contain a certain proportion of sulphur. This usually exists in the form of iron pyrites, which, on being roasted, gives rise to the formation of the sulphate and oxide of iron necessary to the success of the subsequent operations. If, as is sometimes the case, the amount of pyrites muturally occuring in the ores is not sufficient for these purposes, addition is made either of this mineral, or, in some instances, of ready-formed sul. phate of iroll.
The ore, when thus prepared, is laid on a large floor, 40 feet in length and about 12 in width, and on the top of it is thrown about 10 per cent. of common salt, which is let drop from an upper room through a spont placed in the floor for that purpose. The heap, when it has been thus made up of alternate strata of ore and common salt, is well mixed by being carefully turned over, and is subsequently divided into small parcels called roast-posts, eacli weinhing from $3 \frac{1}{3}$ to $4 \frac{1}{2}$ cwts. The salt ammally employed for this purpose at the Halsbruecke works amounts to 300 tons, and is supplied by the Prussian salt-mines.
The mixture of ore and salt is now roasted in reverberatory furnaces provided with fume-flues for the reception of any pulverulent matters which may be mechanically taken over by the draught. The prepared charge is spread on the bottom of the hearth, where it is at first very gently heated, for the purpose of expelling the moisture, which to a greater or less extent it variably contains. During the process of drying, which nsually occupies two hours, the charge is kept constantly stirred by a log iron rake, and when this operation is consldered sufficiently advanced, the heat is so far increased as to cause the ignition of the sulphur, and to render the ore red-hot.

The furmee is kept at this temperature for about four hours, during which time the metals beeome oxidized, and sulphurous acid gas is rapidly given off, whilst the oro is by constant stirring prevented from becoming agglntinated in masses. The temperature is now still further raised, and sulphurous acid is again given off, together with vapors of chloride oí iron and hydrochloric acid. The hydrochloric acid generated at this stage 0 the operation is due to decomposition of the chloride of iron, by the action of oxygen and watery vapor. This last firing, which occupies about three quarters of an hour, is continued with constant stirring until a sample taken from the furmace ceases to evolvo any odor of sulphurons acid, and has fo its object the decomposition of the sea-salt by the metallic sulphates produced. During this process the ore increases considerably in volume, ani assumes a deep brown color. When the roasting is terminated the chang is raked from the furnace to the floor of the establishment, from whence after laving been allowed to cool, it is removed for the purpose of bein, passed through a set of fine sieves, by which the finer powder is separated from the agglatinated lumps. Theso are broken down to a proper size, an after being mixed with a fresh quantity of sea-salt are again roasted in tha usual way. The finer particles are, on the contrary, taken to a pair of hear inill-stones, where they are reduced to the state of an impalpable powder At the Halsbruecke works there are 14 roasting-furnaces, and as many pii ni granite mill-stones, which, together, are capable of preparing and grindin decut 70 tons of ore per week. The ore, after passing through the mill wich makes from one 100 to 120 revolutions per minute, is sifted throng. dressing apparatus, which renders it as impalpable as the finest flour.
The nunalgamation of this prepared ore is performed in 20 wooden eask arranged in four rows, and each turning on cast-iro:n axles, secured to th
cobalt. In the selec. ain above 7 per cent. of ith the mercury added ad thereby render the ixture of the different charges of the furnares aeral; it is also essential hur. This usually exed, gives rise to the for, the success of the sabthe amount of pyrites rese purposes, addition , of ready-formed sul.
or, 40 feet in length and but 10 per cent. of comugh a spont placed in the thins made up of alterr being carefully turned called roast-posts, each iployed for this parpose s supplied by the l'rus-
rberatory furnaces proverulent matters which The prepared charge is irst very gently hented, a greater or less extent , which usually occupies jy a log iron rake, and ed, tho lient is so far ino render the ore red-hot. bout four hours, during urous acid gas is rapidiy evented from becoming still further raised, and pors of chloride oí iron nerated at this stage of le of iron, by the action bh occupies about threeing until a sample taker hurou's acid, and has for metallic sulphates proiderably in volume, and s terminated the chang lishment, from whence r the purpose of being er powder is separated wn to a proper size, an are again roasted in th talken to a pair of hear an impalpable porden haces, and as many pii preparing and grinding ssing through the mill hinnte, is sifted throug e as the finest flour. ned in 20 wooden cask o:l axles, secured to the
ends hy means of bolts. These barrels, which are 2 ft .10 ins . in length, and 2 ft .8 ins. in internal dianeter, are made of oak staves $3 \frac{1}{3}$ ins. in thickness, and aro further strengthened by iron hoops and binders. On one of the ends of each tim is pliced a toothed wheel, which works into another toothed wheel, monnted on an axle, which receives its motion directly from a water-wheel. Above each of the tuns so arranged is placed a wooden case, into which is thrown tho prepared mineral, and which is furnished with a leathern hose, for the purpose of introducing the powdered ore ints the different barrels. With this view, each cask is furnished with a circular opening, and an iron or wooden pin, which is employed for running off, at the termination of the process, the argentiferous amalgam.

Fig. 35.-Barrel Amalgamation.
The basins, situated immediately above each tun, are of such a size as to exactly contain the amonnt of water necessary for one charge. Below the tuns, and a little above the surface of the ground, are placed triangular troughs, destined to receive tho varions claborated products at the termination of the operation. At the commencement of the operation, 3 cwts . of water are run into each barrel from the rescrvoir, after which 10 cwts . of the fincly-gromed and sifted ore are introdnced throngh the hose. To this are added from 78 to 100 lbs . of wrought-iron, cut into fragments of about an inch square, and three-eighths of an inch in thickness, and which, in proportion as they become dissolved lyy the action of the substances by which they are associated, are replaced by fresh pieces. The casks are now tightly closed by serew-stoppers, and as soon as they have all been charged, the apparatus is thrown into gear by the means of a screw, and the sliding block, which canse the tums to rotate with a rapidity of from 18 to 20 turns per minute. At the expiration of two hours the machinery is again stopped, and the tans are opened for the purpose of examining the state of the metalliferons paste which they coutain. If the charge is too firm, a little water is added ; but if, on the contrary, it is found to be too liquid, a small
quantity of powdered ore is thrown in. When this has been attenced to, 5 ewts. of mercury are poured into each cask, and the tuns, after being securely closed, aro again thrown into gear, and kept constantly revolving for 16 or 18 hours, at the rate of from 20 to 25 turns per minute. During this time they aro, however, twice examined, for the purpose of seeing whether the paste which they contain be of the proper consistenco ; for if it be too thick, the particles of mercury are not sumficiently brought into contact with the silver contained in the ore, and if too much water lias been added, they remain at the bottom of the cask, and aro not sufficiently mixed with the different constitnents of tho charge. In the first caso it is necessary to add a smilll quantity of water, and, in the second, a little powdered ore. After the introduction of the mercury, the temperature of the casks becomes conslderably raised by the chemical changes constantly going on withiin, so that, even in winter, it sonnetimes stands as ligh as 1040 Falr.

At the expiration of 20 hours the amalgamation of the silver is ordinarily complete, and the tuns are now entirely filled with water, and again mado to turn 2 hours, with a velocity of only 8 revolutions per minute. The amalgam is by this means separated from the slimy matters with which it was mixed, and collects in one mass at the bottom of the tuns. When this aggregation of the amalgam has been accomplished, tho different casks are successively thrown out of gear, and are stopped with their apertures immediately over the spouts. A small peg in the bung is now removed, and the liquid amalgam flows out and is received in the triangular spout ; tho workman closely watches this period of the operation, and tho moment any of the earthy matters begin to flow from tho orifico, it is again tightly closed. Tho mercury is now run off through the iron tube, into the gutter, by which it is couducted into a receiver prept:red for that purpose.

Fig, 36.-Banrel Amalaamation.
Tho casks are now turned with their apertures upward, and as soou as tho bungs havo been removed, they are again brought back to their former position, and the muddy residuum is discharged into a spout from which it flows into large reservoirs situated at a lower level. This residuary ore is found to be stripped of its silver to within about $5 \frac{1}{2}$ ozs. to the ton, and is therefore often subjected to another amalganation. The emptying and discharging of tho casks occupies about two hours, and the wholo process is therefore finished in less than 24 hours. In 14 days 160 tons of mineral are treated in this establishment, every 5 tons of which require an expenditure of 15 lbs . of metallic iron, and 2 lbs. 123 ozs. of mercury: so that every pound of metallic silver produced is oltaiued at an expenso of 0.95 of an ounce of merciry.

During the first 2 hours that the casks are set in action, and before the in. troduction of the mercury the sesquichloride of iron contained in the ore is
as been attencled to, 5 tuns, after being so instantly revolving for minute. During this ose of seeing whicther ence; for if it be too ught into contact with lias been added, they ciently mixed with the it is necessary to add powdered ore. After he casks becomes conoing on within, so that, ahr.
the silver is ordinarily water, and again mado per minute. The amaltters with which it was 3 tuns. When this ag. he different casks are ith their apertures im. is now remored, and triangular spont; tho a, and the moment any is again tightly closed. to the gutter, by which ose.

N.
upirard, and as soon as t back to their former a spout from which it This residuary ore is pzs. to the ton, and is The emptriing and disit the whole process is 60 tons of mineral are equire an expenditure hercury: so that cvery expenso of 0.95 of 80
ion, and before the incontained in the ore is
decomposed by the metallic iron present, and converted into protochloride. If, instead of operating in the way described, the mercury were immediately introduced into the casks, it would, by reacting on the prochloride of iron, become partially converted into calomel, which, not becoming again reduced during the subsequent stages of tho operation, would be productive of a considerablo loss of this valuable metal. This inconvenienco is, howerer, completely avoided by the action of the metallic iron, as the protochloride thus formed is entirely without action on metallic mercury. The chlorido of sllver contained in the roasted ore is held in solution with the chloride of sodiun, and, becoming reduced to the metallic state by the constant agitation with the metallic iron, combines with the mercury to form a liquld analgam. The chlorides of lead and copper are decomposed at the same time as the chlorides of silrer, and enter into the compositlon of the amalgam produced.

When the residual earthy matters are drawn off from the casks, the pieces of metallic iron are retained by means of a grating, whilst the slines, after being run into proper receivers, are conducted into pug-tubs, where they are constantly kept stirred with a large quantity of water.

These tubs are furnished with openings at various distances from the bottom, by which the muddy water is successively drawn off, whilst a certain quantity of amalgam is found collected at the bottom of the vessel. This is collected at the close of the operation, and added to that obtained by tapping directly from the amalgamation tubs, as before described.

The mercury and amalgam obtained from the casks is afterward filtered through close canvas bags by which the liquid quicksilver is separated from the pasty amalgam, which is retained by the closeuess of the web, whilst the mercury passes through into reservoirs prepared for that purpose. The pasty amalgam which is retained in the bags consists of a mixture of six parts of mercury and one part of an alloy composed of about 80 per cent. of silver, and 20 of a mixtnre of copper, lead, bismuth, antimouy, gold, mickel, zinc, and some other metals. This misture is subsequently heated in a distillatory furnace, and is thus freed from the adhering mercury, whilst the nonvolatile constituents of the alloy are obtained in the solid form.

Mr. Kostel remarks : "The amalgamation in barrels is not adapted to oro containing gold. Unroasted ore has been tried with chemicals unsuccessfully. The construction of the barrels does not differ much in the different works of Nevada Territory. They have a cylindrical shape, the diameter and depth being nearly equal. The staves are 3 or 4 inches thick. There aro two sizes in use. The sinallest, capable of receiving from 1000 to 1300 pounds of ore, are 32 Inches each way; the larger, receiving a ton of ore, measure from 44 to 48 inches in the clear.

Ayer's Process of Treating Silver Ores.-By this process the ore, as received from the mine, is subjected to the action of intense heat in a furnace, and afterwards thrown, while still hot, into allali water or brine, which lias the effect of crumbling it into smail pieces; the fragments are subjected to additional reducing processes, and afterwards amalgamated.

Fig. 37 represents Kent's method of arranging barrels for amalgamating. The amalgamation is effected by the rotary motion of the barrels, aftea which the mass is discharged through large sponts into the agitator below, where the amalgam accumulates at the bottom. The following is Mr. Kent's account of his improved process of treating gold and silver ores.
"By this ' improved mode of preparing ores,' the ore is not ouly desulphnrized in the best and cheapest manner, but the base metals are converted into soluble chlorides, which are not readily decomposed by hent, and may be subsequently remored by washing the prepared ore, or by the water used in the process ci amalgamation, and the gold is thus left free and bright, and in the best possible condition for combining with the mercury used in that process.
" To effect this object, the crushed ores or tailiugs are simply mixed with
a solution of common salt, and made into cakes, lumps, or bricks, which are then calcined in a common kiln, such as is used for burning lime op bricks. In this process, the sulphur in the ore is oxidized by the oxygen of the atmosphero, and the sulphurle achd thus produced hmmediately combines with the soda in the salt, forming sulphate of soda, and liberating the muriatio acid, which in its turu attacks the base metals, forming chlorides of copper, zhe, antimony, etc., together with chloride of silver, and leaving metallic gold. All the acid used in the process is prepared in the process itself, and the chemical changes are produced in the nascent state, which is the most faromble condition for effecting them, and the sulphur being thus combined with the soda, a smaller proportion escapes into the atmosphere than when ores are simply roasted alone.

Fig. 37.-Kent's Amalgamating Barrels.
"By the application of the salt in solation, one bushel will make suff. clent fen a ton of ore; and by making the ore into bricks, which may be done wit? one nachine, at the rate of 25 tons per day, the use of expensive reverbete tory furmaces, as used at Freiberg, is aboided, and 25 tons of gold or silvor ore, in a common lime-kiln, or 1200 tons in a brick-kiln compored of the calsed ore in the form of bricks, may be calcined at one operation, in the cheapest and best manner, withont chny furnace at all, by the passage of a emrent of hot air through the interstices of the brick so formed.
"After the chemical decomposition of the ore is thas effected, it becomes no soft that it may be ground with common burr-mills, at the nute of 40 bushels per homr, for amalgamation in barrels, or it may be gronnd and amalgamated at the same time, by the use of the Washoe pans. When two different kinds of ore are mixed together, in snitable proportions, before caking, which is sometimes of very great advantage, and the calcination and amalgamation are done in the best manuer, about five times as much gold or silver as from crade ore, or from seventy-five per cent. to the full assay value, may be obtained."

Extraction of Silyer by Hot Process in Copper Kettles.-This
mps, or bricks, which for burning lime or ized by the oxygen of inmediately combines d liberating the muriforming chlorides of of silver, and leaving nared in the process itlascent state, which is the sulphur being thus into the atmospliere

RRELS.

ashel will make suffks, which may be done use of expensive reverid 25 tons of gold or rick-kiln compored ot it one operation, in tho 1, by the passage of a so formed.
hins effected, it becomes ills, at the rate of 40 t may be ground and thoe pans. When two ble proportions, before nd the calcination and e times as much gold cent. to the full assuy
pper Kettles.-This
process is mainly used in South America, on ores rich in native silver, or in the chlorlde, iodide, or bromide of silver, which aro first fhely pulverized and zoncentrated by washing, and then placed in kettles fitted with copper bottoms where they are boiled with a considerable volnme of water. From 10 to 15 per cent. of salt is then introduced into the boiling mass and thoroughly stirred. Next, quicksilver, of less weight than that of the sllver present, is added to the pulp, with continued stirring, adding more quieksilver whenever a test diseloses the slightest dryness in the amalgam. Lastly, the amalgam and gangues are separated by washing ; the amalgam is squeezed, retorted and refined, while the gangues, if desired, may bo submitted to the Patlo process.

In the Parke Process, lead containing silver is fused in massive east-iron pots, and melted zine is added and well intermixed. The fire is then withdrawn from under the pot, and the mixture is allowed to rest for a brief period, while the silver and zine, separating from the lead, rise to the surface of the molten metal, and are skimmed off as long as the alloy continues to rise. Next, the senm alloy combined with some lead is hented in a liquation retort ; the silver and lead fuse. and are then in large proportion conducted into prepured moulds. The alloy thus oltained is afterwards cupelled, and the alloy of zinc and silver remaining in the retort is submitted to distlllation in order to effect a partial separation, while the silver thus obtained is deprived of its impurities by cupellation. The propontions used in charging the pot are: argentiferous lead, 6 to 7 tons; quantity of silver to the ton of lead, 10 to 15 ozs ; estimated quantity of zine to each oz. of silver, 1.5 to 2 lbs. The alloy should be stirred from 10 to 15 hours after the addition of the zinc, and the proportion of silver (to the ton of alloy) when ready for cupellation should be 1000 ozs.

The Liquation Process is based on the principle that an alloy of lead and copper, melted together, separate if slowly cooled, but cohere in intimato mion if quickly cooled. A compomind of copper and lead, if slowly heated to near the melting point, will also separate, and the silver, if any be present, will go with the lead. In practice, an alloy of copper and silver, or copper matt (as it comes from the smelting furnace) containing silver, is melted with ubout four times its weight of lead in a cupola, and cast in aunular plates, which are rapidly cooled. These circular plates are termed liquation cakes, and are arraged in a liquation furnace, on their edges, rith alternate layers of charcoal. The latter being lighted, the hent is raised to a degree slightly less than the melting point of copper, when the silver and lead fusing, are conducted to a receiver, while the copper, in a honey-combed condition, remains in the orginal form. It the separation proves defective the calies may be submitted to the further treatment of a figher degree of heat in the sweating furnace. The separation of t_{1} o silver from the lead is finally effected by cupellation.

The following mixtures of ores and fluxes are noted in Mr. Kustel's excellent work, as possessing reliable proportions for smelting purposes.

No. 1. Mixture for Oies without Roasting, and hefore Lithiager is Ompaned from tife Manipulation.-Silver ore, 100 lbs.; Gramulated lead (ol 200 lbs . lead ore), 85 lbs . ; Soda ash, 25 lbs . ; Iron, 25 lbs . ; Limo (aml 2i5 lbs. slag, when obtained), 3 lbs.

No 2. Mixture for Roasting Ore.-Silver ore, 100 lbs ; Gramulated lead, 85 lbs. ; Soda ish, 20 lbs . ; Iron, 8 lbs ; Lime, 3 lbs.

No. 8. Mixtere of Silver Ore aftrie Prodéers of Smelting are at Hand.-Silver ore, 100 lbs. : Gramhated lead, 2 d lbs. : Litharge, 7 i Ibs. ; Hearth, 10 lbs. ; Soda ash, 15 lbs. ; Charcoal, 5 lbs. ; Iron, 8 lbs. ; Lime, 3 lbs : Slag, 25 lbs.

When the melting js exccuted with an addition of lead ore, Nos. 2 and 3 do not require granulated lead, but it is always very useful to add suffipient litharge. The quantity of flux required depends mach on the quality of the ore. If the slag is too thin it is not necessary to use so much soda-
ash. The mixture is introduced with a shovel when tho furnace is at a whito hent, and spread about 5 or 6 ins, deep, to about hald tho length of the flux, between the door and the crucible. The door is closed, and the firing continned so that the flame reaches the end of the flux. The ore will soon begin to melt and run into the crucible, when a new charge must bo introduced as soon as tho melting oro makes room for it. Stir the chargo thoroughly with a long iron bar, and continue the process until the crucible is filled. Use the furnace illustrated on page 983.

Treatment of Silver Ores by Suriution.-Auchstin's Process. The principle on which this process is based is tho solubility of chloride of silver In a loot concentrated solution of common salt. The ores, which should be freo from zinc, antimony and nrsenic, aro first submitted to dry crusining by ntamps, and firther pulverized by grinding in suitable mills, after which they aro roasted in a reverberatory furnace at a low temperature, with a free admission of air. A thorough, uniform roasting, at a dull red heat, promotes thin formation of varions sulphates of the different inetals present. This objoct being attained tho icat is increased to a cherry red, by which the aforesaid sulphates (with tho sole exception of the sulphato of silver) are decomposed. The sulphate of silver is next converted into chlorido of silver by adding common salt, previously melted, gronud, and intermixed with cold oro, to tho hot ore in the furnace, with whins it is thoroughly incorporated by vigorous stirring

Tho nppratus for the hurried portion of the process consists of the following, arranged in tho order of mention, viz. : 1 spacious hoating reservoir, a set of dissolving tubs, 2 large settling cisterns, 4 precipltating tubs to each dissolving tub, and 2 roomy receptacles, all arranged on descending steps. The aforesald tubs are nearly circular in form, and are arranged with filtors composed of straw and broleen sticks, covered with cloth. Each tul is divided into two unequal divisions by means of a vertical partition placed on tho filter.

The chloridized ore being placed into the largest divisions of the dissolsing tubs, a hot salt solution, sufficient in quantity to completely saturate the ore, is conducted into the tubs from the heating reservoir nforesaid, and allowed to remain one hour. Tho outlet cocks of the heating reservoir and tabs arc now opened, and tho hot salt solution is permitted to filter through the ore in the thbs, and pass off through tho smaller compartments through apertures at first abovo tho level of the ore, and afterwards through orifices near the base of tho tubs, into the large settling cisterns above noted. The current is shut off when it is ascertained by a piece of clear copper that no trace of silver exists in tho filtrate.

Tho next step is to place copper (copper cement) in each of the upper two precipitating tubs in the different classes of four, and wrought scrap iron in each of the corresponding lower two, and conduct the chloride solution slowly from the settling cisterns by filtering it through the various precipitating tubs into tho large receptacles below. The chemical effect is to precipitate the silver by means of the copper it the upper tubs, and the copper in solution, if it be present in tho ore at fist, is precipitated by the iron in the lower tubs. Tho silver is removed every three days from tho precipitating tubs and refined, while the filtrato in the largo receptacles is pumped into the heating reservoir for future operations.

The ore, provious to roasting, should contain at least 20 per cent. of sulphar, and tho proportions of the charge to the furnace, should be, of ore for roasting and calcining, 500 lbs . ; melted salt, pulverized, 35 lbs ; roasted ore, cold, and mixed with the salt, 220 lbs ; time of roasting on upper hearth of furnace, 4 to 43 hours ; calcining on lower hearth, 4 to 42 hours; time occupied in chloridizing, from 15 to 20 minutes; hent of salt solution, 131° Falir. The dopth of copper in the precipitating tubs should be about 6 ins., of iron in do. (provided the oro contains copper in quantity worth saving), 6 ins. Tho timo for dissolving and precipitating will occupy 20 to 24 hours; solntion of salt rum through each tibl to 1000 lbs . of ore, 200 to 250 cubic feet
a the furnace is at a hinif tho length of tho closed, and the firing ax. The ore will soon charge must be introrit. Stir the clargo cess until the crucible
mustin's Process. The ty of chloride of silver ores, which should le ted to dry crushing by blo mills, after which iv temperature, with a g , at a dull red heat, fiereut metals present. cherry red, by which sulphate of silver) ure into chloride of silver and interinixed with t is thoroughly incor-
ess consists of the folincious henthing reser4 precipitating tubs to anged on descending rm, and are arranged red with cloth. Each of a vertical partitiou
visions of the dissolvompletely zaturate tho servoir aforesaid, and lienting reservoir and itted to filter through ompartments through afterwards through ettling cisterns above ed by a piece of clear
each of the upper two wrought scrap iron in the chloride solution h the various precipimical effect is to pretubs, and the copper pitated by tho iron in s from tho precipitateceptacles is pumped
least 20 per cent. of ace, should be, of ore ized, 35 lbs . ; roasted sting on upper hearth 4 to 4 l hours ; time of salt solution, 131° ould be about 6 ins., tity worth saving), 6 cupy 20 to 24 hours ; 200 to 250 cubic feet

Treatment of Silven Ores by Sclphuric Acid,-Freibery Procese. The argentiferous copper matt, as it comes from the furuace, is thoroughly pulverized, roasted and chloridized as in the last described process, in tube, and submitted to the action of hot sulphuric acid. By this weans the copper and iron (if any is present) aro dissolved, while the silver remains Intact. The copper solution is conducted into vats, and crystallized into sulphate of copper, while tho intact remainder, containing the silver, is sinelted with lead ano cupelled.

Treatment of Silver Oris ny Solution-ZZiervoge!'s Process. The ore, of the class described under Augustin's process, is effectually pulverized, roasted and calcined to decomposo tho sulphates of dron and other inferior metals, the sulphate of silver ouly remaining unaffected. The teat of complete calcination being a slight bluo color given out by a small quantity of the roasted ore when thrown into water. The process is predicated ont the solubllity of sulphate of silyer in hot water, the sulphatized ore being treated in every way as the chloridized ore in Augnstin's process, with the solo exception that pure water, at a temp. of 1490 Falir., is used nstead of the hot salt solution.

Treatment of Silver Ores by the Rammelanerg Process.-Argentiferous granulated copper ore is placed in tubs exposed to the atmospliere, and submitted to the action of hot sulphuric acid, which is slowly fowed over it in a sivall stream, converting it into sulphate of copper. The solution of dissolved copper is conducted through an arrangement of troughe, in which it is deposited in the shape of rough crystals, while the liguid portlon is returued and reheated, to be agnin poured over the ore in the tubs. The next step is to wash the rough crystallized salt deposited in tho troughr, couduct it futo rats, and allow it to recrystallizo. Tho silver present in tho ore will be found in'the dissolving tubs, and is finally smelted with lead and cupelled for its silver.

Pattinson's Process.-1st. This process is fonnded on these facts: If \boldsymbol{n} melted alloy of silver and lead is stirred whilo cooling slowly, crystals of lead form and sink, which may be removed by a drainer. A large portion of the lead may thas be separated from the silver. 2nd. Cast-iron pans, capable of holding about 5 tons cach, provided with fire-places, are arrauged in a series, as A, B, C, D, E, F, G, in a straight line. 3rd. Tho metal of ores containing silver and lead as it comes from ordinary smelting works, is melted, for instance, in pan D, and then allored to cool rery slowly. The metal, while cooling, is stirred, especially near the edges of the pan with an iron bar. As soon as crystals form and sink to the bottom they aro taken ont with an fron drainer, raised to a temperature somewhat higher than that of the metal bath. From one-half to two-thirds of the chargo is thus removed to pan E, and the balance taken to pan C. Other charges of D are similarly trented, and disposed of in liko manner, except that the crystals of E go to F, and the balance to D, and the crystals of C go to D, and the balance to B. Thus, after successive meltings and drainings, the alloys, rich in silver, pass to A, while tho lead, almost entirely deprived of silver, goes to G. The alloys obtained in pan A are then subjected to cupellation. 4th. The lead of an alloy treated by this process often contains less than $\$ 1$ in silver to the ton. Tho silver of the cnriched alloy should not exceed $\$ 600$ to tho ton.-Quartz Operator's Mand-Dook.

To Purify Mercury.-Quicksilver, to be in prime coudition for amalgamating purposes, should bo free from impurites and foreign substances, as zinc, bismuth, lead, \&c., which impair its power for combining with the precious metals. To effect this the impure quicksilver should bo distilled in a common covored retort, or if this is not available is retort may be readily improvised by using a common quicksilver flask and an iron pipe bent in the shapo of a syphon, the short leg of the pipe being inserted in the flask in the orifce at the top, whilo the long leg, a yard or more in length, extends downrards below the bend, and must, while in operation, be kept cold by means of wet
cloths and cold water. Fill the retort two-thirds full with the impure quicksilver, apply the heat first of all to the short leg of the syphon and the upper part of the retort, then to all parts of the flask alike, kecping the dischargo end of the syphon in cold water, within the receiver. Keep the heat regular and do not inurry the distillation.

Lastly, treat the clistilled quicksilver, in thin sheets, by frequent agitation with 2 parts of puro water and 1 part nitric acid, maintaining meanwhile a temperature of 120° Falir. for several hours. The operations may be repeated until the impurities are removed, when the quicksilver may be poured off for usc.

To Restore Quicksilver when "Floured," or "Sickened."--When quicksilver becomes inoperative through being "floured," or "sickened," or in a state of minute division, or in the scum form, the tiouble may be rectified by the addition of 1 part of soditm to 2000 or 2500 parts of quiclssilver by weight. With a very slight degree of heat sodium and quicksilver combine with a powerful affinity for each other, forming sodium amalgam, which possesses an energetic chemical attraction for the precious metals and some other substances. Its use is of unquestionable value in extracting gold or silver from sweepings, in the treatment of gold-bearing quartz in batteries, barrels, pans, arastras, \&c., or in amalgamating silver ores in which the silver has been reduced to a metallic condition.

Fig. 38.
Cupellation Furnace.
FIg. 39.
Cupellation of Gold and Silver.-This process is based on tie refractory mature of these precious metals and their afinity for lead in a state of fusion, conjoined with the well known tendency of the latter metal to oridize while being subjected to the action of heat. The alloy, composed of lead, gold, and silrer, or lead and gold or silver, is fused in a furnace constructed with apertures for the admission of a blast of air, and the exit of the litharge, vapors, \&c., dissipated by the heat. Figs. 38 and 39 represents a furnace of this kind. The. Irou pan is 4 ft . in diam. with a throat, $f, 16$
itl, the imprre quicksyphon and the apper keeping the discharge Keep the heat regular
by frequent agitation taining meanwhile a perations may bo resilver may be poured
'Sickened.'--Whel red," or "sickened," ne tioublo may be rec00 parts of quicksilver and quicksilver comug sodium amalgam, c precious metals and lue in extracting gold ing quartz in batteries, ores in which the sil-

Fig. 39.
8 is based on the reity for lead in a state he latter metal to oxc alloy, composed of cd in a furnace conair, and the exit of 38 and 39 represents . with is throat, $f, 16$
inches long and 12 wido for the escape of the litharge, which falls upon the cast-iron plate, g. The pan is filled with wood-ashes, marl, bone-aslies, or a combination of pulverized limestone and clay, well beaten together. The bars of letu aro passed in at i, whero a fire-tile is placed inclining slightly inward, and tho blast, introduced at l, is directed on the surface of the fused alloy on the hearth. This comects the melted lead into an oxide of lead or litharge, which is partially absorbed by the porous substance of the cupel aud partially dissipated by the heat. If eopper; or other inferior metals be present in the alloy, they will also be oxidized. The baso metals being thans dissipated, absorbed, and oxidized, tho gold (and silver, if any is present) will remain a brilliant mass on the hearth of tho furnace in a nearly pure coudition. If any lead remain it can be removed by the humid method of assay.

Refining of Gold and Siliver.-If, after cupellation as above describod, the metal obtained bo an alloy of gold and silver, it is submitted to, 1 st. Quartation: This consists in the alloying of one part of gold with three parts of silver. 2d. Granulation: This is performed by passing the prepared melted alloy throngh the fine meshes of an iron sieve into water, or upon a hunde of wicker or small branches lying in the water. Partin!: This is effected by submitting the granulated metal to the action of boiling nitric acid or concentrated sulphuric acid. For this purpose use a glass vessel and 149 parts nitric acid of specific gr. 1.32 to 100 parts of silver. This dissolves tho silver and any base metals that may be present out of the alloy, leaving tho gold pure. Reduction: In this process the gold is removed from the dissolving vessel and further treated by boiling in nitric acid, then washed, dricd, and inelted in a crueible with a flux of nitre and cast finto ingots. The silver in the parting solution may be precipitated by means of copper plates or by it solution of salt. In the former case the precipitate is purified by washing in water, then pressed, melted with saltpetre and pulverized borax, and cast into ingots; in the latter case the chloride of silver is melted with a flux of carbonate of soda or other suitable flux, then run into bars.

Flides for Reducing Photograpilic Wastes.-1. Black Flux-Cream of tartar 8 ozs., saltpetre 4 ozs. Place the mixture upon an iron pan and ignite it with a red-hot coal. When tho combustion is completed, tho black mass shouid be powdered and sifted whilo still hot, and placed in a closely-stoppered bottlo to prevent tho absorption of moisture from the atmospliere. Is both a fusing ant reducing agent. 2. Fluxes for Chloride of Silver-Common rosin, flnely pulverized and intimately mixed with the chloride, is an excellent flux. Pulverized castlle soap, molasses, or sugar, are also rellable fluxes for chlortde of silver. 3. Flux for Reducing the Ashes of Paper Clippings and Filters-Carbonate of potash 8 ozs ., carbonate of soda 2 ozs. Mix the ashes (previously powdered and sifted through a fho flour slevo, to cleanse them from impurities and foreign matters) thoroughly with their own weight of tho flux; fill a Hessian cruciblo about three-quarters full of the compound; seatter a thin layer of salt over tho mass, and place on the fire. 4. Fhux for Developer Drainings-When these have been prepared by adding a solution of salt (after tho black powder has been thoroughly dried), It may be mixed with its welght of the following flux, placed in the crucible, and submitted to the fire : earbonato of potash 10 ozs., saltpetro 2 ozs. An excellent flux. 5. Fhux, for Collodion Film Ashes-Carbonate of potash 16 ozs ., carbonate of soda 2 ozs . Uso 4 ozs . of flux to every 5 ozs . of ashes, and proceod as with the last. 6. Flux for Moasted Sulphide of Silver-Carbonate of potash $71 / 2$ ozs., carbonato of sola 5 ozs. Use 14 ozs . sulphide to 16 ozs. of ilux, and treat as before described. 7. Flux for Toning Bath Precipitate-Gohl precipitate (dry) 8 ozs., saltpetre 6 to ozs. Fill the cruciblo not over haif full, bring to a bright red heat, and the gold obtained will be nearly pure. 8. Fhux for Chloride of Silver-Carbonate of potash 8 ozs., powtered rosin 1 oz . Mix tho chlorido (well dried) with half its weight of the flux, tamp the crucible neariy three-quarters full, with a thin layer of salt on top, and submit to the fire. 9. Flux for Old Collodion Fi/ms-Saltpetre 8 ozs., carbonate of potash 4 ozs. Use half as much flux as ashes. To obtain the best results from these fluxes, they must bo kept in well-stoppered bottles.

DESCRIPTIONS OF FURNACES USED IN ROASTING ORES.

Figs. 40 and 41 represents the ground plan of a furnace used for roasting silver-ores in which a is the hearth-bottom, composed of the hardest bricks, placed compactly edgewise. The ore to bo roasted is introduced at the aperature, c, Fig. 41, and afterbeing trented is discharged through the oriace, b, Fig. 40, in the hearth of the furnace. The space between the arch aad bottom near tho bridge, g, is 21 ins., converging to 8 ins. near the flue, c. The flue is conducted, either directly or through dust-chambers, into a chimney, the capacity of which for a single furmace should be from 16 to 18 ins. sq. and from 25 to 30 ft . high, and the bridge, 9, should be formed of material sufficiently refractory to withstand the action of the fire and the friction of the hoes used in turning the mass of ore.

Fig. 40.

Fig. 41.-Furnace for Roasting Ored. -
Figs. 42, 43 and 44 is a plan of a furnace suitable for the smelting of silver ores, for refining silver, or melting retorted amalgam ; the cast-iron pan, a a, 15 ins. decp and 37 ins. diam., is llned with fire-proof inaterial to form the hearth, and is supported by fire-bricks to permit access of air under and aromed the bottom and sides in order to temper the heat. The fireproof m:terial is formed of old fire-brick pulverized and mixed with onethird its bulk of good clay, or of 3 pts. pulverized white quartz (pure) with 1 pt. clay ; is beaten with iammers so as to project 6 ins. above the verge of the pan, and is finally moulded into proper shape with a curved tool. The

USED IN

ace used for roasting f the hardest bricks, troduced at the aperhrough the oriace, b, en the arch and botzear the flue, c. The bers, into a chimney, om 16 to 18 ins. sq. formed of material :c and the friction of

EES. -
r the smelting of sillgam ; the cast-iron fre-proof material to ait access of air under tho heat. The fireand mixed with onequartz (pure) with 1 . above the verge of a curved tool. The
fluc-plate, d, is first lined with n floor of fire-brick, and finally coated with a mortar of the fire-proof materiai carefully smoothed down. The oro is passed in at k, whence it deseends to the hearth, $f f$; the slag is discharged at the orifice, o, and the metal and matt at the tap-hole passing through the hearth, represented at b, Fig. 43. The ore, carried by tho draft into the dust chamber, p, is removed at intervals through the aperture, b. The fire-place, II, is adapted for coal : the capacity of the chimney should be from 18 to 20 ins. square inside, 40 to 50 ft . high, and lined with fire-brick.

Fig. 45 represents n reverberatory roasting furnace in which the stirriug is performed by the iron stirrers, n, and mechanically by the rotation of the hearth. The iron hearth-stone, a a is 12 ft . In diam. with sides, $b, 10 \mathrm{ing}$.
high, composed of fire-tiles; the bottom, 4 ins. thick, is formed of firebricks ; the ore is introdnced through the funnel, p, and discharged throngh tho opening, $c l, 39$ ins. long and 4 wide, with a hinged iron door, into th:e funnel, c, which carries it outside the furnace. The cog-wheels 'y which the hearth is rotated, and the balls and rollers on which it rests, are shown at g and h.

Fig. 45.-Furnace for roasting Ore.

Fig. 46. Furnace fol Operatina Crucible. Fig. 47.
is formed of firedischarged through ${ }_{1}$ door, into tlee fun'y which the hearth shown at g and h.

Figs. 47 and 48 shows the plan of a furnace used for the distillation or rotorting of the quicksilver from the various gold and silver amalgamsobtained in the treatment of ores. Fig. 47 represents in front view ; the cover, a, Fig. 48, of the retort being removed. The retort has two wings, b b. Fig. 47, by which it is supported on brick work so as to leave three ins. clear on each side ; it is formed of cast-iron, 4 ft . long, 11 ins. wide, and 9 ins. high. The fire lias a full sweep over the whole surface of the retort both above and below ; the fire-place is fitted with grates 2 ft . long, and may be made longer if required, to conform to the kind of fuel used. The condensing plpe, k, is terminated by a funnel, l, while a constant stream of cold water is kept flowing around the pipe. Tho fumel is wrapped around with cloth, p, which reaches into the water. Tho water in the vessel, ct, should be kept at a level about half an inch below the funnel.

Flgs 49, 50, and 51, represent furnaces emploved by tho Colorado Gold and Silver Scparating Co. in treating ores by the Hagan process.

Description of the Furnaces.-A, Fumaces; 13, Blast-holes; C, Delir-ery-openings; D, Perforated steam pipes; E, Superheated chamber ; G, Flue, 6×8; J, Dampers; L, Bridgewall of Furnaces; M, Flue, 18×18; N, opening, $24 \times 24 ; 0$, Ash-pits ; \mathbf{P}, Stone walls to save brick; Q, Brick walls; R, Wood furnaces; S , Coalfurnaces ; T, Pipes for for superheated steam over furnaces; M, Grate-bars ; V, Steam pipes for controlling the action in the reducing chanber.

Working Directions.-Fill the fumace with ore broken 6 to 8 inches square, put fire under, and work very moderately for 24 hours; then make the fire strong, and let the ore remain in 48 hours longer. At the expiration of that time, commence to draw ont, taking ont 2 tons per homr, at the same time putting in a like quantity; thus kceping the furnace always full, and bringing the ore gradially from a temperature of abont 300° : the top to a temperature of about 900° as it falls to the bottom of the furmare.

Let in steam at the bottom of the furnace, for 10 minutes, each time before taking out ore, which cools it. After taking the ore out of the furnace, it should bo run through some grinding process to bring it down to find sand. It should then be run through the second process, which should have a strong wood fire and good supply of hydrogen gas, as the time running through would be very short ; after which it should be put in some amalgamating process, such as Beath's, which grinds to fine powder as it amalgamates, and clears off the oxides at the same time.

Fig. 49.

Fig. 50.

Fig. 51.
"The following is an explanation of the rationale of the Hagan process for disintegrating and desulphtrizing gold and silver ores. Superheated fteam is introduced into the fire in such a manner that, in a gaseous form, the steam impinges upon the ignited coals or wood without admixture of atmospheric air, and thus effects the decomposition of water into oxygen and hydrogen gases. Tho oxygen unites immediately with the carbon of the burning coals or wood, while the liberated hydrogen nasses from the fire and burns in tho presence of the oxygen of the air. The hydrogen flame and the resulting gases being brought into contact with the heated gold and silver ores, tho sulphur, arsenic, natimony, etc., are dissolved, and are car'ried off with the products of combustion. The powerful effect of the flame of hydrogen, in dissolving pyritous sulphur, arsenic, antimony, etc., and in attacking oxygen, is well known, but the expense of producing it has hitherto prevented its application to the disintregration and desulphurization of gold and silver ores. Not until the invention of Dr. Hagan's cheap and slmple method of decomposing water and thus furnishing hydrogen gas and flame abund::atly, has it been at all possible to apply it to this purpose ; but now so coonomically can thils powerful agent be produced that the cost of treating ores by it is only one dollar per ton.
"The treatment of gold and silver ores by the Hagan process requires a furnace of very simple and inexpensive construction, which may be built of materials at hand in every miner's locality, costing not over $\$ 2000$, for working
tes, each time be ut of the furnace, lown to find sand. ih should have a the time runuing it iu some amalowder as it amal-

Fig. 51.
the Hagan process ores. Superhcated in a gaseous form, thout admixture of water into oxygen with the carbon of en passes from the The hydrogen flame the heated gold and olved, and are careffect of the flame timony, ctc., und in ducing it has hitherdesulphurization of Hagan's cheap and g lhydrogen gas and oo this purpose ; but ced that the cost of
ocess requires á furmay be built of ma. $\$ 2000$, for working

80 tons per day. The ores are fed in at the top of the furnace as they come from the mine, and are drawn ont at the bottom as soon as they become dlsintegrated and desulphurized, and thus the operation is kept up, day and night, minterrupedly, the ore requiring 48 hours to pass through.
"The ores thus treated become soft and friable, and their character will be destroyed, so that they will crumble into powder under slight pressure. The sulphurets of iron, copper, and other base mineral compominds, will bo converted into oxides. The finest partlcles of metallic gold will be liberated from their inclosing matrix, and the silver ore will be put in a chemical condition suitable for perfect amalgamation, so that both the silver and gold may be casily separated withont the great waste and losses attending the old methods of working the ores.
"When properly manlpulated, the ores can be made to render all the precions metals they contain, or, say, within fire per cent. of the assaywhereas by the ordinary method, the ininers of Colorado have only obtivined $\$ 25$ per ton from ores actually containing from $\$ 103$ to $\$ 500$ or more per ton."

Fig. b2.-Furnace for Extractiva Quicksilver.
Fig. 52 represents furnace used for the extraction of quicksilver from the cinuabar at the New Almaden mines. It is constructed of bricks with a capacity for holding from 60,000 to 110,000 Ibs. of ore, according to its grade. The fuel used is wood, fed into a lateral furnace which supplies heat to the clambers containing the ore, but separated from them by a wall pierced with numerous apertures formed by the omission of bricks at proper interrals. The heat is conducted among the ore and through all the chambers oxilbited in the diagram, until the mercury is thoronghly condensed, while the draft is conducted through inclined stacks to the top of a distant eminence where the deadly emanations of the furnace are discharged. The furuaces rest upon double arches of brick-work and the whole is arranged with effective appliances for securing the condensed quicksilver. The ore is handbroken to remove the barren rock; no flux is employed, the lime associated with the ore being all-sufficient for the decomposition of the sulphurets.

The metal begins to run in from 4 to 6 hours after the heat is applied, and the process is complete in abont 60 houra. The mercury is condncted by
iron pipes throngh various condensing chambers, and faually discharged, in a pure condition, into large kettles.

Fig. 52 represents Bruckner's furnace for roasting ores. The contrivance is formed of an iron cylinder suspended by chains, which by means of a rotary motion mixes and stirs the ore while under trentment. These furnaces are inade of two sizes, one 6 ft . long to contain 800 lbs ., and the other 9 it long to hold 1400 lbs., the first noted requires three-fourths of a horse-power to drive it and the other one horse power. They are eminently suitable for localities difficult of access as they can be transported on the backs of mules.

Fig. 53.-Bruckner's Furnace.
Monnier's Desulphurizing Process. - This process is adaptable to cupriferous or nickeliferous ores, as also where gold and silver occur with the sulphides of copper and iron, one of the primary features being the utilization of the eliminated sulphur for the manufacture of oil of vitriol by the conversion of the sulphurous fumes into sulphuric acid. The extraction of the silver, copper, nickel, or cobalt, as either of these metals may be present in the ore under treatment, is effected by means of sulphate of soda, the gold remaining in the residue and desulphurized oxide of iron in a state permissive of easy amalgamation. The ore, mixed with sulphate of soda, is first pulverized by means of ore-crushers so as to pass through a sieve with 20 holes to the inch, and afterwards calcined in a muffe-furnace 80 ft . in length and 6 ft . wide, the hearth of the muffe (upon which the ore is placed) being built of tile $4 \frac{1}{2}$ ins. thick ; the heated gases traverse the entire length of the furnace from the fire-chamber to the end of the structure underneath, withont commmnicating with the muffle. Access to the ore is gained by side-doors along one side of the furnace, throngh which it is turned and stirred onee every hour, being gradually worked onwards from the rear end of the funnco towards the front, where it is recharged througi a hopper into the muffe towards the front, where it is charged.

The ore is thus gradnally heated, and, by the presence of the sulphate of soda, most of the sulphur is eliminated and a large amount of sulphates of the oxides of iron and copper (silver, nickel and cobalt) produced. When the charge reaches the front of the muffe, in the immediate vicinity of the fire box, and where tho temperature is most elevated, tho sulphate of the oxide of iron is decomposed, prodncing oxide of iron, some $b i$ sulphate of soda. and comnletely converting the copper (silver, nickel and cobalt) into
cest.
fually discharged, in
res. The contrivance ch by means of a roent. These furnace: 3., and the other 9 it rths of a horse-power minently suitable for m the backs of mules.
soluble sulphates. This stage of the operatlon requires care in the management of the temperature, since, by too low a degree of heat the iron may not all be converted into insoluble oxide, or, by too great an elevation of temperature, some of the other metals may be rendered insoluble by a dopriration of their sulphuric acid. If it be the object of the operation to mannfacture oil of vitriol as well as to extract the metals, the register, placed at the end and above the fire-hox, must be regulated so as to admit the quantity of atmespiheric air requisite to the oxidation of the sulphur in its passage through the length of the muffle-the exit pipe for the sulphurous acid gas leading from the rear e if of the muffe, close to the charging fur:nel, into the oil of vitriol chamber. The ore thas calcined is lixiriated vith

Fig. 64.-Fersa' e; fsed in Monnier's Process.

Fig. bs.-Sectional Drawing of Furyace.
water to extract the sulphates of copper, silver and soda (cobalt and nickel), and the insoluble residue consists of oxide of iron and earthy matters, and contaius, if the ore treated has been auriferous, all the gold. The method of llxiviation [aee Fig. 56] is the same as that practiced in sodis works for what is called " black ball ;" that is to say, the calcined ore is placed in a series of tanks [A. A. A.] having false bottoms, serving as filters. The warm water, introduced at the top, percolates through the mass, dissolving the sulphates, and, passing through the filter, is raised through a leadeu pipo (placed vertically throngh the ore and communicating with the space muder the false bottom or filter) into another similar tank charged with the calcined ore, and thus through the series, becoming more and more saturated with the soluble salts. If the residue [collected in agitator, c.] after

Fig. 66.-Lixiviating Tuns, Monnien's Prucess.
lixiviation contalus only oxide of iron and gangue, it is thrown away ; but ahould the ore treated have been nuriferons, the insoluble residues contaiu the whole of the gold, perfectly free from sulphur, which may easily be extracted by first re-grinding tho mass in a Belir mill, and then passing it through a serles of three Tyrolean amalgamators. The preliminary griuding requires but small power as tho calcined ore is very friable. With three amalgamators the operation is perfect, as bas been demonstrated on a large scale in North Carolina. The solution containing the sulphates is treated according to the metals present. If cobalt and nickel are present in sufficient quantitles, the operation becomes exceedingly complicated. The llquor containing the sulphates of soda, copper and silver is treated as follows : the sllver is first precipitated by means of plates of copper, and subsequently this added copper, as well as that existing in the ore, is removed from the solution by cast-iron, after which it is evaporated to dryness to recover the sulphates of sodn, which may thus be repeatedly used for the calciuation of fresh ore. The metallic copper and silver so obtained are separately worked in the nsual way. The copper is so pure that it requires only a single fusion to prodnce ingots of the first quality. The precipitation is made in a reverberatory furnace of peculiar construction. In a wooden trough (54 feet long, 10 feet wide and $2 \frac{1}{3}$ feet deep) is a leaden pan (of 10 pounds to the square foot) of the same dimensions, the bottom of which is covered by a two-inch floor of wood, and the sides of which are protected by a nine-inch brick wall, extending one foot above the sides of the leaden pan, and the whole covered with a low arch and well braced. Along one side and above the leaden pan is placed a number of working doors, throngl which the copper is removed after precipitation. The plates of cast-iron (2 feet long, $1 \frac{1}{2}$ feet wide and one inch thick) are placed across the furuace, at intervals of one foot, so as to form partitions. At a distance of two feet from the end of the furnace is constructed the firc-box, which comects br an arch with the arch of the precipitating furuace, and the gases from which
(cobalt and nickel), carthy matters, and gold. The method In soda works for dore is placed in a , filters. The warm mass, dissolving the ough a leadeu jippo ug with the space : tank chargod with moro and more satuin agitator, c.] after

Prucers.
t is thrown away ; but uble residues contaiu ich may easily be ex, and then passing it he preliminary griudy friable. With three monstrated on a large sulphates is treated 1 are present in sufly complicated. The liver is treated as foles of copper, and suba the ore, is removed porated to dryuess to peatedly used for the silver so obtained aro p pure that it requires ty. The precipitation netion. In a wooden is a leaden pan (of 10 vhich des are protected by aced. the leaden pan, rking doors, throng the plates of cast-iron d across tho furuace, a distance of two feet x, Which comnects br the gases from which
aro discharged from a stack in the latter arch. The liquid to bo procipitated Is then introduced into the furnace to the height of the leaden pan, and removed after the precipitation of the copper by means of a largo plug at the bottom of the furnace. The fire is very moderate, the object being to create Ω reducing atmosphere, to prevent the oxidation of the protoxide of iros, the presence of whilch would cause a loss of cast-iron. The evaporntor is of similar construction, except that the arch is close to the upper cdge of the leaden pan, 80 as to compel the heat to travel as close as possible to the surface of the liquid to be ovaporated, but at a distance of ten fect from the fire box commences gradually to raise, in order that the flro may be admitted at about 3 ft . above the solution. The furnace is kept constantly full of water, in order that tho leaden sides may not be melted. When nearly full of sulphate of soda, the fire is extinguished, the mother liquid removed, and the three working doors at the bottom opened. The solid and semi-fluid sulphate is discharged upon a wooden floor, and as spon as consolidated is placed upon the top of the furnace to dry. The dry sulphate, as above stated, is mixed with the fresh ore, ground, and used repeatedly in tho desulphurization. The precipitating and evaporathg furmaces might bo constructed of brick, but the difficulty in preventing leakage through the brick, and cost of material, will nearly counterbalance tho expense of the lead, which prescrves at all times its value. In the old method of manufacturing sulphuric acid from pyrites containing a small quantity, the residue has been submitted to smelting process. In this method water does the work, and an ore containing not more than 3 or 4 per cent. of copper (which has hitherto been refused by smelting works in this country) can be successfully and profitably treated. A residue, with no greater content of copper than abovo given, and perfectly free from sulphur, is worthless to smelting establishments in this country; but by the application of the process wo have described, the whole is oxtracted by water at but small cost, saving concentration and waste of ore, and enabling mines scattered over the country, now considered valueless, to become profitable and dividend paying. Abridged from Miner's Hand-Book.

BLOW-PIPE ASSAY, FLUXES, HYDROSTATIC WEIGHING, CUPELLATION, \&c.

In the oxy-hydrogen blowpipe, 2 volumes of hydrogen to 1 of pure oxygen generates the greatest heat and light ever produced. Tho most refractory substances are fused, melted, and dissipated immediately. Before it opal and flint dissolve into enamel ; quartz and rock crystal are reduced to glass ; the diamond and gold aro volatilized ; brass wire and platina burn with a green flame ; omerald, blue sapphire, lapis lazuli, and talc are conrerted into glass ; copper melts without burning, and iron evolves a brilliaut light.
The common blownipe is simply o ocnt, tapering tube of brass, from 7 to 10 ins. long, with a very minute orifice for the breath to escape. Small and simple as it is, however, it is of paramount utility to every miner and millman, as by its use every effect of the most inteuse furnace heat may be produced by concentrating to a point the flame of a candle or lamp by arging it with the breath upon a small particle of any substance. By this means the identity and value of most mincral substances may be ascertained and established by an operation requiring less than 30 minntes to perform it. A blow-pipe should be of brass, with an ivory or horn month-piece to secure ease of operation; a chamber to retain the coudeused moisture from the
breath, and a platin'm tip, or point, to withstand immersion atac acide required to ensuro cleanliness.

Besides tho blow-pipe, the assayer requires the following apparatus: 1. An assay or blow-pipe balance. 2. A small hammer with slighitly rounded face and a transverso sharp edge at the other extremity. 3. A square, smooth pleco of steel to use as an anvil. 4. A small porcelain or agato inortar, in which to pulverize the assay. 5. A mixing scoop, in which to mix ore with fluxes. 6. A small magnet to test ores for iron, \&c. 7. A small magnifying glass. 8. A small drill to perforato cavities in the charcoal in which the paper tubes containing the oro is to be placed. 9. A small eylinder to malio paper tubes in which to pack and melt the assay. 10. Cupels made of bono ash. 11. A cupel holder made of copper or brass. 12. A variety of fuxes, charconl, \&c. 13. A stecl forceps, or cutting pliers, for sepmrating small frasinents of minerals. 14. A small file, and glass tubes in lengths from 24 to 36 ins., with apertures about threc-sinteenths of an in. in the clear. They aro cent with the filo into lengths of 4 and 8 ins., of which the shorter aro open at both ends, and ready for usc. By heating the 8 in. pieces over an alcohol lamp, with the fingers over eith end, until they become red-hot, and then drawhrg them, they will part in two pieces, each with one cad closed, a most convenient form for many operations.

Fig. 57.-Reducing Flade.

Fig. 58.-Oxidizing Flame.

To obtain the best results from the blow-pipe in treating refractory minerals, \&c., it is necessary that the blast should be continuous. To effet this, breathing and blowing slould go together. This may be difficult to a beginner, but is soon perfected by practice in breathing through the nostrils and blowing through the instrument with the mouth at the same time. The mode of operating with the blow-pipe is exhibited by Figs. 57 and 58.

The blow-pipo flamo is formed of two cones ; an inner, of a blue tint, producing a most rehement hent, just beyond the rergo of the bluo thame. This is called the reduction flame, and should entirely envelope the assay, as shown in Fig. 57. The outer, called the oxidation flame, is represented by Fig. 58, and in this case the assay should be placed just beyond the verge of the outer flame, exposed to the aetion of the atmosphere. To produce tho former, tho point of the ilow-pipe must just touch the flame as shown at a_{1} Fig. 57; to produce the last noted, the point of the blow-pipe mast be inserted a littlo into the flame, as shown at a, Fig. 58 . The exact adjustment of the blow-pipe, to produce the desired effect in each case, is well exhibited in the engravings. The flamo may be supplied by a spirit lamp ; a candle with a largo wick, or by a lamp with a largo wick fed with olive oil.

To sustain the mineral under treatment in the flame, a platinum wire or forceps may be used, or a piece of sound charcoal made from pine wood, with in slight cavity for the assay (to prevent it from blowing away by the blast), will answer crery purpose. For many minerals charcoal is the best support obtainable, as the carbon of the coal renders great assistance to the
owing apparntus: 1. ith slighitly rounded .3. A square, smooth or agato mortar, in hich to Inix ore with . A small magnifying iarcoal in which th:o inall cylinder to malio Cupels made of bono A variety of fluxes, sepmrating small frasin lengthe from 24 to 1. in the clear. They hich tho shorter aro 8 in . pieces over an y become red-hot, and with one end closed,

idizing Flame.
in treating refractory continnous. To effect is may be difficult to a gig through the nostrils at the same time. The Figs. 57 and 58.
a imer, of a blue tint, rgo of the bluo flame. covelope the assay, as ame, is represented br st beyoud the verge of iere. To produce tho o flame as shown at a r-pipo must be inserted act adjustment of tho os well exlibited in the lamp ;an candle with olive oil.
e, a platinum wire or nade from pine wood, blowing away by the ls chareoal is the best great assistance to the
relucing process. Where no better can be had, mica, and the mineral kynnite, may bo used as supports for the assay.

The specimens of minerals, \&e., selected for treatment in the blowplpe flame should bo very littie, if any, larger than those represented in the cuts. With many kinds of a refractory character very thin specimens should be selected, as thereby fusion is greatly promoted, where otherwise it would be impossible. The size of the whole assay should be less than the bulk of a smnll pea.

Many minerals are absolutely infusible without a flux to aid reduction. The substances in common use as fluxes, are : carbonate of soda, borax, hi-
hatc of potassa, and salt of phosphorus or micucosmic salt. The carlenof soda mhould be freo from sulphuric acid, as any contamination will induce a reddish tint in the glass obtained by the fusion of silica. To olitain the full energy of borax it should be vitrified by melting, on a sheet of iron or in a crucible, common borax into a clenr, transpareat' glass, which is wibsequently pulverized and set away in glabs stoppered bottles for uro ns reguired. This must be kept where ji will not absort damp or moisture, which runs it for use. To prepare bi-sulphate of potasa, mix in a porcelain cup 2 ozs. pulv. sulphate of potassa and 1 oz, sulphuric acid ; heat over an alcohol lampi until the mixture assumes a quiet, clear, transparent appenrunce. It is then removed from the fire and poured on a plece of sheet fron. It is used for testing ore for bromine and iodine. 'To prepare alt of phospionus, dissolve 16 parts of sal-ammoniac in a small quantity of boiling water, then add 100 parts of crystallized phosphate of soda, boiling gently the whole, then set off to cool. The salt of phosphorns is deposited in small crystals. Too much heat while boiling will canse deconnposition.

The fluxes should be curefully pulverized and mixed with the powdered mineral in the mixing scoop previous to being inseited in the paper tubes and placed on the charconl. Tough silver ore may be treated in anall

> res, and three times as much lead as silver should be used. Propoition
orax should be about $60-1000$ ths, but more may be added if necessary. , when used, may preferably be added in amall successive quantitles. the paper tubes for receiving tive assay are formed by cutting note paper into strips $1 \frac{1}{2}$ ins. by 1 , and winding the ktrips around the smanll wooden cylinder (above noted) so as to form a tuhe, in which the sasay is packed previous to placing it on the charconl. One part of the tube should project a little over the cylinder, and this projecting part should be turned down so as to close one end.

In addition to the apparatus above noted, the assayer should have on hand a quantity of fine platinum wire (bent at one extremity into a circlo one or two lines in diameter) for holding the assay during the operation ; also, platinum foil for enveloping minerals that decrepitate. The following chemicals, etc., will also prove useful in many cases as relinble tests:

1. Tin-foil, for using with various per-oxides of metals to reduce them to protoxides. By touching the assay, previously heated in the reducing-flame, with the extremity of the tin-foil, Ω very smail quantity of a metallic oxido nay at once be detected. 2. Anhydrous bisulphate of potash, used for detecting lithia. It should be kept (well pulverized) in a bottle where it will not absorb moisture. 3. Sattpetre is used in detecting manganese. It developes the peculiar amethystine color when the anount of this mineral is ton small to color glass without this re-agent. The heated globule is touclicd with the point of a crystal, just at the instant of guspending the blast. The fused mass awells, foams, and cither turns immediately colored, or becomes so soon, upon cooling. 4. Boracic acid and iron wire is used for testing for phosphoric acid. 5. Nitrate of Cobalt (puro) in solution, is used for distinguishing alumina and magnesia. Use a platinum wiro inserted in cork stopper to apply a drop when required for use. (i. Gupmsim and fluor, as tests of each other. Two parts of calcined gypsum anil one of fluor, when intermixed and leated, fuse into a clear glass, presentins a milk-white en-
amel on cooling. 7. Oxalate of Nickel, or Nitratc of Nickel, is used to detect potash. It should be free from cobalt, for which it may be tested by treating it with borax ; the result should give a brown, not a blue bead.

The behavior of different minerals before the blow-pipe is various. Some are so refractory as to be wholly infusible ; some specimens melt only at the odges; others are easily fused, while some are dissipated wholly or in part. Kobell's scale for representing the various degrees of fusibility by figures is as follows: 1. Gray Antimony. 2. Natrolite. 3. Cinnamon Stone (Var. of garuet). 4. Black Hornblende. 5. Feldspar. 6. Chrondroritc. The fusibility, when equal to that of natroline. is represented by $2 ;$ or if like hornbleade, by 4 , etc.

Fig. 59.
Fig. 60.
The test tubes above noted are used to determine the presence of water: and other volatile components of various ores. The mode of operation is exlibited by Fig. 59, in which A represents the tube, B the mineral under trentment in tho flame of a spi it lamp, anid C the aqueous or volatile products as usually condensed on the upper part of the tube. Acid fumes may be detected by inserting a strip of litmus or other test paper in the npper part of the tube; the fumes, if acid, will turn the paper red.

Cupellation. The object of this process is to separate gold and silver from lead, by absorbing and oxidizing the base metal while the other is left pure. Fig. 60 represents the manner in which this process is performed by the blow-pipe. Λ is the assay under treatment, C is the cupel, and B is the cupel holder. A circular perforation, about $\frac{1}{4} \mathrm{~m}$. each way, is made in a firm piece of charcoal ; in this cavity place some moistened bonc-ashes, pressed down smooth; dry, and on this place the assay, and submit to the ac fion of the outer flame. Under this treatment fusion takes place; the lead is e!!ininated as an oxide and is absorbed by the bone ashes, while the silver is left as a small brilliant globule in the cavity.

As usually performed, the assay is treated in a cupel made of bono-ashes (or in a small hollow on charcoal, containing bone-ashes, as abovo noted) where the air has free admission. The assay being melted, the action of the atmospliere effects the oxidation of the lead, which disappears in tho porons cupel, being absorbed by the boneashes.

Tickel, is used to detect lay be tested by treata blue bead. blow-pipe is various. ie specimens melt only o dissipated wholly or egrees of fusibility by trolite.
3. Cinnamon eldspar.
6. Chrondro-- is represented by 2 ;

Fig. 60.
the presence of water e modo of operation is , B the mineral undes queous or volatile prohe tube. Acid fumes er test paper in the upo paper red.
parate gold and silver while the other is left s process is performed is the cupel, and 13 is cach way, is mado in moistened bone-ashes, , and submit to the actakes place : the lead o ashes, while the sil-
el made of bone-ashes hes, as above noted), melted, the action of ich disappears in tho

The specific gravity of a mineral is determined by the blow-pipo balance, which is adapted for hydrostatic weighiugs, as represented by Fig. 61, where A is the balance whose scales are suspended by threads of unequal length. To obtain a density by the balance, the mineral a must be placed in a sling suspended by a hair or a filament of silk from the small hook below the scale b. The ore, thu suspended on the thread, is weighed and

Flg. 61.-Hydrostatic BaLaNce, \&c, $>$
the contents noted. The mineral, still suspended, is next immersed about $\&$ in. below the surface of the water, in the glass vessel c. All adherent bubibles of air are carefully wiped away from the ore ; it is now welghed a second time, and the loss by immersion calculated. By the specific gravity, or density of a mineral, is understood its weight as compared with that of an equal bulk of distilled water, at the temp. of 60° Falir.

The preceding instructions camot fail to prove of Immense utility to the operator in proceeding with the practscal tests noted in the following elab. orate detalls relating to minerals, etc.

HOW TO IDENTIFY ĀND TEST METALLIC ORES : CONDENSED SYNOPSIS OF THE CHEMISTRY, GEOGNOSTIC SITUATION, \&C., OF METALS.'

Characteristics of Metals.-Metals are distinguished by the properties of fusibility, malleability, ductility, tenacity, elasticity, crystalline texture, and brilliancy, combined with the quality of conducting heat and electricity.

GOLD.-This metal is seldom found in its native purity ; It is found only in its metallic state in combination with other metals, generally in veins pervading prlmary and secondary rocks, as granite, slate, horustone, quartz, limestone, sandstone, gneiss, inica-slate, mica, and sometines in graywacke and tertiary strata ; also in veins of silver, copper, antimony, zhe, lead, iron ore, barytes, \&c. The attrition of the elements operating on the containing rocks and metallic lodes during uncounted ages, lass waslied thousands of millious into the beds of streams, the margins of rivers, and alluvium or drift deposits. In the primary rocks it is found mainly in schistose or slaty fissures.

In external appearance gold is of a golden or orange yellow color, passing luto grayish or brass yellow, and is the heaviest of metals except platiun. It is the most ductile, tenacious, and malleable of all the metals. On being struck with a liammer it will flatten out: fron and copper pyrites, and yellow mica, which resemble $1 t$, will crumble under this test. Interpally it is bright yellow, shining, glistening and metallic. It has equal axes like the cube, has no cleavage, has a hackly fracture, and often exlsts crystallized in cubes, octohedrons, rhomboldal dodecahedrons, and tetrahedrons.

Gold is fusible with the blow-pipe (use the reducing flame with carbonato of soda for flux), melts at 2590° is soluble in nitro-muriatic acid, which: is simply 2 parts muriatic acid and 1 part nitric acid, and remains unaltored by exposure to simple acids, air, or moisture. Nitric acid (aqua fortis) will dissolve any suspected brass filings in gold dust. Specific gravity 19.26 to 10.5.

In Solutions of Gold (Peroxide), Ammonia produces a yellow precipitate (aurate of anmonia or fulminating gold); F'errocyanicle of Potussium produces an emerald green color; Oxalic Acid produces a precipitato of metallic gold ; Protosulphate of Iron produces in concentrated solutions an instant precipitate of metallic gold. In dlluto solutions a blue coloring is first perceived, followed by a brown-colored precipitato ; Potassa (in lieated solutions), after a time produces a trifling reddish-brown precipitate, consisting of teroxide of gold mixed with terchioride of gold and potassa. Protochloride of Tin, to which a drop of nitric acid has been added, im. parts a reddish purple color to very dilute solutions ; in concentrated solutions a red-purple precipitate (purple of Cassius) is formeci. A Bar of Metallic Zinc precipitates metallic gold in the form of a brown coating.

PLATINUM.-This metal is mainly found in alluvium or drift, sometimes in granite, syenite, \&c., combined with gold, silver, copper, iron, lead, \&c., but always in the metallic state in round grains and rolled pieces abont the size of peas, and like large iron filings.

In color platiuum is steel-gray, nearly resembling silver, but not quite so bright. In lustre it is shining and glisteuing; in structure it is sometimes lameller ; is malleable aud ductile; with harduess almost equal to that of iron.

Platinum is infusible in the hottesifumaces, but melts readily before the reducing flame of the compound blow yipe at a temp. of 3080°. Dissolves in nitro-muriatic acid, and is unaffected by exposure to air, moisture, or simplo acids. Specific gravity 20.98.

In Solutions of Platinum (Peroxide), Potassa produces a yellow crystalline precipitate, consisting of the double chloride of platinum and potassium ; the addition of hydrochloric acid favors its formation; it is insoluble in acids, but dissolves in potassa with the aid of heat ; it is very slightly soluble in water, and insoluble in strong alcohol ; Chloride of Tin, in presence of free liydrocinloric acid, imparts to solutions of bichloride of platinum a deep-brown color without producing any precipitate ; S'ubnitrate of Mercury produces a yellowish red precipitate.

SILVER. -This metal is found native, as also combined with muriatic scid and sulphur in primary and secoudary slates. Great quantities exist in the metallic state combined with gold, copper, arsenic, and lead, in rocks composed of mica-slate, gueiss, clay-slate graywacke.

Native Silver occurs in primitive aud secondary rocks, irregular quartz, \&c., with the ores of copper, silver, cobait. In color it is white, sometimes a tarnished gray, or reddish shade. It occurs in plates and spangles, and crystallized in tubes, octohedrons, rinomboidal docahedrons and tetrainedrons, dentiform, capillary, ramose, reticulated, rarely large, and generally disseminated. When broken it appears fine and hackly, with a bright, shining lustre. Its color and malleability are prominent characteristics.

It is composed of silver with a little iron, antimony, copper, or arsenic, is soluble in nitric acid, is fusible into a globule, and melts at $1873 \circ$ Fulr. Oxide of silver with borax in oxidizing flame, before the blow-pipe, forms s white opaque glass ; in reducing flame, with carbonate of soda, readily reduces to metal. Specific gravity 10 to 10.5.

Antimonial Silver, composed of silver, 84 parts ; antimouy, 14 parts ; occurs in grauite and clay-slinte, combined with the other ores of silver ; is found in curred lamiune, also in grains, in cylinders. Is masaive; yields to the keife; has a conchoidal fracture; and is fusibie under the blow-pipe

Ig flame with carbon--muriatic acld, whileh: d, and remains unal-

Nitric acid (aqua dust. Specific grav-
uces a yellow precipcyanide of Potassium uces a precipitate of entrated solitions an ns a blue coloring is c; Potassa (in heated own precipitate, conof gold and potassa. has been added, imin concentrated solus formed. A Bar of a brown coating. 1vium or drift, some, silver, copper, iron, ains and rolled pieces

5 silver, but not quite structure it is sumedness aluost equal to
t melts rendily before temp. of 3050°. Disaxposure to air, mois-
roduces a yellow crysof platinum and potasrmation ; it is insoluleat ; it is very slightly loride of Tin, in presof bichloride of platiipitate ; Subnitrate of
mbined with muriatic Great quantities exist arsenic, and lead, in wacke.
pcks, irregular quarte, t is white, sometime es and spangles, and hedrons and tetraliey large, and generally ackly, with a bright, nt characteristics. y, copper, or arsenic, melts at 18739 Fuhr. he blow-pipe, forms a e of soda, readily re-
timony, 14 parts ; ocer ores of silver; it Is massive; yields to tunder the blow-pipe
(evolving antimonial rapors) into a button of silver. The characteristica are, the antimonial vapor, a silver or tin-white color, the want of ductility, and not giving a blue globule with borax.

Sulphuret of Silver, composed of silver, 85 parts ; sulphur, 15 parts; a rery productive ore; occurs in the primary and secondary rocks; is of a dark, lead-gray color ; frequently with an iridiscent tinge, and exists in tubes and octohedrons; also ramose, reticulated, amorphons, lamelliform, and in plates. The characteristics are, malleability ; imperfect cleavage; flat, conchoidal fracture ; can be cut with a knife; has less specific gravity thion native silver, and fuses with intumesence and a sulphurous odor uns dor the blow-pipe. Specific gravity, 7.

Brittle Sulphuret of Silver, composed of silver, 66.5 parts ; antimony, 10 parts ; sulphur, 12 parts ; iron, 5 parts ; arsenic and sulphur, 5 parts is a yery rich ore, and occurs in the primary rocks with other ores of silver. It exists in crystalline structure and diffused ; also in hexahodral prisms, and is of a dark, lead-gray hue, or bluish-gray, passing into iron-black. The structure is foliated ; crystals mostly intercept each other, with a dull, motallic lustre. The ore is soft and brittle ; the fracture is conchoidal. Soluble in nitric acid, and fusible, with the emission of sulphur, antimony and arsenic, into a globule of silver surrounded by a slag. The characteristics, compared with other ores, aro its dark color and brittleness; from sulphuret of silver it differs in its lack of malleability. Specific gravity, 7.

Sulphureted Antimonial Silver (Red Silver), composed of silver, 60 parts ; antinony, 20.3 parts ; sulphur, 14.7 parts ; oxygen, 5 parts; is an oxcellent ore, and is found in primary rocks, mainly in mica-slate, granite and porphyry. It possesses a metalic adamantine lustre ; structure is imperfectly foliated, has a red color of various tints, passing into lead-gray and grayishblack; the powder is crimson red. It exists in masses and grains, also dentritic, capillary, membranous, and crystallized in hexaliedral prisms, terminated by hexahedral prisms ; also in double six-sided pyramids ; is transliceent, opaque.

The characteristics are, malleability, differs from sulphuret of arsenic in leaving a globule of silver, and in possessing greater specific gravity. Is fusible, with emission of antimonial fumes. Sulphuret of mercury volatilizes under the blow-pipe. The red oxide of copper is readily reduced to the metallic state by the blow-pipe ; specular oxide of iron is rendered magnetic by the same process. Specific gravity, 5.20 to 6.68.

Muriate of Silver (Horn Silver), composed of muriate of silver, 88.7 parts; oxide of iron, 6 parts ; alumine, 1.75 parts ; sulphuric acid (oil of vitriol), 0.25 parts; an excellent ore ; is found in the primary rocks, with other ores. In color is pearl gray, greenish or reddish-blue, yellowish or greenishwhite and brown. In lustre is glistening and wavy. Is malleable ; feebly translucent ; becomes brown by exposure. Exists massive, investing other minerals, amorphous, reniform, and crystallized in tubes, octohedrons, and acicular prisms.

The characteristics are, the emission of muriatic acir fumes before the blow-pipe; fusibility in the flame of a candle ; softness ; yizlds to the knife und to pressure. Abraded on damp or wet zinc it leaves a film of silver. Muriate of mercury volatilizes before blow-pipe without leaving a film of silver. Specific gravity, 5.5.

MERCURY.-This metal rarely occurs in its native state. By far the greater part is found in the form of

Sulphuret of Mercury (Cinnabar), composed of mercury, 84.5 parts ; sulphur, 14.75 parts. It occurs mainly in new red sandstone; occasionally in limestone, mien-slate, graywacke, gneiss, deposits of bituminous shale, combined with black mineral resin, alluvium, clay, gray sandstone and limestone, and in rocks of the coal formation. In color it is scarlet or carmine, slading off into cochineal red und lead-gray, occasionally with a yellow tint. Is translucent or opaque. Occurs massive and crystallized in acute rhomboids:
certalu kinds with a yellow tint; is sometines found in thin plates or tubulay crystals. Lustre is adamantine, varying to metallic ; occasionally shining silky. The fracture is granular or fibrous.

The characteristics are, the emission of sulphur vapors, while the compound volatilizes before the blow-pipe. This test determiues the difference between this ore and red silver ore, arsenate of cobalt, red oxide of copper, and sulphuret of arsenic. Specific gravity, 8.

COPPER.-Copper is found iu primary and transition rocks, syenite, sandstone, coal strata and alluvial ground. It occurs in beds and large blocks. The ores of copper are the following :

Native Copper is nearly pure, and is found in the veins of primary and secondary rocks. In color is copper-red, brownish-black; tarnished externally ; is malleable, fusible at 2548° Fahr., and soluble in acids. Occurs dentritic, reniform, capillary, amorphous ; also crystallized in tubes and octohedrons. Specific gravity, 8.5.

Gray Copper, composed of copper, 52 parts ; iron, 23 parts ; and sulphur, 14 parts; is found with other ores of copper. In color is steel-gray, verging into black, with brownish streak. Is brittle, with metallic lustre, and smail crystals. Specular oxide of iron gires out arsenical fumes when heated; is magnetic, and softer than arsenical iron. Gray copper ore is fusible but very refractory. Specific gravity, 5.

Copper Pyrites, composed of copper, 40 to 35.3 ; iron, 40 to 33 ; sulphur, 20 to 35 ; a very valuable ore; is found in: beds and veins in primary and secondary rocks as well as in other prominent formations. The color is brassyellow, with metallic lustre ; lamellar structure ; tessular cleavage, and uneven fracture. Is the most abundant ore of copper ; yields to the knife. It occurs dendritic ; stalactical ; amorphous ; in concretions, and crystallized in tetrahedrons aud dodecahedrons. Is fusible, and tinges borax green. Iron pyrites does not tinge borax green. Lacks malleability. Native gold is malleable and native bismuth is lamellated. Specific gravity, 4.3.

Sulphurct of Copper, composed of copper, 76.50 parts ; sulphur 22, ; iron, 0.50 ; is found located same as the last noted ore. Exterior color is blackish steel-gray, occasionally iridescent; internally is lead-gray. Has lamellar structure ; conchoidal fracture; is easily sectile, with brilliant faces ; crumbles readily, and has equal axes like the cube.

The characteristics are, fusibility, with the omission of sulphur fumes; is also soluble in hot nitric acid. Is distinguished from gray copper ore by being softer, also by the latter decrepitating before the blow-pipe. A very productive ore. Specific gravity, 5.

Blue Carbonate of Copper, composed of oxide of copper, 70 parts ; carbonic acid, 24 parts iwater, 6 parts ; is found in the primary and secondary rocks. The color is blue, fracture irregularly foliated, generally showing broad fibres. Occurs massive ; diffused ; stalactical ; incrusting, and crystallized.

The characteristics are, solubility in nitric acid with effervescence, is refractory without a flux ; fused with borax yields a green glass; does not become magnetic under the blow-pipe, and is insoluble in water. Copper melts at 2548°.

Red Oxide of Copper, composed of copper, 88.5 to 91 parts ; oxygen, from 11.5 to 9 parts; is found with other ores of copper. Is of a red color, lamellated structure, metallic, adamantine lustre ; is brittle, translucent, ensily sectile; has irregnlar and conchoidal fracture. Is found amorphous and crystalized in octaliedrons and cubes.

The prominent characteristics are, easy reduction and solubility ; is soluble in nitric acid with effervescence and in muriatic acid without. Oxide of copper fuses in the oxldizing flame, before the blow-pipe ; in the reducing flane forms metal ; with borax, in the oxidizing flame, colors the glase green ; in the reduc'.⿰g flame, brown-red. Specific gravity, 4 to 5.9 .
in plates or tubular occasionally shiuing
ors, while the commines the difference red oxide of copper,
ition rocks, syeuite, in beds and large
eins of primary and ck ; tarnished exterle in acids. Occurs lllized in tubes and
parts ; and sulphur, s steel-gray, verging llic lustre, and small nes when lieated; is r ore is fusible but

40 to 33 ; sulphur, 20 primary and secondThe color is brassassular cleavage, and ; yields to the knife. ions, and crystallized tinges borax green. eability. Native gold ic gravity, 4.3.
parts ; sulphur 22, ;
re. Exterior color is
y is lead-gray. Has ectile, with brilliaut ube.
pn of sulphur fumes; rom gray copper ore re the blow-pipe. A
er, 70 parts ; carbonic and secondary rocks. rally showing broad Fusting, and crystal-
vith effervescence, is reen glass ; does not ble in water. Copper
parts ; oxygen, from of a red color, lamele, translucent, casily and amorphous and
and solubility ; is acid without. Oxide olpe ; in the reducing ne, colors the glass avity, 4 to 5.9.

IRON.-Occurs both in primary and secondary rocks. The principal ores from which iron is extracted are the following:

Brown Hematite. -This ore is found in primary rocks and occasionally in secondary formations. It yields a superior iron. In color it is brown, yellowish, or blackish-brown; on the outside resembling black glazed earth-en-ware. It yields to the knlfe; is ibrous in structure, with silky and resinous lustre. It occurs stalactical, tuberous, nodular, and amorphous. A variety of this ore has a compact structure, devoid of lustre, with yellow-ish-brown streak, and conchoidal or earthy fracture.

Specular Oxide of Iron (Iron Glance), composed of iron, 69 parts; oxygen, 31 parts ; yields an excellent malleable iron, and occurs mainly in primary rocks, associated with magnetic iron, red hematite, quartz, \&e.; occurs also in secondary rocks. In color is steel-gray, with a highly polished surface; often tarnished. Occurs crystallized in pyramidal dodecnhedrous, hexahedral tables ; also massive, disseminated, in concretions. Has a cherry-red streak, lamellar structure; brilliant lustre ; is slightly attracted by the inagnet ; infusible ; and insoluble in acids. Affordsa red powder on being hented, and becomes maguetic. Specific gravity, 5.52.

Red Hematite, composed of oxide of iron, 90 parts; silica, 2 parts; lime, 1 part; yields a first-class iron for drawing and rolling ; is found mainly iu primary rocks ; frequently in lead mines. In color is blood-red; also steelgray. Yields readily to the knife ; occurs massive, and in plates; also reniform, globular, and pulverulent. It adieres to the tongue; the fracture is uneven and earthy. Is infusible, but becomes magnetic. Specific gravity, 4.75.

Spathic Iron (Clay Iron Ore), composed of oxide of iron, 68 parts; carbonic acid, 35 parts; oxlde of manganese, 4.25 parts ; magnesia, 0.75 parts; lime, 0.05 parts ; yields an iron well adapted for steel making ; is found principally in carboniferous limestone, arranged in thick formations; also In veins in granite, mica-slate, clay-slate, gneiss, and graywacke; associnted with ores of silver, lead, and cobalt, but seldom in nickel or bismuth; moro frequently with galena, iron pyrites, antimony ore, and copper ore. In other velus it is associated with brown, red, and black iron ore, quartz, and calcarcous spar ; occurs also filling up amygdaloidal cavities in trap-rocks.

The colors of the ore are, yellow, brown, white, and black. It yields to the knife, is easily broken ; the structure is foliated or lamellar, with shining, ritreous lustre, and white, or yellowish-brown streak. It occurs massive, disseminated with pyramidal impressions; also in grauular distinct concretions; nodular and crystallized. Crystals aro usually small, and exist in groups.

The chemical tests are : efferrescence with muriatic acid ; is infusible, blackens, and becomes magnetic. Heated with borax, it makes an olivegreen glass. It may be distinguished from earthy minerals by its weight, from other iron ores by its crystallne foliated cleavage, and from blende by its yielding magnetic iron. Specific gravity, abont 4.

Maynetic Oxide of Iron (Iron Sand), conposed of oxide of iron, 85.50 parts ; oxide of titanium, 14 parts ; oxide of manganese, 0.50 parts; an excellent ore, yielding from 50 to 90 per cent. of the best bar iron, is generally foind imbedded in trap-rocks, and styled mountain ore. The color is ironblack ; is found in octahedral crystals, also in minute grains. The powder is black; the fracture conchoidal ; intensely magnctic, and infusible by the blow-pipe.

Peroxide of iron remains unchanged in the oxidizing flame of the blowpipe; in the reducing flame, blackens and becom s magnetic; with borax, in the oxidizing flame, forms glass bright-red while hot, pale dirty-red when cold ; in the reducing flame, forms glass varying from bottle-green to blackgreen ; with carbonate of soda, on charcoal, reduces to metal as a dark magnetic powder. Specific gravity, 6.22.

Tests for Iron.--Prussiate of potash added to iron dissolved in an acid causes a blue precipitate, and an infusion of galis a black precipitate.

LEAD.-The principal oro from which the great mass of the lead of commerce is obtained is the sulphuret of lead, or galena. It is composed of lead, sulphur, lime, and silex, and is often combined with ores of silver, and frequently with ores of zinc, copper, and iron. It occurs in beds, veins, and imbedded masses in primary and secondary rocks; frcquentiy in the latter, and very often in limestone; aiso in alluvial deposits.

The shades of colorare bluish-gray, lead-gray, and on the ontside blackishgray. Is soft ; yields to the knifo; has a lameliated structure ; metallic lustre, very brlttle, and opaqno Submitted to heat, it first decrepitates, with the omission of sulphur fumes, then melts into a globule of lead ; blende, molybdena nnd graphite, which resemble this ore, are infusible.

Tests for Lcad.-Oxalic acid produces in neutral solntions of oxide of lend a white precipitate. Glanker's salts and an infusion of galls, give to a solution of this metal n white precipitate. Oxide of lead, in oxidizing flamo before the blow-pipe, turns first blue, then fuses to a glass of orange color ; with carbonate of soda, on charcoal, in the reducing flame, reduces to metal ; with borax, forms glass yellow while hot, colorless while cold.

TiN.-The regular ore froin which this metal is extracted is :
Oxide of Tin (Tinstone), composed of tin, 77.5 parts ; oxygen, 21.5 parts; oxide of iron, 0.25 part ; silica, 0.75 part; usually occurs in primary rocks in veins, traversing gueiss, granite, mici-slate, porphyry, and clay-slatc, and is generally found with iron pyrites, chlorite, guartz, topaz, fluor, \&cc. The metal obtrined from ores thus Incated is called block tin. The grain tin of commerco is obtained from the stream tin ore found in alluviuni and drift.

The colots aro black, brown, green, red, white, and yellow. It is brittle, gives sparizs with steel ; lass a lamellar structure, with adanantine or resinous lnstre, and grayish-white streak. Occurs in crystals, and in masses from the size of grains to that of the fist.

On a chemical test it decrepitates, but by the blow-pipe it may be reduced to the metallic state on charcoal. It may be distinguished from spathic iron by the latter leaving an iron button under the blow-pipe. Blende cannot be reduced, and is not so hard. Specific gravity, 6.7 to 7.

Tests for Tin.-In solution of tin oxide, phosphate of soda produces a white precipitate. A bar of metallic zinc precipitates tin in small grayishwhite inctallic spangles. To a solution containing the metal, present a perfectly clean sheet of iron, the result is metallic tin. Oxide of tin, in the oxidizing flame, before the blow-pipe, presents a dirty-yellow color; with carbonate of sodn, in reducing flame, on charcoal, reduces to metal ; with borax forms a clcar glass.

ZINC.-Ono of the ores of zinc is :
Blende (Mock Lead, Falsc Galena, Black Jack), composed of zinc, sulphur, iron, and silica; is found in veins of primary nnd secondary rocks. usually united with iron and copper, with galena. It is frequently used after roasting in tho preparation of brass, but is usually too much dissemionted in its gangue to make its extraction profitable.

The colors are brown, yellow, and black. It is brittle, yields to the kuife, has a foliated structure, with shining, adamantine lustre. It oceurs massive, disseminated, lamelliform, in granular concretions, and crystallized. It decrepitates when heated; evolves the smell of rotten eggs when thrown into oil of vitriol ; is infusible, and does not tinge borax green. Specific gravity, 3.7 to 4.

Calamine, composed of oxide of zinc and carbonic acid, is found in reins, oftenassociated with oxide of iron, and occasionally with galena; is also found in beds, neste, filling up or liniug hollows, in conglomerate rocis and ecoudary limestone.

Hissolved in an acid ck precipitate. mass of the lead of galena. It is com. comblned with ores d iron. It occurs in iecondary rocks ; freo in alluvinl deposits. a the ontside blackishstructuro; metallic irst decrepitates, with bule of lead ; blende, infusible. solutions of oxide of asion of galls, give to of lend, in oxidizing to a glass of orange ducing flame, reduces olorless while cold. extracted is : 3 ; oxygen, 21.5 parts; ars in primary rocks hyry, and clay-slate, uartz, topaz, fluor, \&c. block tin. The grain und in alluviun and
yellor. It is brittle, with adanamitine or rystals, and in masses
pipe it may be reduced slied from spathic iron pipe. Blende cannot 07.
atc of soda produces n tin in small grayish. metal, present in perOxide of tinl, in the ty-yellow color ; with duces to metal ; with
omposed of zinc, suland secondary rocks. It is frequently used ly too much disseni-
brittle, yields to the tine lustre. It occurs cretions, and crystalof rotten eggs when t tinge borax green.
cid, is found in reins, with galena; is also anglomerate rock and

The colors are sometimes nearly white, at others gray, greenish, or brown-yellowish. Is easily sectile. Occurs compnet, amorphous, pseudomorphous, crystallized, and cupriferous. In cliomical tests it dissolves with effervesence in hented nitric acld, or muriatic acid, and is infusible. Oxide of zinc, in the oxidizing flame, before the blow-pipe, exhibits a whitish-green color ; while hot this oxide is slightily yellow-when cold is white : with borax forms glass, which in an intermittant fiame becomes milky; in the reducing flame, on charcoal, reduced to metal, which readily sublimes.

Red Ore of Zinc, composed of oxide of manganese and oxide of zinc, is found in primary and transiticn rocks, limestone, and irqu mines. It is brittle ; yields to the knifo ; has a foliated structure and shining lustre, becoming dall by exposure. The color is red ; it occurs massive and disseminated. In chemical tests it dissolves with effervescence in strong acids. Is distingnishable by its weight and infusibillty. Specific gravity, 6.22 .

MANGANESE.-This metal in its metallic state is of no avail in the arts. The ore, which subserves all required uses without preparation, is called

Black Oxide of Manganese.-It is composed of manganeso, oxygen, and water ; is found in imbedded masses and veins in primary rocks, and often with ores of irou. The color is of a dark steel-gray, with metallic lustre, black streak, and conchoidal earthy fracture. It occurs massive, in fibroun concretions, and crystallized. In a chemical test is decomposed by being thrown into water, and turns the water green. On exposure to the air absorbs so much oxygen that it falls into powder. Is infusible alone, but with borax ylelds a purple globule ; becomes brown by heat; with borax, in tho oxidiziug flame, much oxide employed, the glass is black ; little oxido employed, the glass is of an amethyst color-in the reducing flame, and on charcoal, this latter globule becomes colorless, and so remnins if quickly cooled ; with soda in the oxidizing flame, and ou platinum foil, forms an opaque green glass.

COBALT.-This metal is of no avail in its metallic state for use in the arts ; is in use mainly by painters and bronzers, as zaffre, smalt, \&c. The ore producing them is,

Arsenical Cobalt, composed of cobalt, arsenic, and sulphur, is found combined with silver, bismuth, nickel, arsenic, and copper, in veins traversing primary rocks. The color is silver-white, with a reddishl copper tint. Has a metallic lustro ; is brittlo ; difflcult to cut ; with conchoidal fracture. Occurs massive, reticulated, dendritic, stalactical, and crystallized in cubes and octaliedrons. Fused with borax it yields a blue glass. Turus black, with the emission of garlic fumes, in the blize of a candle. The oxide is unchangeable by itself (before the blow-pipe), but with carbonate of soda, on charcoal, forms a gray magnetic powder ; with borax, both in oxidizing and reduciug flame, gives a deep blue bead. Specific gravity, 6.30 to 7.30 .

For full directions for preparing smalt, seo page 283.
NICKEL. -The ore from whiciit this metal is derived is,
Arsenical Nickel (Kupfer, or Copper Nickel), composed of uickel, arsenic, sulphur, lead, iron, and cobalt, is found associated with cobalt. It ocsurs massire, reticulated, and botryoidal. In color is copper sed, with metallio lustre ; is cut with difficulty ; forms a green solution in aqua fortis, and einits garlic fumes when lieated. Oxide of nickel (before the blow-pipe) is Infusible nlone ; in the oxidizing flane, with borax, forms an orange-red globule which becomes nearly colorless on cooling ; in the reducing flame, ou charcoal, the bead becomes gray; in the reducing flame, with soda, on clarconl, reduces to a maguetic powder. Speciffc gravity, 6.60 to 7.70 .

BISMITTH. - This mineral is often found in its pure state fit for immediate use, but more frequently associated with cobalt, iron pyrites, galena, arsenic, siliver, \&c., in the primary rocks, especially in guelse, quartz, nud mica-slate. In color is silver-white, with a redaligh tint. Is softer than
copper ; tarnishes ; has a metallic lustre, lamellar structure, nnd melts al 476°. Before the blow-pipe, bismuth fuses and gives off inodorous fumes. On charcoal it becomes surrounded with a dark brown oxide, which is paleyellow on cooling; the flame directed on the coating is not tinged; ulti. mately the metal is wholly vaporized. The oxide of bismuth, with carbonate of soda, on charcoal, reduces to metal. Speclfic gravity, 9.

ANTIMONY. -The ore from which commercial antimony is obtained is the

Sulphuret of Antimony, composed of antimony, 74 parts ; sulphur, 20 parts ; and found chicfly in granite, mica-slate, and gneiss, associated with ores of iron, copper, arsenic, blende and galena. It occurs crystallized and massive, conposed of delicate threads or ncedles. Is brittle ; ylelds to the knife; has fibrous fracture and splendid lustre. Tested in a candle-flame it melts. The ores of autimouy afford fumes usually white on charcoal, which are inodorous. The oxides form, with soda on the platinum wire, a clear, colorless bead, which becomes white on cooling ; on cliarcoal they are reduced. In an open tube, antimony gives white funmes, which cont the glass and raporize easily on a new application of the lieat, without fusion to globules. Specific gravity, 4 to 4.80 .

GRAPHITE (Black Lead, Plumbago), composed of carbon, 9 parts; iron, 1 part ; is found in clay-slate, also in the coal formation. The Dixon Crucible Co., of Jersey City, N. J., obtain their graphite from the "Black Lead Mountain," uear the village of Ticonderoga, Essex Co., N. Y. Tho ore is chiefly of the foliated variety, interspersed in gneiss and quartz in veins. Graphite is also found in great abundance near Ottawa, Canada.

ROCK SALT is foum in secondary strata ; frequently associated with gypsum, marl, ciay, \&c. Near Goderich, in Canada, at a depth of about 1000 it ., there is a bed of rock-salt 14 to 40 ft . thick. The salt of Salina and Syracuse, N. Y., is obtained from wells of salt water 150 ft . and upwards in depth, which are borings in saliferous rocks, which here are from 700 to 1000 ft . thick. From 35 to 45 gals. of the water ylelds a bushel of sait, while of sea water it takes 350 gals. for the same quantity.

PRECIOUS STONES.-Diamonds are found in association with sand or alluvium which contain grains of gold. In Brazil the dianond district is called Minas Geraes, 50 miles by 25 , near Tejnco. The emeraid, garnet, amethyst, tourmaline, chalcedony, topaz, chrysprase, chrysoberyl, sapphire, iolite, spinel, are always found in the primary rocks. The sardonyx, jasper, carnolian, cacholong, are often found in secondary strata, princlpally in the trip rocks. Cairngorm is a species of quartz. The exndations whilch form crystals are a very extensive mode of rock formation in all varieties. For hardness of precious stones see page 925.

COAL.-Among the rarleties of coal may be noted
Anthracite (Blind or Glance C'oal), sometimes called stove coal, is found in imbedded masses, veins and beds in primary and secondary rociss, frequently in trap-rocks, graywacke, siate, sandstone, \&c.

Black or Dituminous Coal occurs chiefly in the secondary rocks, sometimes in aandstone, limestone, and clay. The various kinds are styled slate, coarse, foliated, and camel conl. The coal beds vary in thickness from a fraction of an inch to 30 or 40 ft ., but seldom exceed 8 ft ., and are generally much thinner; 8 to 10 ft . is the thickness of the principal bed at Pittsburg, Pa. ; 29. ft., that of the "Mammoth vein" at Wilkesbarre, Pa., $37 \frac{1}{2} \mathrm{ft}$. that of one of the two great veins at Pictou, in Nova Scotia. The conl beds, talken together, make up not more than one-fiftleth part of the conl formation ; that is, there are 50 feet or more of barren rock to 1 foot of coal. An acre of coals 2 ft. thick Fields. 3000 tons, 3 ft . thick, 4840 tons, and 5 ft ., 8000 tons.

Lignite (Brouen Coal) occurs in secondary rocks, and occasionally in alluvilum. For facts relating to coal, fuel values, \&c., see page 627.

GYPSUM occurs in the new red sandstone and other secondary rocks.
ucture, and melts at off inodorous fumes. oxide, which is pale is not tinged ; ultl. ismuth, with carbonavity, 9.
timony is obtained is
4 parts ; sulphur, 26 neiss, associated with curs crystallized and brittle ; yields io the ed in a' candle-flame y white on charcoal, the platinum wire, a ; ; on charcoal they te fumes, which cont of the lieat, without
of carbon, 9 parts; rmation. The Dixon lite from the "Black issex Co., N. Y. Tho gneiss and quartz in r Ottawa, Canada.
rently assoclated with at a depth of about The salt of Salina and 150 ft . and upwards in here are from 700 to alds a bushel of salt, tity.
ociation with sand or e diamond district is The emerald, garuet, elirysoberyl, sapphire,

The sardonyx, jasstrata, principally in he exudations which ration in all rarieties.
d stove coal, is found secondary rocks, fre-
condary rocks, someung kinds are styled ds rary in thickness exceed 8 ft ., and arc the principal bed at at Wilkesbarre, Pa., I Nova Scotia. 'rhe e-fiftleth part of the rren rock to 1 foot of ft. thick, 4840 tons,
and occaslonally in seo page 627.
s secondury rocks.

LIMESTONE, composing most of the rocks below the drift, is a compact rock of grayish and other dul! shades of color to black. Consists es sentially of carbonate of lime. When impure, and therefore good for making hydraulic lime (lime that will set under water), it is culled hydretulic limestone. When composed of carbonate of lime and magnesin it is called dolomite. When containing fossils it is called fossilifcrous limestone. The limestone rocks owe their origin to the organic remains of varions apecies that have lived and died during past time. The best marble is fonnd in the upper part of the primary, and lower parts of the secondary rocks.

Lime (oxide of calcinm), before the blow-pipe, is infusible alone; with borax, effervesces ; with a comparatively large quantity of borax, forms a clear glass which becomes angular on cooling; in the flame of the oxylhydrogen blow-pipe emits a dazzling white light, and fuses at the edges.

BORAX (Biborate of Soda), before the blow-pipe intumeses and fuses to borax-glass ; with fluor-spar and bisulphate of potash, colors the flame green ; soluble in water; the solution changes vegetable blues to green.

ALUMINA (Sesquoxide of aluminum), before the blow-pipe, remains unaltered both alone anc with soda; fuses with borax with great difficulty, also with calt of phosphorus; moistened with cobalt solution and brought to a high heat, becomes blue ; is not attacized by actds.

SULPHUR, heated in an open glass tube, emits fiumes of sulphurons acid ; heated with soda, the compound, moistened with water, blackens silver.

TELLURIUM (Oxide), before the blow-pipe, colors the flame greel:, fuses and sublimes; with borax, in the oxidizing flame, forms $\boldsymbol{\pi}$ colorless glass ; in the reducing flame the glass becomes gray ; its behavior with carbonate of soda is similar as with borax ; on charcoal, readily reduces to metal.

QUARTZ (Silicic acid), before the blow-pipe, undergoes no change alone; with soda, readily fuses to a transparent glass.

NITRE, before the blow-pipe, deflagrates vividly ; detonates with combustible substances : dissolves readily in water ; not altered by exposure.

FLUOR-SPAR (Fluoride of Calcium), before the blow-pipe, decrepitates and fuses to an enamel ; the fiame continued, the specimen assumes a canliflower; heated with salt of phosphorus in a glass tube, it etches or rougheus the inside of the glass.

PHOSPHORUS, moistened with sulphuric acid and heated, gives a green, tinge to the flame.

CHLORINE.-A substance containing chlorine, combined with the salt of phosphorus and oxide of copper, on the platinum wire, colors the flame deep blne.

SODA (Oxide of Sodium), colors the flame deep yellow.
ARSENIC (Oxide), before the blow-pipe, volatilizes in white fumes of a garlic odor; heated to redness burns with a pale blnish fiame.

The following additional tests, \&c. for the determination of gold and silver ores, is extracted from Mr. Kustel's incomparable work.

SFe. 10. The use of the following systematic proceeding can be understood easily by an example :

A silver mineral, for instance, approved as such by an examination on silver, must be observed first as to what lustre it shows, or whether it is dull. Suppose, then, the mineral has a metallic lustre. (See I.) The color must be obserred next, and compared with those under I. The ore is further found to be "lead gray." We have then to proceed from the indicated letter, B, on the right side, to B on the left, and examine accordingly, Whether the mineral gives a sublimate or not. If. for instance, no snblimate has been obtained, we mnst proceed to c, as indicated. On the described examivation under c, the mineral appears tough ; it can be cut with Ω kuife.
We go over to Section 16, and see the numbers 2 and 20, Silverghuce and Hessite. The description of both will lead to the right determination of the mineral.

I.-Lustre metallic or Sub-metallic.

Celor, white, greyish-white, yellowish-white, or yellow, see. A
Color, lead-gray, blackish lead-gray, or iron-black,......................... . Is
Color, light steel-gray,..... C
Color, reddish lead-gray,
Color, pinchbeck-brown,. E

> II.-Lustre Resinous and Adamantine.
Color, pearl-gray, jellowish-green, green, olive-green, lemon-sellow, or lighlit sellow, sce
III.-Dull.
Color, red, dark red (sometimes extemally lead-gray), \quad G
Color, blackish-bluc, I
Color, greenish-black,
A It can be cut with a knife, see... a
A Cannot be cut ; is brittle,................. b
B In a closed tube, no sublimate, even under the plow-plpe,
B It gives a sublimate, with or withent the blow-plpe,... d
C In a closed tube, no sublinate,.. e

D In a closed tube, dark-red, sublimate. Sce Sec. 16 (8 or 9).
E In a closed or open tube, no sublimate. See Sec. 6 (4).
F In a closed or open tube, no stublimate,
F^{\prime} Gives, with the aid of the blow-pipe, a slight sublimate,.................. h
G In a closed tube, red-brown or reddish-yellow sublimate. Sec. 16 (10).
G It glves three sublimates-black, yellow, and gray. Sec. 16(16).
H In an open or closed tube, no sublimate. Sec. 16 ($3 a^{\prime}$).
I In an open or closed tube, no sublimate. Sec. 16 ($11 a^{\prime}$).
a It melts on charcoal to a metallic white globule. Sec. 16 (1).
a It melts on charcoal to a metallic ycllow or yellowish globule. Sec. 15 (1).
b It melts on charcoal to a globtle of metallic lustre, coating the coal white. Sec. 16 (17).
b It decrepitates somewhat. glving. before fusing, a slight, very volatile whitish coating. Sec. 15 (4), or Sec. 16 (22 or 23).
c It can be cut with a knife. Scc. 16 (2 or 20).
c It cannot be cut ; is brittle. Sec. 16 (3 or 4 a or 6), or Sec. 15 (2).
d In a closed tube, it gives a reddish-yellow sublimate. Sec. 16 ($6 a^{\prime}$).
e On charcoal it fuses, giving a yellow und white conting. Sec. 15 (3).
f In a closed tube, by aid of the blow-pipe, a dark red sublimate. Scc. 16 (11).
g On charcoal it fuses, emits an acrid odor, and leares globules of silver : in a closed tube, with bisulphate of potassa, emits no colored vapors. Sec. 16 (12).
g It gives, with bisulphate of potassa, red-brown rapors. Sec. 16 (13 or 14).
h In a closed tnhe, with bisulphate of potassa, violet vapors. Sec. 16 (15). DESCRIPTION OF GOLD AND SILVER ORES. A. Gold Ores.-
Sec. 15. Gold appears mostly in metallic condition, but never free from silver. It is found generally in the form of grains, scales, dust, also in the shape of leaves, threads, or crystals. It is not ascertained but supposed that a part of the gold in iron pyrites does not exist in metallic state, but com

20, Silverglance and determination of the
(or 9).
(4).
imate
imate. Sec. 16 (10).
Sec. 16 (16).
$3 a^{\prime}$).
$\left.1 a^{\prime}\right)$.
ec. 16 (1).
wish globule. Sec. 15
coating the coal white.
slight, very volatile
or Sec. 15 (2).

- Sce. 16 ($6 a^{\prime}$).
ing. Sec. 15 (3).
d sublimate. Sec. 10
globules of silver : in o colored vapors. Sec.
rs. Sec. 16 (13 or 14). vapors. Sec. 16 (15). iS. A. Gold Ores.but nerer free from cales, dust, also in the med but supposed that hetallic state, but coin
viued with sulphur, of with arsenic in the arsenical pyrites. The gold is found in combination with the following metals:

1. Silver:-In different proportions. The gold of Gold Fill lode, N. T., contains forty-seven to fifty per cent. of silver; that of the Comsteck lode, thirty to forty-five ; Gila River and Anstralian gold, three to five per cent. According to the amount of silver, the gold appears more or less whitish. Sixty per cent. of silver renders the alloy white.

On clarcoal, treated with the oxidntion flame, it gives sometimes a bluish-white conting of antimony. With borax, played upon with reduction flame, a reäction of copper may be observed.
2. With Tellurium.-It contains gold, 26 ; sllver, 14 ; tellurium, 59 ; with traces of lead, copper, and antimony ; hardness, 1.5 ; gravity, 8.7 to 5.8 ; lustre, metallic ; color, light gray.

In an open tube it omits white fumes, and gives a gray sublimate of tollurium. Directing the flame on tho sublimate, it melts iuto transparent drops. The fumes have a peculiar sour odor. On charcoal, it melts to a dark-gray globule. Played upon with tho oxidution flame, it gives a white coating, which disappears with a bluish-green color, under the oxidation flame. Continued blowing ylelds a yellow, bright gold button.
3. With Tellurium and Lead.-Gold, 9 ; tellurium, 32 ; lead, 64 , with traces of copper, sulphur, and autimony ; $\mathrm{H} .=1.5 ; \mathrm{Gr} .=7.72$; color, dark lead-gray.

In an open tube it fumes, and yields a gray sublimate, the upper part of which, formed by antimonions acid, can be driven away by the flame. On charcoal it fumes and gives two contings-a white onc, which is volatile, consisting of tellurous and antimonious acids and sulplinte of lead; the other coating is yellow, less volatile, and consists principally of oxide of lead. Continued blowing leaves a small metallic button, showing gold color when cupelled.
4. With Mercury and Silver.-Gold, 36 ; silver, 5 ; mercury, 58. The gold is found also alloyed with molybdenum, platinum, and rhodium.
B.-SILVER ORES. SEC. 16. Silver is found mostly in combination with sulphur, also alloyed with other metals and substances. It appears often in metallic condition.

1. Native Silver is found crystallized, in threads or filaments. It often coutains a small amount of antimony, arsenic, iron, gold, or copper. The native sllver, one raricty of the Comstock lode, N. T., containg, silver. 60-85; gold, 1.9 ; lead, $8-30$; copper, $1-5 ; 1 H .=2.7-3 ; G r .=10.6-11.3$. Heated on charconl, it becomes covered with lead globules, disappearing again when red hot. It gires a yellow coating of lead, and further off, a bluish-white of antimouious acid. It colors the borax glass green with the oxide of coppler.
a. Combination with Sulphur.-2. Silver glance (Sulphuret of Silver). -Silver, 87 ; sulphur, $12.9 ; H .=2.5 ;$ Gr. $=6.9-7.2 ;$ lustre, metallic ; color and streak, blackish lead-gray ; streak, shining. It may be cut liko lead. On charcoal, it melts into a dark blto globule, gencrally emitting metallicsilver on the surface on cooling, especially if a small particle of borax glass is added, which dissolves impurities. It yields a silver globule when melted with soda.
2. Stromeyeritc (Silecr-Copper glance).-Silver, 50-53 ; copper, 31 ; sulphur, $15 ; \mathrm{H} .=2.5 ; \mathrm{Gr}=6.2 ;$ lastre, metallic ; color, blackish lead-gray. In a closed tube, gives sometimes a little sulphur sublimate; in an open tube, sulphurous acid. On charcoal, it fuses to a stecl-blne gloloule, emitting sometimes metallic silver on cooling. Melted with sodn, it gives a copper button, which yields silver when refined. It occurs in tho Heintzelman mine, Arizona.
a^{\prime}. A rariety of this ore, containing 40-33 per cent. of silver, with a dull blackish-blue color ; streak, shining ; can be cut ; occurs in Arizona.
3. Sternberyite (Sulphuret of Silver and Iron).-Silver, $\mathbf{3 0} \mathbf{- 3 3}$; Iron, 36 ;
suiphur, $30 ; \mathrm{H} .=1$; Gr. $=4.2$; metallic lustre ; color, pinchbeck-brown; streak, black. In thin laminx, flexible, resembling graphite. In an open tube it gives ont sulphurous acid. It melts to a globule on charcoal, emit. ting silver, and follows the magnet.
a'. A variety of this ore is found in the Gold Hill lode, N. T. It consists of silver, 23.25 ; iron, 34.05 ; $\mathrm{H} .=2.8$; Gr. $=5.2$; color, dull bluidh-gray. The frac...ro has a metallic lustre and dark lead-gray color. The powder is blackish-brown. It is found in small fragments of indistinct cubic shape. On charcoal, it molts, with a spongy appearance, to a dull gray globule, following the magnet. A slight yel'ow coating indicates a trace of lead. In melting, it gives out a great deal of sulphurous acid. Treated with soda, a silver globule is casily obtained.
b. Combinations with Sulphur and Antimony, or Arsenic.-5. Brittle Silver Ore.-Silver, 70 ; nutimony, 13.9 ; sulphur, 15.7 ; $11 .=2.5$; Gr. $=$ 6.2 ; lustre, metallic ; color and streak, iron-black, or blackish lead-gray. In a close tubo, it decropitates, melts to a globule, and gives a blackish sublimnte, which turns red-brown when cold, cousisting of sulphide of antimony. In an open tube it melts, evolving sulplarous acid, and fumes. Ou charcoal it fuses, and coats the coal white with antimonions acid. By continual blast, the coating assumes a pink color, derived from the oxide of silver. It occurs frequently in the Comstock lode.
4. Polybasite (Eurgen Glance).-Silver, 64-72; copper, 3-10; sulphur. $17 ; \mathrm{H} .=2.5 ; \mathrm{Gr}_{\mathrm{i}}=6.2$. It contains nlso antimony, arsenic, iron, nud sometimes zinc. Lustre, metallic ; color, iron-black; streak, black. In a closed tube it yields nothing volatile. In an open tube it gives nutimonial fumes and sulphurous acid. It occurs also in Gold Hill lode, N. T.
a^{\prime}. The polybasite of the Comstock lode contains 64 per cent. of silver. It gives, in a closed tube, with the nid of the blow-pipe, n reddish-brown sublimate, with a yellow elge. In an open tube, white fumes arise, and some white sublimate deposits. On charcoal, with the reduction flame, it evolves an odor of garlic. Played upon with the oxydation flame, it gives out sulphurous acid and a white coating of autimonious acid. It melts to a globule with a metallic justro. If the hot blast is changed saddenly to a cold one, and directed on the globule, holding the blow-pipe point close to it, metallic silver is emitted. If the cold blast is stopped too soon, the silver will disappear again.
5. Miargyrite.-Silver, 35.8 ; autimony, 42.8 ; sulphur, 21 ; II. $=2.5$; Gr. $=5.2-5.4$; lustre, metallic adamantine ; color, iron-black; streak, dark cherry-red. In a closed tube it decrepitates, melts easily, and gives ont a sublimate of sulphide of antimony. In an open tube, sulphurous acid and antimonial fumes aro emitted, depositing a white sublimnte of antimonions ncid. On charcoal it melts quietly, emîtting sulphurous acid and antimouial fumes. It covers tho coal with a white coating, which becomes pink-colored by continual blast. Melted with soda, is silver button is obtained, which, treated with borax and tin, reäcts on copper.
6. Dark red Silver Ore (Pyrargyrite, Antimonial Blend).-Silver, $58.9{ }^{\circ}$ antimony; 23.4 ; sulphur, $17.5 ; \mathrm{H} .=2.5 ; \mathrm{Gr} .=5.7$. Lustre, metal ${ }^{2}-11$ admantine ; color, dark-red ; powder, cochineal-red. In a closed the aid of the blow-pipe, it yiells a sublimate of sulphide of antimwhile hot, but varying from red to reddish-yellow when cold. Is. open tube it gives antimoniai fumes and sulphurous acid. On charcoal melts casily, and deposits a white coating of antimonious acid. With soda it gives a silver globule. It occurs also in the Gold Hill lode, N. T.
7. Light red Silver Ore (Proustite, Arsenical Blend).-Silver, 65.4 ; arsenic, 15.1 ; sulphur, $19.4 ; \mathrm{H} .=2.5 ; \mathrm{Gr} .=5.5-5.6$; color, similar to dark red silver ore, but lighter. Behaves like the preceding, except the arsanical fumes.
8. Xanthocone.-Silver, 64 ; arsenic, 13.4 ; sulphur, 21.3 ; $\mathrm{H} .=2$; Gr. m=6-5.2 ; color, dull red to clove brown ; powder, yellow. Whon hented in
r, pinchbeck-brown; raphite. In nil open le on charcoal, emit le, N. T. It consists ior, dull bluish-gray. olor. The powder is listinct cubic shape. dull gray giobuie, as atrace ol lead. In Treated with soda, a

Arsenic.-5. Brittle 7 ; II. $=2.5$; Gr. $=$ blackish lead-gray. gives a blackish subof sulphide of antipus acid, and fumes. timonious ncid. By ed from the oxide of
per, 3-10 ; sulphur. , arsenic, iron, nud streak, black. In a it gives autimonial l lode, N. T.
per cent. of silver. pe, a reddish-brown ite fumes arise, and - reduction flame, it lation flame, it gives s acid. It melts to a anged suddeuly to a w-pipe point close to d too soon, the silver
blur, 21 ; $H .=2.5$; -black; streak, dark ly, and gives ont a sulphurous acid and mate of antimonions s acid and antimonial ecomes pink-colored is obtained, which,
(end).-Silver, 68.9 Lustre, metall' $-1 i^{\prime}$ n a closed o of antime cold. It open on charcoal t melts cid. With soda it de, N. T.
end).-Silver, 65.4; ; color, similar to cceding, except the , $21.3 ; \mathrm{HI}=2$; Gr.
a closed tube it becomes daris red, melts, and gives some nublimate of sulphide of arsenic. While hot, it is dark, brownish-red, and red to reddishyellow when cold. In an open tube and on charcoal, it behaves like the preceding.
11. Silver Fahlerz (Argentiferous Gray Copper Ore).-Silver, 17.7131.29 ; antimony, 26.63-24.63; sulphur, 23.52-21.17 ; copper, 25.23-14.81; iron, 3.72-5.98; zinc, 3.10-0.93; lustre, metallic ; color, light steel-gray. In n closed tube it sometimes decrepitates, melts, and gives, by aid of the blow-pipe, a dark red sublimate of tersulphide of antimony, with antimobious acid. In an open tube it fuses, gives antimonial fumes and sulphusous acid. On charcoal it fuses easily, and gives a blulsh-white coating o antimonious acid and antimonial fumes. There is also a yellowish coating close to tho test, which appears white on cooling. This coating is created by oxido of zinc.
a^{\prime}. The Reese River ore, from the Comet lode, seems to be a metamorphosed silver fahlerz. The salphur is represented by carbonic acid, so that uhnost all copper and silver is a carbonate. It contains silver, 22.35 , copper, 17, antimony, and some lead. It has a dull greenish-black or blacis color; streak, shining; powder, greenish-gray. In a closed tube it yields nothing volatile. In an open tube some sulphurous acid can be observed. On charcoal, fuses slowly, but boils up suddenly in contact with glowing coal, leaving a button of silver and copper. This button, when playod upon with the oxidation flamo on another spot of the charcoal, gives firsta bluish coating of antimonious ncid, then a yellow one, nearer to the assay of the oxide of load. The silver can be separated from copper by cupellation with lend.
b. The silver fahlerz of Sheba lode (Humboldt) containg, silver, 8.20, goid, 0.008 , some antimony and lead, but very little copper. It has a light gray metallic lustre. It is also called gray silver ore.

c. Combination with Chlorine, Brominc and Iodine.

12. Horn Silver (Chloride of Silver).-SSilver, 75.2 ; chlorine, $24.6 ; \mathrm{H}=$ 1.5 ; Gr. $=5.5-5.6$; lustre, adamantino ; color, gray, greenish or blackish ; streak, shining. It looks like horn or wax. It is translucent, and may be cut like wax. Occurs frequently in the Comstock and Gold Hill lodes, also in Califoruia. It fuses in a candle flame. On charcoal it is easily reduced, and gives an odor of chlorino. If treated under the reduction flame, with an addition of copper, it forms a chloride of copper, and colors the flame azure-blue.
13. Embolite (Chlorobromide of Silver).-Silver, 60.9 to 75 ; H. $=1-1.6$; Gr. $=5.3-5.4$; lustre, resinous ; color, yellowish-green or green. On charconl it fuses easily, evolves rapors of bromine, and pives metallic silver. Mixed wlth oxide of copper, it colors the flame greenish-blue.
14. Bromyrite (Bromic Silver).-Silver, 57.56 ; bromine, 42.44 ; II. $=$ 1-1.5; Gr. $=5.8-5.6$. In a closed tube, treated with bisulphate of potassa, it cmits brown vapors. On charcoal it fuses easily and yields a gle bule of wiver. It is yellow or greenish, and may be cut like chloride of silver.
15. Iodyrite (Iodicle of Silver).-Silver, 46 ; iodine, 54 ; H. $=1.5$; Gr. $=$ 5.5 ; lustre, adamantine ; color, yellow, also greenish. It is translucent. In calo shape it is always lemon-yellow. When lieated in a closed tube it becomes fircred, but assumes its former color when cold. It fuses easily, and gires, by the aid of the blow-pipe, a reddish-yellow sublimate, getting lemon-yellow on cooling. With lisulphate of potassa, it emits beautiful violet vapors. In an open tube it gives an orange sublimate, lemon-yellow on cooling. On charcoal it assumes a fire-red color before it fuses, and spreads on the coal and yields many milnute silver globules. With an addition of oxide of copper, it makes an intensely green flame with a bluish tinge.
16. Iodide of Silver and Mercury.-Silver, 40-42; iodine, quicksilver, and sulphur (chlorine ?), color, dull, dark red ; streak, shining ; powder,
dark red, but changes soon into lead-gray, it exposed to the light. In a closed tube it gives three sublimates, separated in rings. The nearest to the assay is black (sulphide of mercury), the second, yellow (subchloride of mercury ?), the third is gray (metallic mercury). An addition of bisulphate of potassa canses it to yield violet vapors, which come from the lodine. In an open tube it gives the same sublimate, but the black is rery slight ; it gives also yellow fumes. A gold particle in the tube becomes amalgamated. Litmus paper at tho upper end is colored red by the sulphur. Heated on charconl it turns black, fuses easily, and yields silver globules. Melted with soda, it draws partly into the coal. If this crust is broken out and laid on a blank piece of silver, with in drop of water, the sulphur in it will cause a black spot on the silver. Hented with a small pieco of pure lead, it gives a beatiful green conting, with a yellow border, nearest the assay. Thls coating (iodine and lead) is far off from the test. With copper oxide, like the iodyrite.

This mineral occurs, to my knowledge, only in tine Heintzelman mino, Arizona.
d. Combination with Antimony.-17. Antimonial Silver--Silver, 77.84; antimony, $23-16 ; \mathrm{H} .=3.5$; $\mathrm{Gr} .=9.4-9.8$; lustro, metallic ; color and streak, silver-white. On charcoal it fuses easily to a globule, coating tho coal white. A contimual blast renders the winite coating reddish.
e. Combination reith Seleniunn.-18. Naumannite (S'elenial of Silver). Silver, 73 ; selenium, $26 ; \mathrm{H}=2.5$; Gr. $=8$; lustre, metallic ; color, ironblack. It melts easily on charcoal, but with intumescenco in tho reduction flame. It emits the selenium odor of rotten radish. With soda it yields metnllic silver.
19. Eucairite (Selenid of Silver and Copper).-Silver, 43.1 ; seleuium, 31.6 ; copper, 25.3 ; lnstre, metallic ; color, lead-gray. On clarcoal it melts to a gray metallic globule, fumes; and reacts on borax with copper. This mineral is soft, and can be cut with a knife.
f. With T'cllurium. -20 . Hessite (Tellurid of Silver).-Silver, 62.42 ; tellurium, 36.96 ; iron, 0.24 ; Gr. $=8.4-8.6$; lustre, metallic ; color, leadgray or stecl-gray. It is soft, and can be cut like lead. According to Mr. Blake, this mineral is found in Californla also. He describes the re-action as follows :
"In an open tube the mineral fuses quietly, coloring the glass a bright yellow under assay. A white or gray sublimate is deposited at a short distance, immediately over it, which, on being heated, fuses into trausparent drops resembling oil. On charcoal it fuses to a leaden-colored globule, which, on cooling, becomes corered with dendrites. This globulo flattens under the hammer. With the addition of soda, a silver globule is obtained."
f. With Bismuth.-21. Bismuth Silver.-Silre ; 60 ; bismuth, 10 ; copper, 7.8 , and some arsenic ; lustre, metalic ; color, tin-white or graysh. On charcoal it melts easily, covering the conl darik orange. It is yellow while hot, and lemon-yellow when cold. The oxide of copper in it colors tho bor argeen, when melted on charcoal.
\%. Wiih Mercury,-22. Silver Amalyam.-Silrer, 34.8-26.2; quicksilver, $65.2-73.7 ; \mathrm{H}=3.6$; Gr. $=13.7-14$; lustre, metallic ; color, sllver-white; brittle. In a closed tube the merc: y sublimates.
25. Arquerite.-Silver, 80.49 ; quicksiiver, 13.51. It behaves like the P:ialgain

ER.
to the light. In a 3. The nearest to ellow (subchloride addition of bisulch come from the it the black is very the tube becomes red red by the suland yields silver 1. If this crust is drop of water, the sated with a small is a yellow border, off from the test.

Heintzclman mine,
ver--Silver, 77.84; tallic ; color and lobule, coating tho reddish.
elenid of Silver). tallic ; color, irone in tho reduction Vith sodu it ylelds
r, 43.1 ; selenlum, on charcoal it melts with copper. This
r).-Silver, 62.42 ; allic ; color, lend. According to Mr . ribes the re-action
the glass a bright ted at a short disinto trausparent 11-colored globule, is globule flattens ver globule is ob-
bismuth, 10 ; copwhite or graysh. ige. It is yellow opper in it solors
1.8-26.2 ; quicksilcolor, silver-white;
belaves like the

DRY AND HUMID ASSAY OF MINERALS.

Assay of Ores by the Dry and Hitmid Process;es.-In the dity, or fire assay of gold and silver ores, the apparatus required is, 1 . A reliable assay balance, as previously noted. 2. A pair of less delicate balances, with the capacity of weighing 3 ozs ., the weights to be troy vunces; each ounce to be divided into 188. 3. An iron mortar. 4. A lot of French clay No. 7 crucibles, glass mattresses, and small crucibles of (dry cups) pipe clay. 5. Crucible tongs. 6. A fine wire cloth sleve (50 holes to tho inch; 2500 to a sq. in.), extended on a wooden frame. 7. Cupel tongs. 8. Two or 3 muffles, 10 ins. long, 4 ins. wide, and 3 ins. high. 9. A very small, stiff brush. 10. A fine sieve with about 40 holes to the inch. 11. A brass mould, and bonc ashes for making cupels.

The formation of the cupels requires bones to be buraed perfectly white, then pulverized and sifted through the last-noted sieve. Theso ashes are inixed with water and worked with the hands to a putty-like consistence, then placed in the mould and beaten with the pestle by a wooden mallet. The pestle is finally withdrawn by a twisting movementand the cupel is forced out of the mould by the ball of the hand.

In addition to the above noted, the following materials will be required. 1. Wheat flour ; to use as a substitute for charconl in reducing a portion of the litharge to lead. A compound of 12 parts of wheat flour with 100 pmits ot soda is an excellent flux for lead assays. 2. Litharge; is of great utility in promoting fusion. It shouid be thoroughly mixed, sifted, and kept from damp. With silver ore, in a crucible, $1 \frac{1}{2}$ ozs., with 10 grs . of whent flour, will produce a button, which is to be clipeled, and the weight of silrer product noted. This weight is to be deducted from the assays where this amount of litharge is used. 3. Iron; is used to desulphurize the sulphinrits. Shonld be supplied in small pieces of wire $\frac{1}{}$ or x_{6} of an inch thick, and from \ddagger to $\frac{1}{2} \mathrm{in}$. in length. 4. Curbonate of sida; for use expose the crystals to the air until it forms a dry white powder. Soda-ash or Biccrbonate of soda may be substituted for it with good results. 5. Common table sait; to nse, the water of crystallization nust be expelled, by melting the salt on a sheet-iron plate until intumescenre ceases. The carly fusion of the salt in the assay mixture prevents the injurions contact of air with the latter during the process. 6. Gilass; serves as an excellent flux ; for use it must be well pulverized in the iron mortar, and afterwards sifted.

The sample of ore to be treated being thoroughly pulverized, it is, with the fluxes, weighed out in the following proportion :
a. Ores or Tailings containing but little Sultphurcts.-Ore, $\mathbf{2 5 0}$ grs. ; glass, 125 grs. ; flour, 8 grs . ; litharge, $1 \frac{1}{2} \mathrm{ozs}$; soda, 1 oz .
b. Ores containing about 50 per cent. of S'ulphurets.-Ore, $\mathbf{2 5 0}$ grs.; glass, 125 grs. ; irou, 50 grs. ; litharge, $1 \frac{1}{2} \mathrm{ozs}$. ; sodn, 1 oz .
c. Ores being nearly all Stulphurets. -The mixture is like the preceding, but double the amount of iron, 100 grs . mast be used. The foregoing noportions are given on the high authority of Mr. Kistel.

The soda and litharge are first placed in the erucible, over a sheet of paper; then the rest of the mixture; all are carefully mixed together (makiag sure that no portion is loat or spilled), tap the crincible in order to goitle the mixture; strew over the whole a layer of salt one-fourth of 111 itach deep, cover, and place the crucible on the muffle in the middle of the furnace; if there are several assays place them in a row touching each other, but apart from the walls of the furnace, and pile the fuel (charcoal) around them, but not higher thani. tops of the crucibles. ignite the charcoal and maintain the fire as it lurns down, by means of fresh fuel, so ns to keep the fire nearly level with the tops of the crucibles. The latter should
be largs enongh to prevent the assay seething over into the fire. As the melting proceeds the bone-ash cupels are placed on the muffle and brought to a red heat.

The melting will occupy about one hour ; when accomplished, remove first, the crucible covers, and then the crncibles themselves, by grasping them with the long crucible tongs provided for that purpose ; remove from the furnace, und pour the contents into the fron monlds, which are formed with small cavitics or depressions, abont $\frac{3}{4} \mathrm{in}$. deep, for receiving the melted assay. The metallic button in the mould, after being cooled, is freed from adhering slag by being hammered into a square slape, and, by means of the cupel tongs abovo noted, is transferred into the red-hot, bone-ash cupels, where it fuses in a short time and the lead in the mixture assumes a bright, agitated appearance, fumes, works up to the surface, and draws off to the sides of the cupel, where it is absorbed and disappears in the porous mass. By a proper application of heat this activity contiunes until a bright dazzling play of rainbow colors announces the final disappearance of all the lead, leaving the button of silver behind.

The silver button is freed from any adherent bone-ash by hammering on the edge ; it is then weighed, and the weight noted, then transferred to a glass tube containing about $\frac{1}{3}$ oz. of pure nitric acid, and submitted to the flame of an alcohol lamp, where it soon boils, emitting reddish-brown vapors, and separates from any gold that may be present, leaving the latter as a blackish sediment, undissolved in the tube. The silver being dissolved, the acid solution is carcfully poured off, leaving the gold behind, and the tube is then filled with distilled water. When the anriferous sediment has settled, the water is poured off carefully, and it is again filled with all the water it will contaiu. The tube is then covered with a dry cup, or pipe rlay crucible, and suddenly turned upside down so as to deposit the sediment on the bottom of the cup. The tube is very carefully withdrawn from the water so as to leave every particle of the gold in the fluid, and after the gold has completely subsided the water is slowly drained off, and the sediment dried in the cup over an alcohol flame until the gold assumes a yellow color. This gold is weighed and the weight noted.

The utility of this manipulation will be manifest from the important results obtained, as shown by the following calculations, transcribed from Kustel :
"The gold was found to weigh, fur instance, $18 z^{85}$, and the silver button beforo dissolving $\mathbf{3 8 5}$. If the gold is subtracted from the silver which contained this gold, we find thus the pure silver-

$$
\begin{gathered}
356-35=321 \text { silver } \times 1 \cdot 16=372.3 \text { ounces per ton. } \\
\text { and } 35 \text { gold } \times 1 \cdot 16=40.6
\end{gathered}
$$

To find the value, the ounces of gold must be multiplied with 20.67 and those of silver with 1.30 . These numbers in their fractions are not perfectly correct, but will serve our purpose. Continuing the caleulation we find

$$
\begin{aligned}
& \text { Silver }=372.3 \text { ounces } \times 1.30=\$ 483.99 \\
& \text { Gold }=40.6 \quad 4 \times 20.67=\$ 839.20
\end{aligned}
$$

Total value. $\$ 1,523.19$ per ton.
Incase the ore for the assay has been weighed out by half an ounce, equil to 240 gn ius, the calculation is made the same way as before, with the exceptlon that the number 1.215 must be substituted for 1.16 . The procedure of the preceding example would be as follows :

The weight of tive button was 321 . This multiplied with 1.215 will give the amount of onnces per ton of ore of 2000 lbs.
$32(321) \times 1 \cdot 215=390$ ounces. The quantity of fluxes used for 250 grajus of ore will also serve for half ounce assays.
the fire. As the uffle and brouglit
mplished, remove lies, by grasping iso ; remove from which are formed celving the nelted led, is freed from and, by means of t , bone-ash cupels, assumes a bright, 1 draws of to tho the porons mass. a a bright dazzling ace of all the lead,
sh by hammering hen transferred to 1 submitted to the ing reddish-brown , leaving the latter ver being dissolved, id behind, and the rous sediment lias 1 filled with all the ry cup, or pipe elay sit the sediment on ithdrawn from the 1 , and after the gold , and the sediment assumes a yellow

the important re-

 , trauscribed fromd the silver button e silver which con-
er ton.
lied with 20.67 nud us are not perfectly untion we find
on.
alf nn ounce, equal fore, with the ex16. The procedure

Fith 1.215 will give
used for 250 gralus

In gold assays, the resulting button being insoluble in nitric acid, it must be weighed, melted on charcoal before the blowpipe with three times its welglit of pure silver, then dissolved and treated as above noted."

The assay of gold or silver ores may also be effected by fusing in a crucible the following mixture :

$$
\begin{aligned}
& \text { Ore fineiy pulverized........ } 4 \text { parts. } \\
& \text { Litnarge.......... } 4_{3}^{4} \\
& \text { Black Flux..................... } 3 \text { " }
\end{aligned}
$$

If much oxide of lead be present in the ore use the black flux only. If pyrites are abundant in the sample under treatment use saltpetre and nitre. fi the resultant button be an alloy of gold, silver, copper and lead, add to it silver and lead, so that the sample will approximately consist of gold, 1 part ; silver, 3 parts ; and lead, from 12 to 16 parts. Place tho lead within a boue-ash cupel withiu a mufle, melt, then add tho gold and silver wrapped in paper, maintain the heat until the play of colors comes over the button as it brightens and becomes tranquil ; then cool, and weigh it. To "part" the gold from the silver, anneal the button, hammer it thin, and twist it into a roll (called a "cornet ") and submit to heat in dilute nitric acid as long as action continnes, then in concentrated nitric acid until the silver is wholly dissolved. Next, well wash, dry, and ignite the "cornet"; the weight of silver is equivalent to the weight of the button before parting, less that of the refined cornet.

Note.-Chloride of silver (Horn silver), composed of silver, 75.2 parts; chlorine, 24.6 parts, cannot be decomposed by heat alone. It melts at 500° Falir. At a temperature of 212° Fahr., it is decomposed by caustic potassa and soda, and may be reduced to the metallic state by the addition of a little cane sugar. It may also be reduced to the metallic state by fusing 1 part of the chiloride with 2 parts carbonate of soda, or 1 part of the chloride with 2 parts of chalk and 2 parts of charcoal.

Assay of Copper Ores, containing Sulphur, but othervise same as the last. -Pulrerizo well, and melt in an earthen crucible, at a dull red heat, equal parts of ore and vitrified borax, remove from tho slag the matte (crude copper) button. Pulverize it well and slowly, roast in an earthen crieible, stirring meanwhile with a steel rod to promote the emission of sulphurous ncid fumes. When no more rapors are evolved raise and maintain the temprerature at a white heat for soveral minutes ; then introduce into the samo crucible.

> Roasted matte. 1 pari.
> Black flux.................. 3 to 4 parts.

Cover the compound with a layer of vitrified borax and submit it to a cherry-red heat for 20 minutes in n wind furnr:e ; then remove and weigh the resultant copper button.

Assay of Copper Ores containing Arsenic and various other Metals.-Trent the pulverized matte as in tho previous case, then roast it with pulverized charcoal until the emission of arsenical fumes ceases. Melt the resuitant matte with black fux and borax as above noted, and cupel the button in a bone-ash cupel with pure lead. After the metallic globule becomes tranquil, and the brightening takes place, cool, extract, nind weigh the metallic button.

Assay of Silver Ores by the Humid Process.- Digest the pulverized ore in nitric acid, then add a solution of common salt or murlatic acld to the silver solution as long as any precipitate is thrown down. Next, filter nud dry the residuum, then melt the dry residuum with carbonate of soda in an earthen cruciblo; when cool, extract and welgh the metallic button. Chloride of silver (Hom silver) is uot adapted for this treatment,
being insoluble in nitric acid, but it can be dissolved in ammonia, or in boilling solutions of the chloride of potassium, barium, sodinm, strontiun and calcium. Cyande of potassium, in solution, will also dissolve chloride of silver ; strong sulphurie acid gradually decomposes it ; iron and zine will likewise effect its decomposition, especially in presence of free murintic acid. The behavior of Bromide of silver is nearly identical with the chloride.

Assay of Gold Ores by the Ihumid Proccss.-Digest the ore (well pulverized) in 1 part of nitric and 4 parts of hydrochloric acid, then dilute, filter and evaporate nearly to dryness to expel excess of acid. Next, dilute the dried filtrate in pure water, and boil the solution with a solution of sulphate of iron, which precipitates the gold as a dark purple powder. Next, filter and heat the residuum with hydrochloric acid, then filter, wash, and dry the gold powder. Oxalic acid, substituted for the sulphate of iron, precipitates the gold in large flakes. - Quartz Operator's Mand-Book.

Assay of Iron.-Melt in a covered crucible a well-pulverized mixture of :

After fusion remove and weigh the resultant button of cast Iron. A variety of Inxes, as clay, lime, \&c., may be employed, according as the nature of the ore may require.

Assay of Galena, or Ores of Lead containing Sulphur.-Place the following in an earthen crucible in the order of mention :

Well pulverized ore........................... 10 parts.
Iron in strips or plates.................. it 3
Black flux.................................. 30
Common salt, a thick layer over all, with a pliece of charconl on top. Cover the crucible, melt the assay, gradnally increasing the temperature from a low heat to a bright red, conthuling the latter noout 30 minutes. Next, tap the crucible to consolidate the contents, cool, and remove the metallic button.

Assay of Oxidized Ores of Lead.-Place the following in an earthen cruclble in the order of mention :

Well pulverized ore. 10 parts.
Carbonnte of soda. 30 to 40"
Granulated charcoal... 3 "
Iron, in strips or plates, if sulphur be preseut. 1 "
Common salt, a thick layer over all.
Treat as in preceding manipulntion.
Assay of Copper Ores where no other Metals are present but Iron and Copper.-Place in a crucible the following :

$$
\begin{aligned}
& \text { Well pulverized ore. } \\
& \text { Black flux . } 6 \text { : }
\end{aligned}
$$

Begin with a gradual heat, increasing to a bright red, continuing 15 minutes, then extract the button from the slag, and note the weight.

To recover Gold and Silver Residues in Photographic Wastes.-A large list of fluxes for reducing these wastes will be found on page 981. To precipitate the preclous metal from rejected solutions of nitrate of silver, add the following as long as it causes a precipitate ; carbonate of sods, 4 ozs.; water, 6 ozs.

Add whter, and then thoroughly wash the precipitate in plenty of icarm water; lastly, dry, and put up the precipitate in well-stoppered bottles, if not to be reduced forthwith. Lime water is also a first-class precipitating colution for silver. To obtain it place some pieces of lime in a wide-mouthed
n ammonia, or in sodinm, strontiun o dissolve chloride it ; Irous and zinc ce of free murintic ul with the chloride. re (well pulverized) 1 dilute, filter and t dilute the dried tion of sulphate of Next, filter and ih, and dry the gold ju , precipitates the
sulverized mixture
$\begin{array}{ll}4 & \text { parts. } \\ 2 \\ 2 & 11 \\ 8 & \text { " }\end{array}$
n of cast Iron. A nccording as the
-Place the follow10 parts.
"
of charconl on top. ug the temperature about 30 ininutes. ol, and remove the
in an earthen cri-
10 parts.
10
040
"
1 ،
csent but Iron and
parts.
red, continuing 15 the weight.
Vastes.-A large list e 981. To preciplof silver, add the fe of sodh, 4 ozs ;
in plenty of icarm oppered bottles, if -class precipltating in a wide-mouthed
bottle or covered vessel ; fill up with watsr, snake well and allow the mixture to subside for several dayk, then ponr of the olear for usa.

Among other precipitating solutions for photographer's uso the following may be noted: 1. f'or Developer Washinys. Cominon salt, 4 ozs, water, 10 ozs . 3. F'or Ioning Bath. Sulphate of iron, 4 ozs ., water, 16 ozR . 8. For IIyposulphite F'ixiug Baths. Sulphide of potash, 4 ozs., water, 16 ozs. 4. The Nitric Acid Plate-Solution. Hydrochloric acid, 4 ozs, water, 8 ozs. 5. For Nitrate of Silver Solution, old Daths, ctc. Hydrochloric acid, 4 ozs., water, 4.02s. The above are usel for promoting tho separation of valuable ingredients in a solid state from chemical solutions. The procens is ansisted by previously heating the solution; then add the reagent gradually, and atir woll to effect a thorough intermixture. Tho solution is then allowed to rest until the precipitate subsides. Then add a few drops more of the reagent to the liquid, and if no additional precipitation is effected the process is complete.

VALUABLE PROCESSES, ETC., IN VARIOUS TRADES.

Tur following items, selected from the Watchmaker, having been crowded lout of the appropriate department, aro inserted here, being deemed too valuable to omit.
MAIN SPRINGS.-When a main spring is cleaned, most incxperienced workmen will take hold of one end and pull the spring about lialf its length straight out, to save time. This practice will break springn when nothing elee will; and springa treated thus generally break after the watch has been delivered to the customer only a few days. Breaking into many pieces is owing to the acid in the oil which is nsed. We will supposo the main apring is a fino one, and has been evenly tempered and properly cleaned; if, now, old oil is used, or that of an inferior quality if fresh, the acid it contains will eat into the spring, and will finally destroy its texturo. The ooil nearest the centre breaks firnt, and as it recoiln it breaks every coil in the barrel, and sometimes each coil is broken twice. The spring has bccome so impregnated with acid that it has no life left.

T'O PURIFY OIL.-To make the oil pare, talce a good sized bullet or other piece of lead which has a thick coating of lead rust, eut it up fine, put it into the oil, and let it stand for two weeks. This causes the acid to eattle, and it then resembles milk at tho bottom. Now pour off tho top, and your oil is pure. Common clock vil can be treated in this manner and made better than some watch oil.

TO RESTORE LUSTRE.-If not too much darkenod it may be restored by dipping the wheel in pure muriatio acid. Test your acid by dipping a piece of polished steel in it ; if it destroys the polish, reduco the acid with rain water until it will not. Rinse tho wheela well in water. I'his will also reatore the polish to steel that has been blued by heat.

GRINDING GLASSES - Provide two pieces of cork, one concave and one convex (which may be cut to ahape after fitting to lathe). Take a copper cent, or other suitable artiole, and soft solder a screw to fit the lathe and then wax it to the oork; thon get a twenty-fivo cent emery wheel, such as is used on sewing machines, and you have a complete outfit for cutting your watch glasmen. Polish the edgo on the zine collar of the emery wheel, or use a piece of zino to do it. The other cork should be waxed to a penny and oentred. The apectacle lenses may be cut on the same emery wheel, if the wheel is atteched to the lathe no as to revolve.

Another method is to take a common piece of window glass (green glans is the beat) and make a grindatone of that, using the flat surface to grind on. Cement it on a large chuck, the glass being from 2 to 2.5 inches in diameter.

Any one not familiar with this method would be surprised to see how fast the glase is out away, for eithor apectacles or watchon. In grinding watch glames put them flat on the chuck slang-not on the edge.

Some watchmakers aro exousable for not keeping a full supply of watch glasses on hand all the time, when it is remembered that there are over four thousand different sizer.

COMPUSITION OF BRONZE FOR MACHINERY.-Below will be found the composition of alloys approved of and used by prominent French mechanics in government and railway work.

French matime.	Copper.	T 1 .	2 nc.
Tough bronze for rods, vaives, cocks, etc..	88	12	2
Very tough bronze for eccentric straps, etc.	90	10	2
Bronze for pluminer blocks.	86	14	2
Hard bronze.	84	16	2
Very hard bronze for steam brass-cocks.	88	18	2
Bell bronze.	78	28	0
Auth-friction brouze, with 3 parts antinony.	4	96	0
french mailmoadg.			
Car pillows. .	82	18	3
Locomotive and tender oil boxes.	84	16	2
." slide valves...	82	18	8
Cocks.	88	12	

The bronze composed of 86 copper, 14 tin, and 2 rinc, is least porous, and therefore is most suitable when pressure is to be resisted.
PARAFFINE AS A LUBRICANT.-According to a correspondent of the Railroad Gazette, the Erie Railway has reduced its oiling expenses from $\$ 5,000$ to $\$ 1,000$ a year, by using paraffine on passenger car jonrnals, and has reduced the number of hot journals from 5 55 to $\% 32$. During the winter month it is used without the addition of any other oil, but during the summer it is mixed with some othe: lubrioant to give it body, as owing to its limpidity it is difficult to retain in the axle boxes. A lubricant of notalle power for cooling hot journal boxes is composed of a mixture of sulphur with oil or grease. Used oll the hut bearings of steamships, etc., it is nnequalled.

WOOISS HEAVIER THAN WATER.-These are French box, Irish bog oak, pomegranate, vine lignumvitio, Indian cedar, ebony, mahogany, and heart of oak. Lignumvitwo is one-third heavier than water, pomegranato rather mure. Cork and poplar are the lightest woody products.

A COMSTOCK LODE MINING PUMP.-The new Chollar Poton mining pump consists of double columns of 15 in . plungers. The rods with which these are worked are 14×14, each atick being of Oregon pine and 100 ft . in length. They are locked together and held by iron plates 10 ina , wide and 1 in . thick. The motive power is a compound, condenaing, direct acting engine, of 700 H. P., the initial oylinder being 10 ft .10 ins. long, by 32 ins. diam. ; the expansion cylinder being 8 ft . long and 65 ing diam.
THE DEEP MINES OF THE WORLD. - The Yellow Jacket is the deepent mine on the Comstock Lode, being now (March, 1879) 2,500 ft. below the moath of the main shaft, and 2,933 ft. below the Gould \& Curry croppings, the datum line of the Comstook Mines. The highest heat known in these mines is, for air 154°, in a closed drift in the Crown Point Mine, and for water 154°, in the Savage, Hale \& Norcross Minea. The Adalbert, a lendailver mine, in Anstria, is probably the deepest mine in the world, the perpendicalar shaft being $3,280 \mathrm{ft}$. deep. The next deepest on the Continent of Europe is the Viviers ooal mine in Belgium. $2,847 \mathrm{ft}$ deep This mine penetrated to s depth of $3,583 \mathrm{ft}$., but no coal being found, all below the 2.847 ft . level has been abandoned. In England the Dunkirk Colliery, Lancashire, has been opened to a depth of $2,894 \mathrm{ft}$, and the Ronebridge. Colliery, ame locality, to a depth of 2,458 ft., thene being the deepent mines in Great Britain.

INSIDE SURFACE COATING TO PREVENT SCALE IN STEAM BOILERS-Beuttgenhack's Procers.-Gradually diseolve 5 lbs. of a mixture of 25 parts of colophonium, $83 /$ parts graphite, and $81 / 2$ parts of lampblack, in 40 lbs . of boiling gas-bar, adding about 1 lb . of tallow. The solution,
ull supply of watch there are over four

RY.-Below will bo prominent French

opper.	Tln.	Zinc.
88	12	2
90	10	2
86	14	2
84	16	2
82	18	2
78	22	0
4	96	0
82	18	2
84	16	2
82	18	2
88	12	2

a correspondent of oiling expenses from car journals, and has During the winter it during the summer wing to its limpidity f notable power for sulphur with oil or is unequalled.
French box, Irish ebony, mahogany, water, pomegranato odncts.
new Chollar Potonl germ. The rods with on pine and 100 ft . in 10 ins, wide and 1 in . ect acting engine, of by 32 ins. diam. ; the
ellow Jacket is the 1879) $2,500 \mathrm{ft}$. below fould \& Curry cropghest heat known in Point Mine, and for the Adalbert, a leade world, the perpenon the Continent of - deep This mine onnd, all below the akirk' Colliery LanRosebridge Colliery pest mines in Great

DALE IN STEAM 5 lbs. of a mix91/2 parts of lamp. nlow. The solution,
with about 50 per cent. of petroleum, is applied in a warm state. It hris a pungent smell, and should bo put on rapidly, taking the precaution of usinir closed lanterns. Its effect is to cause the scale to come off in large flakes when yicked.

PLUMBAGO AS A LUBRICANT FOR STEAM CYLINDERS. - A practical engincer, in a communication to the American Machinist, gives the result of his remarkable experience with dry plumbago as a lubricant for steam cylinders, which fully establishes its vast superiority over the oil, tallow, etc., gencrally used for that purpose. The engine upon which the experiments were carricd on was an 11×30 horizontal engine, with n piston speed of " 0 'j ft . per minute, and was worked to its full capacity. To obtain the best results, the commion oil-cup was exchanged for a goblet-shaped tallow-cup with a lid, after which the piston-follower and springs were taken out and cleaned. Before starting the engine, one-third of an ounce of finely pulverized plumbago was piaced in the cup. When fairly under way the valve of tho tallow-enp was opened half way;, and a little later it was opened to its ntmost extent. The piston-rod became coated with the plumbago soon after starting, and by noon the whole had passed from the tallow-cup into the cylinder. On starting up in the afternoon, one-third ounce more was placed in the cup, and the engine ran till six o'elock with a like result. There was no noise in the cylinder, cither in the starting, running, or stopping of the engine, and after eighteen months' use, with the above-named quantity applied twice a day, no noise had been heard in tho cylinder, except when the steam was shut off for the purpose of stopping the engine, when it would be heard during one or two strokes of the piston just before the engine stopped. This occurred not more frequently than would havo taken place if tallow or oil had been used. Soon after beginning to use it, a portion of the plumbago would be found remaining in the cup. To obviale this about one ouncs of water was poured into the cup, after the plumbago had been put in, when a decided improvement was observed, in that it could be fod into the cylinder as readily as oil or tallow. After four weeks' use, the cylinder-head was taken off, and the working part of the cylinder was found coated with plumbago, which could not be casily rubbed off with the fingers. The interior of the piston was found as clean as when it left the lathe, so far as dirt of any kind was concerned, and such was the condition at the time of writing.

There was an absolute freedom from all choking in the steam passagen. The gum joints, six in number, had been renewed a few days beforo the new lubricant wss applied, and at the latest advices all were in perfect condition, showing no signs of leakago, whereas, if oils or tallow had been used, they would have required two renewals during that time.

SILVER POLISH STARCH ENAMEL.-Melt $21 / 2 \mathrm{lbs}$. of the very best A 1 paraffino wax over a slow fire. When liquified, remove from the fire and stir in 100 drops oil of citronella. Have a lot of round new pie-tins, clean and nice; place them on a level table and coat them slightly with swoet-oil, and pour about 6 tablespoonfuls of the enamel into cach tin. The pan may be floated in water to cool the contents anfficiently to permit the mixture to be cut or stamped out with a tin cutter into small cakes about the sizo of a peppermint lozenge. Two of these cakes added to each pint of starch will cause the smoothing-iron to impart the finest possible finish to muslin or linen, besides perfuming thy clothes in first-class style. Thousands of dollars havo been made by manufacturers and dealers out of this one article, for, when well made and attractively put up in boxes, cte., the sale is great and the profits immensa

SUPERIOR BAKING POWDER.-Take 2 lbs. best tartario acid in crystals, 3 lbs. bi-carbonate of noda, and 3 lbs . potato starch. Each articlo must be pulvorized separately and slowly dried by a gradual heat, and afterwarda thoroughly mixed by being passed through a fine sieve. In quality this article has no superior, and, when attractively paoked in tins, lead foil, or paper glazed on the outside (it must be kept free from damp), it commands a mont profitable sale.

VIOLET WRITING INK.-For 2 gals, heat 2 gills of alcohol in a water bath; add to the alcohol 2 ozs. of violet aniline, and stir till dissoived, then add the mixture to two gals. of boiling water; mix well, and it in ready for nse. Smaller quantities in proportion. This is the secret, from the sale of which, together with the product, of manufacture, so many fortunes are said to have been made. Some parties assert that it is worth to an active man more than $\$ 1,000$, on account of the large profits obtainable from possible sales.

MANIFOLD PAPER, sometimes called copying-paper, is prodnced by mixing finely pulverized plumbago or lamphlack into a putty-like paste. Pass the subatance over tissuo paper with flannel, and remove the surplus matter with a soft rag. In use, these sheets are alternated with black caibon paper. and when written on with a hard graphite pencil the product will benereral oopies of a letter with one writing.

DUNCAN, FLOCKHART \& CO.'S BIJUE-BLACK AND COPYING INKS.-Blue Aleppo galls (fres from insect perforations), $41 / 2$ ozs.; bruised cloves, 1 dr., cold water, 40 ozs., purified sulphate of iron, $11 / 2 \mathrm{ozs}$, pure sulphuric acid (by measure), 35 minims, sulphate of indigo (in the form of a paste) and which should be neutral, or nearly so, 1 oz . The weights used are avoirdupois, and the measures apothecaries' measnres. Place the galls, when bruised, with the cloves, in a 50 oz . bottle, pour npon them the water, and digest, often daily shaking for a fortnight. Then filter through paper in another 50 oz . bottle. (fet out also the refuse of the galls, and wring out of it the remaining liquid through a strong clean lineu or cotton cloth, into the filter in order that as little as possible may be lost. Next put in the iron, dissolve completely, and filter through paper. Then the acid, and agitate briskly. Lastly the indigo, and thoroughly mix by shaking. Pass the wholo through paper; just filter out of one bottlo into another until the operation is finished. Note.-No gum or sugar is proper and on no account must the acid be omitted. When intended for copying, $5 \mathrm{l} / \mathrm{ozs}$. of galls is the quantity. On the large scale this fine ink is made by percolation.

GLAZE FOR ROAST COFFEE. - In one patented process the roanted coffee is coated with a preparation composed of Irish moss, $1 / 2$ oz., gelatin, $1 / 2$ oz., isinglass, $1 / 2$ oz., white sugar, 1 oz . eggs, 24 . The first three are boiled in water and the moss strained clear. Another recipe is 1 oz . French isinglass and 4 ozs. water, the moss mixed and molded to form. - American (irocer.

VALUE OF FOREIGN COINS.-By a recent official statement of the Secretary of the U. S. Treasury, the value of foreign coins in U. S. money is rated as here shown, and the values of all forcign merchandise made out in any of these currencies, imported on or after Jan. 1, 1870 , will be estimated on the following brsis:

Belgium. frane, gold and silver, 10.5 cents. Bolivia, dollar, gold and silver, 96.5 cents. Brazil, milreis of 1000 reis, gold, 54.5 cents. British Possessions in N. A., dollar, gold, $\$ 1$.
Bogota, peso, gold, 96.5 cents.
Central America, lollar, silver, $\mathbf{0 6 . 5}$ cents. Chili, peso, gold, 01.2 cents.
Denmark, crown, foll, 21.8 cents.
Ecuador, doilar, ailver, 03.5 cents.
Rgypt, pound of 100 piasters, gold, $\$ 4,97.4$. Franoe, franc, gold and silver, 19.3 cents.
Great Britain, pound sterling, gold, $\$ 480$ 6K.
Greece, drachmn, gold and s'lver, 19.3 centa.
German Impire. mark, gold, 83.8 cents. Indin, ripee of 16 annas, silver, 44.4 cents, Italy, lira, gold and silver, 19,3 ceuts.

Japan, yen, gold, 97.7 cents.
J.Juerin, doliar, gold, 81.

Mexico, dollar, silver, $\$ 1.015$.
Netherisuds, forin, gold \& silver, 88.5 cent.k. Norway, crown, gold, 26.8 cents.
l'eri, dollar, silver, ill. 5 cents.
lortugal, milreis of 1000 reis. gold, $\$ 1.08$.
finssia, rible of 100 copecku, silver, $74 . \mathrm{S}$ cents.
Sandwich Islanda, dollar, gold, \$1.
Spain, peseta of 100 centimes, sliver, 10.3 cents.
Sweden, crown, gold, 20.8 cents.
Switzeriand, franc, gold and silver, 18.3 centa.
Tripoll, mahnb of 25 piastera, silve 84.4 cents.
Turkey, phaster, gold, 48 cents.
U. S. of Colambla, yees, silvor, 93.5 cents.

DES.

of alcohol in a water r till dissoived, then 11 , and it in resdy for ret, from the alle of uny fortunes are said th to an active man inable from possible
per, is prodnced by utty-like paste. Pass the surplus matter black carbon paper. oduct will be neveral

K AND COPYING 18), 41/2 028. ; bruised iron, $11 / 2$ ozs., pure go (in the form of a he weights used are lace the galls, when hem the water, and or through paper in , and wring out of it otton cloth, into the ext put in the iron, ie acid, and agitate ng. Pass the whole intil the operation is count must the acid is the quantity. On
process the roanted s, 1/2 oz., gelatin, $1 / 2$ t three are boiled in oz. French isinglass merican Grocer.
al statement of the an in U. S. moncy is dise made out in any vill be estimated on

7 cents.
81.
, 81.015
old $\&$ silver, 88.5 cents.
26.8 cents.
3.5 cents.

000 reis. gold, $\$ 1.08$.
copecks, siliver, 74.S
Mar, gold, \$1.
centímes, silver, 14.3
20.8 cents.
gold and ilver, 18.3
pinstera, silve , 84.4
43 cents. soc, silvor, 03.5 cents.

[^0]: *Note the above estimate is based on the rule of allowing each squar inch of belting in contact with the pulley to raiso half a pound 1 ft . high int minute and tho raising of $36,000 \mathrm{lbs}$ same height tu sane time as a horse power.

[^1]: Sote.--" Leffel's Milling and Mechanical News," from which the above Items are transeribed, is a month y journal (terms 50 cents per anuum), published by James Leffels Co., manufncturers of the celebrated Leffel.Turbine Wheel, Springfield, Ohio. The paper is edited with consummate ability, and it is sufe to say that very many of the Items contalned in it are singly well *orth the whole year's subscitption tenfold.

 The Indianapolis Merhanical Journal (monthly, 5 cents per annum), J. H. Kerrick, publisher. Indianmpolis. lud., is a most useful perlodical to every one who either operates or wishes to procure machincry, and the Western Manufacinver (mouthly, $\$ 2$ per ammin), Coyue \& Co., publishers (and Patent Agents) Chicago, Ills., is unexcelled on the subject of statistics and general information of interest to manufacturers.

[^2]: * It is a popular belief that the ink used for this class of work, on this size does not exceed 3 cents per token. This is the ordinary reckoning, which is for use only. But the waste of this quality of ink is rarely ever less than one-fifth, and it often approximates more closely to one-third of the amount purchased.

[^3]: -D. Van Nostrand, Publisher, 23 Murray street, New York.

[^4]: Trit-oxide the third degree.
 Per-oxide many degrees.
 Sulphate is the salt of sulphure acid.
 Sulphite the salt of sulpherous acid. $B i$ sulphate the salt of a double dose.

[^5]: Exemptions.-Home worth $\$ 2,000$ and Personal Property.-By the Constlty tion of Alabama (1868), The personal property of any resldent of this State the value of one thousand dollars, to be selected by such resldent, shall be exemp from sale or ex ecution, or other final process of any court issued for the collection of any debt contracted since the adoption of the present Constitution (1868). Ever homestead, not exceeding elghty acres of land, the dwelling and appurtenance thereon, to be seleeted by the owner, and not in a city, town or village, or il lieu thereof, at the option of the owner, any lot in a cily, town or village, wit the dwelling and appurtenances thereon, owned and occupled by any resident the State, and not exceeding the value of $\$ 2,000$, shall be exempt from sale execution or any other final process from a court for a debt contracted since th adoption of this Constitution. Such exemption does not extend to any mortgas lawfully obtained; but such mortgage or other alienation of sucht homesteay by the owner thereof, if a marrled man, shall not be valid without the voluntai signature and assent of the wife of the same. The homestead of a fanily attig the death of the owner, is excempt from the payment of debts contracted eing the adoption of this Constitution in all cases during the minority of the children or if the owner dies leaving a widow and no children, the same shall bo exemf for her benefit, and the rents and pronts thereof shall enure to her benef This exemption does not extend to cases of laborers' liens for work done an performed for the person elaiming such exemption or the mechanics' lien 10 work done on the premises. (Constitution of 1868.)

[^6]:

